
Annals of Mathematics and Artificial Intelligence (2005) 43: 1–34 Springer 2004

On SAT instance classes and a method for reliable
performance experiments with SAT solvers

Franc Brglez, Xiao Yu Li and Matthias F. Stallmann

Department of Computer Science, NC State University, Raleigh, NC 27695, USA

A recent series of experiments with a group of state-of-the-art SAT solvers and several
well-defined classes of problem instances reports statistically significant performance variabil-
ity for the solvers. A systematic analysis of the observed performance data, all openly archived
on the Web, reveals distributions which we classify into three broad categories: (1) readily
characterized with a simple χ2-test, (2) requiring more in-depth analysis by a statistician,
(3) incomplete, due to time-out limit reached by specific solvers. The first category includes
two well-known distributions: normal and exponential; we use simple first-order criteria to
decide the second category and label the distributions as near-normal, near-exponential and
heavy-tail. We expect that good models for some if not most of these may be found with pa-
rameters that fit either generalized gamma, Weibull, or Pareto distributions. Our experiments
show that most SAT solvers exhibit either normal or exponential distribution of execution time
(runtime) on many equivalence classes of problem instances. This finding suggests that the
basic mathematical framework for these experiments may well be the same as the one used
to test the reliability or lifetime of hardware components such as lightbulbs, A/C units, etc.
A batch of N replicated hardware components represents an equivalence class of N problem
instances in SAT, a controlled operating environment A represents a SAT solver A, and the
survival function RA(x) (where x represents the lifetime) is the complement of the solvability
function SA(x) = 1 − RA(x) where x may represent runtime, implications, backtracks, etc.
As demonstrated in the paper, a set of unrelated benchmarks or randomly generated SAT in-
stances available today cannot measure the performance of SAT solvers reliably – there is no
control on their ‘hardness’. However, equivalence class instances as defined in this paper are,
in effect, replicated instances of a specific reference instance. The proposed method not only
provides a common platform for a systematic study and a reliable improvement of determin-
istic and stochastic SAT solvers alike but also supports the introduction and validation of new
problem instance classes.

Keywords: satisfiability, conjunctive normal form, equivalence classes, experimental design,
exponential and heavy-tail distributions, reliability function

AMS subject classification: 62F03, 62F25, 62P30, 6Q25, 68T20, 68T27, 68U20, 68W05,
94C10

1. Introduction

The propositional satisfiability problem, SAT, is at the core of NP-hard problems
and has been studied in the context of automated reasoning, computer-aided design,
computer-aided manufacturing, machine vision, databases, robotics, scheduling, inte-

2 Brglez et al. / On SAT instance classes and a method for reliable performance experiments

grated circuit design, computer architecture design, computer networking, etc. The Web
has become the universal resource to access large and diverse directories of SAT prob-
lem instances [43], SAT discussion forums [44], and SAT experiments [42], each with
links to SAT-solvers that can be readily downloaded and installed. Up-to-date survey
articles on the SAT problem and problem instances are also readily available on the
Web, e.g., [13,18,27]. The performance of SAT solvers is being evaluated experimen-
tally either in terms of randomly generated instances of SAT problems, e.g., [9,45], or
structured instances, such as the instances from the DIMACS set [48] and the SAT-
PLAN set [30]. Merits of either approach are subject to on-going critique and examina-
tion [8,23,24,33,35].

Traditional benchmarking reports with SAT solvers are based on relatively few
experiments. Given p problem instances and s solvers, one performs a total of p · s

experiments, typically recording a runtime cost function. As a measure of solver perfor-
mance, various statistics are reported, such as sample mean, standard deviation, median,
etc. Such an experiment would have statistical significance if and only if the p prob-
lem instances were of identical or near-identical ‘hardness’. This typically is not the
case. Experiments are performed on single instances of benchmarks, for example hole6,
hole7, hole8, hole9, hole10 [42] as shown in figure 1. These particular instances, of
increasing size, indeed describe the same (pigeon-hole) principle. However, as the size
of the instance increases, its ‘hardness’ varies too much to be used as a set of single
instances to evaluate the average performance of a SAT solver. One cannot tell whether
the observed performance variability is induced by the solver or by the lack of control of
the ‘hardness’ of problem instances. Increasing the number of such instances does not
improve the reliability of statistical reports since there can be significant variability in
reporting the solver performance for each single instance.

In a series of experiments devised by a skeptic [5], significant performance variabil-
ity of state-of-the-art SAT solvers has indeed been demonstrated consistently on well-
defined equivalence class instances of known and new SAT benchmarks. In experimental
evaluation of algorithms, a skeptic plays a role analogous to that of an adversary in the
worst-case complexity analysis. An adversary devises an input that forces an algorithm
to perform badly enough to prove a lower bound (see, e.g., [1]). A skeptic, as the name
suggests, is neither as malicious nor as rigorous as an adversary. The skeptic’s purpose is
to force imperfectly designed algorithms to exhibit large variability on input classes that
should induce zero or near-zero variability. The notion of the skeptic as defined above
has evolved from the related work in [3,4,14,15,20,21,29,46,47].

This paper expands on the work initiated in [5]. In particular, we not only stream-
line the formulation of equivalence classes and experimental methodology, we also ex-
tend the range of experiments and provide new insights to systematic study and im-
provements to a new generation of SAT solvers. Of particular importance is the insight
that the experiments with equivalence class instances and SAT solvers share a common
mathematical framework with experiments in component reliability.

Beyond improving reliability of solver comparisons, our approach also enables
fair comparisons between SAT solvers in heretofore incomparable categories. Stochas-

Brglez et al. / On SAT instance classes and a method for reliable performance experiments 3

Reference Runtime (seconds)

benchmark chaff sato
hole6 0.01 0.04
hole7 0.32 0.11
hole8 0.95 5.40
hole9 5.49 6.44
hole10 36.04 69.65

sum 42.81 81.64

The tabulated results report the runtime
performance of two state-of-the-art SAT
solvers, chaff [37] and sato [51], as posted
recently on the Web [42]. This type of for-
mat is traditional when reporting on the per-
formance of CAD algorithms in most publi-
cations today. The statistics may be ‘sum’ of
individual cost functions or equivalently, its
sample mean. Typically, also shown here,
benchmarks in the reported list of experi-
ments represent unrelated problem instances
of benchmarks. There is no experimental re-
port on solver variability with respect to dif-
ferent but closely related problem instances
of the same or comparable ‘hardness’.

Figure 1. A traditional format of reporting experimental results with CAD algorithms. Here, a total of
5 · 2 = 10 experiments have been performed. Increasing the number of problem instances will increase
the statistical significance of reported statistics if and only if the problem instances are of identical or near-

identical ‘hardness’.

tic search solvers, such as walksat [34] and unitwalk [22], are usually compared by doing
statistical analysis of multiple runs with the same inputs, using different starting seeds
(see, e.g., [22,25,26]). Deterministic solvers, such as chaff [4] and sato [51], on the other
hand, are compared either on the basis of a single run or multiple runs with incompara-
ble inputs as illustrated in figure 1. Our experimental methodology puts these different
categories of solvers on a level playing field. By introducing syntactical transforma-
tions of a problem instance we can now generate, for each reference CNF formula, an
equivalence class of as many instances as we find necessary for statistical significance
of each experiment with either a deterministic or a stochastic solver. For the stochas-
tic solver, results are (statistically) the same whether we do multiple runs with different
seeds on identical inputs or with the same seed on a class of inputs that differ only via
syntactical transformations. In the latter case, the same class of inputs can be used to
induce a distribution of outcomes for a deterministic solver. In this paper, we analyze re-
sults with several state-of-the-art deterministic solvers and only a single stochastic SAT
solver (unitwalk [22]). For a more comprehensive and up-to-date performance study of
stochastic and deterministic SAT solvers, see [31].

The paper is organized as follows. Section 2 provides the context for our choice of
benchmark instances and a preview of solver performance variability vis-a-vis the case
of traditional experiments as reported in figure 1. The formal introduction of equiva-
lence classes is supported by illustrative experiments in section 3. Section 4 formalizes
the notion of the solvability function which relates closely to the well-known survival
function in reliability theory. We use the solvability function statistics to differentiate ei-
ther two SAT solvers applied to instances from the same class or two equivalence classes

4 Brglez et al. / On SAT instance classes and a method for reliable performance experiments

when evaluated by the same solver. Section 5 analyzes reports of various experiments,
contrasting solver performances on three groups of equivalence classes: (1) based on
reference formulas from the 3-SAT set [27]; (2) based on reference formulas from the
SATPLAN set [30]; and (3) based on scheduling problems introduced in [5]. For details
about the experimental testbed that supports this paper, and new classes of scheduling
instances, see [6].

2. Background and motivation

This research was performed in seven phases:

(1) installation of several SAT solvers readily available on the Web (chaff [37],
satire [50], sato and satoL [51], and unitwalk [22]);

(2) installation of several benchmarks from the DIMACS set [48], the SATPLAN
set [30], and miscellaneous instances, including queen problems packaged with the
sato and satoL solvers [51];

(3) implementation of a solver prototype of the vanilla DPLL algorithm [11,12] with
random/lexical selection of decision variables (dp0_nat and dp0_lex, based on
pseudocode in [52]);

(4) implementation of a generator of scheduling problem instances;

(5) implementation of equivalence class generators and class instances;

(6) implementation of various components of the experimental test bed to plan, initiate,
post-process, and archive the results of experiments on the Web;

(7) a series of experiments and related case study analyses.

Preliminary results of this research were reported in [5]; for an update on the test bed,
see [6].

To establish a context for our experiments, we strictly replicate earlier experiments
of others, recording results in terms of the traditional method in figure 2. Rather than
using a table, we present results of these experiments more compactly in figure 2. This
representation also assists in visualizing the presence of asymptotic trends, grouping
benchmarks into families, such as hole (marked with ‘h’), queen (marked with ‘q’),
hanoi (marked with ‘a’), bw_large_u (unsatisfiable, marked with ‘u’), and bw_large_s
(satisfiable, marked with ‘s’). A ‘traditional’ inspection of graphs in figure 2 suggests
the following:

• For the hole family, satire appears out-ranked by the other two solvers; there is a
cross-over of chaff and sato.

