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1 On sampling discretization in L2

I. Limonova∗ and V. Temlyakov†

Abstract

We prove a sampling discretization theorem for the square norm

of functions from a finite dimensional subspace satisfying Nikol’skii’s

inequality with an upper bound on the number of sampling points of

the order of the dimension of the subspace.

Keywords and phrases: real and complex sampling discretization, subma-
trices of orthogonal matrices.

1 Introduction

Let Ω be a nonempty subset of Rd with the probability measure µ. By Lq,
1 ≤ q < ∞, norm we understand

‖f‖q := ‖f‖Lq(Ω,µ) :=

(
∫

Ω

|f |qdµ
)1/q

.

By discretization of the Lq-norm we understand a replacement of the mea-
sure µ by a discrete measure µm with support on a set ξ = {ξj}mj=1 ⊂ Ω.
This means that integration with respect to measure µ is replaced by an
appropriate cubature formula. Thus, integration is replaced by evaluation
of a function f at a finite set ξ of points. This method of discretization is
called sampling discretization. Discretization is an important step in making
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a continuous problem computationally feasible. The reader can find a corre-
sponding discussion in a recent survey [3]. The first results in sampling dis-
cretization were obtained by Marcinkiewicz and by Marcinkiewicz-Zygmund
(see [25]) for discretization of the Lq-norms of the univariate trigonometric
polynomials in 1930s. Therefore, sampling discretization results are some-
times referred to asMarcinkiewicz-type theorems (see [21], [22], [3]). Recently,
substantial progress in sampling discretization has been made in [21], [22],
[10], [3], [4], [5], [11].

Let us comment on the values of functions from Lq. We are interested in
discretization of the Lq-norms, 1 ≤ q ≤ ∞, of elements of finite dimensional
subspaces. By a function f ∈ Lq(Ω, µ) we understand a specific function
(not an equivalency class), which is defined almost everywhere with respect
to µ on Ω. In other words, for f ∈ Lq(Ω, µ) there exists a set E(f) ⊂
Ω such that µ(E(f)) = 0 and f(x) is defined for all x ∈ Ω \ E(f). We
say that a subspace XN ⊂ Lq(Ω, µ) is an N -dimensional subspace if there
are N linearly independent functions ui ∈ XN , i = 1, . . . , N , such that
XN = span(u1, . . . , uN). In this case, for the subspace XN there exists a set
E(XN) ⊂ Ω such that µ(E(XN)) = 0 and each f ∈ XN is defined for all
x ∈ Ω \ E(XN). It will be convenient for us to assume that each f ∈ XN is
defined for all x ∈ Ω.

In this paper we present results on sampling discretization in the case
q = 2. We consider two settings: (I) discretization with equal weights and
(II) weighted discretization. In Section 2 we prove the main technical results
– Lemma 2.2 and its Corollary 2.1 – that are used in the proofs of Theorems
1.1 and 1.2. We also discuss in detail known results related to the main
lemma – Lemma 2.2. In Section 3 we prove and discuss Theorems 1.1 and
1.2.

We now proceed to a detailed discussion of our new results and related
known results. First, in Subsection 1.1 we formulate the main results of
the paper and comment on their novelty and impact. Second, in Subsection
1.2 we present a brief history of discretization with equal weights, which is
directly related to our Theorem 1.1. Finally, in Subsection 1.3 we give a
historical comment on weighted discretization.

1.1 Main results

I. Equal weights. The following condition is the key to the existence of
good discretization with equal weights.
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Condition E. We say that an orthonormal system {ui(x)}Ni=1 defined on
Ω satisfies Condition E with a constant t > 0 if for all x ∈ Ω

N
∑

i=1

|ui(x)|2 ≤ Nt2.

Note that integration of the above inequality over x ∈ Ω gives t ≥ 1.
The following Theorem 1.1 solves (in the sense of order) the problem of

discretization with equal weights for N -dimensional subspaces of L2(Ω, µ)
satisfying Condition E.

Theorem 1.1. Let Ω ⊂ Rd be a nonempty set with the probability measure
µ. Assume that {ui(x)}Ni=1 is a real (or complex) orthonormal system in
L2(Ω, µ) satisfying Condition E. Then there is an absolute constant C1 such
that there exists a set {ξj}mj=1 ⊂ Ω of m ≤ C1t

2N points with the property:

for any f =
∑N

i=1 ciui we have

C2‖f‖22 ≤
1

m

m
∑

j=1

|f(ξj)|2 ≤ C3t
2‖f‖22,

where C2 and C3 are absolute positive constants.

