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Abstract 
 
Satellite gravity gradiometry measures the second-order partial derivatives of the 
Earth’s gravitational potential based on differential accelerometry. Measuring the 
gravitational gradients at satellite level opens a new way to compute a precise and 
high resolution geopotential model from space. The upcoming satellite mission 
gravity field and steady-state ocean circulation (GOCE) is dedicated to provide 
precise gradiometric data in this respect. It is claimed to achieve geoid and gravity 
anomaly with 1 cm and 1 mGal accuracies, respectively with 1 ×1 resolution using 
the delivered Earth gravitational model from GOCE data.   
 

In this thesis new expressions for the gravitational gradients are developed. A new 
expression for tensor spherical harmonics are presented and used to solve the 
gradiometric boundary value problems and to compute a geopotential model. It is 
found that the vertical-horizontal gradients are more suited than the other gradients in 
geopotential modeling. Topographic and atmospheric effects on the satellite gravity 
gradiometry data are formulated in spherical harmonics, and numerically 
investigations in Fennoscandia and Iran show that the topographic effect is in the 1 
and 2 E level in these areas. A new atmospheric density model is proposed, and the 
atmospheric effect based on this model is within 5 mE. Second-order partial 
derivatives of the extended Stokes’ formula are modified in a least-squares sense to 
validate the satellite gravity gradiometry data. Downward continuation of each 
element of the gravitational tensor is studied using the Tikhonov regularization. The 
gravitational gradients 

zz
T , 

xx
T ,

yy
T , 

xz
T , 

yz
T and 

xy
T  are suited for determining 

gravity anomaly at sea level. Combination of the satellite data to recover the global 
and local gravity field is investigated. It is shown that the combination of integral 
solutions of the gradiometric boundary value problems using variance component 
estimation, is beneficial in geopotential modeling. In local gravity field 
determination, it is concluded that a grid of 1 ×1 gravity anomalies with 1 mGal 
accuracy is achievable from directly combined continuation of the satellite 
gradiometric data. The polar gaps due to an inclined orbit are studied, and it is shown 
that 

xy
T  and 

yz
T  are better than the other gradients for estimating the gravity anomaly 

in the polar gaps. The combined inversion of the satellite gradiometric data (after 
biased-correction step) can determine 1 ×1  gravity anomalies with 1 and 3 mGal 
accuracy in the north and south polar gaps, respectively.  

 
Keywords: satellite orbit, atmospheric density model, lateral density variation, 
validation, downward continuation, joint inversion, ring modification 
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Chapter 1 
 

 

 

Introduction  
 

 

 

1.1 Background 
 

The gravitational field determination from space is an old story. The perturbation 

analysis and applications of dynamic satellite geodesy is one of the most famous 

approaches in this subject. In the classical method of geopotential modeling, orbital 

perturbations of satellites (which were designed for other geodetic purposes) were 

analyzed. Such satellites are not low orbiters and therefore not suitable for 

gravitational field determination. The Earth gravitational model (EGM) obtained from 

analyzing these orbits cannot include higher degrees and orders than 70. In order to 

obtain a higher degree EGM, the solution must be either combined with terrestrial 

data or subject to some constraints. In the former method the solution would not be a 

satellite-only EGM and in the latter case the higher degree harmonics than, say,  70 

will be fiction as the solution is subjected to a constraint which is not clear where it is 

realistic. In order to obtain a high resolution satellite-only EGM, some special 

satellite missions must be designed. The last three dedicated satellite missions for 

gravity field determination are the Challenging Minisatellite Payload (CHAMP) 

(Reigber et al. 2004) and the Gravity Recovery and Climate Experiment (GRACE) 

(Tapely et al. 2005). These missions were only designed for using the new satellite 

technology and the developed perturbation theory to recover the gravitational field. In 

CHAMP high-low satellite-to-satellite tracking data (between the Global Positioning 

System (GPS) satellites and the CHAMP satellite) is used to determine a precise orbit 

for the satellite. The orbit is analyzed to determine geopotential coefficients to degree 

and order 119. GRACE mission consists of a twin satellite, and the range rate 

between these two satellites is measured by low-low satellite-to-satellite tracking 

technique. The low-low and high-low satellite-to-satellite tracking data (with the GPS 

satellites) are used together to precisely determine the satellites orbit. The low-low 

technique gives another idea to gradiometry by measurements of the satellite pair; see 

e.g Keller and Sharifi (2005) or Sharifi (2006). This method of gradiometry and the 

information of the precise orbit has been analyzed to determine a precise EGM to 

degree and order 150. The Gravity field and steady-state Ocean Circulation Explore 
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(GOCE) mission (see e.g. Balmino et al. 1998 and 2001, ESA 1999, Albertella et al. 

2002), was launched on 17
th

 of March in 2009. In this mission differential 

acceleometry, or satellite gravity gradiometry (SGG) technique is directly used. In 

this case the gravitational gradients as well as the satellite orbit are used to recover a 

high-resolution precise EGM. It is expected to determine an EGM to degree and order 

200. Such an EGM will have good precision in long and short wavelengths of the 

gravitational signal. The EGM will yield 1 cm and 1 mGal accuracy for geoid and 

gravity anomaly, respectively with 1 ×1  resolution.  

 

In SGG, the geopotential coefficients are determined in two different ways: time-

wise approach, and space-wise approach. In the former the satellite observations are 

considered as a time series, and the series is related to the geopotential coefficients 

using the second-order derivatives of the well-known expression of the potential in 

terms of orbital parameters. The latter approach considers the observations as 

functions of position instead of time. The space-wise approach can also be preformed 

in two different ways: one can use either the least-squares method or quadrature 

formulas. In this dissertation emphasis is on the quadrature integral formulas, which 

are solutions of gradiometric boundary value problems (GBVPs) to compute the 

geopotential coefficients. Furthermore the thesis will answer the following questions: 

 

1. Is there a simpler expression for the gravitational gradients than the traditional 

ones? Is it possible to avoid differentiating the ALFs for the gradients?  Can 

we remove singular terms in the expressions when the latitude is 90  or -90 ? 

How are the geopotential coefficients derived from the solution of GBVPs 

using tensor spherical harmonics (TSHs)? What is the relation between the 

resolution of SGG data and the maximum achievable degree of the EGM to be 

recovered?  

2. How big are the topographic effect (TE) and the lateral density variation effect 

(LDVE) of topography on the SGG data? Is it possible to find a better 

atmospheric density model (ADM) than the existing ADMs? How big is the 

atmospheric effect (AE) based on this ADM?  

3. Is it possible to use the least-squares modification (LSM) method to modify 

the second-order partial derivatives of the extended Stokes formula to 

generate the gravitational gradients at satellite level?  

4. Which is the most suitable gravitational gradient to be continued downward to 

sea level? How is the truncation errors of the integral with non-isotropic 

kernels estimated? Is it possible to obtain the gravity anomaly with 1 mGal 

accuracy from direct inversion of the SGG data? 

5. How can the gravitational gradients be combined to obtain a better 

gravitational field solution than that obtained from a single gradient?  

6. Which is the suitable gradient for gravitational recovery in polar gaps? How 

does the joint inversion of gradients improve the solution of the gravitational 

field in these areas? 
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1.2 The Author’s contributions 

 
The author’s investigations are summarized in six parts:  

 

1. We have presented new expressions for the gravitational gradients in a 

geocentric frame, local north-oriented frame (LNOF) and orbital frame (ORF). 

Also we have proposed new formulas for geopotential force acting on a satellite 

and the TSHs. The new expressions for the TSHs are used in the solution of the 

GBVPs to recover an EGM from the SGG data at the 250 km level.  

 

2. We have investigated the TE and LDVE of topographic masses on the SGG data 

in Fennoscandia and Iran. We have formulated and investigated the AE based 

on some ADMs, such as USSA76, Novak (NADM), Sjöberg (KTHA), and 

exponential ADMs for the direct and indirect AEs. We have proposed a new 

ADM and formulated the AE based on this model.  

 

3. We have developed the biased LSM (BLSM), unbiased LSM (ULSM) and 

optimum LSM (OLSM) to SGG, to modify the second-order partial derivatives 

of the extended Stokes formula and generating the gradients at satellite level.  

We have proposed a strategy to modify the vertical-horizontal (VH) gradients 

and the horizontal-horizontal (HH) gradients integral formulas.  

 

4. We have investigated the downward continuation of each gradient from satellite 

level to gravity anomaly at sea level, as well as their combinations.  

 

5. We have used VCE to obtain optimal solution for determining the geopotential 

coefficients. It is also used for determining the gravity anomaly and downward 

continuation of the SGG data. 

 

6. The estimation of gravity anomaly from the SGG data is numerically 

investigated in the north polar gap (NPG) and the south polar gap (SPG).   
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Chapter 2 
 

 

 

Alternative expressions in global synthesis and 

analysis  
 

 

 

2.1 Introduction 
 

The gravitational gradients can be expressed in terms of spherical harmonics. The 

spherical harmonic coefficients (SHCs) of the gravitational field can easily be 

inserted to these expressions for synthesizing the gravitational gradients. There are 

different frames to express these gradients such as geocentric frame, local north-

oriented frame (LNOF) and orbital frame (ORF); see e.g. Koop (1993). The synthesis 

is time consuming for a huge number of gradients. In such a case, vectorization 

algorithms are beneficial. Rizos (1979) proposed an efficient computer technique for 

the evaluation of the geopotential from spherical harmonic models and Bettadpur et 

al. (1992) presented a vectorization algorithm in this matter. This algorithm could be 

more efficient if the Clenshaw method is considered as well (Clenshaw 1955, 

Tscherning and Poder 1982). Some algorithms were presented by Holmes and 

Featherstone (2002a) and (2002b) to synthesize the spherical harmonic summation 

and stabilize the generation of the ALFs and their first- and second-order derivatives. 

Their goal seems to be to construct a synthetic EGM (Baran et al. 2006). Bethencourt 

et al. (2005) presented an algorithm for high-degree synthesis using a personal 

computer by Clenshaw technique. Eshagh (2009a) used the fully-vectorized technique 

for synthesis and analysis in gradiometry. Eshagh and Abdollahzadeh (2009a) used a 

semi-vectorization technique, which is more efficient than fully-vectorization to 

speed up the computations in gradiometric synthesis and analysis.  

 

The traditional expression of the gravitational gradients has complicated forms, 

involving first- and second-order derivatives of the ALFs and singular terms at the 

poles. Balmino et al. (1990) and (1991) presented some formulas for these gradients 

in a geocentric frame based on Cartesian coordinates and compared the gradients 

based on different software. Petrovskaya and Vershkov (2006) with reference to Ilk 

(1983) presented other formulas in the LNOF and the ORF. Ilk (1983) presented 

some useful relations among the ALFs, which were used by Petrovskaya and 
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Vershkov (2006). Claessen (2005) derived new relations for the ALFs which are 

useful as well. Petrovskaya and Vershkov (2007) expressed the gravitational 

gradients in terms of the satellite Cartesian coordinates. Some geophysical 

interpretations for the gravitational gradients in LNOF are given by Kiamehr et al. 

(2008).  

 

The geopotential coefficients can be derived using least-squares or quadrature 

formulas. The least-squares approach can be used in two different ways: time-wise 

and space-wise approaches. Rummel and Colombo (1985) studied the gravity field 

determination from SGG numerically, and they concluded that the geopotential 

coefficients obtained from SGG are more or less the same as those obtained form 

orbital analysis after two iteration. Rummel et al. (1993) considered both time-wise 

and space-wise approaches and compared these methods. Rummel and van Gelderen 

(1995) investigated the relation between the spectral characteristics of gravity field 

and the Meissl scheme. Rummel (1997) discussed the spectral analysis of SGG.  

Klees et al. (2000) presented an efficient method for recovering the gravity field in 

time-wise mode. Sneeuw (1994) presented a historical perspective of global spherical 

harmonic analysis and synthesis in least-squares and numerical quadrature formula. 

Sneeuw (2003) considered time-wise and space-wise approaches and presented an 

efficient algorithm of geopotential modeling. Ditmar et al. (2003a) and (2003b) 

presented a fast technique for computing the geopotential coefficients using conjugate 

gradients and pre-conditioning in space-wise approach and used the Tikhonov 

regularization method and three different methods of selecting the regularization 

parameter. Another possible way of geopotential modeling is to use least-squares 

collocation; see e.g. Tscherning (2001a) and (2002) and Arabelos and Tscherning 

(2007). The numerical quadrature formulas are of interest for Petrovskaya (1996), 

Petrovskaya and Zielinski (1997), Petrovskaya et al. (2001) and Petrovskaya and 

Vershkov (2002) and (2008).  The geopotential coefficients can be determined from 

spectral solution of the GBVPs. In solving these GBVPs, combinations of the 

gravitational gradients are considered. The VV, VH and HH gradients are considered 

separately so that the orthogonality of the TSHs hold; for more details about the 

TSHs; see e.g. Freeden et al. (1994), Rummel (1997), Gelderen and Rummel (2001) 

and (2002), Martinec (2003), Toth (2003) and Bölling and Grafarend (2005). This 

property opens a way to use integral formulas to determine the coefficients.   

 
In this chapter we will present new expressions for the gravitational gradients in 

geocentric frame, LNOF and ORF. The advantages of these expressions are their 

simplicity to use, as they do not include derivatives of the ALFs and they contain no 

singular terms at the poles. Also a new expression for the geopotential perturbing 

force is presented, which has the same benefits as the expressions for the gravitational 

gradients.  These formulas are applied to express the magnitudes of the gravitational 

gradients at satellite level, or, in other words, the SGG data. Also, some investigations 

are made on the orbital perturbations of an imaginary satellite at 250 km level to 

consider their effects on the SGG data. The spectral solutions of the GBVPs, which 

are involved with the TSHs, are used to determine an EGM from the SGG data in the 

LNOF. A new expression is also provided for the TSHs, which is simpler than the 

traditional one.  
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2.2 Gravitational potential 

 
Let the Earth’s gravitational potential be represented by a truncated series of spherical 

harmonics. The truncated spherical harmonic expression for the disturbing potential 

can be written: 

 

                                   ( ) ( )
max

1

2

nN n

nm nm

n= m n

GM R
T P t Y P

R r

+

=−

 =  
 

∑ ∑ ,                             (2.1) 

 

where, ( )nmY P  is the fully-normalized spherical harmonics at point P with the 

following orthogonality property: 

 

                                         ( ) ( ) 4nm n m nn mmY P Y P d
σ

σ πδ δ′ ′ ′ ′=∫∫ ,             (2.2) 

 

δ stands for the Kronecker delta, r is the geocentric radius and σ  is the unit sphere. 

The fully-normalized spherical harmonics can also be written: 

 

                                                ( ) ( ) ( )nm m n m
Y P Q Pλ θ=  ,              (2.3) 

where 

                                                ( ) cos 0

sin 0
m

m m
Q

m m

λ
λ

λ
≤

=  >
.                                       (2.4) 

 

θ  is the co-latitude and λ  is the longitude. In Eq. (2.1), GM is the geocentric 

gravitational constant and R radius of the sphere equal to semi-major axis of the 

reference ellipsoid. In Eq. (2.3) ( )n m
P θ  is the fully-normalized ALF of degree n and 

order m, maxN is the maximum degree of truncation of the expansion, nmt are the 

harmonic coefficients of the disturbing potential, with nm nmt S= , if  m > 0  and 

nm nmt C= , if  m ≤  0 , nmC and nmS being the fully-normalized cosine and sine SHCs 

of the disturbing potential. By the above representation for the disturbing potential we 

will continue our discussion by introducing different frames in expressing the 

gravitational gradients in Section 2.3.   

 

2.3 Gravitational gradients in a geocentric frame 

 
Before starting any discussion, we should explain our definition for a geocentric 

frame. This frame is defined in such a way that its z-axis points to the mean Earth 

poles of rotation, the x- and y- axes are in the mean equatorial plane with the x-axis 

towards the Greenwich meridian on the equator and the frame holds right handed. 

This frame is illustrated in Figure 2.1. Any point P can be expressed in either 

spherical (r,θ ,λ ) or Cartesian (x, y, z) coordinates. The gradient of the disturbing 

potential in the spherical coordinates becomes:  
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( ) ( )T P T P
r θ λ
∂ ∂ ∂ ∇ =  ∂ ∂ ∂ 

,                           (2.5) 

 

with the scale factors of respective coordinates  

 

            1rh = , h rθ = , sinh rλ θ= .                                    (2.6) 

 

Here the gravitational vector components can be expressed as (Novak and Grafarend 

2006, Eqs. 50-52, p. 578): 
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2

1
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2
2

nN n
n m

nm m

n m n

PT P GM R
T P h t Q

R r
θ θ

θ
λ

θ θ

+
−

= =−

∂∂  = =  ∂ ∂ 
∑ ∑ ,             (2.7b) 

            ( ) ( ) ( ) ( )
max

2

1

2
2sin

nN n

nm m n m
n m n

T P GM R
T P h m t Q P

R r
λ λ λ θ

λ θ

+
−

−
= =−

∂  = =  ∂  
∑ ∑  .   (2.7c) 

 

In Eq. (2.7a) the ALFs can be written in a recursive form, and the Clenshaw 

algorithm (Clenshaw 1955) can easily be employed to sum up the relation; see e.g. 

Tscherning and Poder (1982). Equations (2.7a)-(2.7c) can be modified using the 

Holmes and Featherstone (2002a) scheme to obtain a stable solution even for very 

high degrees and orders of the ALFs. The gravitational tensor at point P, ( )r PθλT , 

can be expressed by:  

 

                  ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 2

2

2 2 2

2

2 2 2

2

r

T P T P T P

r r r

T P T P T P
P T P

r

T P T P T P

r

θλ

θ λ

θ θ θ λ

λ λ θ λ

 ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂

= ∇⊗∇ =  
∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂  

T ,                 (2.8) 

 

where ⊗  is the tensor product of two gradient vectors (the symbol stands for the 

matrix product of two general vectors, and in this particular case, the vectors are 

presented by the gradients of the disturbing potential). The gravitational tensor, 

having the above form, is a symmetric tensor of rank two (Novak and Grafarend 

2006). The entries of this tensor in terms of spherical harmonics are (Novak and 

Grafarend 2006, Eqs. 53-58, p. 579): 
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( ) ( ) ( )( ) ( ) ( )
max

32

2

2 3
2

1 2

nN n

rr r nm m n m
n m n

T P GM R
T P h n n t Q P

r R r
λ θ

+
−

= =−

∂  = = + +  ∂  
∑ ∑ ,   (2.9a) 

( ) ( ) ( )
( )max

232

2

2 3 2
2

nN n
n m

nm m

n m n

PT P GM R
T P h t Q

R r
θθ θ

θ
λ

θ θ

+
−

= =−

∂∂  = =  ∂ ∂ 
∑ ∑  ,            (2.9b) 

( ) ( ) ( ) ( )
max

32

2 2

2 3 2
2sin

nN n

nm m n m
n m n

T P GM R
T P h m t Q P

R r
λλ λ λ θ

λ θ

+
−

= =−

∂  = = −  ∂  
∑ ∑  ,         (2.9c) 

( ) ( ) ( ) ( )
( )max

32

1 1

3
2

1

nN n
n m

r r nm m

n m n

PT P GM R
T P h h n t Q

r R r
θ θ

θ
λ

θ θ

+
− −

= =−

∂∂  = = − +  ∂ ∂ ∂ 
∑ ∑ ,   (2.9d) 

( ) ( ) ( ) ( ) ( )
max

32

1 1

3
2

1
sin

nN n

r r nm m n m
n m n

T P GM R
T P h h n m t Q P

r R r
λ λ λ θ

λ θ

+
− −

−
= =−

∂  = = +  ∂ ∂  
∑ ∑ ,                     

        (2.9e) 

( ) ( ) ( )
( )max

32

1 1

3
2sin

nN n
n m

nm m

n m n

PT P GM R
T P h h m t Q

R r
θλ θ λ

θ
λ

θ λ θ θ

+
− −

−
= =−

∂∂  = = −  ∂ ∂ ∂ 
∑ ∑ .   (2.9f) 

 

As one can see, some relations are related to the first- or second-order derivatives of 

the ALFs, and also, some of the relations contain the terms 1 sinθ or 21 sin θ .  