• For the queen family, sato appears to significantly out-rank the other two solvers;
there are cross-overs of chaff and satire.

• For the hanoi family, satire is the only solver that does not time out on the instance
of hanoi5 (1931 variables), while all three solvers time out on the instance of hanoi6
(4968 variables).

Brglez et al. / On SAT instance classes and a method for reliable performance experiments 5

Trends can be readily observed
in the graphical summaries of
the single-instance experiments
with some of the benchmarks
from the DIMACS [48] and
SATPLAN set [30]. Values of
runtime are reported by each
solver for instances marked as
‘a’ (hanoi), ‘h’ (hole), ‘p’
(pret), ‘q’ (queen) (DIMACS
graph) and ‘u’ (bw_large_u) and
‘s’ (bw_large_s) (SATPLAN
graph).
Variability between solvers is
apparent from these graphs,
however nothing reported here
(or in table 1) suggests the in-
trinsic and statistically signifi-
cant variability of each solver
alone – a theme explored in this
paper.

Figure 2. SAT experiments on single instances of mostly unrelated benchmarks.

• For the bw_large_u family, chaff appears to out-rank the other two solvers, and satire
times out for the last two instances (2729 and 5886 variables).

Given the method by which this data has been generated, such visual observations
can be misleading. For example, the more elaborate experiments proposed in this paper
demonstrate that there is no ‘cross-over’ in the average performance of chaff versus sato
for the hole family; the performance of the latter is consistently much better for classes
derived from all instance sizes. For a preview of a summary that replaces the traditional
experimental report in figure 1, see the experiment description and results for the largest
instance of the hole formula in figure 3. For each formula in figure 1 we replicate the
experiment on N = 32 instances from the respective equivalence class. The ‘hardness’
of problem instances is guaranteed to be the same as that of the reference formula by
construction, as described in the next section. Since these are our initial experiments on
the subject, we prefer to work with samples of size N > 30. For example, the t-statistic
has near-normal distribution when the number of samples exceeds 30 [2] and statistical
reports based on 32 or more experiments will have more accurate confidence intervals
of the mean, etc.

Judging the performance of two solvers on the basis of a single instance as shown
in figure 1 is clearly misleading. The single-instance results are equivalent to our experi-
ments reported under the column initV in figure 3 (performed on a 266 MHz workstation
running under Linux). The runtime values under the column initV give the appearance

6 Brglez et al. / On SAT instance classes and a method for reliable performance experiments

To assess solver variability with respect to problem instances of identical ‘hardness’, we
introduce an equivalence class of N problem instances for each reference instance such
as those introduced in figure 1. Choosing N � 32 for statistical significance, we now
perform at least 5 · (1 + 32) · 2 = 330 experiments, a significant increase over 5 · 2 =
10 experiments reported in figure 1. We summarize various statistics for each reference
formula class in a standardized table such as shown below. The column initV represents
the value reported for the reference instance alone and corresponds to the columns reported
for single instances in figure 1, with the proportionally larger execution times here due to
our slower computational platform. Note however, the significant variability induced by the
class instances on each solver. Moreover, the two solvers appear as if they were ‘trained’
on the reference instance. Both solvers fail ‘to learn’ that the class instances are of identical
difficulty by the very construction of each instance in the class.
A few notes about the format of this table:

(1) The solverID ordering in tables is induced by sorting on meanV.

(2) The value of initV is included in reported statistics.

(3) The normal or exponential distribution hypotheses are accepted under a χ2-test [10] at
the 5% level of significance. Decisions about the near-normal, the near-exponential,
the heavy-tail, and the incomplete distributions are based on criteria defined in the
paper.

(4) A pointer to the original data and additional statistics, such as median, confidence
intervals of the mean, etc., is available under

http://www.cbl.ncsu.edu/OpenExperiments/SAT/

· · ·
· · ·

costID = runtime (seconds)
Class labels: name = hole10, type = PC, size = 32

solverID initV minV medV meanV stDev maxV Distribution
sato 101 101 180 178 19.2 207 normal
chaff 47.0 47.0 473 468 144 838 normal

costID = implications
Class labels: name = hole10, type = PC, size = 32

solverID initV minV medV meanV stDev maxV Distribution
chaff 4.58e5 4.58e5 1.87e6 1.85e6 3.02e5 2.25e6 near-normal
sato 3.46e7 3.42e7 5.36e7 4.93e7 8.65e6 5.94e7 near-normal

Figure 3. A summary of significant statistics observed after experiments with several SAT solvers on
instances from the same equivalence class. The format of this table is used throughout this paper to report
results of all our experiments. Each table is generated automatically by post-processing tabular data posted

on the Web. To conserve space in the paper, most tables summarize runtime results only.

that chaff is the faster solver. However, note the statistics in the adjacent columns. It is
obvious that for the given class, sato not only is the solver with much better mean run-

Brglez et al. / On SAT instance classes and a method for reliable performance experiments 7

time, its variability is also significantly lower than the one reported for chaff. Statistics
reported for implications indicate a different conclusion: solver chaff reports smaller
mean and less variance – implying that its implementation may not be as efficient (on
this class of problems) as that of sato.

3. Equivalence classes in CNF

Our recent experiments with a group of SAT solvers and several equivalence classes
of problem instances have demonstrated the presence of intrinsic and significant variabil-
ity in the performance of these solvers [5]. A more elaborate analysis of these results
suggests a common mathematical framework with experiments in component reliabil-
ity. In the latter, we observe the distribution of component lifetime; in the former, we
observe the distribution of execution time (runtime). A lifetime distribution for hard-
ware components is frequently found to have an exponential, Weibull, Pareto, or gamma
distribution. Detailed analysis of data from our experiments with SAT solvers reveals
normal distributions and exponential distributions of runtime and other related random
variables, as well as other distributions similar to the ones observed in reliability appli-
cations. We argue that this insight is due to testing of SAT solvers on problem instances
from well-defined equivalence classes. We briefly digress with a basic experiment in
component reliability to emphasize this critical point.

3.1. Hardware component reliability

Consider the text-book experiment in testing the lifetime of lightbulbs as described
in figure 4. It is easy to understand that the lifetime of a component may depend on its
environment; e.g., the lifetime of a lightbulb in a projector may be significantly reduced

lightbulbFamily
– voltage_A

– wattage_a
bulb_1
bulb_2
bulb_3
· · ·
· · ·
bulb_N

+ wattage_b
+ wattage_c

+ voltage_B
+ voltage_C
+ voltage_D

A reliability experiment with lightbulbs from the same manufac-
turing line may consider the classification schema on the left.
First, we separate lightbulbs by voltage ratings {A,B,C,D}.
Within each voltage rating, we separate lightbulbs by the wattage
type, e.g., {a, b, c}. Each time we perform a lifetime test of any
lightbulb class under specific operating conditions (e.g., forced-
air ventilation, no ventilation), we install N lightbulbs with a
given voltage and wattage type into a standard fixture, place
the fixture into the specifically controlled operating environment,
and turn on all the lightbulbs. Observations may be made daily to
record the number of bulbs that burned out on the day of observa-
tion. Calculating the mean-time-to-failure T0 from the observed
experimental data, we expect to find a close fit of the lightbulb
survival function with the exponential distribution with parame-
ter 1/T0 [38].

Figure 4. A lightbulb family classification schema and lifetime testing.

8 Brglez et al. / On SAT instance classes and a method for reliable performance experiments

if the projector fan is not turned on. What may be more surprising is the manifestation of
exponential distribution of the lightbulb lifetime, i.e. the time it takes for the lightbulb to
fail. Such distributions have been recorded for components ranging from lightbulbs and
transistors [38], to a large number (213) of air-conditioning units in a fleet of 13 Boeing
720 jet airplanes [41], etc.

The most important point about these experiments is the fact that the components
in each of the experiments are as identical as the manufacturing process would permit.
Any ‘mixing’ of components, say lightbulbs of different wattage and from different man-
ufacturing lines, would clearly compromise the experiment and any statistical analysis
that follows. In our experiments with SAT solvers, we insist on well-defined equivalence
classes of SAT problem instances for the very same reasons.

3.2. A CNF formula and its equivalence classes

The hardness of a SAT problem in a CNF formula is encoded in the structure of
the CNF representation and the total number of satisfying assignments for the function
the formula represents. It is simple to create an isomorphism class of CNF formulas, all
of the same hardness as a given reference formula.

Our approach is based on the notion of equivalence classes of Boolean functions F
as defined by Golomb [16] and illustrated in figure 5(a). Each CNF formula F consists
of a set of clauses and each clause is a set of literals. A literal is either a positive integer i,
denoting the variable xi , or −i, denoting x̄i , the complement of xi . While the problem of
deciding whether a pair of functions Fi and Fj belongs to F is at least as hard as graph
isomorphism, the problem of generating any size sample of functions in F is relatively
simple. Here, we designate F0 as the n-variable, m-clause, k-SAT reference formula and
re-write it in accordance with well-defined transformations (variable permutation and
complementation), giving rise to four distinct equivalence class types:

• I-class (identity) – variable names are preserved. Clauses and literals within a clause
are randomly permuted.
Class size upper bound: (k!)mm!.
Property: each solution vector is identical to a reference formula solution vector.

• P-class (permutation) – variables are ‘renamed’ by subjecting them to a random per-
mutation π ; clauses and literals are permuted randomly as in the I-class.
Class size upper bound: (k!)mm!n!.
Property: each solution vector is a reference formula solution vector with the permu-
tation π applied.