It is known that Condition E is equivalent to the fact that the subspace
XN := span(u1, . . . , uN) satisfies the Nikol’skii inequality for the pair (2,∞)
(see Section 3 for a detailed discussion). In Section 3 we reformulate Theorem
1.1 in terms of Nikol’skii’s inequality (see Theorem 3.5 and Remark 3.3) and
prove it.

II. General weights. Theorem 1.2 solves (in the sense of order) the
problem of weighted discretization for arbitrary N -dimensional subspaces of
L2(Ω, µ).

Theorem 1.2. If XN is an N-dimensional subspace of the complex L2(Ω, µ),
then there exist three absolute positive constants C ′

1, c
′
0, C

′
0, a set of m ≤ C ′

1N
points ξ1, . . . , ξm ∈ Ω, and a set of nonnegative weights λj, j = 1, . . . , m, such
that

c′0‖f‖22 ≤
m
∑

j=1

λj |f(ξj)|2 ≤ C ′
0‖f‖22, ∀f ∈ XN .

3



Remark 1.1. We formulate Theorem 1.2 in terms of the class of nonneg-
ative weights λj, j = 1, . . . , m. This class of weights is a standard class in
numerical integration (cubature formulas) and in discretization. Clearly, the
terms with λj = 0 can be dropped and then we come to the class of positive
weights, provided at least one of the weights is positive.

Theorem 1.2 is proved in Section 3. For the reader’s convenience it is
formulated there again as Theorem 3.3.

Novelty and impact. Theorems 1.1 and 1.2 solve (in the sense of order)
two sampling discretization problems at a reasonable level of generality. In
the case of the Marcinkiewicz-type discretization with equal weights we only
impose Condition E, which is a standard condition in this case (see Subsection
1.2 for details). Theorem 1.2 provides a discretization result for any subspace
of L2, which is important for applications. A preprint version of this paper
has been published in [13]. It has made an immediate impact on research
of the optimal sampling recovery. Theorem 1.2 was used in [23] for proving
an important inequality for the optimal sampling recovery. For the reader’s
convenience we formulate it here. Recall the setting of the optimal recovery.
For a fixed m and a set of points ξ := {ξj}mj=1 ⊂ Ω, let Φξ be a linear operator
from Cm into Lp(Ω, µ). Denote for a class F (usually, centrally symmetric
and compact subset of Lp(Ω, µ))

̺m(F, Lp) := inf
linear Φξ; ξ

sup
f∈F

‖f − Φξ(f(ξ
1), . . . , f(ξm))‖p.

The following statement was proved in [23]. There exist two positive absolute
constants b and B such that for any compact subset Ω of Rd, any probability
measure µ on it, and any compact subset F of C(Ω) we have

̺bn(F, L2(Ω, µ)) ≤ Bdn(F, L∞). (1.1)

Here, dn(F, L∞) is the Kolmogorov width of F in the uniform norm. In
turn, inequality (1.1) was used in [24] to prove new bounds for the optimal
sampling recovery of functions with small mixed smoothness.

The proof of Theorem 1.1 is based on Lemma 2.2. A version of this
lemma (see Remark 2.2 below) was used in [16] for a breakthrough result on
the sampling recovery.

Note that our proofs of Theorems 1.1 and 1.2 are not technically involved
because they are based on deep known results.
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1.2 Historical comments on discretization with equal
weights

We begin with the formulation of Rudelson’s result from [19]. In the paper
[19] it is formulated in terms of submatrices of an orthogonal matrix. We
reformulate it in our setting. Note that Theorem 1.3 can be derived from the
original result of Rudelson in the same way as we derive Theorem 3.1 from
Lemma 2.2 (see Section 3 below).

Theorem 1.3 ([19]). Let ΩM = {xj}Mj=1 be a discrete set with the probability
measure µM(xj) = 1/M , j = 1, . . . ,M . Assume that a real orthonormal
system {ui(x)}Ni=1 satisfies Condition E on ΩM . Then for every ǫ > 0 there
exists a set J ⊂ {1, . . . ,M} of indices with cardinality

m := |J | ≤ C
t2

ǫ2
N log

Nt2

ǫ2
(1.2)

such that for any f =
∑N

i=1 ciui we have

(1− ǫ)2‖f‖22 ≤
1

m

∑

j∈J

f(xj)2 ≤ (1 + ǫ)2‖f‖22.

In [22] it was demonstrated how the Bernstein-type concentration in-
equalities for random matrices can be used to prove an analog of Theorem
1.3 for a general Ω. The proof in [22] is based on a different idea than the
Rudelson’s proof. Here is the corresponding result.