Equation (2.9a) has the simplest form among these relations, and it can easily be 

summed up using Clenshaw or Horner approach; e.g., Holmes and Featherstone 

(2002a). Holmes and Featherstone (2002b) have also presented a recursive relation 

for the second-order derivative for very high degree and order of the ALFs, so that the 

Clenshaw or Horner algorithms can easily be used in Eq. (2.9b). Equation (2.9c) 

contains the term 21 sin θ , and Eqs. (2.9e) and (2.9f) include the term 1 sinθ  and the 

first-order derivatives of the ALFs.  

 

2.3.1. Alternative expressions for gravitational gradients in 

geocentric frame  

 
We start our mathematical derivations of some alternative expressions from Eq. 

(2.7b) containing the first-order derivative of the ALF with respect to co-latitude. For 

simplicity we will use the abbreviated notation ( )n m n m
P P θ=  through this chapter. 

Let us first introduce the following lemma.  

 

Lemma 2.1 (Ilk 1983, Z.1.44): 

 

                                ( )( ) , 1 , 1

1
1

2

n m

n m n m

P
n m n m P P

θ − +

∂
 = + − + − ∂

 .                      

      

Based on Lemma 2.1, Proposition 2.1 follows. 
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Proposition 2.1: 

 

                                              1 2

, 1 , 1

n m

nm nmn m n m

P
a P a P

θ − +

∂
= +

∂
,          

where 

                             ( ) ( )1

0 1,0

1
1 2 2

2
nm m m

a n m n m δ δ −= + − + − − , 

and                           

          ( ) ( )2

0 1,0

1
1 2 2

2
nm m m

a n m n m δ δ += − − + + − − . 

Here δ is the Kronecker delta.  

 

Proof. By considering the normalization using   

 

                   
( )

( )( )( )0

!

2 2 1 !
n m n m

m

n m
P P

n n mδ

+
=

− + −
 ,         (2.10) 

 

in Eq. (2.10) and after further simplifications, the proposition follows. 

 

Proposition 2.1 implies that we do not have to compute the derivative of the ALFs. 

Equation (2.9b) includes the second-order derivative of this function and we will 

present another simple formula for that in Proposition 2.2.  

   

Proposition 2.2: 
2

1 2 3

, 2 , 22

n m

nm nm nmn m n m n m

P
b P b P b P

θ − +

∂
= + +

∂
,      

where 

 

      ( ) ( )1

,0 2,0

1
1 1 2 2 2

4
nm m m

b n m n m n m n m δ δ −= + + − − + − + − −   , 

      ( )( ) ( )( )2 1
1 1

4
nmb n m n m n m n m = − + − + + − + +  , 

      ( ) ( )3

0 2,0

1
2 1 1 2 2

4
nm m m

b n m n m n m n m δ δ += + + + + − − − − − . 

 

Proof.  Using Lemma 2.1 twice for the non-normalized ALFs we obtain 

 

          ( )( )
2

, 1 , 1

2

1
1

2

n m n m n m n m
P P P P

n m n m
θ θ θ θ θ

− + ∂ ∂ ∂ ∂   ∂  = = + − + −     ∂ ∂ ∂ ∂ ∂      
.     (2.11) 

 

Again, from Lemma 2.1 we obtain also  
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                        ( )( ), 1

, 2

1
1 2

2

n m

n m n m

P
n m n m P P

θ
−

−

∂
 = + − − + − ∂

                    (2.12) 

                        ( )( ), 1

, 2

1
1

2

n m

n m n m

P
n m n m P P

θ
+

+

∂
 = + + − − ∂

  .                      (2.13) 

 

Substituting Eqs. (2.12)  and (2.13) into (2.11) and after simplification we obtain 

 

         ( )( )( )( )
2

, 22

1
1 1 2

4

n m

n m

P
n m n m n m n m P

θ −

∂
= + − + + − − + −

∂
  

                     ( )( ) ( )( ) , 2

1 1
1 1

4 4
n m n m

n m n m n m n m P P +
 − + − + + − + + +  .  (2.14) 

 

After normalization based on Eq. (2.10) and further simplifications the proposition is 

proved.  

 

   Removal of singular factor 21/ sin θ  in Eq. (2.9c) is dealt with in Propositions 2.3 

and 2.4.  

 

Lemma 2.2 (Ilk 1983, Eq. Z.1.42): 

 

                           ( )( ) 1, 1 1, 1

1
1

sin 2
− − − +

 = + + − + 
n m

n m n m

P
n m n m P P

mθ
 ,         0m ≠ .        

 

Lemma 2.3 (Ilk 1983, Eq. Z.1.41):             

                           

                           ( )( ),

1, 1 1, 1

1
1 2

sin 2

n m

n m n m

P
n m n m P P

mθ + − + +
 = − + − + +  ,    0m ≠ . 

              

Lemmas 2.2 and 2.3 present the sin
n m

P θ  term in two forward and backward modes 

with respect to degree n. It means that in the former the degree is n-1 (backward) and 

in the latter it is n+1(forward). In the following proposition we simplify sin
n m

mP θ  

in backward mode. 

 

Proposition 2.3:  

                                             
, 1 2

1, 1 1, 1
sin

n m

nm nmn m n m

P
m c P c P

θ − − − += + ,        0m ≠                                                

where                                                                               

              ( )( ) ( ) ( )1

0 1,0
1 2 2 1 2 2 1

2
nm m m

m
c n m n m n n

m
δ δ −= + + − − + − − ,  

              ( )( ) ( ) ( )2

0 1,0
1 2 2 1 2 2 1

2
nm m m

m
c n m n m n n

m
δ δ += − − − − + − − . 
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Proof. The proposition is proved by normalizing the equation of Lemma 2.2.  

 

The sin
n m

mP θ  term can be simplified in forward mode with respect to n in the 

following proposition. 

 

Proposition 2.4: 

                                             1 2

1, 1 1, 1
sin

n m

nm nmn m n m

P
m c P c P

θ + − + +
′ ′= + ,           0m ≠                                    

where                                                                               

            ( )( ) ( ) ( )1

0 1,0
1 2 2 2 1 2 2 3

2
nm m m

m
c n m n m n n

m
δ δ −

′ = − + − + − + − +  

            ( )( ) ( ) ( )2

0 1,0
1 2 2 2 1 2 2 3

2
nm m m

m
c n m n m n n

m
δ δ +

′ = + + + + − + − +  

 

Proof. The proposition is proved by normalizing the equation in Lemma 2.3.  

 

Proposition 2.5:  

                                 
,2 1 2 3

, 2 , 22sin

n m

nm nm nmn m n m n m

P
m d P d P d P

θ − += + + ,  0,1m ≠   ,                                           

where 

 

         
( )

2
01

2,0

2
1 2 1

24 1

m

nm

m

m
d n m n m n m n m

m m

δ

δ −

−
= + − + − + + −

−−
 , 

         
( )( ) ( )( )2

2
1 1

4 1 1
nm

n m n m n m n mm
d

m m m

 + + − − − −
= + 

− +  
 ,   

         
( )

2
03

2,0

2
1 2 1

24 1

m

nm

m

m
d n m n m n m n m

m m

δ

δ +

−
= − − − + + + +

−+
.  

 

Proof. Using Lemma 2.2 twice for non-normalized ALFs we have 

 

             

        ( )( ) 1, 1 1, 1

2

1 1
1

sin sin sin 2 sin sin sin

n m n m n m n m
P P P P

n m n m
mθ θ θ θ θ θ

− − − + 
= = + + − + 

  
,(2.15) 

 

and according to Lemma 2.2 and Eq. (2.15) we can write 

 

                      
( ) ( )( )1, 1

, 2

1
1 2

sin 2 1

n m

n m n m

P
n m n m P P

mθ
− −

−
 = − + − + + −

         (2.16) 
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and   

                     
( ) ( )( )1, 1

, 2

1
1

sin 2 1

n m

n m n m

P
n m n m P P

mθ
− +

+
 = − − − + +

.              (2.17) 

 

Substituting Eqs. (2.16) and (2.17) into (2.15) we obtain 

 

 
( )( )( )( ),

, 22

1 1 21

sin 4 1

n m

n m

P n m n m n m n m
P

m mθ −

 + + − − + − += + −
 

            
( )( ) ( )( )

, , 2

1 1 1

1 1 1
n m n m

n m n m n m n m
P P

m m m
+

 + + − − − − + + +  − + +    
.  (2.18) 

 

After normalization and further algebraic simplifications the proposition is proved.  

 

Equation (2.9f) includes the problem of the factor 1sin θ−  and the derivative with 

respect to θ , which will be eliminated by Propositions 2.6 and 2.7 with Lemmas 2.1 

and 2.3. It can also be simplified in backward and forward modes. Proposition 2.6 

simplifies the formula in backward mode.  

  

 

Proposition 2.6:  

                        1 2 3

1, 2 1, 1, 2
sin

n m

nm nm nmn m n m n m

Pm
e P e P e P

θ θ − − − − +

∂
= + +

∂
. 1m ≠ ,                                 

where 

 
( )

( )( )

( )( )
01

2,0

2 2 1
1 1 2

4 1 2 2 1

m

nm

m

nm
e n m n m n m n m

m n

δ

δ −

− +
= + − + + − + −

− − −
, 

 
( ) ( ) ( ) ( ) ( )( )

( )
2

1 1 2 1

4 1 1 2 1
nm

n m n m n m n m n n mm
e

m m n

 + − + + + + + − = −
 − + −
 

, 

 
( )

( )( )

( )( )
03

2,0

2 2 1
1 1 2

4 1 2 2 1

m

nm

m

nm
e n m n m n m n m

m n

δ

δ +

− +
= − − + + − − − −

+ − −
.  

 

Proof. According to Lemma 2.1 we have 

 

                         ( )( ), , 1 , 11 1
1

sin 2 sin sin

n m n m n m
P P P

n m n m
θ θ θ θ

− +∂  
= + − + − 

∂   
,             (2.19) 

 

and by considering Lemma 2.2, 
, 1

sin
n m

P θ−  and 
, 1

sin
n m

P θ+  can be rewritten as 
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( ) ( )( ), 1

1, 2 1,

1
1 2

sin 2 1

n m

n m n m

P
n m n m P P

mθ
−

− − −
 = + − + − + −

         (2.20) 

                   
( ) ( )( ), 1

1, 1, 2

1
1

sin 2 1

n m

n m n m

P
n m n m P P

mθ
+

− − +
 = + + + + +

 .            (2.21) 

 

Finally, substituting Eqs. (2.20) and (2.21) into (2.19) and further simplifications lead 

to 

 

( )( )( )( )
1, 2

1 1 21 1

sin 4 1

n m

n m

P n m n m n m n m
P

mθ θ − −

∂ + − + + − + −= +∂ −
 

                   
( )( ) ( )( )

1, 1, 2

1 1 1

1 1 1
n m n m

n m n m n m n m
P P

m m m
− − +

 + − + + + + + − −  − + +    
. 

                             (2.22) 

Further, after normalization based on Eq. (2.10) and simplifications, the proposition is 

derived.  

 

Proposition 2.7 is the forward mode of the formula. 

 

 

 

Proposition 2.7:  

                         1 2 3

1, 2 1, 1, 2
sin

n m

nm nm nmn m n m n m

Pm
e P e P e P

θ θ + − + + +

∂
′ ′ ′= + +

∂
. 1m ≠ ,                                 

where 

( )
( )( )

( )( )
01

2,0

2 2 1
1 2 3

4 1 2 2 3

m

nm

m

nm
e n m n m n m n m

m n

δ

δ −

− +
′ = + − + − + − +

− − +
 

2 2 1
1 1

4 1 1 2 3
nm

n m n mm n
e n m n m

m m n

 − + +′ = − − + + + 
+ − +  

 

( )
( )( )

( )( )
03

2,0

2 2 1
1 2 3

4 1 2 2 3

m

nm

m

nm
e n m n m n m n m

m n

δ

δ +

− +
′ = − − + + + + + +

+ − +
.  

 

Proof. By considering Eq. (2.19) and Lemma 2.3, we can write 

 

                 
( ) ( )( ), 1

1, 2 1,

1
2 3

sin 2 1

n m

n m n m

P
n m n m P P

mθ
−

+ − +
 = − + − + + −

,         (2.23) 

                 
( ) ( )( ), 1

1, 1, 2

1
1

sin 2 1

n m

n m n m

P
n m n m P P

mθ
+

+ + +
 = − − + + +

 .              (2.24) 
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Finally, substitution of Eqs. (2.23) and (2.24) into (2.19) and further simplifications 

lead to 

 

     
( )( )( )( ),

1, 2

1 2 31 1

sin 4 1

n m

n m

P n m n m n m n m
P

mθ θ + −

∂ + − + − + + += +∂ −
 

                        ( ) 1, 1, 2

1
1

1 1 1
n m n m

n m n m
n m P P

m m m
+ + +

  − + + − − + −   + − +   
,           (2.25) 

 

further after normalization and simplifications Proposition 2.7 is derived.  

 

2.3.2 New expressions for gravitational vector and tensor in a 

geocentric frame 

 
In the previous section we simplified some relations by considering the presented 

propositions and Eqs. (2.7a)-(2.7c) we have (Eshagh 2008): 

 

              ( ) ( ) ( )
max

2

2
2

1

nN n

r nm m n m
n m n

GM R
T P n t Q P

R r
λ

+

= =−

 = − +  
 

∑ ∑ ,                              (2.26a) 

              ( ) ( ){ }
max

2

1 2

, 1 , 12
2

nN n

nm m nm nmn m n m
n m n

GM R
T P t Q a P a P

R r
θ λ

+

− +
= =−

 = + 
 

∑ ∑ ,             (2.26b) 

              ( ) ( ){ }
max

2

1 2

1, 1 1, 12
2

nN n

nm m nm nmn m n m
n m n

GM R
T P t Q c P c P

R r
λ λ

+

− − − − +
= =−

 = + 
 

∑ ∑ ,        (2.26c) 

and 

              ( ) ( ){ }
max

2

1 2

1, 1 1, 12
2

nN n

nm m nm nmn m n m
n m n

GM R
T P t Q c P c P

R r
λ λ

+

− + − + +
= =−

  ′ ′= + 
 

∑ ∑ .        (2.26d) 

 

According to Propositions 2.4-2.7 and Eqs.(2.9a)-(2.9f) we can present new relations 

for the gravitational tensor as follows (Eshagh 2008): 

 

( ) ( )( ) ( )
max

3

3
2

1 2

nN n

rr nm m n m
n m n

GM R
T P n n t Q P

R r
λ

+

= =−

 = + +  
 

∑ ∑ ,                                   (2.27a) 

( ) ( ){ }
max

3

1 2 3

, 2 , 23
2

nN n

nm m nm nm nmn m n m n m
n m n

GM R
T P t Q b P b P b P

R r
θθ λ

+

− +
= =−

 = + + 
 

∑ ∑ ,           (2.27b) 

( ) ( ){ }
max

3

1 2 3

, 2 , 23
2

1

nN n

nm m nm nm nmn m n m n m
n m n

m

GM R
T P t Q d P d P d P

R r
λλ λ

+

− +
= =−

≠

 = + + 
 

∑ ∑ ,          (2.27c) 

( ) ( ) ( ){ }
max

3

1 2

, 1 , 13
2

1

nN n

r nm m nm nmn m n m
n m n

GM R
T P n t Q a P a P

R r
θ λ

+

− +
= =−

 = − + + 
 

∑ ∑ ,             (2.27d) 
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( ) ( ) ( ){ }
max

3

1 2

1, 1 1, 13
2

1

nN n

r nm m nm nmn m n m
n m n

GM R
T P n t Q c P c P

R r
λ λ

+

− − − − +
= =−

 = − + + 
 

∑ ∑ ,    (2.27e) 

( ) ( ) ( ){ }
max

3

1 2

1, 1 1, 13
2

1

nN n

r nm m nm nmn m n m
n m n

GM R
T P n t Q c P c P

R r
λ λ

+

− + − + +
= =−

  ′ ′= − + + 
 

∑ ∑ ,    (2.27f) 

( ) ( ){ }
max

3

1 2 3

1, 2 1, 1, 23
2

1

nN n

nm m nm nm nmn m n m n m
n m n

m

GM R
T P t Q e P e P e P

R r
θλ λ

+

− − − − − +
= =−

≠

 = + + 
 

∑ ∑ ,   (2.27g) 

( ) ( ){ }
max

3

1 2 3

1, 2 1, 1, 23
2

1

nN n

nm m nm nm nmn m n m n m
n m n

m

GM R
T P t Q e P e P e P

R r
θλ λ

+

− + − + + +
= =−

≠

  ′ ′ ′= + + 
 

∑ ∑ .   (2.27h) 

 

These expressions do not contain the singular terms at the poles, and all relations are 

summed up in terms of the adjacent ALFs. All the constant coefficients of the ALFs 

in the relations can be computed once for all computations. Another advantage of the 

above relations is that we just have to compute the ALFs and not its derivatives, but it 

should be computed to two additional degrees and orders.     

 

The expressions of ( )T Pλλ  and ( )T Pθλ  do not include the order 1 because the 

coefficients of the ALFs in these expressions are singular if m =1. One may interpret 

this matter as transferring the singularity from the space domain to the spectral 

domain at the poles. For solving this problem, it is recommended to use the traditional 

expression for m =1. In this case, we can easily show that 21 sin θ  and 1 sinθ  do 

not make singularity at the poles as 

 

( )1

2

lim cos
0

0 ,180 sin

nP θ
θ θ

=
→

 ,            (2.28)    

and 

            
( )1lim cos /

0
0 ,180 sin

nP θ θ
θ θ

∂ ∂
=

→
,            (2.29) 

 

yielding no contribution from terms with m =1. Figure 2.1 shows the gravitational 

gradients, which were generated at 250 km level in the geocentric frame. The EGM96 

geopotential model (Lemoine et al. 1998) was used to generate the gradients to degree 

and order 360 with 0.5 ×0.5 resolution and using the fully-vectorized method; see 

Eshagh (2009a). Figure 2.1 illustrates that rrT is the largest gradient compared with 

the others, and Tθλ  is the smallest. Their statistics are presented in Table 2.1.  
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z 
y 

x 

geoy  

 
Figure 2.1. Gravitational gradients in geocentric frame. (a) Tθθ , (b) Tλλ , (c) 

rrT , (d) Tθλ , (e) 
rT θ and 

(f) 
rT λ . Unit: 1 E 

 

2.4 Gravitational gradients in LNOF 

 
The LNOF is defined as the frame whose z-axis is pointing upwards in the geocentric 

radial direction, the x-axis towards the north (see Figure 2.2) and the y-axis is directed 

to the west to complete a right handed frame. 