• C-class (complement) – variable names are preserved; variables in a randomly chosen
subset S (each variable is in S with probability 0.5) are complemented; clauses and
literals within a clause are randomly permuted.
Class size upper bound: (k!)mm!2n.
Property: each solution vector is a reference formula solution vector with the bits
corresponding to S complemented.

Brglez et al. / On SAT instance classes and a method for reliable performance experiments 9

(a) On generating a CNF formula instance in an equivalence class.

The dag with inputs {x1, . . . , xn}, a
permutation/complementation net-
work, and a ‘black box’ with out-
put Fj , depicts an instance from
an equivalence class F of Boolean
functions, analyzed for their in-
variants in [16]. Here, the black
box represents a reference CNF for-
mula.

(b) Samples of CNF formula instances from four equivalence classes.
The 6-variable, 12-clause reference formula v06_0004 below has four satisfying assignments.
Subject to the four re-writing rules described in the text, each randomly chosen instance from
each of the four equivalence classes not only maintains exactly four satisfying assignments, it
also preserves the syntactic structure of the reference formula.

Reference formula: {−1 −2} {−1 −3} {−1 −4} {−1 −5} {−1 −6} {−2 −3}
{−2 −4} {−3 −4} {−5 −6} {1 2 3} {4 5 6} {−1 2 −3 4}

solution vectors: (001001, 001010, 010001, 010010)
I-class formula: {−1 −5} {−4 −2} {−1 −3} {−1 −2} {−4 −1} {2 3 1}

{−2 −3} {5 4 6} {2 −1 4 −3} {−4 −3} {−5 −6} {−1 −6}
solution vectors: (001001, 001010, 010001, 010010)
transformations: none, solutions are reference formula solutions.
P-class formula: {−4 −2} {−5 −6} {−3 −1} {−5 −4} {−6 −2} {1 3 5}

{−4 −1} {6 2 4} {5 −4 −2 6} {−4 −3} {−5 −2} {−4 −6}
solution vectors: (011000, 110000, 001001, 100001)
transformations: variable permutation 462513 is applied to

reference formula solutions.
C-class formula: {4 −5 6} {1 −4} {−6 1} {−2 −3} {−6 5} {−4 −2}

{2 −3 4 1} {−1 3 2} {1 −3} {−3 −4} {5 1} {1 −2}
solution vectors: (101011, 101000, 110011, 110000)
transformations: variable complementation of (1, 5) is applied

to reference formula solutions.
PC-class formula: {−5 4} {−6 5 2 −4} {2 −3} {−6 2} {2 −5} {4 2} {−6 −5}

{−2 6 −4} {−1 2} {−3 −1} {5 3 1} {4 −6}
solution vectors: (110101, 011101, 110000, 011000)
transformations: variable permutation 246531 and complementation of

(2, 4) is applied to reference solutions.

Figure 5. A method to generate instances of CNF formulas in four equivalence classes.

• PC-class (permutation and complement) – variable names are permuted randomly
and variables are complemented randomly (as described under the P-class and
C-class); clauses and literals within a clause are randomly permuted.

10 Brglez et al. / On SAT instance classes and a method for reliable performance experiments

Class size upper bound: (k!)mm!n!2n.
Property: each solution vector is a reference formula solution vector, subjected to
permutation π and with the bits corresponding to S complemented.

The rewriting neither changes the ‘hardness’ of the instance nor its syntactic structure:
it simply permutes the set of all satisfying solutions of the reference formula. A spe-
cific example of the 6-variable, 12-clause formula in figure 5(b) illustrates the simple
relationship between the four solution vectors of the reference formula and the solution
vectors of each formula in the respective equivalence class.

The classes we define are based on isomorphisms in the following sense. For any
formula F having n variables, let H(F) be the n-dimensional hypercube with nodes
corresponding to all possible variable assignments (with the usual graph-theoretic in-
terpretation – two nodes are adjacent if their labels differ in one bit), and with nodes
whose labels represent satisfying assignments colored. Two formulas F1 and F2 are in
the same isomorphism class if H(F1) and H(F2) have an isomorphism [49] that pre-
serves the coloring. Golomb [16] argues equivalence/isomorphism based on the fact that
“minimization of logical circuitry can be confined, without loss of generality, to one
representative function in each symmetry class”.

3.3. SAT solvers and equivalence class instances

A total of five SAT solvers, chaff, satire, sato, satoL and dp0_nat, were applied to
32 instances in each of the four equivalence classes of the reference formula in figure 6.
While part of the same software package, solver sato and solver satoL represent two dif-
ferent algorithms and data structures. Solver sato uses tries and sophisticated branching
and backtracking heuristics, satoL uses linked lists and more traditional branching and
backtracking. Each solver is a variation of the DPLL algorithm [11,12] – they differ only
in choice of variable ordering and backtracking strategy. The solver dp0_nat orders vari-
ables based solely on the input appearance and uses the simplest possible backtracking
strategy. The results of all experiments are summarized in figure 6. Since the instances
are so small, we only report implications. The variability of statistics reported by the
five solvers even on this small example is surprising indeed. While the best mean of 3.0
(with standard deviation of 0) is reported for the I- and PC-classes only by satoL, the
best minimum value of 1 is found by the solver dp0_nat only (see the histogram). Re-
sults reported by chaff are the same for all classes: a mean of 6.0 and standard deviation
of 0. Only dp0_nat reports mean and standard deviation that is consistently uniform for
all classes. This behavior is induced by the solver design described earlier.

We repeated similar experiments on larger class instances; see figure 7 for a rep-
resentative summary of statistics. Since class instances are of identical ‘hardness’ by
construction, the class-to-class variability exposes erratic behavior of the solvers. These
solvers clearly do not recognize the intrinsic invariant characteristics of instances in
these classes – and until they do, we will observe the behavior as shown. In contrast,
experiments with the unitwalk solver [22] introduced in section 5 demonstrate a SAT
solver whose variability is always induced uniformly by instances from any of the four

Brglez et al. / On SAT instance classes and a method for reliable performance experiments 11

Equiv. chaff satire sato satoL dp0_nat
class mean/std mean/std mean/std mean/std mean/std

I 6.00/0.00 6.31/2.28 8.00/0.00 3.00/0.00 3.44/1.19
C 6.00/0.00 5.63/2.49 6.63/1.91 4.84/2.20 4.03/1.56
P 6.00/0.00 6.47/2.65 7.34/0.79 3.00/0.00 4.09/1.53

PC 6.00/0.00 5.16/2.40 6.44/1.34 5.09/2.10 3.44/1.11

As we demonstrate later in the paper, the number of implications is a measure closely
correlated with execution time for DPLL-based SAT solvers.
Even on this small illustrative data set, counting the number of implications clearly differ-
entiates between the five solvers: chaff [37], satire [50], sato and satoL [51], dp0_nat, our
own vanilla implementation of the DPLL algorithm [11,12].
Here, instances of isomorphic 6-variable, 12-clause CNF formulas can induce large vari-
ability in performance: from 1 implication/solution to 11 implications/solution. We discov-
ered, on much larger formulas, comparable and much larger max/min performance ratios,
both in runtime and implications.

Figure 6. Experiments with SAT solvers on instances from four equivalence classes.

equivalence classes introduced in this section. To make sure that we evaluate the true
average-case performance of any SAT solver, we report our experiments strictly for in-
stances from the PC-class; any exceptions to this rule will be noted explicitly.

Experiments summarized in figure 6 refer to class instances that are too small for
detailed analysis of underlying distributions. Motivated by insights from simple experi-
ments in component reliability in figure 4, the next section introduces a simple method
to analyze data and distributions from our experiments with SAT solvers.

12 Brglez et al. / On SAT instance classes and a method for reliable performance experiments

ref = queen19_v00361 ref = hole10_v00110
(class size = 32) (class size = 32)

Equiv. chaff sato chaff sato
class mean/stdev mean/stdev mean/stdev mean/stdev

I 144/9.41 0.020/0.0065 63.3/8.77 102/0.80
C 144/10.8 0.407/0.748 65.5/15.5 169/34.3
P 94.4/42.4 0.023/0.0074 478/82.6 109/1.61

PC 98.4/46.4 0.211/0.577 481/124 181/13.5

Figure 7. A case study of four equivalence classes from two reference formulas. Since class instances
are of identical ‘hardness’ by construction, the class-to-class variability exposes the erratic behavior of the
solvers. Only the instances from the PC-class will reliably induce the true average-case performance of any

SAT solver.

4. Solvability distributions

The introductory experiments in table 3 and figure 6 apply different SAT solvers
to problem instances from equivalence classes and imply that the observable parameters
of each solver, such as implications, backtracks, runtime, etc., are random variables.
In general, the probability model defined by the random variable X is described by its
cumulative distribution function FX(x): FX(x) = P {X � x}, where x is in the sample
space of X and the range of FX(x) is the interval [0, 1].

We estimate FX(x) by performing an experiment that involves N independent trials
as follows. Let A denote the SAT solver algorithm applied to N instances selected
randomly from a given equivalence class of CNF formulas, and let x represent the value
of a parameter observed upon solving each instance. Now, define the estimate of FX(x)

as the solvability function SA(x):

SA(x) = 1

N
· (number of observations that are � x). (1)

Note that SA(x) reaches its maximum value of 1.0 only if the solver A returns a decision
(satisfiable/unsatisfiable) for all of the N instances in the experiment. For some solvers,
time-out limit or a backtrack limit may prevent finding solutions to all problem instances.