Theorem 1.4 ([22, Theorem 6.6]). Let {ui(x)}Ni=1 be a real orthonormal in
L2(Ω, µ) system satisfying Condition E. Then for every ǫ > 0 there exists a
set {ξj}mj=1 ⊂ Ω with

m ≤ C
t2

ǫ2
N logN

such that for any f =
∑N

i=1 ciui we have

(1− ǫ)‖f‖22 ≤
1

m

m
∑

j=1

f(ξj)2 ≤ (1 + ǫ)‖f‖22.

We note that Theorem 1.4 is more general and slightly stronger than
Theorem 1.3. Theorem 1.4 provides the Marcinkiewicz-type discretization
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theorem for a general domain Ω instead of a discrete set ΩM . Also, in The-
orem 1.4 we have an extra factor logN instead of log Nt2

ǫ2
in (1.2). A typical

necessary condition for the Marcinkiewicz-type discretization theorem to hold
for an N -dimensional subspace XN is m ≥ N . For instance, such a neces-
sary condition holds when XN is an N -dimensional subspace of continuous
functions with Ω = [0, 1] and the Lebesgue measure on it. Both Theorem 1.3
and Theorem 1.4 provide sufficient conditions on m (the upper bound) for
existence of a good set of cardinality m for sampling discretization. These
sufficient conditions are close to the necessary condition, which is m ≥ N ,
but still have an extra logN factor in the bound for m. The main goal of this
paper is to prove a sufficient condition on m without an extra logN factor
in the upper bound, which guarantees the Marcinkiewicz-type discretization
theorem in L2. This is done in Theorem 1.1. The first result in that direction
was obtained under a condition stronger than Condition E.

Theorem 1.5 ([21, Theorem 4.7]). Let ΩM = {xj}Mj=1 be a discrete set
with the probability measure µM(xj) = 1/M , j = 1, . . . ,M . Assume that
{ui(x)}Ni=1 is an orthonormal on ΩM system (real or complex). Assume in
addition that this system has the following property: for all j = 1, . . . ,M we
have

N
∑

i=1

|ui(x
j)|2 = N. (1.3)

Then there is an absolute constant C1 such that there exists a subset J ⊂
{1, 2, . . . ,M} with the property: m := |J | ≤ C1N and for any f =

∑N
i=1 ciui

we have

C2‖f‖22 ≤
1

m

∑

j∈J

|f(xj)|2 ≤ C3‖f‖22,

where C2 and C3 are absolute positive constants.

In Theorem 3.1 we strengthen Theorem 1.5 by showing that the same is
true under the weaker Condition E instead of (1.3).

1.3 Historical comments on weighted discretization

In the case of weighted discretization, namely, when instead of 1
m

∑m
j=1 |f(ξj)|2

we use the weighted sum
∑m

j=1 λj|f(ξj)|2, the problem of discretization is
solved in the sense of order in the case of real subspaces XN . It is pointed
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out in [22] that the paper by J. Batson, D.A. Spielman, and N. Srivastava
[1] basically solves the discretization problem with weights. We present an
explicit formulation of this important result in our notation.

Theorem 1.6 ([1, Theorem 3.1]). Let ΩM = {xj}Mj=1 be a discrete set with
the probability measure µM(xj) = 1/M , j = 1, . . . ,M , and let XN be an N-
dimensional subspace of real functions defined on ΩM . Then for any number
b > 1 there exists a set of weights λj ≥ 0 such that |{j : λj 6= 0}| ≤ ⌈bN⌉ so
that for any f ∈ XN we have

‖f‖22 ≤
M
∑

j=1

λjf(x
j)2 ≤ b+ 1 + 2

√
b

b+ 1− 2
√
b
‖f‖22.

As observed in [3, Theorem 2.13], this last theorem with a general proba-
bility space (Ω, µ) in place of the discrete space (ΩM , µM) remains true (with
other constant in the right hand side) if XN ⊂ L4(Ω, µ). It was proved in [5]
that the additional assumption XN ⊂ L4(Ω, µ) can be dropped as well.

Theorem 1.7 ([5, Theorem 6.3]). If XN is an N-dimensional subspace of
the real L2(Ω, µ), then for any b ∈ (1, 2], there exist a set of m ≤ ⌈bN⌉ points
ξ1, . . . , ξm ∈ Ω and a set of nonnegative weights λj, j = 1, . . . , m, such that

‖f‖22 ≤
m
∑

j=1

λjf(ξ
j)2 ≤ C

(b− 1)2
‖f‖22, ∀f ∈ XN ,

where C > 1 is an absolute constant.