                                                                                                                                                                        

Figure 2.2. Geocentric frame 

( geox , geoy , geoz ) and LNOF (x, y, z)                

    
 Figure 2.3. ORF (u, v, w) and inertial frame 

( intx , inty , intz ) 

 

The traditional expressions for the gravitational gradients in the LNOF are obtained 

by using the tensor product of the gradient operator as presented by Reed (1973): 
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=

∂
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( ) ( ) ( )2

2 2xx

T P T P
T P

r r r θ
∂ ∂

= +
∂ ∂

,                     (2.30b) 

( ) ( ) ( ) ( )2

2 2 2 2
cot

sin
yy

T P T P T P
T P

r r r r
θ

θ θ λ
∂ ∂ ∂

= + +
∂ ∂ ∂

,             (2.30c) 

( ) ( ) ( )2

2 2
cot

sin sin
xy

T P T P
T P

r r
θ

θ θ λ θ λ
∂ ∂

= −
∂ ∂ ∂

,        (2.30d) 

( ) ( ) ( )2

2xz

T P T P
T P

r r rθ θ
∂ ∂

= −
∂ ∂ ∂

,                      (2.30e) 

and 

( ) ( ) ( )2

2 sin sin
yz

T P T P
T P

r r rθ λ θ λ
∂ ∂

= −
∂ ∂ ∂

.                     (2.30f) 

 
Based on these formulas Petrovskaya and Vershkov (2006, Eqs. 4-9) presented the 

following relations after some simplifications: 

 

( )( ) ( )
max

3

3
2

( ) 1 2

n
N n

zz nm m n m
n m n

GM R
T P n n t Q P

R r
λ

+

= =−

 
= + +  

 
∑ ∑  ,                     (2.31a)  

( ) ( )
max

23

3 2
2

( ) 1

nN n
n m

xx nm m n m
n m n

PGM R
T P t Q n P

R r
λ

θ

+

= =−

 ∂ = − + +   ∂    
∑ ∑ ,                   (2.31b) 

( ) ( )
max

3
2

3 2
2

( ) 1 cot
sin

n
N n

n m

yy nm m n m n m
n m n

PGM R m
T P t Q n P P

R r
λ θ

θ θ

+

= =−

 ∂ 
= − + + +   ∂    

∑ ∑ , 

       (2.31c) 

( )
max

3

3 2
2

1 cos
( )

sin sin

nN n
n m

xy nm m n m
n m n

PGM R
T P mt Q P

R r

θλ
θ θ θ

+

−
= =−

 ∂ = −   ∂    
∑ ∑ ,        (2.31d) 

( ) ( )
max

3

3
2

( ) 2

nN n
n m

xz nm m

n m n

PGM R
T P n t Q

R r
λ

θ

+

= =−

∂ = +   ∂ 
∑ ∑ ,            (2.31e) 

and 

( ) ( )
max

3

3
2

( ) 2
sin

nN n
n m

yz nm m

n m n

PGM R
T P n mt Q

R r
λ

θ

+

−
= =−

 = +  
 

∑ ∑ .          (2.31f) 

 

These expressions include also the terms 1 sinθ and 21 sin θ  which are singular at the 

poles. They include combinations of ALFs and/or their first- and second-order 

derivatives. In the following section we further simplify these formulas. It should be 

mentioned that our derivations differ in simplifications and normalization with those 

presented by Petrovskaya and Vershkov (2006).  

 

2.4.1 Alternative expressions for gravitational gradients in the LNOF  

 
Equation (2.31a), which is the second-order radial derivative of the potential, does not 

need to be simplified. Therefore we start our mathematical derivations with Eq. 
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(2.31c), which is related to ( )yyT P . Let us first consider the following lemma, which 

is useful through the derivations.  

       

Lemma 2.4 (Ilk 1983, p. 114): 

                    

                     ( ) 2

1, 1
sin cos 1 sin sin

n m

n m n m n m

P
m P n P Pθ θ θ θ

θ + +

∂
= + + −

∂
 .  

   

It should be mentioned that the lemma is also valid for the non-normalized ALFs. 

Now we start simplification of Eq. (2.31c) by the following proposition.  

                                               

Proposition 2.8: 

            

             ( )
2

1 2 3

, 2 , 22
1 cot

sin

n m

nm nm nmn m n m n m n m n m

P m
n P P f P f P f Pθ

θ θ − +

∂
− + + − = + +

∂
,    

where 

  

01

2,0

21
1 2 1

4 2

m

nm

m

f n m n m n m n m
δ

δ −

−
= + − + − + + −

−
 , 

( )( ) ( )( ) ( )( )2
2 1 211

1 1
4 1 1

nm

n m n mm
f n m n m n m n m

m m

 + + + +−
= + + − + − − − + 

+ +  

03

2,0

21
1 2 1

4 2

m

nm

m

f n m n m n m n m
δ

δ +

−
= − − − + + + +

−
. 

 

Proof. According to Petrovskaya and Vershkov (2006, Eq. 21, p. 120) and Lemma 2.4 

the left hand side of the proposition can be written  

            ( ) ( )
2

1, 1

2 2
1 cot 1

sin sin sin

n m n m n m

n m n m

P P Pm
n P P m mθ

θ θ θ θ
+ +∂  

− + + − = − + 
∂   

 .    (2.32) 

 

According to Lemma 2.2 we obtain 

 

                      
( ) ( )( )1, 1

, 2

1
2 1

sin 2 1

n m

n m n m

P
n m n m P P

mθ
+ +

+
 = + + + + + +

 .       (2.33) 

 

Substituting Eqs. (2.33) and Proposition 2.4 divided by 2m  into the right hand-side of 

Eq. (2.32), and after a long simplification and normalization of the results (based Eq. 

2.10), the proposition is proved. 

 

Equation (2.31d) can also be simplified in two different ways. We can derive a 

linear combination of the adjacent ALFs and the backward and forward mode with 

respect to degree n. Proposition 2.9 simplifies the complicated part of Eq. (2.31d) in 

backward mode in degree.   
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Proposition 2.9: 

 

       1 2 3

1, 2 1, 1, 22

1 cos

sin sin

n m

nm nm nmn m n m n m n m

P
m P g P g P g P

θ
θ θ θ − − − − +

 ∂
− = + + 

∂  
, 0m ≠ , 

 

where 

 

      
( )( )

( )( )
01

2,0

2 2 1
1 2 1

4 2 2 1

m

nm

m

nm
g n m n m n m n m

m n

δ

δ −

− +
= + + − + − − +

− −
, 

      2 2 1

2 2 1
nm

m n
g n m n m

n

+
= + −

−
, 

     
( )( )

( )( )
03

2,0

2 2 1
1 2 1

4 2 2 1

m

nm

m

nm
g n m n m n m n m

m n

δ

δ +

− +
= − − − − − + +

− −
. 

 

Proof. According to Petrovskaya and Vershkov (2006, Eq. 31, p. 121) we can write 

 

( )( )( ) ( ), 1 , 1

2

1 cos 1
1 1 1

sin sin 2 sin sin

n m n m n m

n m

P P P
P m n m n m m

m

θ
θ θ θ θ θ

− +∂  
− = − + − + − + 

∂   
 

        (2.34) 

and using Lemma 2.2 we obtain 

 

                   
( ) ( )( ), 1

1, 2 1,

1
1 2

sin 2 1

n m

n m n m

P
n m n m P P

mθ
−

− − −
 = + − + − + −

 ,       (2.35) 

                   
( ) ( )( ), 1

1, 1, 2

1
1

sin 2 1

n m

n m n m

P
n m n m P P

mθ
+

− − +
 = + + + + +

.         (2.36) 

 

Substituting Eqs. (2.35) and (2.36) into the right hand side of Eq. (2.34) and after 

simplification we derive 

 

( )( )( )( )2

1 cos
1 1 2

sin sin 4

n m

n m

P m
m P n m n m n m n m

m

θ
θ θ θ

∂ 
− = + − + + − + −  ∂     

                                                 

 ( )1, 2 1, 1, 2
2

n m n m n m
P m n m P P− − − − +

− + −  .         (2.37) 

 

After normalizing Eq. (2.37) (using Eq. 2.10) the proposition is proved. 

 

Now the complicated part of Eq. (2.31d) is simplified forward in Proposition 2.10 we 

mean that the degree of the adjacent ALFs in right hand side is n+1.  
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Proposition 2.10: 

 

            1 2 3

1, 2 1, 1, 22

1 cos

sin sin

n m

nm nm nmn m n m n m n m

P
m P g P g P g P

θ
θ θ θ + − + + +

 ∂
′ ′ ′− = + + 

∂  
, 0m ≠  

where 

       
( )( )

( )( )
01

2,0

2 2 1
1 2 1

4 2 2 1

m

nm

m

nm
g n m n m n m n m

m n

δ

δ −

− +
′ = + + − + − − +

− −
, 

      ( )( ) ( )( ) ( )( )
( )( )

2
2 1 1

1 1
4 2 3 1

nm

n n mm
g n m n m n m n m

m n n m

+ + +
 ′ = + − + − − − +  + − +

, 

      
( )( )

( )( )
03

2,0

2 2 1
1 2 3

4 2 2 3

m

nm

m

nm
g n m n m n m n m

m n

δ

δ +

− +
′ = − − + + + + + +

− +
. 

 

Proof. Using Lemma 2.3 we obtain   

 

( )( )( )( )2

1 cos
1 2 3

sin sin 4

n m

n m

P m
m P n m n m n m n m

m

θ
θ θ θ

∂ 
− = + − + − − − +  ∂     

         

( )( ) ( )( )1, 2 1, 1, 2
1 1

n m n m n m
P n m n m n m n m P P+ − + + +

 + + − + − − − + −   .(2.38) 

 

After normalizing Eq. (2.38) using Eq.(2.10) the proposition is proven. 

 

Our mathematical derivations summarized in Propositions 2.8, 2.9 and 2.10. Next 

we start to present our alternative expressions using the propositions. First, let us start 

with Eq. (2.31b). This equation is involved with the second-order derivative of the 

fully-normalized ALFs were already simplified in Proposition 2.2. Using this 

proposition and Eq. (2.31b), which is the traditional expression for ( )xxT P  , we can 

write 

 

( ) ( ){ }
max

3

1 2 3

, 2 , 23
2

( ) 1

nN n

xx nm m nm nm nmn m n m n m
n m n

GM R
T P t Q b P b n P b P

R r
λ

+

− +
= =−

   = + − + +    
∑ ∑

                            (2.39a) 

Also ( )yyT P , which was presented in Eq. (2.31c), can be simplified according to 

Proposition 2.6 as: 

 

   ( ){ }
max

3

1 2 3

, 2 , 23
2

( )

nN n

yy nm m nm nm nmn m n m n m
n m n

GM R
T P t Q f P f P f P

R r
λ

+

− +
= =−

 = + + 
 

∑ ∑ (2.39b) 

 

where 1

nmf , 2

nmf and 3

nmf were presented in the proposition. Alternatively, based on 

( ) ( ) ( ) 0xx yy zzT P T P T P+ + = (Laplacian equation), we can also develop our 

expressions for ( )xxT P and ( )yyT P : 
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                      ( ){
max

3

1

, 23
2

( )

nN n

xx nm m nm n m
n m n

GM R
T P t Q b P

R r
λ

+

−
= =−

 = − + 
 

∑ ∑  

                                  ( )( ) }2 3

, 2
1 2nm nmn m n m

b n n P b P + + + + + +  ,          (2.39c) 

and 

                      ( ){
max

3

1

, 23
2

( )

nN n

yy nm m nm n m
n m n

GM R
T P t Q a P

R r
λ

+

−
= =−

 = − + 
 

∑ ∑     

                                  ( )( ) }2 3

, 2
1 2nm nmn m n m

a n n P a P +
 + + + + +  .                    (2.39d) 

 

The coefficients of the ALFs in Eqs. (2.39c) and (2.39d) are the same as those 

presented in Propositions 2.2 and 2.4. Two alternative similar expressions can also be 

presented for ( )xyT P :  

 

      ( ){ }
max

3

1 2 3

1, 2 1, 1, 23
2

( )

nN n

xy nm m nm nm nmn m n m n m
n m n

GM R
T P t Q g P g P g P

R r
λ

+

− − − − − +
= =−

 = + + 
 

∑ ∑ (2.39e) 

and      

     ( ){ }
max

3

1 2 3

1, 2 1, 1, 23
2

( )

nN n

xy nm m nm nm nmn m n m n m
n m n

GM R
T P t Q g P g P g P

R r
λ

+

− + − + + +
= =−

  ′ ′ ′= + + 
 

∑ ∑ ,(2.39f) 

 

where 1

nmg , 2

nmg , 3

nmg , 1

nmg ′ , 2

nmg ′  and 3

nmg ′  have been presented in Propositions 2.9 

and 2.10.  Until now some alternative expressions were formulated which are the HH 

components of the gravitational tensor. Formulation of the VH components ( )xzT P  

and ( )yzT P  is rather simple than those mentioned above. Let us start with ( )xzT P in 

the following. Equation (2.59) which is related to ( )xzT P is involved with the 

derivatives of the fully-normalized ALFs, which were simplified in Proposition 2.1. 

Considering this proposition and substituting it in Eq. (2.59) we have 

 

                    ( )
max

3

1 2

, 1 , 13
2

( )

nN n

xz nm m nm nmn m n m
n m n

GM R
T P t Q h P h P

R r
λ

+

− +
= =−

   = +    
∑ ∑ ,       (2.39g) 

 

where ( )1 12 2nm nmh n a= +  and ( )2 22 2nm nmh n a= − + . Two alternative expressions 

can be formulated for ( )yzT P : 

                    

                    ( )
max

3

1 2

1, 1 1, 13
2

( )

nN n

yz nm m nm nmn m n m
n m n

GM R
T P t Q k P k P

R r
λ

+

− − − − +
= =−

   = +    
∑ ∑ ,(2.39h) 

 

where  ( )1 12 2nm nmk n c= + , ( )2 22 2nm nmk n c= +  and  

 

                     ( )
max

3

1 2

1, 1 1, 13
2

( )

nN n

yz nm m nm nmn m n m
n m n

GM R
T P t Q k P k P

R r
λ

+

− + − + +
= =−

   ′ ′= +    
∑ ∑   (2.39i) 
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where ( )1 12 2nm nmk n c′ ′= +  and ( )2 22 2nm nmk n c′ ′= + . The coefficients 1

nmc , 2

nmc , 1

nmc ′  

and 2

nmc ′  are derived in Propositions 2.3 and 2.4.  

 

Petrovskaya and Vershkov (2006) also presented similar expressions for the 

gradients in LNOF. They considered the zero- and first-order of the expansions 

separately. However, in our derivation we did not use their method and we found a 

more general form for the coefficients of the adjacent ALFs. According to our 

comparisons, the derived coefficients will lead to the same values of the coefficients 

and one can compute the zero- and first-orders coefficients without any separation. 

This is due to our different way of simplification and normalization. Two expressions 

for ( )xxT P , ( )yyT P , ( )xyT P  and ( )yzT P  were presented here, and they are capable 

of synthesizing the gravitational gradients without neither computing the first- or 

second-order derivatives of the ALFs nor singularity at poles. The formulas may be 

used for filling-in the gaps of the Polar Regions due to inclined GOCE orbit, so that 

the quadrature formulas and TSHs, which are globally orthogonal, can be employed to 

generate the geopotential coefficients. Figure 1 shows globally synthesized 

gravitational gradients in the LNOF based on our alternative formulas. Again, EGM96 

is used to degree and order 360 to generate the gradients with 0.5 ×0.5 resolution at 

250 km. A semi-vectorization algorithm was used to speed up the computations; see 

Eshagh and Abdollahzadeh (2009a). 

 

 
Figure 2.4. Gravitational gradients in LNOF. (a) 

xxT , (b) 
yyT , (c) 

zzT , (d) 
xyT , (e) 

xzT  and (f) 
yzT . 

Unit: 1 E 

 

As expected, rrT  is the same as zzT  as the r- and z-axis are common axis of the 

geocentric and LNOF. This gradient is also the largest gradient, and xyT  is the 

smallest. The statistics of the gradients of disturbing potential in the geocentric frame 

and the LNOF are presented in Tables 2.1 and 2.2. 
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Table 2.1. Statistics of second-order gradients 

of disturbing potential in geocentric frame. 

Unit: 1 E 

 
 min mean max std 

Tθθ  -1.12 0.00 1.10 ± 0.12 

T λλ  -0.11 0.00 0.74 ± 0.13 

rrT  -1.44 0.00 1.76 ± 0.24 

Tθλ  -0.61 0.00 -0.65 ± 0.09 

rT θ  -1.42 0.00 1.70 ± 0.13 

rT λ  -1.26 0.00 1.39 ± 0.16 

 

 

Table 2.2. Statistics of second-order gradients 

of disturbing potential in LNOF. Unit: 1 E 

 
 min mean max std 

xxT  -1.12 0.00 1.15 ± 0.14 

yyT  -1.16 0.00 0.76 ± 0.14 

zzT  -1.44 0.00 1.76 ± 0.24 

xyT  -0.59 0.00 0.66 ± 0.07 

xzT  -1.76 -0.01 1.45 ± 0.16 

yzT  -1.07 0.00 1.25 ± 0.16 

 

As a comparison we can say that the gradients are more or less at the same level. Both 

tables show larger standard deviations for the gradients in the LNOF (except for the 

second order-radial derivatives, which are exactly the same). The differences are in 

the 1 cE level, but they are significant.   

 

2.5 Gravitational gradients in ORF 

 
The ORF is a special local frame which is not north-oriented. We consider the frame 

{u, v, w}, where the w-axis coincides with z-axis of the LNOF, v-axis points towards 

the instantaneous angular momentum vector and u-axis complements the right-hand 

triad as shown in Figure 2.3. The subscripts of int for x-, y- and z-axes stand for 

inertial frame. The ORF differs from LNOF by a simple rotation around their 

common axis. The transformation between the LNOF and ORF is (Petrovskaya and 

Vershkov 2006): 

 

                                 ( )3

cos sin 0

sin cos 0

0 0 1

u x x

v y y

w z z

α α
α α α

       
       = − =       
              

R                      (2.40) 

 

where α  is the satellite track azimuth (i.e. the angle between the local meridian and 

direction of u-axis at the observation point). Based on the above transformation, it is 

easy to transform the gravitational tensor from the LNOF ( )xyz PT  to the ORF 

( )uvw PT  using the following transformation: 

 

                                         ( ) ( ) ( ) ( )3 3, T

uvw xyzP Pα α α=T R T R ,                      (2.41) 

 

and therefore the entries of the gravitational tensor in the ORF will be: 

 

   

( ) ( ) ( ) ( ) ( )2 2 2, cos sin cos 2cos sinuu yy zz xyT P T P T P T Pα α α α α α= − − − + ,    (2.42a) 

( ) ( ) ( ) ( ) ( )2 2 2, cos sin sin 2cos sinvv yy zz xyT P T P T P T Pα α α α α α= − − − ,       (2.42b) 

( ) ( ) ( ) ( ) ( )2 2, 2cos sin cos sin cos sinuv yy zz xyT P T P T P T Pα α α α α α α= + + − ,(2.42c) 
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                                ( ) ( ) ( ), cos sinuw xz yzT P T P T Pα α α= + ,         (2.42d) 

                                ( ) ( ) ( ), sin cosvw xz yzT P T P T Pα α α= − + ,          (2.42e) 

and 

 

                                                   ( ) ( )ww zzT P T P= .            (2.42f) 

 

In a similar way one can also obtain the reverse transformation by: 

 

                                            ( ) ( ) ( ) ( )3 3, T

xyz uvwP Pα α α=T R T R .          (2.43) 

 

The relation between the gradients in the LNOF and ORF can also be written 

according to Eq. (2.43): 

 

              ( ) ( ) ( ) ( )2 2, cos sin 2cos sinxx uu vv uvT P T P T P T Pα α α α α= + − ,          (2.44a) 

              ( ) ( ) ( ) ( )2 2, sin cos 2cos sinyy uu vv uvT P T P T P T Pα α α α α= + + ,          (2.44b) 

              ( ) ( ) ( ) ( ) ( )2 2, cos sin cos sinxy uu vv uvT P T P T P T Pα α α α α = − + −  , (2.44c) 

             ( ) ( ) ( ), cos sinxz uw vwT P T P T Pα α α= − ,           (2.44d) 

             ( ) ( ) ( ), sin cosyz uw vwT P T P T Pα α α= + ,             (2.44e) 

 

and 

 

               ( ) ( )ww zzT P T P= .                   (2.44f) 

 

We have already presented the traditional and alternative expressions for the 

gravitational gradients in the LNOF as well as the relation between the LNOF and the 

ORF. Consequently, if we put the traditional expressions of the gradients in the NLOF 

into Eqs. (2.44a)-(2.44f) we will obtain the expression of the gradients in ORF; and if 

we put the our expression into these equations we will obtain the corresponding 

alternative one. In the following we present our alternative expressions for the 

gradients in the ORF (Petrovskaya and Vershkov 2006): 

 

( ) ( ){ ( )( )
max

3

2

13
2

, cos 2 cos 1 2

nN n

uu nm m nm n m
n m n

GM R
T P t Q f n n P

R r
α λ α α

+

= =−

   = − + + +    
∑ ∑              

               ( ) }2sin 2m nmQ fλ α−+ ,                        (2.45a) 

( ) ( ){ ( )( )
max

3

2

13
2

, cos 2 sin 1 2

nN n

vv nm m nm n m
n m n

GM R
T P t Q f n n P

R r
α λ α α

+

= =−

   = − + + + +    
∑ ∑

                ( ) }2sin 2m nmQ fλ α−+ ,            (2.45b) 

( ) ( ){
max

3

3
2

,

nN n

uv nm m

n m n

GM R
T P t Q

R r
α λ

+

= =−

 = −  
 

∑ ∑ [ 1sin 2 cos sinnmfα α α−  

                    ( )( ) ( ) }21 2 cos 2m nmn m
n n P Q fλ α−+ + − ,          (2.45c) 
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( ) ( ) ( )
max

3

3 43
2

, cos sin

nN n

uw nm m nm m nm

n m n

GM R
T P t Q f Q f

R r
α λ α λ α

+

−
= =−

   = +    
∑ ∑ ,   (2.45d) 

( ) ( ) ( )
max

3

3 43
2

, sin cos

nN n

vw nm m nm m nm

n m n

GM R
T P t Q f Q f

R r
α λ α λ α

+

−
= =−

   = − −    
∑ ∑ , (2.45e) 

and 

( ) ( )( ) ( )
max

3

3
2

, 1 2

nN n

ww nm m n m
n m n

GM R
T P n n t Q P

R r
α λ

+

= =−

 = + +  
 

∑ ∑ ,        (2.45f) 

 

where 

                                    ( ) 1 2 3

1 , 2 , 2nm nm nm nmn m n m n m
f b P b P b Pθ − += + +  ,                    (2.46a) 

( ) 1 2 3

2 1, 2 1, 1, 2nm nm nm nmn m n m n m
f g P g P g Pθ − − − − += + + ,       (2.46b) 

( ) 1 2

3 , 1 , 1nm nm nmn m n m
f h P h Pθ − += + ,                     (2.46c) 

and 

( ) 1 2

4 1, 1 1, 1nm nm nmn m n m
f k P k Pθ − − − += + .         (2.46d) 

 

The above formulas are valid when the satellite track azimuth is given. The azimuth, 

in the simplest case, is a function of inclination of orbit and the co-latitude of the 

observation point. Vermeer (1990) presented the following formula for the azimuth:  

 

          sin cos sinIα θ= ,           (2.47)  

 

where I stands for the orbit inclination and θ  is the co-latitude of the observation 

point at satellite level. However, we know that co-latitude and satellite inclination are 

not constant during satellite revolutions because of existence of perturbing forces.  