4.1. Distributions

In the next section, we report experimental results by including not only essential
statistics such as sample mean and standard deviation, but also a classification of the un-
derlying distributions. Each distribution induces a characteristic shape of the solvability
function; four such shapes are illustrated in figure 8. The criteria we apply in this paper
to classify each distribution from the experimental data are both objective and subjec-
tive. The objective criteria are based on ‘goodness-of-fit’ χ2-test1 to a normal and an

1 The χ2-test compares data from experimental observations with predictions based on the theoretical ex-
planation of the phenomenon under investigation [10]. To evaluate the null hypothesis that the experi-
mental distribution can be represented by the assumed theoretical distribution, a one-tailed test is used as

Brglez et al. / On SAT instance classes and a method for reliable performance experiments 13

Figure 8. Solvability function types observed during SAT solver experiments.

described by P(χ2 � χ2
α,ν) = 1−α. If χ2 > X2

α,ν , the hypothesis should be rejected. Here, ν designates
the degrees-of-freedom (determined from data and the assumed distribution type), and α represents the
significance level. Typically, a value of α = 5% is assumed.

14 Brglez et al. / On SAT instance classes and a method for reliable performance experiments

exponential distribution, the subjective criteria are based on less comprehensive evalua-
tions of the distribution statistics and are described below. A separate study is required
to re-evaluate these distributions in terms of ‘goodness-of-fit’ to more complex distri-
butions such as compound exponential, gamma, beta, zeta, Weibull, Pareto, and other
distributions (see for example [32,39,40]).

To classify the distributions into types shown in figure 8, we use a simple heuris-
tic that relies on a specific order in which we processes the reported statistics, and if
required, we also invoke a χ2-test:

• an incomplete distribution is declared when the maximum value of the solvability
function is less than 0.95. Such distributions are either due to verification failures,
timeout, or both.

• an impulse distribution is declared when the standard deviation statistic is 0.0. While
not shown in figure 8, we encountered this distribution in some of our experi-
ments, e.g., when the number of backtracks reported by a specific solver is a con-
stant.

• an exponential distribution is declared when the hypothesis passes a ‘goodness of-fit’
χ2-test (χ2

exp) at 5% level of significance. Note that in this case, median < mean, and
mean ≈ stdev.

• a heavy-tail distribution is declared when indications of a heavy-tail distribution are
apparent from the basic statistics of experimental data: median � mean, mean �
stdev. However, fitting a heavy-tail distribution to a formula may require careful con-
sideration of several factors as outlined in a comprehensive overview article on the
subject [36].

• a normal distribution is declared when hypothesis passes a ‘goodness-of-fit’ χ2-test
(χ2

norm) at 5% level of significance. Note that in this case, median ≈ mean, and mean
> (3 · stdev).

• a near-normal distribution is declared when

(1) χ2
norm < χ2

exp,

(2) stdev/mean < 0.55,

(3) 0.8 < mean/median < 1.2, and

(4) mean – 2 · stdev > 0.0.

While this distribution does not pass the normal distribution hypothesis χ2-test at 5%
level of significance, it may well pass such a test for a different level or by fitting to
a more complex distribution.

• a near-exponential distribution is declared when the preceding test for the near-
normal distribution is not accepted. While the distribution does not pass the ex-
ponential distribution hypothesis χ2-test at 5% level of significance, it may well pass
such a test for a different level or by fitting to a more complex distribution.

Brglez et al. / On SAT instance classes and a method for reliable performance experiments 15

Overall, this simple heuristic has been very effective in providing a concise char-
acterization of the distribution for each of the variables in the experiment (runtime, im-
plications, backtracks, etc.) – in addition to the usual numerical statistics. See [6,7] for
illustrative details.

4.2. Related distributions

A study published recently reports a significant number of heavy-tailed distribu-
tions “of over two dozen randomly picked instances from both the underconstrained and
the critically constrained area” when solved by a specific backtracking algorithm [17].
The study also demonstrates significant improvement in the performance of the algo-
rithm by re-starting the algorithm after four backtracks. A screen-shot of both distribu-
tions taken from this paper is shown in figure 9, along with mark-ups introduced by us to
demonstrate that the much improved distribution has an excellent fit with an exponential
distribution with the mean and the standard deviation of 29 backtracks.

Introducing restarts may work only for algorithms that exhibit heavy-tail cost dis-
tribution. The experiments with multiple SAT solvers in section 5 also demonstrate
heavy-tail distribution for some solvers on some of the isomorphism class instances.
However, for the same instance classes, experiments also show that completely different
solvers exhibit normal, near-normal, exponential or near-exponential distribution.

A screen-shot from [17] shows a ‘heavy-tail’ distribution (no restarts) observed for a specific
algorithm and an improved distribution (with restarts) observed for a modified algorithm
that implements restarts. Our manual markups demonstrate that the new distribution has an
excellent fit with exponential distribution with the mean of 29 backtracks.

Figure 9. An example of an algorithm inducing an exponential solvability function.

16 Brglez et al. / On SAT instance classes and a method for reliable performance experiments

4.3. Component reliability

The solvability function as defined in this section is actually the complement of
the survival function (also known as the reliability function), denoted as RA(x) = 1 −
SA(x) where x may represent the lifetime of any component in a batch of N components
undergoing a test in an environment A [28]. Component reliability is an established
field of its own. The fact that our current SAT experiments frequently reveal exponential
and near-exponential distributions of observable parameters – similar to the lifetime of
components such as lightbulbs, transistors, air-conditioning units – suggests that much
may be learned about solvability of combinatorial problems in general, and SAT problem
in particular, by studying techniques and experiments in component reliability.

5. Highlights of experimental results

Results of our experiments are organized hierarchically. The initial level consists
of ‘raw’ files saved as direct outputs of each SAT solver and files that contain html- and
tab-formatted data, generated by post-processing the raw files. This level is directly ac-
cessible on the Web, under a schema updated in [6]. In this paper, we use the format of
figure 3 to summarize some of the web-posted results. This format aggregates, across
all solvers, a subset of statistics for each equivalence class such as mean, standard devi-
ation, minimum, maximum, and the distribution. Due to space limitation, we report on
the statistics for runtime only; statistics for implications, backtracks, etc. are available
from the Web. Results are presented in four subsections: (1) Overview of distributions,
(2) Random versus isomorphism class instances, (3) Blocks-world versus scheduling
class instances, and (4) Queen and hole class instances.

5.1. Overview of distributions

With two notable exceptions all results are for PC classes constructed from single
reference instances. The exceptions, already identified in the literature as ‘classes’ [27],
are the random classes, satisfiable (uf250-1065_R) and unsatisfiable (uuf250-1065_R),
100 instances each, with 250 variables and 1065 clauses. The ‘hardness’ of the instances
in the random classes is far from uniform, as we demonstrate by studying up to four
specific instances from each class in more detail. Thus, any results about a random class
should not be considered on a par with our other results. We elaborate further on this
point after giving an overview of our results.

Figure 10 shows a summary of distributions identified with most benchmarks in
the single-instance experiments of figure 2. Experiments are reported for four solvers:
chaff [4], sato and satoL [51], and unitwalk [22]. Experiments with satire [50] and
dp0_nat (a vanilla DPLL solver described in section 3) would time out on larger bench-
marks and results are posted on the Web only. All four solvers are applied to ten PC-
classes of satisfiable (sat) instances, and only the first three solvers are applied to ten
PC-classes of unsatisfiable (unsat) instances (since unitwalk is not a complete solver).

Brglez et al. / On SAT instance classes and a method for reliable performance experiments 17

(a) observed distributions for PC classes
chaff sato satoL unitwalk

normal (N) 7 3 5 0
near-normal (nN) 3 6 8 0

exponential (E) 6 4 4 10
near-exponential (nE) 3 2 3 0

heavy-tail (HT) 1 4 0 0
incomplete (IN) 0 1 0 0

(b) sat equivalence classes and distributions
chaff sato satoL unitwalk

uf250-1065_R HT HT E HT
uf250-1065_027_PC E E nE E
uf250-1065_034_PC HT E nE E
uf250-1065_087_PC nE HT nE E

bw_large_b_s_PC N nN nE E
bw_large_c_s_PC nE N nN E

sched06s_v00828_PC E HT nN E
sched07s_v01386_PC E IN nN E
queen14_v00196_PC E E E E
queen16_v00256_PC nE E E E
queen19_v00361_PC nN HT E E

(c) unsat equivalence classes and distributions
chaff sato satoL

uuf250-1065_R IN E N
uuf250-1065_046_PC N nN nN
uuf250-1065_074_PC nN nE N
uuf250-1065_090_PC N nE nN

bw_large_b_u_PC nN nN N
bw_large_c_u_PC N N N

sched06u_v00826_PC E HT nN
sched07u_v01384_PC E nN nN

hole08_v00072_PC N nN N
hole09_v00090_PC N nN N
hole10_v00110_PC N N nN

Figure 10. Summary of runtime distributions induced by four SAT solvers on instances from twenty-two
equivalence classes of CNF formulas.

The first of the eleven lines in each table of figures 10(b) and 10(c) is devoted to a
random class while the three lines below it are for PC-classes built on selected instances
of that class. Note that, while PC classes on single satisfiable instances typically induce
an exponential or near-exponential distribution for most solvers, the random class of
satisfiable instances induces a heavy-tail distribution in three cases out of four. For
unsatisfiable instances, the typical PC-class induces a normal or near-normal distribution
for most solvers, but the random class induces exponential distribution in two cases out
of three.

18 Brglez et al. / On SAT instance classes and a method for reliable performance experiments

The remaining seven PC classes come from four sat/unsat families: blocks-world
(bw_x, introduced in [30]); scheduling (sched_x, introduced in [5] and expanded
in [6]); queens (satisfiable, queen_x, introduced in [51]); and pigeon-hole (unsatisfi-
able, hole_x, introduced in [48]). There are 32–128 instances in each PC-class, with
class size shown in each table reporting the statistics about the experiment. Figure 10
also displays statistics about the observed runtime distributions. PC-class instances in-
duce distributions that clearly differentiate the four solvers:

chaff: there are twelve normal or near-normal and seven exponential or near-exponential
distributions. For most unsatisfiable classes, distributions are normal or near-normal.
There is one heavy-tail distribution for a satisfiable random class.

sato: there are ten normal or near-normal and four exponential distributions. For most
unsatisfiable classes, distributions are normal or near-normal. There are five heavy-
tail distributions, three for satisfiable classes from random, scheduling, and queens
instances, and two for the unsatisfiable scheduling classes. One satisfiable scheduling
class has an incomplete distribution.

satoL: there are fourteen normal or near-normal and six exponential or near-exponential
distributions. For all unsatisfiable instance classes, distributions are normal or near-
normal.

unitwalk: all ten satisfiable PC classes induce exponential distributions.