In this paper we obtain analogs of Theorems 1.6 and 1.7 in the case of
complex subspaces XN (see Theorems 3.2, 3.3, and Remark 3.2 in Section
3). Moreover, we provide two different proofs of Theorem 1.2 – one is based
on results from [1] and the other is based on results from [15].

We note that there are related results on the Banach–Mazur distance be-
tween two finite dimensional spaces of the same dimension (see, for instance,
[2], [20], [7]).

2 Main lemma

Results of this section are based on the following result by A. Marcus, D.A.
Spielman and N. Srivastava.
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Theorem 2.1 ([15, Corollary 1.5 with r = 2]). Let a system of vectors
v1, . . . ,vM from CN have the following properties: for all w ∈ CN

M
∑

j=1

|〈w,vj〉|2 = ‖w‖22 (2.1)

and for some ǫ > 0

‖vj‖22 ≤ ǫ, j = 1, . . . ,M.

Then there is a partition of {1, 2, . . . ,M} into two sets S1 and S2 such that
for all w ∈ CN and for each i = 1, 2

∑

j∈Si

|〈w,vj〉|2 ≤
(1 +

√
2ǫ)2

2
‖w‖22.

The following Lemma 2.1 was derived from Theorem 2.1 in [17] (also see
[18, Lemma 10.22, p.105]).

Lemma 2.1 ([17, Lemma 2]). Let a system of vectors v1, . . . ,vM from CN

satisfy (2.1) for all w ∈ CN and

‖vj‖22 = N/M, j = 1, . . . ,M.

Then there is a subset J ⊂ {1, 2, . . . ,M} such that for all w ∈ CN

c0‖w‖22 ≤
M

N

∑

j∈J

|〈w,vj〉|2 ≤ C0‖w‖22,

where c0 and C0 are some absolute positive constants.

Lemma 2.1 does not control the cardinality of the set J , which we need
for applications in discretization. The following simple remark was made in
[21].

Remark 2.1 ([21]). For the cardinality of the subset J from Lemma 2.1 we
have

c0N ≤ |J | ≤ C0N.

The following lemma is the main lemma for the proof of Theorem 1.1.
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Lemma 2.2 (Main lemma). Let a system of vectors v1, . . . ,vM from CN

satisfy (2.1) for all w ∈ CN and

‖vj‖22 ≤ θN/M, θ ≤ M/N, j = 1, . . . ,M. (2.2)

Then there is a subset J ⊂ {1, 2, . . . ,M} such that for all w ∈ CN

c0θ‖w‖22 ≤
M

N

∑

j∈J

|〈w,vj〉|2 ≤ C0θ‖w‖22, |J | ≤ C1θN, (2.3)

where c0, C0, and C1 are some absolute positive constants.

Remark 2.2. The proof of Lemma 2.2 gives a slightly stronger result than
Lemma 2.2 – the tight frame condition (2.1) can be replaced by a frame
condition

A‖w‖22 ≤
M
∑

j=1

|〈w,vj〉|2 ≤ B‖w‖22, 0 < A ≤ B < ∞.

This stronger version of Lemma 2.2 was used in the followup paper [16]
for sampling recovery.

To derive a complex case analog of Theorem 1.6 (i.e., Theorem 3.2) from
results in [15] we need to prove the following corollary.

Corollary 2.1. Let a system of vectors v1, . . . ,vM from CN satisfy (2.1) for
all w ∈ CN . Then there exists a set of weights λj ≥ 0, j = 1, . . . ,M , such
that |{j : λj 6= 0}| ≤ 2C1N and for all w ∈ C

N we have

c0‖w‖22 ≤
M
∑

j=1

λj|〈w,vj〉|2 ≤ C0‖w‖22.

where c0, C0, and C1 are absolute positive constants from Lemma 2.2.