The geopotential force is the largest gravitational perturbing force. In the following 

we express the differential equation of a satellite in the presence of the Earth 

gravitational force which can numerically be integrated to estimate the satellite 

position.  

 

2.5.1 Equations of motion of a satellite  

 
As we mentioned in the beginning of this chapter, a truncated spherical harmonic 

series is used to approximate the Earth gravitational field. We presented this series in 

Eq. (2.1) for the disturbing potential. The same relation can be used for the 

geopotential by replacing the disturbing potential (T) with the geopotential (W) and 

also the SHCs of the disturbing potential nmt  to the geopotential nmw . The second-

order derivative of the geopotential with respect to time is the satellite acceleration 

vector in a geocentric inertial frame: 

 

( ) ( ) ( ) ( ) ( )x r x x xx P W P W P r W P W Pθ λθ λ= = + +  ,             (2.48a) 

( ) ( ) ( ) ( ) ( )y r y y yy P W P W P r W P W Pθ λθ λ= = + + ,                 (2.48b) 

( ) ( ) ( ) ( ) ( )z r z z zz P W P W P r W P W Pθ λθ λ= = + + ,                  (2.48c) 
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where x , y  and z  are the satellite accelerations in x-, y- and z-direction of an 

inertial frame, respectively. ( )rW P ,  ( )W Pλ  and  ( )W Pθ  are the partial derivatives 

of the spherical harmonic expansion of gravitational field with respect to the 

geocentric distance, longitude and co-latitude. ir , iθ , iλ , i = x, y and z are the partial 

derivatives of the spherical coordinates with respect to Cartesian ones. The relations 

among these triple parameters r, λ , θ  and the Cartesian inertial coordinates of x, y, 

and z are: 

 
2 2 2r x y z= + + ,          (2.49a) 

( )2 sinarc z rθ π= − ,         (2.49b) 

( )tanarc y xλ = −Θ .          (2.49c) 

 

where Θ  is the Greenwich apparent sidereal time. The partial derivatives of the 

curvilinear and Cartesian coordinates are (Hwang and Lin 1998):  

 

( )
( )
( )

( )
( )

( )
( )
( )

2 2 2 2

2 2 2 2

2 2 0

r

x r xz r x y y x y
x P W P

y P y r yz r x y x x y W P

z P W P
z r x y r

θ

λ

 + − +    
    

= + +    
    
    − +  

 .               (2.50) 

 

Equation (2.50) is the differential equations of satellite motion in the presence of the 

geopotential field. It is a second-order vector differential equation, and it can be 

solved using numerical integrator, like Runge-Kutta, Adams-Bashforth, Adams-

Moulton. Some investigations about orbit integration was done by Eshagh (2003a) 

and (2003b), Eshagh and Najafi-Alamdari (2005a) and (2005b), Also Eshagh (2005a) 

and (2009b) has presented two approaches for variable step orbit integration and orbit 

integration in non-inertial frames. Eshagh et al. (2009) simplified the geopotential 

perturbing force. This alternative formulation is nothing else than simplification of 

Eq. (2.50) and this expression is shortly presented in the next subsection. 

  

2.5.2 Simplification of the geopotential perturbing force acting on a 

satellite  

 
As was shown in the previous section, to carry out the integration steps of satellite 

orbit in the inertial frame (while the geopotential model (e.g., EGM96) as the source 

of geopotential is given in an Earth fixed (non-inertial) curvilinear coordinates 

system) one has to transfer the satellite position from the inertial frame to the Earth 

fixed frame, for the acceleration computation out of the EGM. This requires the 

Cartesian and curvilinear coordinates of the satellite to be computed in both the 

inertial and the earth fixed frames. Let us start with Eq. (2.50) and present it in terms 

of curvilinear coordinates: 
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( )
( )
( )

( )
( )
( )

sin cos cos cos sin

sin sin sin cos cos

cos sin 0

rx P W P

y P W P

z P W P

θ

λ

θ λ λ θ λ
θ λ λ θ λ
θ θ

∗ ∗ ∗

∗ ∗ ∗

    −
    =    
    −    

,         (2.51) 

 

where λ λ∗ = +Θ  as defined previously. By inserting the components of the 

gravitational vector (Eqs. 2.7a-2.7c) into Eq. (2.51) and after simplifications, we 

obtain : 

      ( ) ( ) ( ) ( ) ( )
max

2

2
0

cos sin

nN n

nm m nm m nm

n m n

GM R
x P w Q K Q L

R r
λ λ θ λ λ θ

+
∗ ∗

−
= =−

   = −    
∑ ∑ , 

                   (2.52a) 

    ( ) ( ) ( ) ( ) ( )
max

2

2
0

sin cos

nN n

nm m nm m nm

n m n

GM R
y P w Q K Q L

R r
λ λ θ λ λ θ

+
∗ ∗

−
= =−

   = −    
∑ ∑ , 

      (2.52b) 

      ( ) ( ) ( )
max

2

2
0

1 cos sin

nN n
n m

nm m n m
n m n

PGM R
z P w Q n P

R r
λ θ θ

θ

+

= =−

 ∂ = − + +   ∂    
∑ ∑ ,(2.52c) 

where 

                                  ( ) ( )1 sin cos
n m

nm n m

P
K n Pθ θ θ

θ

∂
= − + +

∂
,       (2.53a) 

                                  ( ) , 1 2

1, 1 1, 1
sin

n m

nm nm nmn m n m

P
L m c P c Pθ

θ − − − += = + .       (2.53b) 

 

The terms in the bracket of Eq. (2.52c) can be simplified further. To do that we start  

the mathematical derivations by introducing the following lemmas. 

  

Lemma 2.5 (Ilk 1983, Z. 1.43): 

 

                           
( )( )

( )
( )
( )1, 1,

1 1
sin

2 1 2 1

n m

n m n m

P n n m n n m
P P

n n
θ

θ − +

∂ + + − +
= − +

∂ + +
.  

  

Lemma 2.6 (Ilk 1983, Z.1.37): 

 

                                  
1, 1,

1
cos

2 1 2 1
n m n m n m

n m n m
P P P

n n
θ − +

+ − +
= +

+ +
.    

             

Note: these relations only hold for non-normalized ALFs.  

 

Proposition 2.11: 

                  

                 ( ) 1,

2 1
1 cos sin 1 1

2 3

n m

n m n m

P n
n P n m n m P

n
θ θ

θ +

∂ +
+ + = − + + +

∂ +
.          

       

Proof. By multiplying the equation of Lemma 2.6 by (n+1) and adding to that of 

Lemma 2.5 we obtain: 
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                         ( ) ( ) 1,
1 cos sin 1

n m

n m n m

P
n P n m Pθ θ

θ +

∂
+ + = − +

∂
.                     (2.54) 

 

By considering normalization factors of Eq. (2.10) inserting them into Eq. (2.54) and 

after further simplifications, Proposition 2.11 is proved.  

 

The function ( )nmK θ  presented in Eq. (2.53a) can also be simplified. Let us first 

introduce the following lemma. 

 

 

Lemma 2.7 (Ilk 1983, Z.1.40): 

 

                                  
1, 1 1, 1

1 1
sin

2 1 2 1
n m n m n m

P P P
n n

θ − + + += − +
+ +

 . 

Here the function ( )nmK θ  is simplified by Proposition 2.12. 

 

Proposition 2.12: 

 

( ) 1 2 3 4

1, 1 1, 1 1, 1 1, 1nm nm nm nm nmn m n m n m n m
K l P l P l P l Pθ − − − + − + + += + + +          

where 

( )( )( ) ( ) ( ) ( )1

0 1,0
2 1 2 2 1 2 1

2
nm m m

n m
l n m n m n nδ δ −

−
= − + + − − + − ,                

( )( )( ) ( ) ( ) ( )2

0 1,0
2 1 2 2 1 2 1

2
nm m m

n m
l n m n m n nδ δ +

−
= − − − − − + −  ,              

( )( )( ) ( ) ( ) ( )3

0 1,0

1
2 1 2 2 2 1 2 3

2
nm m m

n m
l n m n m n nδ δ −

+ +
= − − + − + − + + ,           

( )( )( ) ( ) ( ) ( )4

0 1,0

3 1
2 1 2 2 2 1 2 3

2
nm m m

n m
l n m n m n nδ δ −

− +
= − − + + + + − + +              

Proof. We have to derive a relation for cos
n m

P
θ

θ

∂

∂
. In this case let us differentiate 

the equation of Lemma 2.6 with respect to θ  (co-latitude) 

 

                  
1, 1,1

sin cos
2 1 2 1

n m n m n m

n m

P P Pn m n m
P

n n
θ θ

θ θ θ
− +∂ ∂ ∂+ − +

− + = +
∂ + ∂ + ∂

.         (2.55) 

 

Considering Lemma 2.1 for the derivatives of the non-normalized ALFs and inserting 

them in Eq. (2.55) we finally obtain 

 

( ) ( )( ) 1, 1 1, 1
sin cos 1

2 2 1

n m

n m n m n m

P n m
P n m n m P P

n
θ θ

θ − − − +

∂ +  − + = + − − − + ∂ +
 

                                        
( ) ( )( ) 1, 1 1, 1

1
1 2

2 2 1
n m n m

n m
n m n m P P

n
+ − + +

− +  + + + − + − +
.  

                                                                                                                                (2.56) 
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By taking the most left part of Eq. (2.56) ( sin
n m

Pθ− ) into the right hand side of the 

equation and considering Lemma 2.7 we obtain 

 

( )( )( )
( ) ( )1, 1 1, 1

1 2
cos

2 2 1 2 2 1

n m

n m n m

P n m n m n m n m
P P

n n
θ

θ − − − +

∂ + + − − + +
= − +

∂ + +
 

            
( )( )( )

( ) ( )1, 1 1, 1

1 1 2 1

2 2 1 2 2 1
n m n m

n m n m n m n m
P P

n n
+ − + +

− + + + − + − −
+ −

+ +
.   (2.57) 

 

Multiplying Eq. (2.56) by –(n+1) and adding to Eq. (2.57) we have 

 

( ) ( )( )( )
( ) ( )1, 1 1, 1

1
cos 1 sin

2 2 1 2 2 1

n m

n m n m n m

P n m n m n m n m
n P P P

n n
θ θ

θ − − − +

∂ + + − − −
− + = + +

∂ + +

            
( )( )( )

( ) ( )1, 1 1, 1

1 1 2 3 1

2 2 1 2 2 1
n m n m

n m n m n m n m
P P

n n
+ − + +

− + + + − + − +
+ −

+ +
.       (2.58) 

 

The proposition is proved by normalizing Eq. (2.58) and considering Eq. (2.10) as the 

normalizing factor.  

 

According to Propositions 2.11 and 2.12 one can also write Eqs. (2.52a)-(2.52c) in the 

following forms: 

 

    ( ) ( ) ( ) ( ) ( )
max

2

2
0

cos sin

nN n

nm m nm m nm

n m n

GM R
x P w Q F Q G

R r
λ λ θ λ λ θ

+
∗ ∗

−
= =−

  ′ ′ = −    
∑ ∑ , 

       (2.59a)      

   ( ) ( ) ( ) ( ) ( )
max

2

2
0

sin cos

nN n

nm m nm m nm

n m n

GM R
y P w Q F Q G

R r
λ λ θ λ λ θ

+
∗ ∗

−
= =−

  ′ ′ = −    
∑ ∑ , 

and                      (2.59b) 

    ( ) ( )
max

2

1,2
0

2 1
1 1

2 3

nN n

nm m n m
n m n

GM R n
z P w Q n m n m P

R r n
λ

+

+
= =−

+ = − − + + +  + 
∑ ∑ , 

       (2.59c) 

where 

             ( ) 1 2

1, 1 1, 1nm nm nmn m n m
G c P c Pθ − − − +
′ = + ,           (2.59d) 

and 

                   ( ) 1 2 3 4

1, 1 1, 1 1, 1 1, 1nm nm nm nm nmn m n m n m n m
F l P l P l P l Pθ − − − + + − + +
′ = + + + .      (2.59e) 

                                                                                                                                   

Note: ( )0 0nG θ′ = . 

 

Equations (2.45a)-(2.45f) are the gravitational gradient expressions in the ORF, 

and they are functions of the satellite position in its orbit as well as satellite track 

azimuth.   

 

The SGG data are also affected by the orbital perturbations. Although in the time-

wise approach and the least-squares solution of space-wise approach these 
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perturbations are not important, but if one wants to use the spectral solution of the 

GBVPs, the SGG data should be interpolated (Sjöberg 1982 and Keller 1997), or 

continued upward/downward to the mean orbital sphere (Toth et al. 2004). Such an 

orbit would be close to the Keplerian orbit. The Keplerian orbit is an ellipse and the 

SGG data should be corrected further to transfer on the mean orbital sphere. However 

if the orbit is circular, one might neglect this transfer. In such a case, consideration of 

the effect of satellite perturbations is important to give some idea about magnitude of 

the changes on SGG data during this upward and downward continuation process. 

 

In Figure 2.5 we present the orbital perturbation of a satellite during one-day 

revolution. The EGM96 was employed to generate the orbit and the SGG data at 250 

km level. The maximum degree of the EGM to generate the orbit is 261 (Eshagh et al. 

2009) based on the average power of the acceleration vector; see Hwang and Lin 

(1998). The presented expression for the geopotential acceleration of the satellite 

(Eqs. 259a-259c) was used to integrate the orbit, and after that the Keplerian orbit (the 

orbit without any perturbation) was subtracted from the generated orbit to compute 

the perturbations. (The integration step size was 5 second and the integrated orbit was 

compared with the simulated orbit of Bonn University to test the correctness of the 

simulation; and the differences are below millimeter level after one day). The 

perturbations are transformed into the orbital elements using the well-known formulas 

in celestial mechanics; see e.g. Seeber (2003, Ch. 3, p. 70).  

 

 

 
 
Figure 2.5. Orbital perturbations of GOCE in one day revolution. (a) semi-major axis of orbital ellipse, 

(b) ) inclination, (c) eccentricity, (d) perigee argument, (e) , right ascension of ascending node and  (f) 

mean motion.  

 

As Figure 2.5 shows the semi-major axis of the orbital ellipse will change during one 

day revolution about 20 km and inclination of the orbital frame varies about 0.016 .  

Eccentricity and perigee argument change about 0.001 and 3.5 , respectively. The 

right ascension of ascending node has secular behaviour and it changes to 1.03  in 

one day revolution. The mean motion varies between -180 and 0 m/s during these 

revolutions.  
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In order to study the orbital perturbation effects, the gravitational gradients were 

generated in the LNOF on the Keplerian and generated orbits and the SGG data 

generated on the Keplerian orbit was subtracted from those generated on the integrated 

one. Figure 2.6 shows these differences. 

 

 

 
Figure 2.6 Effect of orbital perturbations on (a) xxT , (b) yyT , (c) zzT , (d) xyT , (e) xzT and (f) yzT . 

Unit : 1 E 

 

The largest effects are seen when the satellite is approaching the topographically rough 

parts of the globe, which are the Hymalyan and Zagros mountains. Obviously, the 

satellite orbit is much more affected when it passes over these rough regions than the 

other parts. We illustrate the details in Table 2.3. It shows that the maximum orbital 

perturbation effect is related to 
xxTδ  and the minimum effect is related to 

yzTδ .  

However, as the table illustrates, 
xxTδ , 

yyTδ  and 
xyTδ  are more affected by the orbital 

perturbation than the VV components as their standard deviations are larger than the 

others. This investigation is restricted to one-day revolution of the satellite and the 

Earth gravitational perturbations.  
 

Table 2.3. Statistics of effect of orbital perturbations on SGG data. Unit: 1 E  

 

 min mean Max std 

xxTδ  -1.36 -5.39 410−×  1.89 ± 0.18 

yyTδ  -0.68 10 410−×  0.99 ± 0.13 

zzTδ  -0.85 22 410−×  0.57 ± 0.10 

xyTδ  -1.63 7.80 410−×  1.10 ± 0.13 

xzTδ  -0.78 -2.41 410−×  0.67 ± 0.09 

yzTδ  -0.62 1.88 510−×  0.62 ± 0.06 

 

In the above numerical study, we considered the gravitational gradients in the 

LNOF because the expressions are functions of the satellite track azimuth in the ORF, 

which is perturbed as well. In the following, we will demonstrate the effect of 

perturbations of the satellite track azimuth on the SGG data. In order to show this, the 

gravitational gradients were generated on the Keplerian orbit and the satellite track 

azimuth was computed based on the Keplerian elements (the elements without 

perturbations). After that we will consider the Keplerian orbit to generate the 

gravitational gradients. In this case we consider the perturbed inclination and co-

latitude for computing the gradients in the ORF according to Eq. (2.47).  
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Figure 2.7. Effect of satellite track azimuth perturbations in ORF on (a) uuT , (b)  vvT , (c) uvT , (d) uwT and 

(e) vwT . Unit: 1 E 

 

Figure 2.7 shows that the gravitational gradients are influenced when the satellite is 

approaching the poles. This could be expected according to Eq. (2.4) the satellite track 

azimuth has more deviation from the non-perturbed case. The statistics of these 

computations are presented in Table 2.4. 
 

 

Table 2.4. Statistics of effect of perturbed satellite track azimuth on SGG data in ORF. Unit: 1 E 

 

 min mean max std 

uuTδ  -0.16 -1.74 410−×  0.10 ± 0.01 

vvTδ  -0.10 1.74 410−×  0.16 ± 0.01 

uvTδ  -0.15 -3.28 410−×  0.11 ± 0.01 

uwTδ  -0.18 2.14 410−×  0.16 ± 0.01 

vwTδ  -0.19 2.07 410−×  0.15 ± 0.01 

 

The statistics shows that the magnitude of the satellite track azimuth perturbation is 

within 0.2 E. Eshagh and Abdolahzadeh (2009b) showed that the perturbation of the 

co-latitude is larger than the satellite inclination.  
 