5.2. Random versus isomorphism class instances

We now give a more detailed view of the fundamental difference between instances
generated randomly and instances selected randomly from an isomorphism class. In the
first case, only the number of clauses and the number of variables is maintained: a
formula is in the class of satisfiable instances whether it has a single or many satisfying
solutions. In the second case, the syntactical structure as well as the number of satisfying
solutions is maintained for each instance in the class.

Consider the set of satisfying formulas from the random class uf250-1065_R and
select four instances: #19, #27, #34, #87 (we explain the rationale for this selection
later). See figure 11 for the summary of an illustrative case study on PC-classes of these
four formulas and also the I-class and the II-class of formula #87. We introduced the
II-class (of identical instances) to provide the traditional context for experiments with
stochastic solvers such as unitwalk [22,25,26]. The associated solvability functions as
reported by the unitwalk solver illustrate the most important conclusions: (1) for a ref-
erence formula, instances in II-, I- and PC-class are equivalent as to their ‘hardness’ as
confirmed by a simple t-test; (2) there is a significant difference in ‘hardness’ of the
four instances as demonstrated by the different solvability function for each class. No
statistics test is required for the latter: the significance of this difference is apparent by
inspection of the solvability functions in figure 11(b). We contrast the difference between
the random instances and the PC-class instances by additional experiments, summarized
in a figure and two tables. Figure 12 displays solvability functions reported by four SAT

Brglez et al. / On SAT instance classes and a method for reliable performance experiments 19

Four reference instances from the
set of 100 satisfiable random 3-
SAT formulas in uf250-1065 [27]
were chosen in this study: #19,
#27, #34, and #87. For each for-
mula, we generated an I- and PC-
class of size 128, invoked unit-
walk solver [22] on each instance,
and recorded runtime (in seconds)
required to find a satisfying solu-
tion for each instance. The solver-
specific solvability functions on
the left illustrate the most impor-
tant conclusions:
(a) for each formula, instances in

I- and PC-class are equivalent
as to their ‘hardness’;

(b) there is a significant differ-
ence in ‘hardness’ of the four
instances as demonstrated by
the different solvability func-
tion for each class.

A t-test with an II-class? We define the II-class as the set of identical instances read by a
stochastic local search solver such as unitwalk and executed under a different random seed.
This method is the backbone of experiments reported in [22,25,26]. In this case study, the
mean and the standard deviation of runtime (in seconds) reported by each solver on 128
instances in each class are:

uf250-1065_087_II 10.9 9.77
uf250-1065_087_I 12.8 13.0
uf250-1065_087_PC 12.4 12.7

Evaluating t-statistics for all pairs using the formula

t = (m1 − m2)/(σ
√

(1/n1 + 1/n2))

where σ =
√

((n1 − 1)s2
1 + (n2 − 1)s2

2)/(n1 + n2 − 2), yields t = −1.05 for II-vs-PC, t =
−1.32 for II-vs-I, and t = 0.24 for I-vs-PC. Since |t| < 1.98 we have to accept, at 5%-
level of significance, that difference between the means between any two populations is not
significant, and hence the I-, the PC- and the II-class are equivalent. However, to reliably
measure the performance of deterministic as well as stochastic solvers, we use only instances
from the PC-class.

Figure 11. A case study of equivalence classes based on four reference formulas from the set of 100
satisfiable random 3-SAT formulas in uf250-1065.

20 Brglez et al. / On SAT instance classes and a method for reliable performance experiments

Figure 12. Solvability functions for random and isomorphism class instances.

solvers for (a) the original class uf250-1065_R of 100 randomly generated instances [27]
that are satisfiable compared with that of a PC-class of uf250-1065_087_PC, one of
the selected satisfiable instances, and (b) the original class uuf250-1065_R of 100 ran-
domly generated instances [27] that are unsatisfiable compared with that of a PC-class of
uuf250-1065_90_PC, one of the selected unsatisfiable instances. Complete statistics for

Brglez et al. / On SAT instance classes and a method for reliable performance experiments 21

Table 1
Four solver comparisons on random satisfiable instances in the set uf250-1065. First, on the original in-
stances from the set of 100. Subsequently, on three classes of isomorphism instances of 128, each class

derived from an instance in the set of 100.

costID = runtime (seconds)

Original set: name = uf250-1065, type = R, size = 100a

solverID initV minV medV meanV stDev maxV Distribution

satoL – 0.12 12.0 17.0 16.0 65.3 exponential
unitwalk – 0.02 4.85 21.4 43.1 237 heavy-tailed

sato – 0.07 42.7 104 170 1242 heavy-tailed
chaff – 0.01 16.5 115 243 1325 heavy-tailed

a Except for instances 027, 034, 087, the instances in the table above are different from the ones below.
While the number of variables (250) and the number of clauses (1065) is the same for all instances, their
functional and their structural characteristics, within the set of 100, are random.

costID = runtime (seconds)

Class labels: name = uf250-1065_027, type = PC, size = 128

solverID initV minV medV meanV stDev maxV Distribution

unitwalk 0.72 0.08 4.42 6.79 6.46 32.1 exponential
satoL 46.8 0.22 15.6 26.7 19.7 56.0 near-exponential
chaff 115 8.66 51.3 69.8 61.9 356 exponential
sato 23.5 0.13 52.9 92.8 106 682 exponential

costID = runtime (seconds)

Class labels: name = uf250-1065_034, type = PC, size = 128

solverID initV minV medV meanV stDev maxV Distribution

satoL 6.23 0.15 26.2 27.3 16.1 56.5 near-exponential
unitwalk 237 1.39 85.5 128 118 501 exponential

chaff 550 3.26 23.1 201 321 1315 heavy-tailed
sato 222 1.16 136 224 229 1008 exponential

costID = runtime (seconds)

Class labels: name = uf250-1065_087, type = PC, size = 128

solverID initV minV medV meanV stDev maxV Distribution

unitwalk 21.2 0.02 9.19 12.4 12.7 72.8 exponential
satoL 52.0 0.59 27.4 31.1 19.5 66.0 near-exponential
sato 95.7 0.15 60.1 148 212 1100 heavy-tailed
chaff 1323 103 573 619 316 1431 near-exponential

each of these classes are summarized in tables 1 and 2. We next highlight our decisions
and observations based on these summaries.

22 Brglez et al. / On SAT instance classes and a method for reliable performance experiments

Table 2
Four solver comparisons on random unsatisfiable instances in the set uuf250-1065. First, on the original
instances from the set of 100. Subsequently, on three classes of isomorphism instances of 128, each class

derived from an instance in the set of 100.

costID = runtime (seconds)

Class labels: name = uuf250-1065, type = R, size = 100a

solverID initV minV medV meanV stDev maxV Distribution

satoL – 15.0 42.7 45.4 17.7 94.7 normal
sato – 57.4 428 496 350 1761 exponential
chaff – 103 747 788 423 t’outb incomplete

a Except for instances 090, 074, 046, the instances in the table above are different from the ones below.
While the number of variables (250) and the number of clauses (1065) is the same for all instances, their
functional and their structural characteristics, within the set of 100, are random.

b Eleven instances time-out at 1800 seconds.

costID = runtime (seconds)

Class labels: name = uuf250-1065_090, type = PC, size = 128

solverID initV minV medV meanV stDev maxV Distribution

satoL 23.6 21.8 22.7 22.9 0.50 24.0 near-normal
sato 59.0 21.6 81.8 94.7 52.3 306 near-exponential
chaff 103 89.3 127 130 21.7 245 normal

costID = runtime (seconds)

Class labels: name = uuf250-1065_074, type = PC, size = 128

solverID initV minV medV meanV stDev maxV Distribution

satoL 36.2 34.8 36.6 36.5 0.73 38.2 normal
sato 237 80.3 261 304 159 1148 near-exponential
chaff 505 400 615 608 90.5 780 near-normal

costID = runtime (seconds)

Class labels: name = uuf250-1065_046, type = PC, size = 128

solverID initV minV medV meanV stDev maxV Distribution

satoL 69.7 65.3 77.6 75.9 5.07 83.2 near-normal
sato 1899 435 1134 1180 462 2224 near-normal
chaff 3048 1903 2587 2613 329 3417c normal

c Three instances time-out at 3600 seconds.

Selection of reference formulas. Since our initial experiments were with chaff, we ex-
amined its runtime results on 100 satisfiable formula instances in uf250-1065_R to select
a reference formula for an isomorphism class. A total of three formulas were selected
and a PC-class of 128 instances was generated from each formula:

Brglez et al. / On SAT instance classes and a method for reliable performance experiments 23

Table 3
SAT solver comparisons on satisfiable and unsatisfiable instances in the PC class of the bw_large family.

costID = runtime (seconds)

Class labels: name = bw_large_b_s, type = PC, size = 128

solverID initV minV medV meanV stDev maxV Distribution

chaff 0.07 0.02 0.08 0.09 0.04 0.20 normal
sato 0.22 0.22 0.78 0.84 0.33 1.91 near-normal

satoL 1.62 0.23 1.25 1.33 0.74 3.72 near-exponential
unitwalk 0.65 0.04 3.05 4.24 3.85 20.1 exponential

costID = runtime (seconds)

Class labels: name = bw_large_c_s, type = PC, size = {32, 128a}
solverID initV minV medV meanV Dev maxV Distribution

chaff 2.49 0.12 3.59 3.95 2.17 13.1 near-exponential
sato 9.01 9.01 115 120 36.4 234 normal

unitwalk 86.4 12.8 349 497 469 1734b exponential
satoL 65.9 65.9 1763 1715 743 3440c near-normal

costID = runtime (seconds)

Class labels: name = bw_large_b_u, type = PC, size = 32

solverID initV minV medV meanV stDev maxV Distribution

chaff 0.06 0.02 0.05 0.05 0.01 0.07 near-normal
sato 0.10 0.10 0.35 0.37 0.11 0.61 near-normal

satoL 0.45 0.31 0.45 0.48 0.12 0.70 normal

costID = runtime (seconds)

Class labels: name = bw_large_c_u, type = PC, size = 32

solverID initV minV medV meanV stDev maxV Distribution

chaff 2.35 1.57 2.62 2.67 0.70 4.58 normal
sato 6.25 6.25 47.2 45.3 13.0 68.9 normal

satoL 662 466 569 593 86.8 821 normal

a Only solutions with chaff are reported for the class size of 128.
b Two instances time-out at 1800 seconds.
c Two instances time-out at 3600 seconds.