Proof. Without loss of generality we assume that ‖v1‖2 = min
j=1,...,M

‖vj‖2. Let
n1, . . . , nM be natural numbers such that for every j, 1 ≤ j ≤ M ,

‖v1‖22 ≤
‖vj‖22
nj

< 2‖v1‖22. (2.4)
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Denote

M ′ =
M
∑

j=1

nj. (2.5)

We build a system V of vectors v′
1, . . . ,v

′
M ′ from CN in the following way:

for every j, 1 ≤ j ≤ M , we include in V nj copies of the vector vj/
√
nj . Let

us check that V satisfies (2.1) and (2.2) with θ = 2. By construction and by
our assumption that the system of vectors v1, . . . ,vM satisfies (2.1), we have

M ′

∑

j=1

|〈w,v′
j〉|2 =

M
∑

j=1

nj|〈w,vj/
√
nj〉|2 = ‖w‖22. (2.6)

By construction of the system V we obtain from (2.4) and (2.5) that

‖v1‖22M ′ ≤
M
∑

j=1

nj
‖vj‖22
nj

=

M ′

∑

j=1

‖v′
j‖22. (2.7)

Let ei, i = 1, . . . , N , be the canonical basis of CN . Then from (2.6) we obtain

M ′

∑

j=1

‖v′
j‖22 =

M ′

∑

j=1

N
∑

i=1

|〈ei,v′
j〉|2 =

N
∑

i=1

M ′

∑

j=1

|〈ei,v′
j〉|2 =

N
∑

i=1

‖ei‖2 = N. (2.8)

Thus, from (2.7) and (2.8) we have ‖v1‖22 ≤ N/M ′. By construction for
each j = 1, . . . ,M ′, there is a number k(j) ∈ {1, . . . ,M} such that v′

j =
vk(j)/

√
nk(j). Therefore, by (2.4) we get

‖v′
j‖22 =

‖vk(j)‖22
nk(j)

< 2‖v1‖22 ≤ 2
N

M ′
, j = 1, . . . ,M ′.

The above inequality implies that the system V satisfies condition (2.2) and
equality (2.6) implies condition (2.1). We apply Lemma 2.2 to the system
V and obtain a subset J ⊂ {1, . . . ,M ′} with |J | ≤ 2C1N such that for all
w ∈ CN

c0‖w‖22 ≤
M ′

2N

∑

j∈J

|〈w,v′
j〉|2 ≤ C0‖w‖22.

It is clear that
M ′

2N

∑

j∈J

|〈w,v′
j〉|2 =

M
∑

j=1

λj|〈w,vj〉|2

for some nonnegative λj , j = 1, . . . ,M , so that |{j : λj 6= 0}| ≤ 2C1N .

10



Note that condition (2.1) implies that M ≥ N . Lemma 2.2 in some sense
improves the celebrated result of M. Rudelson [19] where a result similar to
Lemma 2.2 was proved with |J | ≤ C1(t)N logN and with bounds depending
on ǫ (see Theorem 1.3 in Introduction). Proof of Lemma 2.2 uses the iteration
method suggested by A. Lunin [14]. We also refer the reader to the papers
[8], [9], [12] for a discussion of recent outstanding progress in the area of
submatrices of orthogonal matrices.

Proof of Lemma 2.2. We use the following known results (for Proposition 2.1
see Corollary B from [17], Corollary 10.19 from [18], p.104, or [6], and for
Lemma 2.3 see Lemma 1 in [17] or Lemma 10.20 in [18], p.104).

Proposition 2.1 ([17, Corollary B]). Let v1, . . . ,vM ∈ CN and δ > 0 be
such that ‖vj‖22 ≤ δ for all j = 1, . . . ,M . If

α‖w‖22 ≤
M
∑

j=1

|〈w,vj〉|2 ≤ β‖w‖22, ∀w ∈ C
N ,

with some numbers β ≥ α > δ, then there exists a partition of {1, . . . ,M}
into S1 and S2 such that for each i = 1, 2:

1− 5
√

δ/α

2
α‖w‖22 ≤

∑

j∈Si

|〈w,vj〉|2 ≤
1 + 5

√

δ/α

2
β‖w‖22, ∀w ∈ C

N .

Lemma 2.3 ([17, Lemma 1]). Let 0 < δ < 1/100, and let αj , βj, j = 0, 1, . . . ,
be defined inductively

α0 = β0 = 1, αj+1 := αj

1− 5
√

δ/αj

2
, βj+1 := βj

1 + 5
√

δ/αj

2
.

Then there exist a positive absolute constant C and a number L ∈ N such
that

αj ≥ 100δ, j ≤ L, 25δ ≤ αL+1 < 100δ, βL+1 < CαL+1.

If δ := θN/M ≥ 1/100, then (2.3) holds with J = {1, 2, . . . ,M} and
C1 = 1/δ ≤ 100, c0 = 1, C0 = 100. Assume δ < 1/100. Let αj , βj be as
defined in Lemma 2.3; then the vectors v1, . . . ,vM satisfy the assumptions
of Proposition 2.1 with α = β = 1. We apply Proposition 2.1 and choose a

11



subset of the obtained partition with a smaller cardinality. We obtain a set
J1 ⊂ {1, 2, . . . ,M} with |J1| ≤ M/2 such that for all w ∈ CN

α1‖w‖22 ≤
∑

i∈J1

|〈w,vi〉|2 ≤ β1‖w‖22.