2.6 The GBVPs 

 
This section describes how the gravitational gradients can be used to compute an 

EGM, and how the gradients and the TSHs are related. The new expressions for the 

gradients and the TSHs are employed to compute the geopotential coefficients. A 

numerical test is made to show the correctness of the derived formulas, and the ability 

of the spectral solution of the GBVPs to continue the SGG data downward to the sea 

level from a satellite at 250 km altitude using spherical harmonics. We will briefly 

summarize the theory of the solution of the GBVPs. The interested reader is referred, 

for example, to Martinec (2003, Eq. 6, p. 42) to see how such GBVPs are solved.  Let 

the gravitational tensor be expressed by: 
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( ) ( ) ( ) ( ) ( ) ( ) ( )1
2 2

2
xyz zz zz xz r xz r xx yyP T P e T P T P T P T Pθ λ θθ λλ = + + + − − + T e e e e

   ( ) ( ) ( ) ( )1
2

2
xy xx yyT P T P T Pθλ θθ λλ + + + + e e e .           (2.60) 

 

Five independent components of the gravitational tensor can be grouped into three 

second-order gradiometric tensors 
( ) ( )1

PT , 
( ) ( )2

PT , and 
( ) ( )3

PT  as follows 

(Rummel and Gelderen 1992):  

 

                        ( ) ( ) ( )1

zz zzP T P=T e ,            (2.61a) 

                        ( ) ( ) ( ) ( )2
2 2xz r yz rP T P T Pθ λ= +T e e ,         (2.61b) 

and 

                        
( ) ( ) ( ) ( ) ( ) ( )3 1

2
2

xx yy xyP T P T P T Pθθ λλ θλ = − − + T e e e .       (2.61c) 

 

where ( )ij i j= ⊗e e e  is the symmetric spherical dyadics, ( ), , ,i j r θ λ=  spherical 

coordinate components and ⊗  is the tensor product. These combinations are made so 

that the orthogonality of the TSHs holds. In other words, the combinations are in 

accordance with these harmonic expressions, so that the orthogonality of them can be 

used to derive integral formulas for computing the geopotential coefficients. 

Equations (2.61a)-(2.61c) are the boundary values of the Laplace partial differential 

equation, 0T∆ = . The boundary values for this equation are 
( )1

T , 
( )2

T , and 
( )3

T , 

which are called the VV, VH  and HH boundary values, respectively (Martinec 2003). 

If we use a double gradient of the disturbing potential and substitute the result into the 

conditions of Eqs. (2.61a)-(2.61c) we obtain (Martinec 2003, Eq. 12): 

 

                     ( ) ( ) ( )( ) ( ) ( )
max

1 1

3
2

1 2
N n

nm nm

n m n

GM
P n n t P

R = =−

= + +∑ ∑T Z ,                    (2.62a) 

                     
( ) ( ) ( ) ( ) ( )

max
2 2

3
2

2
2

N n

nm nm

n m n

GM
P n t P

R = =−

= − +∑ ∑T Z ,                         (2.62b) 

and           

                      ( ) ( ) ( ) ( )
max

3 3

3
22

N n

nm nm

n m n

GM
P t P

R = =−

= ∑ ∑T Z .                         (2.62c) 

 

In these equations ( )(1)

nm PZ , ( )(2)

nm PZ  and ( )(3)

nm PZ  are TSHs corresponding to the 

gradiometric boundary values and nmt are the SHCs of the disturbing potential.  

 

Here, it is worth reviewing the definition of these harmonics to clarify their 

benefits in solving the GBVPs. Any second-order symmetric tensor ( )xyz PT , whose 

components are square-integrable functions, like the gradiometric tensor, can be 

expanded in a series of TSHs of ( ) ( )k

nm PZ  as (Martinec 2003, Eq. A9): 
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                                           ( ) ( ) ( )
max 6

( )

2 1

N n
k k

xyz nm nm

n m n i

P t P
= =− =

= ∑ ∑ ∑T Z ,         (2.63) 

 

where ( )k

nmt  are the expansion coefficients, which are obtained by taking advantage of 

the orthogonality properties: 

 

                      ( ) ( ) ( ) ( ) ( ) 2

: 4
k k k

nm n m n nn mm kkQ Q d N
σ

σ π δ δ δ′
′ ′ ′ ′ ′

   =   ∫∫ Z Z ,       (2.64) 

 

where the colon denotes the double-dot product of the tensors and 
( ) 2
k

nN 
  is the 

square norm  of the base functions
( ) ( )k

nm PZ (Martinec 2003, A8) : 

 

                         ( ) 2

2 2

1 1

( 1) 2 2

2( 1) ( 1)( 2) 3

2 ( 1) 4

( 1) 2 5

( 1) ( 1)( 2) / 2 6

k

n

k

n n k

n n n n k
N

n n k

n n k

n n n n k

=
 + =
 − + + =  =   + =
 + =


− + + =

 .       (2.65) 

 

According to Zerilli (1970) the TSHs have the following form 
 

                                  ( ) ( )(1)

nm nm rrQ Y Q=Z e ,                            (2.66a) 

                                  ( ) ( ) ( )(2)

nm nm r nm rQ E Q F Qθ λ= +Z e e ,                     (2.66b) 

                                  ( ) ( )( ) ( )(3) 2nm nm nmQ G Q H Qθθ λλ θλ= − +Z e e e ,                   (2.66c) 

                                  ( ) ( )( )(4) ( 1)nm nmQ n n Y Q θθ λλ= − + +Z e e ,                    (2.66d) 

                                  ( ) ( ) ( )(5)

nm nm r nm rQ F Q E Qθ λ= − +Z e e ,                    (2.66e) 

and 

                                  ( ) ( ) ( )( )(6)

nm nm nmQ G Q H Qθλ θθ λλ= − −Z e e e ,                   (2.66f) 

where 

( ) ( )
1n

nm nm

R
Y Q Y Q

r

+
 =  
 

,          (2.66g) 

( )
( )

( )
( )

1
1

n
nm nm

nmnm

E Q E Qn R

R r F QF Q

+   +    = −           
,         (2.66h) 

and 

 

       
( )
( )

( )
( )

1n
nmnm

nmnm

G QG Q R

r H QH Q

+      =           
,          (2.66i) 

 

and ( )nmE Q , ( )nmF Q , ( )nmG Q  and ( )nmH Q  will be described in the next section.  
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According to the orthogonality property of ( ) ( )k

nm PZ  we can write  

 

              ( )
( )

( ) ( ) ( ) ( )2

1
:

4

k k k

nm nm
k

n

t Q Q d

N σ

σ
π

′ ′ ′

′
=

 
 

∫∫T Z  and k ′ =1, 2 and 3.             (2.67) 

 

Since we have considered three independent combinations of the gradiometric 

boundary values we will have three different sets of solutions for the geopotential 

coefficients (Martinec 2003): 

 

( ) ( ) ( ) ( )
33

1 4

( 1)( 2)

n

nm zz nm

R GM r
t T Q Y Q d

n n R σ

π
σ

+
 =  + +   ∫∫ ,                      (2.67a) 

( ) ( ) ( ) ( ) ( ) ( )
33

2 4

( 1)( 2)

n

nm xz nm yz nm

R GM r
t T Q E Q T Q F Q d

n n n R σ

π
σ

+
   = − +   + +   ∫∫ ,        (2.67b) 

and 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
33

3 4
2

( 1) ( 1)( 2)

n

nm xx yy nm xy nm

R GM r
t T Q T Q G Q T Q H Q d

n n n n R σ

π
σ

+
   = − +   − + +   ∫∫

                                                                                                                             (2.67c) 

Equations (2.67)-(2.67c) yield three different sets of solutions for the geopotential 

coefficients.  

 

 

2.6.1 Traditional expressions for the TSHs  

 
In this subsection, we will present the traditional expressions of the TSHs and after 

that we continue our mathematical derivations by simplifying and deriving alternative 

expressions for them. We can write ( )nmY Q , ( )nmE Q , ( )nmF Q , ( )nmG Q  and 

( )nmH Q  in the following form: 

 

  ( ) ( )nm m n m
Y Q Q Pλ= ,            (2.68a) 

                         ( ) ( ) ( ) n mnm

nm m

PY Q
E Q Q λ

θ θ

∂∂
= =

∂ ∂
,                               (2.68b) 

                         ( ) ( ) ( )1

sin sin

n mnm

nm m

PY Q
F Q mQ λ

θ λ θ−

∂
= =

∂
,        (2.68c) 

                         

( ) ( )

( )

2 2

2 2 2

2

2

2 2

1
cot

sin

cot
sin

nm nm

n m n m n m

m

G Q Y Q

P P P
Q m

θ
θ θ θ λ

λ θ
θ θ θ

 ∂ ∂ ∂
= − − ∂ ∂ ∂ 

 ∂ ∂
 = − +
 ∂ ∂ 

,       (2.68d) 

and 
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                       ( ) ( ) ( )1
2 2

sin sin

n mnm

nm m

PY Q
H Q mQ λ

θ θ λ θ θ−

  ∂∂ ∂
= =     ∂ ∂ ∂   

.      (2.68e) 

 

Clearly, the functions ( )nmE Q , ( )nmF Q , ( )nmG Q  and ( )nmH Q  have complicated 

forms depending on the first- and second-order derivatives of the ALFs as well as 

singular terms at the poles. ( )nmE Q  is related to the first-order derivative of the ALFs 

and  in ( )nmF Q  there is the term 1 sinθ . ( )nmG Q  is the most complicated function 

involving first- and second-order derivatives of the ALFs as well as the terms 1 sinθ  

and 21 sin θ  and ( )nmH Q  is related to ( )cos sinnmP θ θ  and its first-order derivative 

with respect to co-latitude. In the next section we will present simpler expressions for 

these functions.  
 

 

2.6.2 Alternative expressions for the TSHs 

 
Let us introduce the following lemma, which will be useful in our derivations. 

 

Lemma 2.5 (Zielinski and Petrovskaya 2003, Eq. 7): 

 

                                                  
, 1

cot
n m

n m n m

P
m P Pθ

θ +

∂
= −

∂
.   

          

The first term of ( )nmG Q  is related to the second-order derivative of the ALFs and 

the second term is related to the first-order derivative of the ALFs as well as the term 

1 sinθ  and the third term contains the term 21 sin θ . In this section we will construct 

a very simple form for ( )nmG Q  in terms of three adjacent ALFs. Let us first start our 

derivations by Proposition 2.13.  

 

Proposition 2.13: 

 

                 

2

2 1 2 3

, 2 , 22 2
cot

sin

n m n m n m

nm nm nmn m n m n m

P P P
m p P p P p Pθ

θ θ θ − +

∂ ∂
− − = + +

∂ ∂
,                    

where 

                 
01

2,0

21
1 1 2

2 2

m

nm

m

p n m n m n m n m
δ

δ −

−
= + + − − + − +

−
, 

               2 2

nmp m= , 

               
03

2,0

21
1 1 2

2 2

m

nm

m

p n m n m n m n m
δ

δ +

−
= − − − + + + +

−
. 
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Proof. The second term of ( )nmG Q  is nothing else than multiplication of the first-

order derivative of the ALFs with cotθ . Premultiplying the equation of Lemma 2.5 

with cotθ  we obtain 

 

                                      2

, 1
cot cot cot

n m

n m n m

P
m P Pθ θ θ

θ +

∂
= −

∂
,                       (2.69) 

 

and again by using Lemma 2.5, we can write          

 

                                       
, 1

1 1
cot

n m

n m n m

P
P P

m m
θ

θ +

∂
= +

∂
.           (2.70) 

 

From Lemma 2.1 and after simplification we have 

 

                        ( )( ){ }, 1 , 1

1
cot 1

2
n m n m n m

P n m n m P P
m

θ − += + − + + .         (2.71) 

 

After multiplication by another cotθ , we obtain 

 

                   ( )( ){ }2

, 1 , 1

1
cot 1 cot cot

2
n m n m n m

P n m n m P P
m

θ θ θ− += + − + + .   (2.72) 

 

By using Eq. (2.71) we derive the following formulas 

  

                  
( ) ( )( ){ }, 1 , 2

1
cot 1 2

2 1
n m n m n m

P n m n m P P
m

θ − −= + − − + +
−

,      (2.73) 

                  
( ) ( )( ){ }, 1 , 2

1
cot 1

2 1
n m n m n m

P n m n m P P
m

θ + += + + − +
+

,       (2.74) 

 

and by inserting these equations into Eq. (2.72) we obtain 

 

( )( )
( ) ( )( )

( )( )
( ) ( )

2

, 2

, 2

11
cot 1 2

2 2 1

1 1

2 1 2 1

n m n m n m

n m n m

n m n m
P n m n m P P

m m

n m n m
P P

m m

θ −

+

 + − + = + − − + + +  −
− + + + + 

+ + 

. 

          (2.75) 

Finally, by inserting Eq. (2.75) and Eq. (2.74) into Eq. (2.69) we obtain 

 

( )( )( )( )
( ) , 2

1 1 2
cot

4 1

n m

n m

P n m n m n m n m
P

m
θ

θ −

∂ + − + + − − += +∂ −
  

                   
( )( )

( )
( )( )

( ) ( )
, 21 1

4 1 4 1 2 1

n m

n m

Pn m n m n m n m
P

m m m

+  + − + + + − + − −  
− + +    

.  (2.76) 
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By normalizing Eq. (2.76) using Eq. (2.10) we obtain 

 

                 1 2 3

, 2 , 2
cot

n m

nm nm nmn m n m n m

P
p P p P p Pθ

θ − +

∂
′ ′ ′= + +

∂
, 1m ≠           (2.77) 

where 
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1 2 1

24 1
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m

δ

δ −

−
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( )( )

( )
( )( )

( )
2

1 1

4 1 4 1
nm

n m n m n m n m
p

m m

 + − + + + −
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− +  
  ,  

          
( )

03

2,0

21
1 2 1

24 1

m

nm

m

p n m n m n m n m
m

δ

δ +

−−′ = − − − + + + +
−+

. 

 

Substituting Propositions 2.2, 2.4 and Eq. (2.77) into left hand side of the equation of 

Proposition 2.13, and after a relatively long simplifications the proposition is proven.  

 

Equation (2.67c), involves  ( )nmG Q  and ( )nmH Q  and  ( )nmG Q  was simplified in 

Proposition 2.13. ( )nmH Q  can also be simplified in two ways: forwarded or 

backwarded with respect to degree n. Let us start the derivations by the forward mode 

in which the degree of the adjacent ALFs in right hand side of the equations becomes 

n+1. The formulation is presented in Proposition 2.14.  

 

Proposition 2.14: 
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P
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Proof. Let us consider the last term, i.e. ( )nmH Q . It is better to simplify the term in 

the parenthesis according to Lemma 2.3, before differentiation with respect to co-

latitude: 
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2 1 2
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1 2
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n m n m

n m n m

P m
m n m n m P P
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   ∂ ∂   = − + − + +     ∂ ∂    
∂ ∂ 

= − + − + + 
∂ ∂  

.      (2.78) 

 

According to Lemma 2.1 we can write 

 

                       ( )( )1, 1

1, 2 1,
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                       ( )( )1, 1
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1
2 1

2
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n m n m

P
n m n m P P

θ
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∂
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.           (2.80a) 

 

Substituting Eqs.(2.79) and (2.80a) into Eq. (2.78) yields 

 

( )( ) ( )( ){ 1, 2
2 1 2 3

sin 2

n m

n m

P m
m n m n m n m n m P

mθ θ + −

 ∂ = − + − + + − + −   ∂  
 

                         ( )( ) }1, 1, 1, 2
1 2

n m n m n m
P n m n m P P+ + + +

− + − + − + − .               (2.80b) 

 

The proposition is proven by normalization and simplification.  

 

Now, ( )nmH Q  is formulated in backwarded mode in which n changes to n-1 for the 

ALFs in the right-hand side of the equation. 

 

Proposition 2.15:  
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Proof. By using Lemma 2.2 for sin
n m

P θ  we write 
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  ,     (2.81) 

 

and according to Lemma 2.1 we deliver 
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Substituting Eqs.(2.82) and (2.83) into Eq. (2.81) yields 
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        (2.84) 

The proposition is proven by normalizing Eq. (2.84) using Eq. (2.10). 

 

The most difficult part of the derivations was related to those parts of the TSHs 

involving the ( )nmG Q  and ( )nmH Q . However these terms were simplified in 

Propositions 2.13, 2.14 and 2.15. Consequently we are at the step to present the 

simplified forms of these harmonics.  

 

According to Eq. (2.68a) and normalized form of the equation of Lemma 2.1, the 

function ( )nmE Q  is: 

                  

                     ( ) ( ) ( ){ }1 2
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nm m m nm nmn m n m

P
E Q Q Q a P a Pλ λ

θ − +

∂
= = +

∂
,             (2.85a) 

 

Normalizing the equations of Lemmas 2.2 and 2.3 and considering Eq. (2.10) we 

obtain (Eshagh 2009c): 

  

                  ( ) ( ) ( ){ }1 2
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                   ( ) ( ) ( ){ }1 2
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P
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( )nmG Q  and ( )nmH Q  follow from Propositions 2.13 and 2.14 as: 
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or                        (2.85e)   
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       (2.85f)       

2.7 Numerical studies 

 
In order to verify the new formulas, they are used to synthesize the gravitational 

gradients on the mean Earth sphere using the EGM96 (Lemoine et al. 1998) with 0.5  

by 0.5  resolution. After that we compute the geopotential coefficients by Eqs. 

(2.67a)-(2.67c) and using the new expressions for the TSHs.  In this step, the spherical 

harmonics and the combinations of the gradients are used to compute geopotential 

coefficients. Theoretically Eqs. (2.67a)-(2.67c) yield the same results; but practically, 

they do not because of the dicretization error of the integrals and noise of the 

gradients. Let the gradients be free of noise then the discretization error will be the 

main source of the differences. Figure 2.8 shows the relative error degree variances 

between the true (the geopotential coefficients of EGM96) and computed values of the 

geopotential coefficients in the presence of discretization error.  

 
Figure 2.8. Relative errors between true and estimated degree variances of the geopotential field in 

percent. 

 

According to Figure 2.8 it can be concluded that the VH and HH solutions of the 

GBVP are less affected by discretization error than the VV solution. It is interesting to 

see that the discretization error due the HH solution is smaller than the other solutions 

after about degree 180. The discretization errors of the solutions are small and in 

acceptable level. In order to make sure that these errors are really due to discretization 

of the integrals, we consider a higher resolution (15 15′ ′× ) in the synthesis and 
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analysis. The results of these computations are presented in Figures 2.9(a)-(c) which 

confirms that the numerical integration error is reduced by increasing the resolution.  

 

 
               

Figure 2.9. (a), (b) and (c) are the percentage relative error degree variances of true and computed 

EGM with 15 15′ ′× resolution 

 

Next we will test the capability of downward continuation of the SGG data from 

250 km altitude to sea level using spherical harmonic expansion. In this case, the SGG 

data were globally synthesized at satellite level in the LNOF, and Eqs. (2.67a)-(2.67c) 

are used to compute the geopotential coefficients from the SGG data.  Different 

resolutions of the data ( 30′ × 30′ ,15′ × 15′ , 10′ ×10′  and 5′ × 5′  grids) are tested to 

see the resolution of the maximum useful degree of geopotential coefficients. Figure 

2.10 shows the results of these computations.  
 

 
        
Figure 2.10. Degree variances of geopotential model determined from SGG data at 250 km level with 

different resolutions. (a), (b) and (c) are the solutions of the first, second and third integrals in Eqs. 

(2.67a)-(2.67c), respectively. 