• uf250-1065_027: chosen as being the closest in runtime value (115 seconds) to the
mean value reported for chaff : for all 100 instances (116 seconds).

• uf250-1065_034: chosen since its runtime reported by chaff (552 seconds) is closest
to 5 · (mean_value) = 575 seconds.

• uf250-1065_087: chosen since its runtime reported by chaff (1320 seconds) is the
maximum value reported.

24 Brglez et al. / On SAT instance classes and a method for reliable performance experiments

Table 4
SAT solver comparisons on satisfiable and unsatisfiable instances in the PC class of the sched family.

costID = runtime (seconds)

Class labels: name = sched06s_v00828, type = PC, size = 32

solverID initV minV medV meanV stDev maxV Distribution

satoL 0.03 0.02 0.03 0.03 0.01 0.05 near-normal
unitwalk 0.37 0.04 0.11 0.20 0.19 0.72 exponential

sato 0.04 0.03 0.05 4.39 18.0 91.0 heavy-tailed
chaff 6.46 0.29 7.14 17.6 20.3 75.8 exponential

costID = runtime (seconds)

Class labels: name = sched07s_v01386, type = PC, size = 128

solverID initV minV medV meanV stDev maxV Distribution

satoL 0.09 0.05 0.07 0.07 0.01 0.13 near-normal
unitwalk 0.15 0.04 0.23 0.40 0.42 2.67 exponential

chaff 19.6 0.86 8.37 13.5 11.2 59.8 exponential
sato 0.11 0.08 0.11 0.11 0.01 t’outa incomplete

costID = runtime(seconds)

Class labels: name = sched06u_v00826, type = PC, size = 128

solverID initV minV medV meanV stDev maxV Distribution

satoL 0.08 0.08 0.10 0.10 0.01 0.11 near-normal
chaff 6.50 0.30 12.9 19.5 22.6 133 exponential
sato 0.09 0.08 0.10 28.1 278 3113 heavy-tailed

costID = runtime (seconds)

Class labels: name = sched07u_v01384, type = PC, size = 32

solveriD initV minV medV meanV stDev maxV Distribution

satoL 0.21 0.21 0.29 0.29 0.02 0.30 near-normal
chaff 7.41 0.59 8.33 15.9 13.2 47.8 exponential
sato 0.20 0.20 0.25 0.25 0.01 3502b near-normal

a Sixteen instances time-out at 3600 seconds.
b Four instances time-out at 3600 seconds.

We also used chaff to select unsatisfiable formula instances from uuf250-1065_R
in similar fashion:

• uuf250-1065_090: chosen since its runtime reported by chaff (103 seconds) is the
minimum value reported.

• uuf250-1065_074: chosen since its runtime reported by chaff (504 seconds) is closest
to 5 · (min_value) = 515 seconds.

• uuf250-1065_046: chosen since its runtime reported by chaff (1800 seconds) is the
time-out value.

Brglez et al. / On SAT instance classes and a method for reliable performance experiments 25

Summary of sat classes in figure 12 and table 1

• Random versus PC classes: With random instances or with single runs on isolated
benchmarks we can never tell whether the performance, good or poor, is due to the
interaction of the structure/hardness of the instance with the solver or extraneous
factors such as input sequence, numbering of variables, etc. The occurrence of the
heavy-tail distribution on the random class (figure 12(a1)) for most solvers stands out
in contrast to its relative infrequency on PC-classes. We can say with high confidence
that the heavy-tail distributions induced by the PC-class of uf250-1065_027 on chaff
only and the PC-class of uf250-1065_087 on sato only are strictly due to deficiencies
of the solvers (on these instances). Other solvers perform much better on the same
classes. The fact that instances from the random class induce an exponential distrib-
ution on satoL whereas instances from PC-classes do not (standard deviation is never
near the sample mean as it is in case of an exponential distribution) is an indication
that the hardness of random instances is far from uniform. To characterize properties
of the random class such as uf250-1065_R more reliably, the case study experiment
in figure 11 should be extended to 32 or more randomly selected instances from the
class.

• Exponential distribution: The exponential distribution of runtime for unitwalk is not
induced by the particular isomorphism class instances. Rather, as shown in figure 10,
it is the intrinsic property of the algorithm itself – which is expected, given its ex-
clusive reliance on random sampling of the search space. The fact that the random
class induces (in our experiments) a heavy-tail distribution on unitwalk is due to non-
uniform hardness of instances in the class, as already pointed out. On the other hand,
instances from a specific PC-class may induce an exponential distribution of runtime
for any other solver: e.g., uf250-1065_027 induces exponential distributions (with
different means) on both chaff and sato.

• Solver sensitivity to instance features: According to statistics in table 1, ranking
solvers by the reported mean, the random class (topmost table) induces significant
differentiation between two solver groups only: satoL and unitwalk in one, and sato
and chaff in the other. On the other hand, each of the three isomorphism classes
induces significant differentiation and also three distinct ranking orders of the four
solvers. Analysis (with sato) of the three reference instances reveals lower bounds
on the number of satisfying solutions to be 51, 3, and 47, respectively, for uf250-
1065_027, uf250-1065_034, and uf250-1065_087. Not surprisingly, the runtime re-
ported by unitwalk is largest for the class of uf250-1065_034_PC, which has the
smallest number of known solutions.

• Runtime versus implications: Shown on the right-most side in figure 12(a) are near-
linear correlations of runtime and implications for satoL. Similar correlations exist
for other solvers on these and other class instances (see figure 12(b) and figure 13),
indicating that in principle, the performance of SAT solvers may also be measured in
terms of platform-independent parameters such as implications, backtracks, etc.

26 Brglez et al. / On SAT instance classes and a method for reliable performance experiments

Figure 13. Solvability functions and 95% confidence intervals of mean runtime for bw and sched isomor-
phism class instances.

Summary of unsat classes in figure 12 and table 2.

• Random versus PC classes: Compared to satisfiable random class instances in fig-
ure 12(a1), solvability functions for the unsatisfiable random class instances in fig-
ure 12(b1) have smaller max/min range but show more variability in terms of the
mean values (but not the coefficient of variation, a ratio of mean to standard devia-
tion). Moreover, no heavy-tail distributions have been induced on the three solvers
by the unsatisfiable random class instances. The report of exponential and near-
exponential distributions by sato and chaff may be an indication that instances differ
significantly in ‘hardness’. However, this report is off-set by the normal distribution
reported by satoL. Indeed, the rank order of satoL, sato, chaff remains unchanged
when we perform experiments on instances from the three PC-classes. What has

Brglez et al. / On SAT instance classes and a method for reliable performance experiments 27

changed are the distributions: now only normal and near-normal distributions are
reported.

• Variability in PC classes: Compared to satisfiable PC-class instances in figure 12(a2),
the variability of mean values and standard deviations is significantly reduced. How-
ever, the differences between solvers are larger for the case of unsatisfiable PC-class
instances. In particular, satoL is ahead of other solvers by a wide margin.

5.3. Blocks-world versus scheduling class instances

In contrast to the 3-SAT instances discussed in the preceding subsection, there is
not much that is random about the instances discussed in this section. We juxtaposed two
different sets of reference formulas, bw_large and sched, because they induce extreme
opposite behavior on chaff and satoL. The sched formulas also induce a heavy-tail-like
incomplete distribution on sato. Case studies of solver behavior on such test cases may
help us to improve SAT algorithms in general.

One set of formulas is based on the satisfiable and the unsatisfiable families of
bw_large problems, a subset of the SATPLAN benchmarks which represent a collection
of satisfiability problems based on AI planning scenarios developed in [30]. The most
difficult of these come from the well-known blocks-world domain in AI (see, e.g., [19]).
The other set of formulas is based on the satisfiable and the unsatisfiable families of
sched problems which have been created as part of the initial experiments reported in [5].
These formulas are based on unit-length-task scheduling instances. For a description of
their construction see [6].

As with 3-SAT instances, the same SAT solvers are now applied to PC-classes of
bw_large and sched instances. Summaries of experimental result statistics are shown in
tables 3, 4 and figure 13.

• Solvability functions: Compare solvability functions induced on four SAT solvers
by the class of bw_large_c_s_PC and the class of sched07s_v01386_PC (figure 13).
The contrast between chaff and satoL is striking and we are still looking for an ex-
planation. On the other hand, note the heavy-tail-like incomplete distribution on sato
by instances from the class sched07s_v01386_PC.

• Asymptotic behavior: We study the asymptotic behavior of solvers for a number of
PC-classes introduced in [5] and this paper. Much more data than we can present
in this paper is posted on the Web [7]. An example of such data collected from the
web-based statistical summaries is shown in figure 13(c). Here we grouped together
95% confidence intervals of reported mean values for several solvers, induced by
three PC-class instances from the bw_large family and three PC-class instances from
the sched family. Note that the 95% confidence intervals of the means are relatively
stable for the experiments shown, except for the case of chaff when applied to the
sched family.