Since α1 > 25δ we can apply Proposition 2.1 again and obtain J2 ⊂ J1 with
|J2| ≤ M/22, for which we have two-sided inequalities with α2 > 0 and β2.
Let L be the number from Lemma 2.3. We iteratively apply Proposition 2.1
(choosing at each step the subset Si with the smallest cardinality) and find
J1 ⊃ J2 ⊃ · · · ⊃ JL+1 with the property

1− 5
√

δ/αL

2
αL‖w‖22 ≤

∑

j∈JL+1

|〈w,vj〉|2 ≤
1 + 5

√

δ/αL

2
βL‖w‖22, ∀w ∈ C

N .

By Lemma 2.3 we obtain

1− 5
√

δ/αL

2
αL = αL+1 ≥ 25δ,

1 + 5
√

δ/αL

2
βL = βL+1 ≤ CαL+1 < 100Cδ.

Thus, for J := JL+1 we have

25θ
N

M
‖w‖22 ≤

∑

i∈J

|〈w,vi〉|2 ≤ 100Cθ
N

M
‖w‖22.

Note that 2−L−1 ≤ βL+1 < 100Cδ, therefore |JL+1| ≤ M/2L+1 ≤ 100CMδ =
100CθN as required.

3 Application to discretization

The following corollary of Lemma 2.2 is a generalization of Theorem 4.7 from
[21] (see Theorem 1.5 in Introduction). In [21] instead of condition (3.1) a
stronger assumption (1.3) was imposed.
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Theorem 3.1. Let ΩM = {xj}Mj=1 be a discrete set with the probability mea-
sure µM(xj) = 1/M , j = 1, . . . ,M . Assume that {ui(x)}Ni=1 is an orthonor-
mal on ΩM system (real or complex). Assume in addition that this system
has the following property: for all j = 1, . . . ,M and for some t > 0 we have

N
∑

i=1

|ui(x
j)|2 ≤ Nt2. (3.1)

Then there is an absolute constant C1 such that there exists a subset J ⊂
{1, 2, . . . ,M} with the property: m := |J | ≤ C1t

2N and for any f =
∑N

i=1 ciui

we have

C2‖f‖22 ≤
1

m

∑

j∈J

|f(xj)|2 ≤ C3t
2‖f‖22, (3.2)

where C2 and C3 are absolute positive constants.

Proof. Define the column vectors

vj := M−1/2(u1(x
j), . . . , uN(x

j))T , j = 1, . . . ,M.

Then our assumption (3.1) implies that the system v1, . . . ,vM satisfies (2.2)
with θ = t2. For any w = (w1, . . . , wN)

T ∈ CN we have

M
∑

j=1

|〈w,vj〉|2 =
1

M

M
∑

j=1

N
∑

i,k=1

wiw̄kūi(x
j)uk(x

j) =

N
∑

i=1

|wi|2

by the orthonormality assumption. This implies that the system v1, . . . ,vM

satisfies (2.1).
Note that the necessary condition for (3.2) to hold is m ≥ N . Applying

Lemma 2.2 we complete the proof of Theorem 3.1.

The following Theorem 3.2, which is a complex analog of Theorem 1.6, can
be derived from Corollary 2.1 in the same way as we have derived Theorem
3.1 from Lemma 2.2 above.

Theorem 3.2. Let ΩM = {xj}Mj=1 be a discrete set with the probability mea-
sure µM(xj) = 1/M , j = 1, . . . ,M . Assume that {ui(x)}Ni=1 is an orthonor-
mal on ΩM system (real or complex). Then there is an absolute constant

13



C1 such that there exists a set of weights λj ≥ 0, j = 1, . . . ,M , with the

property: m := |{j : λj 6= 0}| ≤ C1N and for any f =
∑N

i=1 ciui we have

c0‖f‖22 ≤
M
∑

j=1

λj |f(xj)|2 ≤ C0‖f‖22,

where c0 and C0 are from Lemma 2.2.

Further, using Theorem 3.2 and repeating the argument in the proof of
Theorem 6.3 from [5] (with natural modifications from the real case to the
complex case), which was used to derive Theorem 1.7 from Theorems 1.6 and
1.4, we obtain the complex analog of Theorem 1.7 – Theorem 1.2, which we
formulate below as Theorem 3.3 for the reader’s convenience. Note that the
complex version of Theorem 1.4 can be proved in the same way as Theorem
1.4 was proved in [22].