 

Figures 2.10 (a), (b) and (c) show the degree variances of the recovered geopotential 

models by the integral formulas of Eqs. (2.67a)-(2.67c),  respectively.  Since the 

recovered signal is very close to the true one, only one curve is visible in the figures 

as they are coinciding before a certain degree. Clearly, all three integral formulas have 

not the same ability to continue the SGG data down to sea level by spherical 

harmonics. At first view one can see that by increasing the resolution of the SGG data, 

higher degree geopotential coefficients can be recovered. The spectral solution of the 

VH GBVP, Eqs. (2.67b), computes to higher degrees than the other solutions. Also 

we can see more or less the same ability for the first and third integral to recover 

geopotential coefficients.  Graphical interpretation is not precise enough to judge 

about the capability of downward continuation of the geopotential field, the figures 

show that the numerical discretization error of the integral formulas increase 

considerably after a certain degree. The question is, what this specific degree is. It is 

not easy to answer this question unless we have a criterion. For that reason, we will 

only accept those degrees with relative errors less than 1% and 0.1%.  The result of 
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this investigation is summarized in Table 2.5, which shows the relative errors of the 

degree variances. According to the table the solution of the GBVPs of VV and HH 

(Eqs. 2.67a and 2.67c) show more or less the same capability to downward continue 

the gradient using spherical harmonics.  
 

Table 2.5. Maximum degree of the geopotential coefficients determined from SGG data at 250 km 

level within 1% (0.1% ) relative error of degree variances 

 

 30′ × 30′  15′ × 15′  10′ × 10′  5′ × 5′  

VV ( )zzT P  198(1%) 

134(0.1%) 

238(1%), 

185(0.1%) 

257(1%) 

202(0.1%) 

288(1%) 

238(0.1%) 

VH 

( )xzT P and ( )yzT P  
233(1%) 

161(0.1%) 

269(1%) 

203(0.1%) 

289(1%) 

244(0.1%) 

313(1%) 

269(0.1%) 

HH 

( ) ( )xx yyT P T P− and ( )xy2T P  
199(1%) 

150(0.1%) 

249(1%) 

195(0.1%) 

259(1%) 

207(0.1%) 

295(1%) 

251(0.1%) 

 

A simple comparison of the maximum degrees presented in Table 2.5 shows that the 

VH GBVP solution is one step further than the others. More coefficients can be 

determined using VH solution with lower resolution than the other solutions.  

 

2.8 Error propagation 

 
Until now we have considered just the discretization error for the geopotential 

modelling. However, we already know that the random error of the geopotential 

coefficients can be estimated using the error propagation law. The three integrals of 

Eqs. (2.67a)-(2.67c) can be written in the following vectorized froms:  

 
( )1 nm

nm zz zzt = b t ,                                             (2.97a) 

            ( )2 nm nm

nm xz xz yz yzt = +b t b t ,                         (2.97b) 

                      ( )3 nm nm nm

nm xx xx yy yy xy xyt = + +b t b t b t ,                (2.97c) 

 

where nm

zzb , nm

xxb , nm

yyb , nm

xyb , nm

xzb  and nm

yzb  are row vectors obtained by discretizing 

Eqs. (2.97a)-(2.97c) and zzt , xxt , yyt , xyt , xzt  and yzt  are the column vectors of 

( )zzT Q , ( )xxT Q , ( )yyT Q , ( )xyT Q , ( )xzT Q  and ( )yzT Q  observations, respectively. 

By using such a vectorized model it is easy to use the error propagation law to 

estimate the error of each geopotential coefficient at degree n and order m. For 

example, if we assume to have uncorrelated observations we obtain: 

 

                         ( ) ( )1
zz

nm

T
nm nm

zz zzt
σ σ= ± tb b ,                                  (2.98a) 

                         ( ) ( ) ( )2

2 2

xz yz
nm

T T
nm nm nm nm

xz xz yz yzt
σ σ σ= ± +

t t
b b b b ,                                (2.98b) 

                         ( ) ( ) ( ) ( )3

2 2 2

xx yy xy
nm

T T T
nm nm nm nm nm nm

xx xx yy yy xy xyt
σ σ σ σ= ± + +t t tb b b b b b ,    (2.98c) 

 

where 
zz

σ t
, 

xz
σ t

, 
yz

σ t
, 

xx
σ t

, 
yy

σ t
 and 

xy
σ t

are the standard errors of the data, which is 

equal with 0.01 E for each set of gradient.  
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The errors are propagated according to Eqs. (2.97a)-(2.97c) which are discretized 

integral solutions. The higher resolution, the lower discretization error and the higher 

degree of resolution. Actually the degree of resolution shows the maximum 

acceptable truncation for the spherical harmonic analysis, and it is not meaningful to 

estimate higher degrees of geopotential coefficients than this degree. This could 

therefore be one criterion for the maximum degree of the geopotential model. 

Theoretically, the integral formulas are perfect and able to continue the SGG data 

down to sea level using spherical harmonics for all frequencies. However, in practice 

this is not true as the integrals should be discretized and solved. Discretization of 

these integrals is in accordance with the resolution of the available SGG data, and we 

have not continues coverage for the SGG data and we are restricted to a certain 

resolution. In Table 2.6 we present the minimum degree at which the relative error 

degree variances are larger than 0.1% as well as the degree of resolution obtained 

based on the error propagation of the random noise.  

 
Table 2.6. Maximum degree of the geopotential coefficients determined from SGG data at 250 km 

level until 1% relative errors degree variances between true and estimated coefficients as well as degree 

of resolution. 

 
 30′ × 30′  15′ × 15′  10′ ×10′  5′ × 5′  

VV ( )zzT P  148-175 186-190 206-202 240-218 

VH 

( )xzT P and ( )yzT P  179-175 215-190 235-202 267-218 

HH 

( ) ( )xx yyT P T P− and ( )xy2T P  155-164 191-181 211-189 245-202 

 

For each solution of the gradiometric analysis and resolution we have given two 

numbers. The first number is the signal degree at which the relative error degree 

variance exceeds 1% and the second number is the degree of resolution discussed 

above. The table shows slow changes in the degree of resolution by increasing the 

resolution of numerical integration. The degree of resolution is the same for the first 

and second integrals.  

 

2.9 Average power of gravitational gradients 

 
Another way to estimate the cut-off degree of the spherical harmonic expansion is to 

use the average power of the gravitational gradients. In this section we consider the 

three solutions of the GBVPs to estimate this cut-off degree. In other words, we are 

going to find a way to see how much the attenuation factor reduce the gravitational 

signal. We start to formulate the average acceleration power in the following. 

 

The average power of the VV solution of the GBVPs is derived by squaring Eq. 

(2.62a) and taking the global average: 
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Considering the orthogonality property of the TSHs (see Eq. 2.66) we can write: 
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where 2
n

n nm

m n

t t
=−

= ∑ is the degree variance of the disturbing potential. 

 

In a very similar way, the average power acceleration of the VH solution of the GBVP 

is derived by squaring and global averaging of Eq. (2.62b): 
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Correspondingly we have: 
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and the average power of the HH solution of the GBVP is obtained by squaring and 

global averaging Eq. (2.63): 

 

( ) ( ) ( ) ( ) ( )
2

2
3 3 3

3
2 2

1 1
4

4 4

n n

nm n m nm n m

n n m n m n

GM
d t t Q Q d

Rσ σ

σ σ
π π

′∞ ∞

′ ′ ′ ′
′ ′ ′= = =− =−

   =     
∑∑ ∑ ∑∫∫ ∫∫T Z Z , 

     (2.102a) 

and finally  
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Actually these average powers of the gravitational gradients were presented by 

Rummel (1997). In Eqs. (2.100), (2.101b) and (2.102b) the upper bound of the 

summation goes to infinity, which is not meaningful in practice. Here we will limit 

this upper bound to a certain value using the method presented by Hwang and Lin 

(1998) to estimate the cut-off degree of this average power. Let ( )i

kp , i=1,2 and 3, be 

the average power of the gradients at degree k: 
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By assuming that a satellite at 250 km level cannot sense higher frequencies than 

max 360N = , we can compute the full average power of the gradients. After that we 

compute these average powers at different degrees up to maxN  to present the average 

power in larger relative errors. The following parameter is introduced as a criterion 

for this truncation degree: 

  
( )

( )
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1
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k
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 − ≤
 
 

,          (2.104)

        

We should investigate at which cut-off degree k, the ratio 
( ) ( )

max

i i

k Np p  is equal to 1.  

However, we know that this ratio will not be equal to 1 and we have to select a value 

for c which shows how this ratio is close to 1. Table 2.7 shows the cut-off degree 

based on different values of c. 

 
Table 2.7. Cut-off degrees of the gradients based on different criteria 

 

c 1010−
 

1110−  1210−  1310−  1410−
 

( )1
T  249 278 307 334 353 

( )2
T  254 283 312 338 355 

( )3
T  271 300 328 350 358 

average 254 282 311 338 355 

 

Hwang and Lin (1998) considered c = 1410−  according to Institute of Electrical and 

Electronics Engineers (IEEE) double-precision environment. It means that the beyond 

degrees, these presented cut-off degrees are in the noise level according to the IEEE 

convention. The cut-off degree for ( )3
T is larger than for the others, which is not in 

agreement with those cut-off degrees obtained based on degree of resolution and 

discretization. However, it can be mentioned, that in the best possible case, the 

gravitational gradients do not sense higher frequencies than 360, or in other words, 

there is no information beyond cut-off degree in gravitational gradients. It should also 

be mentioned that these results are based on c = 1410− , but one can change this number 

to change the cut-off degree.  If we assume that c = 1410−  the cut-off degree is about 

360 for a satellite at 250 km level. If we decrease the satellite altitude higher cut-off 

degree is delivered.  
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Chapter 3 
 

 

 

Topographic and atmospheric effects  
 

 

 

3. 1 Introduction 

 
The satellite gravity gradiometry (SGG) data are affected by the masses of 

topography and the atmosphere. The topographic effect (TE) has been considered by 

several geodesists (e.g. Martinec et al. 1993, Martinec and Vaníček 1994, Sjöberg 

1998a, Sjöberg and Nahavandchi 1999, Tsoulis 2001, Heck 2003, Seitz and Heck 

2003, Sjöberg 2000 and 2007). The main goal of these efforts was to compute the TE 

on geoid and terrestrial gravimetric data and also considering terrain correction. Wild 

and Heck (2004a) and (2004b) have considered this effect on SGG data. Makhloof 

and Ilk (2005) and (2006) worked on the topographic-isostatic effects on airborne 

gravimetry, satellite gravimetry and gradiometry. More details about their work can 

be found in Makhloof (2007). Novák and Grafarend (2006) presented a method for 

computing the TE and atmospheric effect (AE) in SGG. Considering a constant 

density (2.67 g/cm 3 ) for the topographic masses introduces errors in harmonitisation 

of the space before downward continuation. Most of the efforts in this subject were 

done for geoid determination aspects, see e.g., Martinec (1993), Martinec et al. 

(1995), Kuhtreiber (1998), Pagiatakis and Armenkis (1999), Tziavos and 

Featherstone (2000) and Huang et al. (2001). Sjöberg (2004) showed that the total 

effect on the geoid due to the lateral density variation (LDV) of topographic masses at 

deepest and highest parts of the Earth is about 1.5 cm and 1.78 m, respectively. 

Kiamehr (2006a) and (2006b) showed that the lateral density variation effect (LDVE) 

of topographic masses can reach to 30 cm in Iran. Eshagh (2009d) estimated the 

LDVE of the crustal density on the SGG data. Since at satellite altitude the 

geopotential can be regarded as harmonic, the external type of spherical harmonic 

expansions of the global topography and atmosphere is considered, and converted 

them into harmonic series of the potentials. Knowing the gravitational potentials 

generated by topography and atmosphere would allow for removing these effects 

from the geopotential. The result is the no-topography and no-atmosphere 

geopotentials, which is thus harmonic all the way down to sea level and the SGG data 

can be directly continued downward to the sea level for the local gravity field 
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determination. Therefore it is necessary to consider the gravitational effects of the 

topography and static atmosphere to smooth the gravity field and simplify the 

downward continuation process. Some primary assumptions are needed for 

considering the AEs. The atmosphere is usually assumed to be layered spherically 

above a sphere approximating the Earth surface. Also Moritz (1980), Sjöberg (1993), 

(1998b), (1999),  and (2001), Sjöberg and Nahavandchi (2000) and Nahavandchi 

(2004) used spherical approximation of sea level and considered the topographic 

heights with respect to this sphere in geoid determination purpose.  

 

Ecker and Mittermayer (1969) used an ellipsoidal approach to study the 

atmospheric gravitational potential and acceleration; they proposed a mathematical 

model for the direct AE, which is well-known as the International Association of 

Geodesy (IAG) approach. Anderson et al. (1975) considered the effect of the 

atmospheric masses in physical geodesy problems and computed the global values of 

the AE on gravity and the geoid. Sjöberg (1993) investigated the effect of terrain in 

the atmospheric gravity and geoid corrections, Sjöberg (1998b) presented the 

atmospheric correction on the gravity anomaly, geoid and on the satellite derived 

geopotential coefficients. Sjöberg (1999) found some shortcomings in the IAG 

approach in atmospheric geoid correction and proposed a new strategy to solve the 

shortcomings. Sjöberg and Nahavandchi (2000) investigated the direct and indirect 

effects of the atmosphere in the modified Stokes formula and they showed that the 

AE on the geoid can reach 40 cm. Novák (2000) presented a density model for the 

atmosphere based on a simple polynomial fitting and used that model to compute the 

AE on the geoid. The polynomial function was used only for atmospheric mass 

density modeling within the topography, i.e., below the elevation of highest spot on 

the Earth (approximately 10 km above the mean sea level). The atmospheric masses 

above 10-km elevation can be considered by using United States Standard 

Atmospheric model (USSA76) (United State atmosphere 1976). For more details 

about his method see e.g. Novák (2000). Sjöberg (2001) investigated the atmospheric 

correction and found that the atmosphere contributes with the zero-degree harmonic 

of magnitude of 1 cm on the geoid. Nahavandchi (2004) presented another strategy 

for the direct atmospheric gravity effect in geoid determination. He numerically 

compared his new strategy with old formulas in Iran and found 17 cm difference on 

the geoid between both formulas in that region, but as Sjöberg (1998b) argued the 

direct effect is considerably reduced after restoring the AE. Sjöberg (2006) showed 

that the AE in geoid determination needs a correction for the geometry when applying 

the spherical approximation of Stokes’ formula. According to his conclusions the 

correction needed to the AE in spherical Stokes formula varies between 0.3 and 4.0 

cm on the geoid at the equator and pole, respectively. Tenzer et al. (2006) considered 

the effect of atmospheric masses with concentration on the direct and secondary 

indirect AEs for Stokes problem.  They found the complete effect of the atmosphere 

on the ground gravity anomaly varies between 1.75 and 1.81 mGal in Canada, and the 

effects are mainly dependent on the accuracy of the atmospheric density model 

(ADM).  Novák and Grafarend (2006) proposed a method to compute the effect of 

topographic and atmospheric masses on space-borne data based on a spherical 

harmonic expansion with a numerical study in North America.  
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In this chapter the topographic and atmospheric potentials are formulated in 

spherical harmonics. The LDV of the topographic masses is considered and 

numerically tested. The SHCs are formulated based on different analytical ADMs for 

the atmospheric densities and a new model is proposed. By substituting the 

formulated and derived SHCs into the spherical harmonic expressions of the 

gravitational gradients, the corresponding effects can be computed. The topographic 

and atmospheric biases are also formulated in spherical harmonics at the end of the 

chapter.  

 

3. 2 Topographic and atmospheric potentials in spherical harmonics 

 
In order to explain how the SHCs of the topographic and atmospheric potential are 

derived, we start our mathematical explanation with the well-known Newtonian 

volume integral 

 

                                        ( ) ( ) 2

t,a

b

a

r r dr
V P G d

lσ

′ ′ ′ρ
= σ∫∫ ∫ ,             (3.1) 

 

for  the topographic and atmospheric potential at point P, where G is the Newtonian 

gravitational constant, l  is the distance between any points P and Q, a and b are the 

integral limits depending on what potential is being considered, either topographic or 

atmospheric potential. For the former a=R and b=R+H and for the latter a R H= +  

is the geocentric radius of the Earth surfaces (H is orthometric height), b R Z= +  is 

the radius of the upper bound of the atmosphere. ( )rρ ′  is either the topographic or 

atmospheric density at geocentric radius of point Q, σ  is the unit sphere of 

integration and dσ  is the integration element.  The inverse distance l can be 

expanded in an external or internal series of the Legendre polynomial as: 
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Equations (3.2a) and (3.2b) are the external and internal types of the Legendre 

expansion of 1 l . ( )cosnP ψ  is the Legendre polynomial of degree n and ψ  stands 

for the geocentric angle between points P and Q. Equations (3.3a) and (3.3b) are used 

in generating the external and internal type of atmospheric potentials, respectively. 

Another useful formula is the addition theorem of the fully-normalized spherical 

harmonics (Heiskanen and Moritz 1967, p.33, Eq. 1-82’): 
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The gravitational potential ( )V P  is harmonic out side the Earth’s surface and can be 

expanded into an external harmonic series. Based on it, the computation point is 

outside or inside the topographic and atmospheric masses, we can consider the 

external and internal type of spherical harmonic expressions for their corresponding 

potentials as follow: 
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respectively, where GM is the geocentric gravitational constant, R stands for the mean 

radius of the Earth, r  is the geocentric radius of any point P with angular spherical 

coordinates (spherical co-latitude and longitude), ( )ext nm
v and ( )int nm

v are the SHCs of 

the external and internal types of the atmospheric potential, respectively, and δ  is 

Kronecker’s delta. We assume that the point P is at satellite level, which means that 

the topographic and atmospheric masses are below P and Eq. (3.4a) hold for the 

external potential of the atmosphere and topography.  

 

3.3 External and internal topographic potentials in spherical 

harmonics 

 
The external type of the topographic potential is the case where the point P is outside 

of topographic features, in other words, it is above the topography. However, when 

this point is inside the topography, say at the geoid the potential of the topography is 

of internal type. The problem in this section is to derive the mathematical models of 

the SHCs of topography both in external and internal types. In the following we 

present the mathematical formulas of the external topographic potential.  

 

Proposition 3.1 The external type of SHCs of the topographic potential are: 
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.         

 

where ( )t

nm
Hρ , ( )t 2

nm
Hρ  and ( )t 3

nm
Hρ  are the SHCs of tHρ ,  t 2Hρ  and 

t 3Hρ ,  respectively. tρ is the topographic density with a global coverage, H,  2H  

and 3H are the powers of the topographic height all over the globe and eρ ≈5500 

kg/ 3m   is the mean density of the Earth’s mass, 
 



 51

Proof. Considering the external type of Legendre’s series of 1 l , i.e. Eq. (3.2a) into 

Newton’s integral Eq. (3.1) and assuming the topographic density to change laterally 

we can write: 
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Considering binomial expansion up to third-order for the first term in the square 

bracket and using addition theorem of the spherical harmonics, Eq. (3.3), we can 

further simplify Eq. (3.5)  
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By solving the integral which is spherical harmonic analysis of the terms inside the 

square bracket and considering 

 

                                                     34 3eGM R Gπ ρ= ,              (3.7) 

the proposition is proven.  

 

Proposition 5.1 is not a new formulas for the SHCs of topographic potential, but 

we have re-derived it as it is fitted to the spherical harmonic expansions that we have 

mentioned in the beginning of this chapter.  

 

Corollary 3.1 If tρ ≈26667 kg/ 3m  is the mean density of the topography the SHCs 

has the following form: 
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where nmH , 2

nmH  and 3

nmH  are the SHCs of H,  2H  and 3H ,  respectively. These 

coefficients can be obtained by a general spherical harmonic analysis of a global 
digital elevation model (DEM) such as GTOPO or SRTM (Wieczorek 2007).  
 

Proposition 3.2 The internal type of SHCs of topographic potential is (Eshagh and 
Sjöberg 2008a): 
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Proof. The proof is very similar to that of Proposition 3.1. 