• Distribution characteristics: While chaff is way ahead of other solvers on PC-classes
from bw_large, distributions induced onto solver are normal or near-normal both for

28 Brglez et al. / On SAT instance classes and a method for reliable performance experiments

satisfiable and unsatisfiable instances. The exception, as mentioned earlier, is unit-
walk, which maintains the exponential distribution across all PC-class instances. On
the other hand, PC-classes from the sched family induce additional types of distribu-
tions, while satoL exchanges its ranking with chaff. In fact, we observe distributions
that are exponential, near-normal, heavy-tail, and incomplete.

5.4. Queen and hole class instances

We conclude this section by summarizing results with two well-known sets of ref-
erence formulas: the queen set represents a family of satisfiable formulas [51] that model
the n-queens problem, and the hole set represents a family of unsatisfiable formulas [48]
that model the n-hole pigeon-hole principle. Formula instances from both families are
well-structured, exhibit high degree of symmetry, and can be readily scaled from few
variables and clauses to many variables and clauses with a single parameter n. This prop-
erty in particular makes them ideal candidates to demonstrate the asymptotic behavior of
SAT solvers. Comprehensive case study experiments with I-, C-, P-, and PC-classes of
each formula for a range of values of n are posted on the Web and also described in [5].
A brief summary of these studies is included as table 5.

• Distribution characteristics: The PC-classes of queen problems induce exponential,
near-exponential, near-normal, and heavy-tail distributions. The exponential distrib-
ution is expected for unitwalk. What is surprising is the report about exponential and
also heavy-tail distribution for sato whose data structure was designed to deal with
queen-like problem structures. However, despite the large standard deviation of its
heavy-tail distribution, the reported mean is still the best of all solvers.
The PC-classes of hole problems induce normal or near-normal distribution for all
solvers, which is consistent with our observations for PC-classes of other unsatisfi-
able formulas.

• Asymptotic runtime characteristics: The solver ranking order for the PC-classes of
queen problems remains the same with increasing n. Solver sato is at the top, chaff
at the bottom. The performance of chaff degrades dramatically with increasing n.
For the range of n shown, solver ranking for the PC-classes of hole problems remains
the same with increasing n. Solver sato is at the top, chaff at the bottom. However,
the performance of chaff is not degrading as rapidly as that of sato as the value of n

increases – suggesting that there will be a cross-over point for chaff and sato!

6. Conclusions

We have reported highlights of robust, statistically sound, and repeatable experi-
ments using existing SAT solvers on equivalence classes built from established bench-
mark problem instances. We have also established a connection between experimental
analysis of algorithms and statistical reliability theory, from which we can infer that our
approach is likely to generalize to many other settings, particularly the study of heuris-
tics and algorithms for NP-hard problems. Most importantly, our approach uniformly

Brglez et al. / On SAT instance classes and a method for reliable performance experiments 29

Table 5
SAT solver comparisons on instances in the PC classes of the queen satisfiable and the hole unsatisfiable

families.

costID = runtime (seconds)

Class labels: name = queen16_v00256, type = PC, size = 32

solverID initV minV medV meanV stDev maxV Distribution

sato 0.02 0.01 0.02 0.07 0.09 0.29 exponential
unitwalk 0.05 0.00 0.05 0.10 0.09 0.34 exponential

satoL 0.10 0.01 0.27 0.24 0.18 0.66 exponential
chaff 5.01 0.52 0.95 1.23 0.83 5.01 near-exponential

costID = runtime(seconds)

Class labels: name = queen19_v00361, type = PC, size = 128

solverID initV minV medV meanV stDev maxV Distribution

sato 0.01 0.01 0.04 0.21 0.57 3.47 heavy-tailed
unitwalk 0.32 0.01 0.28 0.39 0.37 1.75 exponential

satoL 1.16 0.04 2.94 3.29 2.76 13.3 exponential
chaff 34.7 32.1 86.3 97.9 46.6 249 near-normal

costID = runtime (seconds)

Class labels: name = hole09_v00090, type = PC, size = 32

solverID initV minV medV meanV stDev maxV Distribution

sato 9.11 9.11 17.1 17.0 2.12 21.5 near-normal
satoL 13.3 13.3 17.7 17.7 1.13 19.6 normal
chaff 7.21 7.21 181 173 48.6 275 normal

costID = runtime (seconds)

Class labels: name = hole10_v00110, type = PC, size = 32

solverID initV minV medV meanV stDev maxV Distribution

sato 101 101 180 178 19.2 207 normal
satoL 151 151 217 216 13.4 231 near-normal
chaff 47.0 47.0 473 468 144 838 normal

supports reliable performance comparisons between deterministic as well as stochastic
SAT solvers.

Some of our findings are surprising, some merit further investigation, and some
are easily explained, but the work we have done undoubtedly gives a clearer and more
complete picture of the performance of the solvers than any previous experimental study.
As a result, we have built a solid foundation for future work on improved solvers, on the
creation of challenging problem instances, on the development of hardness-equivalent
instance classes, and on accessible software environments for experimental SAT re-
search.

30 Brglez et al. / On SAT instance classes and a method for reliable performance experiments

There is clearly no simple answer to the question “what is the best solver?” But the
performance of specific solvers on specific classes derived from specific benchmarks can
lead to the gathering of some of the best ideas in solver technology on the one hand, or
the remedy of identifiable deficiencies on the other. One solver in particular, unitwalk,
because of its predictable performance, exponential distribution of runtime on all PC
classes, has already enabled us to develop a faster solver and to make educated guesses
about relative difficulty or number of satisfying solutions for various benchmarks [6,31].

Many open problems remain. Among these are the following.

• The DPLL-based solvers in our study incorporate strategic enhancements that guide
(a) the choice of branching variable, (b) the choice of branch to explore first, and/or
(c) the backtracking method. The particular mixture used appears to have been guided
to some extent by single-instance benchmark experiments. It would be useful to study
some of these tricks in isolation – the extent to which each specific modification leads
to improvement and on what classes of problem instances.

• The main disadvantage of unitwalk is that it is not complete; it cannot report with
certainty that a formula is unsatisfiable. Can it be combined with a complementary
complete solver so that the latter will quickly determine unsatisfiability after unitwalk
has been run for “long enough” and failed to find a satisfying assignment?

• We anticipate a new generation of solvers whose distribution (of any reasonable per-
formance measure such as runtime) on any isomorphism class resembles that on the
identity class and whose overall performance is as good as or better than current
solvers. When such solvers are available, it will make sense to categorize the hard-
ness of problem instances in a more formal way. Can this be done so that instance
classes of equivalent hardness include instances that are not isomorphic in our current
sense while still retaining all of the statistical properties we have observed? Would
there be any way to define a partial ordering of instances based on hardness or would
any such characterization be solver-dependent?

• We have already applied similar techniques (classes of “equivalent” problem in-
stances to induce algorithm performance variability) in other problem domains [3,
4,14,15,20,21,29,46,47]. To what extent do the statistical observations we have made
carry over into algorithms for other NP-complete decision problems? What about
heuristics that find good but suboptimal solutions to optimization problems where
the measure of merit is solution quality rather than execution time? Is there a good
statistically sound model for characterizing the tradeoff between execution time and
solution quality?

• A key byproduct of our work is the large collection of archived data we have ac-
cumulated and made available [7], as well as an automated process for replicating
our results [6], with or without modification. These resources are fertile ground for
research by statisticians, algorithm designers, data visualization experts, and others.
The volume of experimental data is already large compared to what a typical statisti-
cian encounters, and will grow larger as we continue our work. The data is less noisy
than most. And the process by which we create isomorphism classes, execute algo-

Brglez et al. / On SAT instance classes and a method for reliable performance experiments 31

rithms, collect, and tabulate results, has been repeated and refined often enough for
us to make it available to a larger community. We hope that these resources become
an inducement to a variety of new research activities.

Acknowledgements

The experiments, as reported in this paper, could not have taken place without SAT
solvers such as chaff, satire, sato, satoL, and unitwalk. We thank the authors for the
ready access and the exceptional ease of installation of these software packages.

We also thank Dr. Jason Osborne from the Department of Statistics (NCSU) for the
advice on the likelihood ratio test statistic for exponential distributions. We appreciate
the re-assurance that in our experiments with 128 samples, the simpler t-test statistic has
sufficient power to resolve the hypothesis of equal population means of two exponential
distributions.

The constructive comments from the reviewers and the continued encouragement
from Dr. John Franco, University of Cincinnati, have helped in clarifying the concepts
and presenting the results of our experiments.

References

[1] S. Baase and A. Van Gelder, Computer Algorithms, 3rd edition (Addison-Wesley, Reading, MA,
2000).

[2] G.E.P. Box, W.G. Hunter and J.S. Hunter, Statistics for Experimenters: An Introduction to Design,
Data Analysis and Model Building (Wiley, 1978).

[3] F. Brglez, Design of experiments to evaluate CAD algorithms: which improvements are due to im-
proved heuristic and which are merely due to chance?, Technical Report 1998-TR@CBL-04-Brglez,
CBL, CS Dept., NCSU, Raleigh, NC (April 1998). Also available at http://www.cbl.ncsu.
edu/publications/#1998-TR@CBL-04-Brglez.

[4] F. Brglez and R. Drechsler, Design of experiments in CAD: Context and new data sets for IS-
CAS’99, in: Proc. of IEEE 1999 International Symposium on Circuits and Systems – ISCAS’99 (May
1999). A reprint is accessible from http://www.cbl.ncsu.edu/publications/#I999-
ISCAS-Brglez.

[5] F. Brglez, X.Y. Li and M. Stallmann, The role of a skeptic agent in testing and benchmarking of SAT
algorithms, in: Proc. of Fifth International Symposium on the Theory and Applications of Satisfiability
Testing, http://www.cbl.ncsu.edu/publications/ (May 2002).