Theorem 3.3. If XN is an N-dimensional subspace of the complex L2(Ω, µ),
then there exist three absolute positive constants C ′

1, c
′
0, C

′
0, a set of m ≤ C ′

1N
points ξ1, . . . , ξm ∈ Ω, and a set of nonnegative weights λj, j = 1, . . . , m, such
that

c′0‖f‖22 ≤
m
∑

j=1

λj |f(ξj)|2 ≤ C ′
0‖f‖22, ∀f ∈ XN .

Remark 3.1. A combination of the proof of Theorem 6.3 from [5] with The-
orem 3.5 (in the proof of Theorem 6.3 from [5] we use Theorem 3.5 instead of
Theorem 1.2 (Theorem 1.4 above)) gives Theorem 3.3 with C ′

1 = C ′
1, c

′
0 = C ′

2,
and C ′

0 = C ′
3, where C ′

i, i = 1, 2, 3, are from Theorem 3.5. It is another way
to prove Theorem 3.3.

It is important to emphasize that in the proofs of Theorems 3.2 and 3.3,
which are complex companions of Theorems 1.6 and 1.7, we did not use
Theorems 1.6 and 1.7. Thus, our arguments give other proofs of analogs of
Theorems 1.6 and 1.7. Note that constants in Theorems 3.2 and 3.3 are not
as good as constants in Theorems 1.6 and 1.7.

A comment on connection between real and complex weighted
discretization. We show here that good discretization of the L2(Ω, µ)-norm
of functions from real subspaces of dimension 2N implies good discretization
of the L2(Ω, µ)-norm of functions from complex subspaces of dimension N .
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Definition 3.1. Let XN be a subspace of L2(Ω, µ). For m ∈ N and positive
constants C1 ≤ C2 we write XN ∈ Mw(m, 2, C1, C2) if there exist a set of
points ξ1, . . . , ξm ∈ Ω and a set of weights λν, ν = 1, . . . , m, such that for
any f ∈ XN we have

C1‖f‖22 ≤
m
∑

ν=1

λν |f(ξν)|2 ≤ C2‖f‖22. (3.3)

Proposition 3.1. Let XN = span(w1, . . . , wN) be a subspace of complex
L2(Ω, µ). Suppose that wj = uj + ivj, where uj, vj are real functions, j =
1, . . . , N . Denote YS := span(u1, . . . , uN , v1, . . . , vN), S := dimYS ≤ 2N , a
real subspace of L2(Ω, µ). Then

YS ∈ Mw(m, 2, C1, C2) implies XN ∈ Mw(m, 2, C1, C2).

Moreover, for discretization of XN we can use the same points and weights
as for discretization of YS.

Proof. Take an f ∈ XN and write

f = fR + ifI , fR, fI ∈ YS.

Assume that a set of points ξ1, . . . , ξm ∈ Ω and a set of weights λν , ν =
1, . . . , m, are such that for any g ∈ YS we have

C1‖g‖22 ≤
m
∑

ν=1

λν |g(ξν)|2 ≤ C2‖g‖22. (3.4)

Then on one hand

m
∑

ν=1

λν |f(ξν)|2 =
m
∑

ν=1

λν(|fR(ξν)|2+ |fI(ξν)|2) ≤ C2(‖fR‖22+ ‖fI‖22) = C2‖f‖22.

On the other hand

m
∑

ν=1

λν |f(ξν)|2 =
m
∑

ν=1

λν(|fR(ξν)|2+ |fI(ξν)|2) ≥ C1(‖fR‖22+ ‖fI‖22) = C1‖f‖22.

The above inequalities prove Proposition 3.1.

15



Remark 3.2. Proposition 3.1 and Theorem 1.7 imply that Theorem 1.2 holds
with m ≤ ⌈2bN⌉, b ∈ (1, 2], and c′0 = 1, C ′

0 = C(b − 1)−2, where C is an
absolute constant from Theorem 1.7.

A remark on sampling recovery. We mentioned in the Introduction
that inequality (1.1) was proved in [23] with the help of Theorem 1.2. We
now point out that if, in the proof of (1.1) (from [23]), we replace Theorem
1.2 with either Theorem 1.7 (real case) or Remark 3.2 (complex case), then
we obtain the following version of (1.1).