 

3.3.1 TE on the SGG data in LNOF 

 
In order to compute the TE on the SGG data in LNOF, the generated SHCs of the TE 

are inserted to the harmonic expression of the gravitational gradients. In Chapter 2 we 

have considered the disturbing potential instead of true potential of the Earth’s 

gravitational field, those expressions and the software developed based on them can 

be modified by adding the portion of the zero- and first-degree harmonics. The effect 

of these SHCs can be presented as (Eshagh and Sjöberg 2009a): 
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r
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where the superscripts 0 and 1 stand for the effects of the zero- and first-degree 

harmonics and C and S are the cosine and sine fully-normalized SHCs of the 

topographic potential. It is interesting to notice that the effect of these coefficients on 

( )xyV P is theoretically zero, and the zero-degree SHCs vanish also in ( )xzV P and 

( )yzV P . As can be seen, Eqs.(3.8a)-(3.8c) include both zero- and first-degree SHCs, 

therefore they could be large in magnitude. Eqs. (3.8e) and (3.8f) include just the 

first-degree harmonic, and since these harmonics are usually smaller than the zero-

degree coefficients, the corresponding gravitational gradients can be expected to be 

smaller than the terms with zero-degree coefficients but larger than the higher degree 

effects. Equation (3.8d) shows that ( )xyV P  does not include these harmonics, and, 

consequently, it should have the smallest magnitude relative to the other gradients.  

 

3.3.2 Numerical studies on TE on the SGG data over Fennoscandia 

and Iran 

Numerical studies are performed for the regions limited by latitudes 55  and 70 and 

longitudes between 5  and 30  (Fennoscandia) and by the latitudes 25  and 40  and 

longitudes 44  and 64 (Iran); see Figure 3.1. The SHCs of the global topography 
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JGP95e (H. Fan private communication) was employed in the harmonic expansion to 

degree and order 360 for our computations. Novák and Grafarend (2006) suggested to 

select 180 as the maximum degree and order for the current orbital elevations of 

CHAMP and GRACE satellite missions (approximately 400 km), but we have 

considered GOCE satellite orbiting at approximate altitude of 250 km, which calls for 

a higher order set of potential coefficients.  

 
 

Figure 3.1. Long-wavelength topographic height of Fennoscandia and Iran obtained by SHCs of 

JGP95e global model to degree and order 360. Unit: 1 m 

 

According to Figure 3.1 one can see that the topography of Iran is extended from 

south to north-west part, and the topography of Fennoscandia is extended from 

southern part of Norway to the north of Sweden. Figure 3.1 shows that the large 

volume of the topography is placed in the middle and south parts of Iran and it is 

placed in Norwegian mountains in the west of Fennoscandia.  

 

A MATLAB program code was written, and it computes the SHCs of topographic 

and atmospheric potentials. These potential models are used to compute the SGG data 

in the LNOF according to the formulas presented in previous chapter and Eqs. (3.8a)-

(3.8f). The program was used to compute maps of the TE at altitude of 250 km over 

the two study areas as well as their statistics. Figures 3.2 and  3.3 (a), (b), (c), (d), (e) 

and (f) present the TE on the SGG  data  ( )t

xxV P , ( )t

yyV P , ( )t

zzV P , ( )t

xyV P , 

( )t

xzV P  and ( )t

yzV P , respectively in Fennoscandia and Iran. As can be seen, they are 

all in the order of a few Eötvös or less. According to Table 3.1 the maximum mean 

effect 0.10 E of the TE in Fennoscandia is related to ( )t

zzV P , and the minimum mean 

effect is about 0.01 E and related to ( )t

xyV P . The corresponding values are 0.64 E 

and -0.65 E in Iran, respectively. The effect is larger in magnitude in Iran, which 

topography is rougher and more massive than that in Fennoscandia. 
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Figure 3.2. TE on SGG data in Fennoscandia in LNOF. Unit: 1 E. 

 

 
          

Figure 3.3. TE on SGG data in Iran in LNOF. Unit: 1 E. 

 

Some geophysical interpretations can be made for the correlations of TE. For more 

details about geophysical interpretations of gravity gradients in exploration see 

Pawlowski and Prieto (1997), Pawlowski (1998), Mickus and Hinojosa (2001) and Li 

(2001a), (2001b) and (2001c). We consider such interpretations just for TE. (AE can 

be interpreted in a similar way). ( )t

zzV P  is better related to topographic features 

compared to other gravitational gradients. ( )t

xxV P  and ( )t

yyV P  are related with the 

lateral extension of topographic features. If topography were aligned along meridians 
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the northern and southern sides of feature are related with ( )t

xxV P . The 

corresponding relation is true for ( )t

yyV P , when topography is extended along 

parallels.  This matter can easily be seen in Figures 3.2(a) and 3.2(b) and Figures 

3.3(a) and 3.3(b).  ( )t

xyV P  is related to the corners of topographic features. By 

comparing Figures 3.2(d) and 3.3(d) with their corresponding topographic heights one 

can see this matter. Whenever topographic masses exist we can see very large 

negative values for this gravitational gradient in south-west and north-east sides of 

topography in both regions and large positive values can be seen in north-west and 

south-east parts of topography. ( )t

yzV P  and ( )t

xzV P  are related with the lateral 

dimension of topography with similar interpretation as ( )t

xxV P  and ( )t

yyV P .   

( )t

xxV P  and ( )t

yyV P  are related to the extension with large positive or negative 

values, but ( )t

yzV P  and ( )t

xzV P  are related to the topographic features with positive 

and negative values, i.e. in one dimension we see positive values and in the other 

dimension we see the negative.  
 

Table 3.1. Statistics of TE on SGG data in Fennoscandia and Iran in LNOF. Unit: 1 E. 

 

Fennoscandia Iran 
 

max mean min std max mean min std 

( )t

xxV P  0.34 -0.02 -0.57 ± 0.19 0.59 -0.65 -2.57 ± 0.68 

( )t

yyV P  0.25 -0.07 -0.67 ± 0.20 1.05 0.01 -1.17 ± 0.48 

( )t

zzV P  1.23 0.10 -0.27 ± 0.34 2.63 0.64 -0.81 ± 0.94 

( )t

xyV P  0.29 0.06 -0.27 ± 0.11 0.98 -0.14 -0.89 ± 0.41 

( )t

xzV P  0.58 0.01 -0.60 ± 0.22 1.71 -0.10 -1.92 ± 0.92 

( )t

yzV P  0.84 0.08 -0.45 ± 0.24 1.66 0.20 -1.38 ± 0.57 

 

 

3.3.1 LDVE of topography on the SGG data 

 
In the above formulation the main assumption was a constant topographic density in 

radial direction.  However, the LDV can also be considered. To this end, the LDV of 

topography using spherical harmonics we need a global model of the topographic 

density. Until know only CRUST2 model is available for the crustal density, which is 

the updated version of CRUST5.1 (Mooney et al. 1998). In this model the crust is 

divided into three layers, upper crust, middle crust and lower crust (Bassin et al. 

2000). The crustal density and topography of the boundaries between each layer have 

been measured by seismic data with 2 ×2 resolution corresponding degree and 

order of 90 in spherical harmonic expansion. Figure 3.4 shows the general structure 

of the crust in CRUST2 model. The topographic data of the crustal boundaries 

(boundaries between the crustal layers) are given with respect to sea level as Figure 

3.4 shows. Figure 3.5 shows the LDV of the topographic features with respect to 

mean value of the upper crust in both regions of Fennoscandia and Iran.  
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Figure 3.4 General schematic structure of crust in CRUST2 

 
 

Figure 3.5. Long-wavelength LDV of upper crust in (a) Fennoscandia and 

(b) Iran. Unit: 1 g/cm
3

 

 

The topographic potential can be formulated in two different ways in spherical 

harmonics: one can use either the SHCs of the LDV or by the formulas presented for 

the topographic potential (Proposition 3.1). In the former method  we will be involved 

with products of the SHCs of the height and LDV models and Clebsh-Gordan series, 

which will be slightly complicated; for formulation of this matter the reader is 

referred to Novák and Grafrarend (2006, pages 555-556). However, the method 

presented here is easier to use. As we know, topographic feature is a part of the upper 

crust. Therefore the LDV of the topography can also be considered by Proposition 

3.1, but in this case we should replace tρ  by tρ∆ as the LDV of the topography. In a 

similar way as topographic potential we can consider the LDV effect (LDVE) of the 

topography on the SGG data.  

 

For numerical investigation we consider JGP95e global topographic model as we 

did for the previous numerical example for the TE. CRUST2 was generated with 

2 ×2 resolution corresponding degree and order 90 in spherical harmonic 

expansion. A grid of 0.5 ×0.5 global density model was created based on a simple 
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interpolation, and the SHCs of ( )t

nm
Hρ∆ , ( )t 2

nm
Hρ∆ and ( )t 3

nm
Hρ∆ were generated 

based on a global spherical harmonic analysis up to degree and order 360, and the 

SHCs of the topographic potential was produced using Proposition 3.1. The formulas 

presented in the previous chapter for the gravitational gradients in the LNOF were 

used for generating the TE on the SGG data.  

 

 
 
Figure 3.6. LDVE of topography in Fennoscandia in LNOF on (a) ( )xxV P , (b) ( )yyV P , (c) ( )zzV P , (d) 

( )xyV P , (e) ( )xzV P  and (f)  ( )yzV P , respectively. Unit: 1 E. 

 

 
 
Figure 3.7. LDVE of topography in Iran in LNOF on (a) ( )xxV P , (b) ( )yyV P , (c) ( )zzV P , (d) ( )xyV P , 

(e) ( )xzV P  and (f)  ( )yzV P , respectively. Unit: 1 E. 

 

Figures 3.6 and  3.7 (a), (b), (c), (d), (e) and (f) present the LDVE of topography on 

the SGG data ( )xxV P , ( )yyV P , ( )zzV P , ( )xyV P , ( )xzV P  and ( )yzV P , 
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respectively, in Fennoscandia and Iran. Since Iran is topographically rougher than 

Fennoscandia we can see larger LDVE of topography in Iran than Fennoscandia. 

More details of the statistics of these computations are tabulated in Table 3.2.  

 
Table 3.2. Statistics of LDVE of topography in Fennoscandia and Iran in LNOF. Unit: 1 mE. 

 
Fennoscandia Iran 

 
max mean min std max mean min std 

( )xxV P  13.37 -1.88 -26.53 ± 85.56 21.12 -23.04 -99.98 ± 25.14 

( )yyV P  9.66 -4.25 -30.34 ± 8.76 36.30 -1.38 -46.45 ± 17.84 

( )zzV P  55.73 6.12 -10.22 ± 15.32 116.72 24.41 -28.54 ± 34.44 

( )xyV P  13.14 2.78 -12.05 ± 5.36 36.28 -4.96 -32.61 ± 14.71 

( )xzV P  24.98 0.44 -28.31 ± 10.42 71.73 -3.39 -65.90 ± 34.24 

( )yzV P  36.16 2.40 -22.04 ± 11.06 88.14 4.60 -45.56 ± 23.73 

 

The maximum value of the LDVE of the topography is 116.72 mE in Iran and 55.73 

mE in Fennoscandia and both are related to ( )zzV P . The minimum value is -99.98 

mE in Iran related to ( )xxV P but in Fennoscandia it is -30.34 mE on ( )yyV P . 

Maximum and minimum mean values of the LDVE of topography are 24.41 mE and  

-23.04 mE in Iran; and 6.12 mE and -4.25 mE in Fennoscandia.   

 

3.4 External and internal atmospheric potentials in spherical 

harmonics 

 
Unlike formulation of the SHCs of topographic potential, which was presented in 

previous section, we cannot assume that the atmospheric density changes laterally. 

The atmospheric density is very much related to the altitude, and this is reasonable to 

use some analytical models to formulate the atmospheric density. In this part of the 

study we assume that the LDV of the atmosphere is very small and negligible and the 

atmospheric density is modeled by some simple analytical formulas varying by 

elevation. We will present some analytical ADMs and express how to develop the 

atmospheric potential in spherical harmonics.   

 

3.4.1 The ADMs 

 
There are different models for the density of the atmosphere. One of the most well-

known models was issued by NOAA (National Oceanic and Atmospheric 

Administration), NASA (National Aeronautics and Space Administration) and 

USAF(United State Air Force) as United States Standard Atmospheric model in 1976 

(USSA76) (United State Standard Atmosphere 1976). This model is a complicated 

model depending on atmospheric pressure and molecular-scale temperature. For 

considering these parameters, the atmospheric masses (up to the height of 86 km), are 

divided into seven layers, and in each layer a molecular-scale temperature, and 
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pressure is defined according to some other mathematical model. In the following we 

review some ADMs and present a new ADM.  

 

3.4.1.1 The Standard ADM (USSA76) 

 
Among different ADMs, the one which is frequently used is the standard atmospheric 

density model (United State Standard Atmosphere 1976): 

 

                                                     ( ) ( )
( )

a P H
H

T H

µ
ρ

κ
=               (3.9) 

 

where κ  = 8314.32 (N m km 1− K 1− ) is the universal gas constant, µ  = 28.9644 

(kgkmol 1− ) is mean molecular weight of the atmospheric masses, P = 101325 

(Nm 2− ) is the atmospheric pressure, and T = 288.12 K is the molecular-scale 

temperature of the atmosphere in K at sea level.  

 

In this model the atmosphere between topography and height at 86 km is divided 

into 7 layers, in which the molecular-scale temperature and atmospheric pressure are 

modeled as: 

 

                                 ( ) ( )1,2, ...,7 : i i ii T H T H Hτ∀ = = + − ,                   (3.10a) 

                                 { } ( ) ( )
1,3, 4,6,7 :

i

g

i
i

T
i P H P

T H

µ
κτ 

∀ ∈ =  
  

  ,                      (3.10b) 

                                 { } ( ) ( )
2,5 : exp

i
i

i

g H H
i P H P

µ
κτ

 − −
∀ ∈ =  

 
,                  (3.10c) 

 

where H is the height within and iH  is the reference height of each layer, iT  is the 

reference value of the molecular-scale temperature for the i-th layer, iτ  is the 

molecular-scale temperature gradient; cf. Table 3.3, iP  stands for the reference 

pressure, g = 9.80665 ms 2−  is the gravity value at sea level. The molecular 

temperature gradient of each layer is presented in Table 3.3.  

 
Table 3.3. Molecular temperature gradients. Novák (2000) 

 

Layer Height (km) iτ (K km
1−

) 

1 0-11 -6.5 

2 11-20 +0.0 

3 20-32 +1.0 

4 32-48 +2.8 

5 48-51 +0.0 

6 51-71 -2.8 

7 71-86 -2.0 
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 This model is an updated version of standard ADM published in 1961. Table 3.4 

shows the ascosporic density of these two standard ADMs and their differences.  

 

Table 3.4. Values of the atmospheric mass density based on the USSA61 and USSA76. Unit: 1 kg/ 3m  

 
Elevation 

 (km) 
USSA61 USSA76 difference 

0 1.22 1.22 0.02 210−×  

2 1.01 1.00 -0.20 210−×  

4 8.24 110−×  8.18 110−×  -0.06 310−×  

6 6.65 110−×  6.59 110−×  -0.06 310−×  

8 5.27 110−×  5.25 110−×  -0.02 310−×  

10 4.09 110−×  4.13 110−×  0.03 310−×  

12 3.11 110−×  3.11 110−×  0.04 410−×  

14 2.32 110−×  2.27 110−×  -0.05 310−×  

16 1.70 110−×  1.66 110−×  -0.04 310−×  

18 1.23 110−×  1.21 110−×  -0.01 310−×  

20 8.80 210−×  8.87 210−×  0.07 410−×  

30 1.84 210−×  1.84 210−×  -0.35 410−×  

40 4.00 310−×  3.99 310−×  -0.79 510−×  

50 1.03 310−×  1.02 310−×  -0.21 510−×  

 

Later we will assume that the USSA76 model is a true ADM.  

 

3.4.1.2 Exponential ADM 

 
An exponential function for the atmospheric density can be considered as (Lambeck 

1988): 

 

                                         ( ) ( )a

0 0

r R R rr e e eα α αρ ρ ρ′′− − ′′ ′′−= = ,           (3.11) 

 

where 0ρ  = 1.2227  kg/ 3m the atmospheric density at sea level, R is the mean radius 

of the Earth, r is the radial distance of any point inside the atmosphere and ′′α  is a 

constant, which we will estimate later.  

 

 

3.4.1.3 Sjöberg’s ADM (KTHA) 

 
The Sjöberg model is: 

                                               ( )a

0

R
r

r

ν

ρ ρ  =  
 

 ,  where R r≤ ,          (3.12) 

 

where, ( )a rρ  is the atmospheric density, R ( set to 6378137 m) is the Earth’s mean 

radius, R ≤  r ≤R+ Z is the geocentric radius of any point inside the atmosphere,  

0ρ =1.2227 kg/ 3m is the atmospheric density at the sea level.  We name this model 
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KTHA. The constant ν  was derived by a simple fitting to the logarithmic scale of the 

atmospheric density too.  The Sjöberg (1993) fitting was based on the USSA1961 

(Reference Atmosphere Committee 1961) and this model was updated based on the 

USSA76 by Eshagh and Sjöberg (2009b).  In the former case the exponent ν  = 850 

was derived, but in the latter (updated) model ν  = 930 was achieved.  

 

3.4.1.4 Novák’s ADM (NADM) 

 
The maximum value of the atmospheric density is at sea level and decreases fast with 

increasing elevation. Novák (2000) proposed the following model to approximate the 

vertical behaviour of the atmospheric density (NADM): 

                                            

                                             ( ) 2

0 1a r H Hρ ρ α β = + +  ,             (3.13) 

 

where, -5-7.6495 10α = × m−1 , -92.2781 10β = × m−2 and H = r-R with 0 ≤  H <10 km. 

The other parameters of this model are the same as defined in the previous section. As 

Novák (2000) mentioned, his model fits the USSA76 with the accuracy of about 
310− to up to 10 km above sea level. For higher elevations the USSA76 should be 

used. 

 

3.4.1.5 New KTH ADM (NKTHA)  

 
We now propose the following model (NKTHA) for the atmospheric density, which 

in fact is a direct combination of the NADM and KTHA.  This model was proposed 

by Eshagh and Sjöberg (2009b):  

 

                    ( )
( )

2

0 0

0
0 0

1 , 0

,
,

a v

a

H H H H

r R H
H H H Z

r

ρ α β
ρ

ρ
′′

  + + ≤ ≤ 
=  +  ≤ ≤  

 

         (3.14) 

 

where 0H =10 km and ( )0

a Hρ =0.4127 kg/ 3m is based on the NADM. By using this 

ADM we approximate the atmospheric density at higher levels by a simple model and 

it can be considered up to satellite level. The parameter v′′=890 was derived based on 

a simple least-squares fit to the USSA76 elevations of above 10 km.  

 

3.4.2 External and internal atmospheric potential based on NADM 

and USSA76 

  
Generally, a spherical approximation of sea level of the Earth and no atmosphere 

outside a sphere extending 86 km above sea level (maximum height considered in the 

standard atmospheric model) is assumed. As Ecker and Mittemayer (1969) presented, 

more than 99% of the atmospheric masses are included up to the elevation of 50 km. 

This is why some users select this level as the upper bound of the atmospheric masses 
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(see e.g., Novák and Grafarend 2006). However, Wallace and Hobbs (1977) believes 

that this value is at 30 km and also Lambeck (1988) mentioned that 80% of the 

atmospheric masses are below 12 km; therefore Novák’s (2000) proposition to 

consider a simple polynomial to formulate the atmospheric density below 10 km 

height is not so far from reality.  

 

Based on Eq. (3.11) the external atmospheric potential can easily be formulated using 

the Newtonian integral and spherical harmonics. In this case we can write the SHCs 

of the atmospheric potential in the following.  

 

Proposition 3.3 (Novák and Grafarend 2006): 
 

       ( ) ( ) ( ) ( )
2 2

a 0 0
ext 2

3
2 2

2 1 2

a
n nm n nm

enm

Z H Z H
V n R n

n R R

δ δρ α
ρ

− − ′ ≈ + + − + + + 
                  

                      ( )
3 3

2 0

3
1 2 2

6

n nmZ H
n R R

R

δα β
−′ ′ + − + 


  . 

Since the constant Z is the upper bound of the atmospheric masses and only 

contributes to the zero-degree harmonic. nmH , 2

nmH and 3

nmH are the SHCs of H, 
2H and 3H , respectively. The internal potential of the atmosphere in spherical 

harmonics will have the form.  