[6] F. Brglez, M.F. Stallmann and X.Y. Li, SATbed – An environment for reliable performance experi-
ments with SAT instance classes and algorithms, in: Proc. of SAT 2003, Sixth International Sympo-
sium on the Theory and Applications of Satisfiability Testing, Portofino, Italy, ed. S.M. Ligure (May
5–8, 2003). A revised version available at http://www.cbl.ncsu.edu/publications/.

[7] F. Brglez, M. Stallmann and X.Y. Li, SATbed home page: A tutorial, a user guide, a software
archive, archives of SAT instance classes and experimental results, http://www.cbl.ncsu.
edu/OpenExperiments/SAT/ (2003).

[8] C. Coarfa, D.D. Demopoulos, A.S.M. Aguirre, D. Subramanian and M.Y. Vardi, Random 3-SAT: The
plot thickens, in: Principles and Practice of Constraint Programming (2000) pp. 143–159.

[9] S. Cook and D. Mitchell, Finding hard instances of the satisfiability problem: A survey, http://
dream.dai.ed.ac.uk/group/tw/sat/sat-survey3.ps (1997).

32 Brglez et al. / On SAT instance classes and a method for reliable performance experiments

[10] E.L. Crow, F.A. Davis and M.W. Maxfield, Statistics Manual (Dover, New York, 1960).
[11] M. Davis, G. Logemann and D. Loveland, A machine program for theorem-proving, Communications

of the ACM 5(7) (1962) 394–397.
[12] S. Davis and M. Putnam, A computing procedure for quantification theory, Journal of the Association

for Computing Machinery 7(3) (1960) 201–215.
[13] I.P. Gent and T. Walsh, The search for satisfaction, http://dream.dai.ed.ac.uk/group/

tw/sat/sat-survey2.ps.
[14] D. Ghosh, Generation of tightly controlled equivalence classes for experimental design of heuristics

for graph-based NP-hard problems, PhD thesis, Electrical and Computer Engineering, North Car-
olina State University, Raleigh, NC (May 2000). Also available at http://www.cbl.ncsu.edu/
publications/#2000-Thesis-PhD-Ghosh.

[15] D. Ghosh and F. Brglez, Equivalence classes of circuit mutants for experimental design, in: Proc.of
Intl. Symp. Circuits and Systems (ISCAS) (May–June 1999). Also available at http://www.cbl.
ncsu.edu/publications/#1999-ISCAS-Ghosh.

[16] S.W. Golomb, On the classification of boolean functions, IRE Transactions on Information Theory 5
(1959) 176–186.

[17] C.P. Gomes, B. Selman and N. Crato, Heavy-tailed distributions in combinatorial search, in: Princi-
ples and Practice of Constraint Programming (1997) pp. 121–135.

[18] J. Gu, P. Purdom, J. Franco and B. Wah, Algorithms for the satisfiability (SAT) problem: A survey, in:
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 35 (1997) pp. 19–
152, http://dream.dai.ed.ac.uk/group/tw/sat/sat-survey.ps.

[19] N.C. Gupta and D.S. Nau, On the complexity of blocks-world planning, Artificial Intelligence 56(2–3)
(1992) 223–254.

[20] J.E. Harlow and F. Brglez, Design of experiments for evaluation of BDD packages using controlled
circuit mutations, in: Proc. of the International Conference on Formal Methods in Computer-Aided
Design (FMCAD’98), Lecture Notes in Computer Science, Vol. 1522 (Springer, 1998) pp. 64–
81. Also available from http://www.cbl.ncsu.edu/publications/#1998-FMCAD-
Harlow.

[21] J.E. Harlow and F. Brglez, Design of experiments and evaluation of BDD ordering heuristics, Inter-
national Journal on Software Tools for Technology Transfer (STTT): Special Issue on BDDs (2001).

[22] E. Hirsch and A. Kojevnikov, UnitWalk: A new SAT solver that uses local search guided by unit
clause elimination, 2001, PDMI preprint 9/2001, Steklov Institute of Mathematics at St. Petersburg
(2001).

[23] J. Hooker, Testing heuristics: We have it all wrong, Journal of Heuristics 1 (1996) 33–42.
[24] J.N. Hooker, Needed: An empirical science of algorithms, Operations Research 42(2) (1994) 201–

212.
[25] H.H. Hoos and T. Stützle, Evaluating Las Vegas algorithms – pitfalls and remedies, in: Proc. of UAI-

98 (Morgan Kaufmann, San Mateo, CA, 1998) pp. 238–245.
[26] H.H. Hoos and T. Stützle, Local search algorithms for SAT: An empirical evaluation, Journal of

Automated Reasoning 24 (2000).
[27] H.H. Hoos and T. Stützle, SATLIB: An online resource for research on SAT, in: Proc. of SAT’2000

(IOS Press, 2000) pp. 283–292, http://www.satlib.org.
[28] F. Jense, Electronic Component Reliability: Fundamentals, Modelling, Evaluation, and Assurance

(Wiley, New York, 1996).
[29] N. Kapur, D. Ghosh and F. Brglez, Towards a new benchmarking paradigm in EDA: analysis of

equivalence class mutant circuit distributions, in: Proc. of ACM International Symposium on Physical
Design (April 1997).

[30] H. Kautz, D. McAllester and B. Selman, Encoding plans in propositional logic, in: KR’96: Principles
of Knowledge Representation and Reasoning (1996) pp. 374–384. The SATPLAN benchmark set is
available from http://sat.inesc.pt/benchmarks/cnf/satplan/.

Brglez et al. / On SAT instance classes and a method for reliable performance experiments 33

[31] X.Y. Li, M.F. Stallmann and F. Brglez, QingTing: A local search SAT solver using an effective switch-
ing strategy and an efficient unit propagation, in: Proc. of 2003-SAT Issue on Satisfiability Testing,
Lecture Notes in Computer Science, Vol. 2919 (2003) pp. 53–68. A significant revision of the paper
published in Proc. of Sixth International Symposium on the Theory and Applications of Satisfiability
Testing, Portofino, Italy, ed. S.M. Ligure (May 5–8, 2003). Available at http://www.cbl.ncsu.
edu/publications/.

[32] H. Lilliefors, On the Kolmogorov–Smirnov test for the exponential distribution with mean unknown,
Journal of the American Statistical Association 64 (1969) 387–389.

[33] J.P. Marques-Silva, On selecting problem instances for evaluating satisfiability algorithms, in: Proc.
of ECAI Workshop on Empirical Methods in Artificial Intelligence (ECAI-EMAI), 2000.

[34] D.A. McAllester, B. Selman and H.A. Kautz, Evidence for invariants in local search, in: Proc. of
AAAI/IAAI (1997) pp. 321–326.

[35] D. Mitchell, A remark on benchmarks and analysis, in: Proc. of IJCAI-99 Workshop on Empirical AI
(1999).

[36] M. Mitzenmacher, A Brief History of Generative Models for Power Law and Lognormal Distributions
(Allerton, 2001).

[37] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik, Chaff: Engineering an efficient
SAT solver, in: IEEE/ACM Design Automation Conference (DAC) (2001). Version 1.0 of Chaff
is available from http://www.ee.princeton.edu/chaff/zchaff/zchaff.2001.2.
17.src.tar.gz.

[38] I. Olkin, L.J. Gleser and C. Derman, Probability, Models, and Applications (Macmillan, New York,
1960).

[39] J.A. Osborne and T.A. Severini, Inference for exponential order statistic models based on an integrated
likelihood function, Journal of the American Statistical Association 95 (2000) 1220–1228.

[40] J.A. Osborne and T.A. Severini, The Lorenz curve for model assessment in exponential order statistic
models, Journal of Statistical Computation and Simulation 72 (2002) 87–97.

[41] F. Prochan, Theoretical explanation of observed decreasing failure rate, Technometrics 5 (1963) 375.
[42] Sat-Ex: The experimentation web site around the satisfiability, http://www.lri.fr/∼simon/

satex/satex.php3.
[43] SATLIB – The Satisfiability Library, http://www.satlib.org (2003).
[44] SAT Live! Up-to-date links for the SATisfiability problem, http://www.satlive.org.
[45] B. Selman, D.G. Mitchell and H.J. Levesque, Generating hard satisfiability problems, Artificial Intel-

ligence 81(1–2) (1996) 17–29.
[46] M. Stallmann, F. Brglez and D. Ghosh, Heuristics and experimental design for bigraph cross-

ing number minimization, in: Proc. of the First Workshop on Algorithm Engineering and Ex-
perimentation (ALENEX 99) (January 1999). Also available at http://www.cbl.ncsu.edu/
publications/.

[47] M. Stallmann, F. Brglez and D. Ghosh, Heuristics, experimental subjects and treatment evaluation
in bigraph crossing minimization, Journal on Experimental Algorithmics (2001). Also available at
http://www.cbl.ncsu.edu/publications/#2001-JEA-Stallmann.

[48] M.A. Trick, Second DIMACS challenge test problems, in: DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, Vol. 26 (1993) pp. 653–657. The SAT benchmark sets are available
at ftp://dimacs.rutgers.edu/pub/challenge/satisfiability.

[49] D.B. West, Introduction to Graph Theory (Prentice-Hall, Englewood Cliffs, NJ, 1996).
[50] J. Whittemore, J. Kim and K. Sakallah, SATIRE: a new incremental satisfiability engine, in:

IEEE/ACM Design Automation Conference (DAC) (2001). Version 1.0.0 of SATIRE is available from
http://andante.eecs.umich.edu/satire/Satire.tgz.

[51] H. Zhang, SATO: An efficient propositional proven, in: Conference on Automated Deduction (1997)
pp. 272–275. Version 3.2 of SATO is available from ftp://cs.uiowa.edu/pub/hzhang/
sato/sato.tar.gz.

34 Brglez et al. / On SAT instance classes and a method for reliable performance experiments

[52] H. Zhang and M.E. Stickel, Implementing the Davis–Putnam Method (Kluwer Academic, Dordrecht,
2000).