Theorem 3.4. For any b ∈ (1, 2] there exists a positive constant B = B(b)
such that for any compact subset Ω of Rd, any probability measure µ on it,
and any compact subset F of C(Ω) we have in the real case

̺⌈b(n+1)⌉(F, L2(Ω, µ)) ≤ Bdn(F, L∞)

and in the complex case

̺⌈b(2n+1)⌉(F, L2(Ω, µ)) ≤ Bdn(F, L∞).

Let Ω be a nonempty compact set in Rd and let XN be an N -dimensional
subspace of real (or complex) space of continuous functions C(Ω). Let µ be
a probability measure on Ω and let {ui(x)}Ni=1 be an orthonormal basis for
XN .

Nikol’skii inequality. We say that XN satisfies the Nikol’skii inequality
for the pair (2,∞) if there exists a constant t > 0 such that

‖f‖∞ ≤ tN
1

2‖f‖2, ∀f ∈ XN . (3.5)

We point out that condition (3.5) withXN = span(u1, . . . , uN), where {uj}Nj=1

is an orthonormal system, is equivalent to Condition E. This can be seen from
the following simple well-known result, which is a corollary of the Cauchy
inequality.

Proposition 3.2. Let XN be an N-dimensional subspace of C(Ω). Then for
any orthonormal basis {ui}Ni=1 of XN ⊂ L2(Ω, µ) we have that for x ∈ Ω

sup
f∈XN ;f 6=0

|f(x)|/‖f‖2 =
(

N
∑

i=1

|ui(x)|2
)1/2

.
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The following simple result can be found in [3]. Note that only the real
case is discussed in [3]. However, the same argument works for the complex
case as well.

Proposition 3.3 ([3, Proposition 2.1]). Let YN := span(u1(x), . . . , uN(x))
with {ui(x)}Ni=1 being a real (or complex) orthonormal on Ω with respect to
a probability measure µ basis for YN . Assume that ‖ui‖4 := ‖ui‖L4(Ω,µ) < ∞
for all i = 1, . . . , N . Then for any δ > 0 there exists a set ΩM = {xj}Mj=1 ⊂ Ω
such that for any f ∈ YN

|‖f‖2L2(Ω,µ) − ‖f‖2L2(ΩM ,µM )| ≤ δ‖f‖2L2(Ω,µ),

where

‖f‖2L2(ΩM ,µM ) :=
1

M

M
∑

j=1

|f(xj)|2.

The following generalization of Theorem 3.1, which is equivalent to The-
orem 1.1, is the main result of the paper.

Theorem 3.5. Let Ω ⊂ Rd be a nonempty compact set with the probability
measure µ. Assume that XN ⊂ C(Ω) satisfies the Nikol’skii inequality (3.5).
Then there is an absolute constant C ′

1 such that there exists a set {ξj}mj=1 ⊂ Ω
of m ≤ C ′

1t
2N points with the property: for any f ∈ XN we have

C ′
2‖f‖22 ≤

1

m

m
∑

j=1

|f(ξj)|2 ≤ C ′
3t

2‖f‖22, (3.6)

where C ′
2 and C ′

3 are absolute positive constants.

Proof. For a given δ ∈ (0, 1), taking into account Proposition 3.3, we find a
set ΩM = {xj}Mj=1 such that for any f ∈ XN

|‖f‖2L2(Ω,µ) − ‖f‖2L2(ΩM ,µM )| ≤ δ‖f‖2L2(Ω,µ). (3.7)

Specify δ = 1/2. Then, clearly, subspace XN restricted to ΩM (denote it by
Yl) satisfies the Nikol’skii inequality (3.5) with t replaced by 2t. Let u1, . . . , ul,
l ≤ N , be an orthonormal basis of Yl. By Proposition 3.2 inequality (3.5)
is equivalent to (3.1). Now applying Theorem 3.1 to Yl we find a subset
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J ⊂ {1, 2, . . . ,M} with the property: m := |J | ≤ C1(2t)
2N and for any

f ∈ XN we have

C2‖f‖2L2(ΩM ,µM ) ≤
1

m

∑

j∈J

|f(xj)|2 ≤ C3t
2‖f‖2L2(ΩM ,µM ),

where C2 and C3 are absolute positive constants from Theorem 3.1. From
here and (3.7) with δ = 1/2 we obtain (3.6).

Remark 3.3. In Theorem 3.5 we assume that XN ⊂ C(Ω). It is done for
convenience. The statement of Theorem 3.5 holds if instead of continuity
assumption we require that XN is a subspace of the space B(Ω, µ) of functions,
which are bounded and measurable with respect to µ on Ω, where Ω is a
nonempty subset of Rd.
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