  

Proposition 3.4 The internal type of SHCs of the atmospheric potential based on 
NADM is (Eshagh and Sjöberg 2008a): 
 

( ) ( ) ( ) ( )( )
2 2

0 0
int 2

3
1 1 2

2 1 2

a
a n nm n nm

enm

Z H Z H
V n R n n R

n R R

δ δρ α α
ρ

 − −′ ′≈ − − − + − + − + 

              
3 3

2 0

3
2

6

n nmZ H
R

R

δβ
−′ − 


.           

   

Proof. In order to obtain the direct AE, 1 l  is expanded using Eq. (3.2a) which is the 

external expansion of 1 l . Inserting Eqs.(3.11) and (3.3b) into Eq. (3.1) and 

considering b R Z≈ + and a R H≈ + in Eq.(3.2) the external atmospheric potential is 

(subscript ext stands for external type of potential): 

 

     ( ) ( ) ( ) ( ) ( )2 1a

ext 0

0

1 cos

R Z
nn

n
n R H

V P G r r R r R r dr P d
σ

ρ α β ψ σ
+∞

− +

= +

 ′ ′ ′ ′ ′ ′= + − + − ∑ ∫∫ ∫ . 

        (3.15) 

The radial integral can be separately written as: 
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( ) ( ) ( ) ( )2 1 2 11 1 2

R Z R Z
n n

R H R H

r R r R r dr R R r dr Rα β α β α β
+ +

− + − +

+ +

 ′ ′ ′ ′ ′ ′ ′ ′+ − + − = − + + − ∫ ∫
2

R Z
n

R H

r dr
+

− +

+

′ ′ +∫ 3

R Z
n

n

R H

r dr Iβ
+

− +

+

′ ′ =∫  ,                   (3.16) 

 

and the solution of this integral is 

 

( ) ( )2 2 2 2 31 2
1 1

2 3

n n n n

n

R R R R RZ H
I

n R R n

α β α β− + − + − + − +′ ′− +   ′ ′−   = + − + +    − + − +     
    

        

3

1

n
Z

R

− + + − 
 

3

1

n
H

R

− +  +  
  

4 44

1 1
4

n nnR Z H

n R R

β − + − +− +  ′    + + − +    − +      
 .       (3.17) 

 

Using the binomial expansion for the above terms in the brackets up to third-order the 

singularities in Eq. (3.17) are cancelled out. After relatively long derivations we 

obtain 

    ( ) ( ) ( )( )
2 2

a 2 2

int 2
1 1 2 2

2

n Z H Z H
F Q R n R n n R R

R R
α α β− +  − −′ ′ ′ = − − − − − + −  


 

                  
3 3

36

Z H

R

−



 .                          (3.18) 

Considering Eqs. (3.18) and (3.15) we obtain 

 

                      ( ) ( ) ( )a 2 a

int 0 int

0

cos

n

n
n

r
V P GR F Q P d

R σ

ρ ψ σ
∞

=

 =  
 

∑ ∫∫            (3.19) 

 

According to the addition theorem of the fully-normalized spherical harmonics the 

proposition is proven. 

 

The atmospheric model presented by Novák (2000) is valid just to 10 km 

elevation. His main goal for providing such a model was just to formulate the 

atmospheric roughness. For the atmospheric densities above 10 km, we use the 

standard atmospheric model (United State Atmosphere, 1976). We can consider 

atmospheric shells from 10 km to 86 km (which is the upper bound of the atmosphere 

in USSA76) with a thickness of 100 m (710 atmospheric shells) to generate the 

corresponding potentials. The effect of these shells, which contributes to the zero-

degree harmonic of the atmospheric potential, are formulated in the following. 

 

Proposition 3.5 The external type of atmospheric potential due to the atmospheric 
shells above 10 km based on USSA76 is (Eshagh and Sjöberg 2008a): 
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            ( ) ( )
3 3 3

1a a a a a

ext 1e0
1

3
1 1 1

j
j i k

j i k k
k i

Z Z Z
V

R R R
δ ρ ρ ρ ρ

ρ
+

−
= +

      = + − + + + −      
      

∑  ,             

 

where, a

iρ is the atmospheric density of each shell, 1jZ +  and iZ are the highest and 

lowest bounds of the atmospheric masses. kZ is the upper bound of the atmospheric 

shell which is inside the atmospheric masses. i, j and k are the atmospheric shell 
numbers.  
 

Proof. The integral formulas of the external type of potential of a spherical shell with 

the density a

iρ  is (see also Sjöberg 2007, Eq. 16): 

 

              ( ) ( )
1a a

3 3a 2

ext 1

4 4
( )

3

i

i

R Z

i i
i i

P PR Z

G G
V P r dr R Z R Z

r r

π ρ π ρ++

+
+

 ′ ′= = + − + ∫ ,    (3.20) 

 

The solution of this integral will be 

 

                                 ( ) ( ) ( )
a

3 3a

ext 1e

3 i
i i

P

GM R
V P R Z R Z

R r

ρ
ρ +

 = + − +    ,                  (3.21) 

yielding 

                                     ( )
3 3a

a 1
ext e0

1 1i i iZ Z
V

R R

ρδ
ρ

+
    = + − +    
     

.          (3.22) 

 

This potential contributes only to the zero-degree harmonic is related to one 

atmospheric shell confined between 1iZ +  and iZ  elevations. The subscript 0 means 

the potential which is added just to the zero-degree harmonic. The total potential of 

all shells is a summation of potential of each atmospheric shell as in Eq.(3.22). 

 

Proposition 3.6 The internal type of atmospheric potential of the atmospheric shells, 
contributing with the zero-degree harmonic can be written (Eshagh and Sjöberg 
2008a):  
 

            ( ) ( )
2 2 2

1a a a a a

int 1e0
1

3
1 1 1

2

j
j i k

j i k k
k i

Z Z Z
V

R R R
δ ρ ρ ρ ρ

ρ
+

−
= +

      = + − + + + −      
      

∑  ,            

 
where. i, j and k are the same as those introduced in Proposition 3.5. 
 

Proof. In a similar manner, the integral formula of internal type of the potential of a 

spherical shell with the density a

iρ  is (Sjöberg 2007): 
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             ( ) ( ) ( )
1

2 2a a a

int 1
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4 2
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i

R Z

i i i i

R Z
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+
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also 

                                ( )
2 2a

a 1
int e0

3
1 1

2

i i iZ ZGM
V

R R R

ρδ
ρ

+
    = + − +    
     

,                    (3.23b) 

 

and the summation of all the atmospheric shells can be written in the form of the 

equation presented in this proposition. 

  

3.4.2.1 Numerical studies on AE on the SGG data over Iran and 

Fennoscandia 

 
Again, we consider Iran and Fennoscandia in the numerical investigations. The same 

data is used in this study as in the previous case study on TE. However, in this study 

we use NADM and USSA76 in order to generate the SHCs of the atmospheric 

potential. The AEs on the SGG data at satellite altitude 250 km are presented in 

Figures 3.8 and 3.9.  

  

 
 

Figure 3.8. AE on SGG data in Fennoscandia in LNOF. Unit: 1 mE. 

 

 

The statistics of the AE are presented in Table 3.5 as well. The maximum mean value 

of the effects in both areas are about 5 mE, and their minima are about -2 mE related 

to ( )a

zzV P  and  ( )a

xxV P , respectively.  
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As can be seen from Table 3.6, strong, positive correlations exist between 

topographic heights and the TE on ( )t

zzV P  component.  Strong negative correlations 

can be seen in the TE on ( )t

xxV P  and ( )t

yyV P  (see also Figures 3.1a and 3.1b). The 

correlations of the AE and topographic height is similar to correlation of topographic 

height and the TE but with opposite sign. Weaker correlations can be seen for 

topographic height and AE on ( )t

xyV P  but with opposite signs. Very weak 

correlations exist between ( )t

xzV P  and  ( )t

yzV P  and topography. The correlations for 

( )t

zzV P  and topographic heights are approximately the same in both regions. The 

correlations for ( )t

xyV P  and ( )t

yyV P  with the heights are smaller in Iran and the 

correlation between ( )i
xxV P  and the heights is slightly increased vs. Fennoscandia. 

The diagonal elements of the gradiometric tensor, ( )t

xxV P ,  ( )t

yyV P  and  ( )t

zzV P , 

are very similar in correlation with topography. However, the off-diagonal elements, 

such as ( )t

yzV P , ( )t

xzV P  and ( )t

xyV P , have different signs in different regions. Also, 

notice the larger correlation in ( )t

xyV P  vs. topography in both regions, but with 

different signs. We expect that this difference in sign be due to the dominant 

topographic orientation. It is oriented from south-west to north-east in Fennoscandia, 

while in Iran it is oriented from north-west to south-east. 
 

 

 
 

Figure 3.9. AE on SGG data in Iran in LNOF. Unit: 1 mE. 
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Table 3.5. Statistics of AE on SGG data in Fennoscandia and Iran in LNOF. Unit: 1 mE. 

 

Fennoscandia Iran 
 

max mean min std max Mean min std 

( )a

xxV P  -2. 29 -2.56 -2.74 ± 0.09 -1.20 -2.23 -2.86 ± 0.35 

( )a

yyV P  -2.24 -2.54 -2.69 ± 0.09 -1.97 -2.59 -3.16 ± 0.25 

( )a

zzV P  5.27 5.10 4.53 ± 0.16 5.53 4.82 3.78 ± 0.48 

( )a

xyV P  0.13 -0.03 -0.14 ± 0.05 0.45 0.07 -0.50 ± 0.21 

( )a

xzV P  0.29 -0.01 -0.28 ± 0.11 0.99 0.06 -0.89 ± 0.47 

( )a

yzV P  0.23 -0.02 -0.40 ± 0.12 -1.20 -2.23 -2.86 ± 0.35 

 

Table 3.6. Correlation coefficients between topographic height, and TE and AE in Fennoscandia and 

Iran 

 

Fennoscandia Iran 
 

TE AE TE AE 

( )i
xxV P  -0.75 0.76 -0.81 0.81 

( )i
yyV P  -0.83 0.81 -0.63 0.62 

( )i
zzV P  0.90 -0.90 0.91 -0.91 

( )i
xyV P  -0.68 0.68 0.52 -0.53 

( )i
xzV P  -0.04 0.04 -0.10 0.10 

( )i
yzV P  -0.04 0.05 0.08 -0.09 

 

 

3.4.3 Atmospheric potential based on KTHA 

 
In this section, we derive the SHCs of the atmospheric potentials considering 

Sjöberg’s ADM denoted KTHA.  The external type of the SHCs of the atmospheric 

potential can be expressed as: 

 

Proposition 3.7 The SHCs of the external type of the atmospheric potential based on 
KTHA is (Eshagh and Sjöberg 2009b): 
 

         ( ) ( ) ( )
2 2

a 0 0 0
ext e 2

3
2 2

(2 1) 2

n nm n nm

nm

Z H Z H
v n n

n R R

ρ δ δν ν
ρ

 − −
≈ + + − + + −+ 

   

                       ( )
3 3

0

3
1

6

n nmZ H
n

R

δν
−

+ − 


. 

 

Proof. By substituting Eq. (3.12) into Eq. (3.3) and considering Eq. (3.2a) as the 

ADM we have: 
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                        ( ) ( )a 2

ext 0 1
0

cos
Z

S

r
n

nn
n r

R
V P G r dr P d

r

ν
ν

σ

ρ ψ σ
∞

+ −
+

=

′ ′= ∑ ∫∫ ∫ ,                     (3.24) 

 

and after performing the radial integral and regarding Sr R H= +  and Zr R Z= +  

(where H is a function of position whereas Z is the upper bound of the atmospheric 

masses and constant) we obtain: 

 

  ( ) ( ) ( )
3 33

a

ext 0 1
0

1 1 cos
3

n nn

nn
n

R Z H
V P G P d

r n R R

ν ν

σ

ρ ψ σ
ν

+ − + −+∞

+
=

    = + − +    + −      
∑ ∫∫  .  

                                                                                                                                (3.25) 

The two terms in square bracket can be expanded into a binomial series and 

eventually truncated. |Since the series is converging fast. We consider the expansion 

to third-order (cf. Sun and Sjöberg (2001) for an investigation about the convergence 

of this binomial series). Further simplifications yield: 

 

                             ( ) ( ) ( )
3

a a

ext 0 ext1
0

cos
n

nn
n

R
V P G F Q P d

r σ

ρ ψ σ
+∞

+
=

= ∑ ∫∫ ,        (3.26a) 

where  

 

          ( ) ( ) ( )( )
2 2 3 3

a

ext 2 3
2 2 1

2 6

Z H Z H Z H
F Q n n n

R R R
ν ν ν− − −

= + + − + + − + − .   

                                                                                                                              (3.26b) 

 

Considering addition theorem of spherical harmonics (Eq. 3.4) and after 

simplification we obtain:  

 

                        ( ) ( ) ( )
1

a 2 a

ext 0 ext

0

1
4

2 1

n n

nmnm
n m n

R
V P G R F Y P

r n
π ρ

+∞

= =−

 =   + 
∑ ∑ ,         (3.27) 

 

( )a

ext nm
F is derived based on a simple spherical harmonic analysis of Eq. (3.26b) and 

the proposition is proven.   

 

It is now worth comparing Proposition 3.7 with Proposition 3.3. By comparing the 

second-order terms in those equations, we observe that there is a constant 

596.55Rα = −  in the Novák and Grafarend model, while we have 850ν = in KTHA. 

Also, the coefficient of the third term in the equation of Proposition 3.7 after a simple 

manipulation is  ( )( ) ( ) 22 1 1n n nν ν ν + + − − + +  , and as one can see an extra term 

appears vs. Novák and Grafarend’s model. The constant terms of both formulas are 

not comparable as they are 22 226623.09Rβ =  and 2 722500ν = . However, when the 

terms are divided by 6R 3 the effect of the third term is considerably reduced.  In 

comparison with Sjöberg’s (1998) solution, we can say that, since Sjöberg’s emphasis 

was on the AE of the gravity anomaly and geoid, the upper limit of the radial integral 
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in Eq. (3.24) was set to infinity, and the internal type of Legendre’s expansion was 

used instead of Eq. (3.2b), but in our case that we want to obtain the AE on the SGG 

data we can limit this upper bound to the specific value zr =R+Z=6628137 m. It 

means that we assume the massive part of the atmosphere is below zr  level from the 

seal level, or in other words, we assume the computation point is out side of the 

atmospheric masses.  

 

Now, consider the computation point to be below the atmospheric masses (on the 

geoid), in such a case the internal atmospheric potential should be formulated because 

the removed atmospheric effect should be restored after downward continuation. 

Similar to the external atmospheric potential formulation in spherical harmonics, we 

start with the Newtonian volume integral, Eq. (3.1) and consider Eq. (3.12) as the 

ADM (KTHA). If we expand 1 l  into Legendre’s series of internal type by Eq. 

(3.2b), the following proposition is obtained: 

 

Proposition 3.8 The SHCs of the external type of the atmospheric potential based on 
KTHA is (Eshagh and Sjöberg 2009b): 
 

( ) ( ) ( ) ( )( )a 2 20 0
int 0e 2 3

1 13

(2 1) 2 6

n nm
n nmnm

n n nZ H
v Z H

n R R R

ν ν νρ δ δ
ρ

 + − + − +−
≈ − − ++ 

 

               ( )3 3

0n nmZ Hδ


− 


. 

 

Proof.  Inserting Eq. (3.2b) into Eq. (3.1) and after some further simplifications we 

have 
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S
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∞
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′ ′= ∑ ∫∫ ∫ .                     (3.28) 

 

In a similar way as for the external atmospheric potential we obtain 

 

( ) ( )

( ) ( )
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2 22

a

int 0
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1 1 cos
2
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V P G P d

n R R
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                   (3.29) 

If the two terms in the square bracket are expanded into a binomial series up to third-

order, and after some simplifications we obtain:  

 

                     ( ) ( ) ( ) ( )
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a a
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0 2 1

n n n

nm nm
n m n

R r
V P G F Q Y Q d Y P

n σ

ρ σ
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where 
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              ( ) ( ) ( ) ( )( ) ( )2 2 3 3

int 2 3
1 1

2 6

a
Z H Z HZ H

F Q n n n
R R R

ν ν ν
− −−

= − + − + + − + . 

                      (3.30b) 

Again, spherical harmonic expansion of H and Z yields  

 

                       ( ) ( ) ( )2
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1
4

2 1

n n
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n m n

r
V P G R F Y P

n R
π ρ

∞

= =−
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The SHCs of the internal type of the atmospheric potential are derived by inserting 

Eq. (3.30b) into Eq. (3.30a) and further simplifications.  

 

In formulation of the SHCs of the atmospheric potential based on KTHA, there is 

no restriction in elevation, and it can theoretically be considered up to infinity. 

However, the approximations used in generating the atmospheric potential may not be 

accurate enough for higher elevations based on this model. It is obvious that when 

increasing the elevation of the upper boundary of the atmosphere, the magnitude of 

this harmonic can increase unboundedly. We propose to use the following relation for 

the zero-degree harmonic coefficient of the atmospheric potential (which follows 

from Eq. 3.25 for n=0):  

                                       ( ) ( )

3

a 0
ext e0

3
1

3

Z
v H

R

νρ
ρ ν

−   = + −  −    
,        (3.32a) 

where 

                                                   

3
1

1
4

H
H d

R

ν

σ

σ
π

−
 = + 
 ∫∫ .         (3.32b) 

 

The integral of Eq.(3.32b) can be solved numerically. 

 
In the following figure, the USSA76, NADM and KTHA are visualized with 

respect to the elevation 

 

 
                 

Figure 3.10. (a) NADM in green, KTHA in red and USSA76 in blue versus elevation (vertical axis is 

in logarithmic scale), (b) deference between NADM and USSA76 in blue, KTHA and USSA76 in red, 

respectively to 10 km elevation 
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Figure 3.10 shows that the NADM is valid up to 10 km elevation above sea level; see 

Novák (2000). The KTHA agrees with the USSA76 more or less, but underestimates 

the atmospheric density below 20 km and overestimates it in higher altitudes. It 

should be mentioned that the main aim of Novák (2000) was to formulate the 

atmospheric topography. This is why he considered a simple polynomial to model the 

atmospheric density up to 10 km. Since 80% of atmospheric masses are below 12 km 

(Lambeck 1988), it is reasonable to use a simple polynomial to express the effect of 

atmospheric topography although Wallace and Hobbs (1977) believes that 99% of the 

masses lie within the lowest 30 km above sea level.  

 

3.4.3.1 AE on the SGG data in ORF 

 
For computing the AE on the SGG data based on NADM and KTHA, they are 

generated from the atmospheric masses below 10 km. The ORF is used to generate 

the AE at 250 km level with 2-months revolution of an imaginary satellite at 250 km 

level over Fennoscandia. The mathematical models of the gravitational gradients in 

the ORF were presented in Chapter 2. Since these equations were developed to 

consider disturbing potential instead of true potential we can easily modify the 

developed software by adding the zero- and first-degree harmonics with the solution.  

 

The contribution of the zero- and the first-degree harmonics of the AE can be 

derived based on the original formulas of the gravitational gradients in the ORF as 

(Eshagh and Sjöberg 2009b): 
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      ( ) ( ){0,1

10 11 114

3 3
sin sin cos sin cosvw

GMR
V P C C S

r
α θ λ λ θ = − − + + +   

                    ( )11 11cos sin cosC Sα λ λ+ − + ,                      (3.33f) 

 

where superscripts of 0 and 1 stand for the zero- and the first-degree harmonics, 

respectively. 
00C , 

10C ,
11C ,

10S  and 
11S  are the fully-normalized zero- and the first-

degree harmonics of the atmospheric potential. 
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The position of the satellite can be generated using a numerical integration 

technique and an existing geopotential model. For more details the reader is referred 

to, e.g., Hwang and Lin (1998), Eshagh (2003a) and (2003b), Eshagh (2005a) and 

Eshagh and Najafi-Alamdari (2006) and (2007).  

 

The statistics of the numerical comparison of the AE based on NADM and KTHA 

generated from the atmospheric masses below 10 km are summarized in Table 3.7. 

The KTHA shows small effects since it underestimates the massive part of the 

atmosphere in the lower altitudes. This underestimation of the atmospheric density 

directly affects the zero-degree harmonic coefficient of the atmospheric potential. 

Since ( )uuV P , ( )vvV P  and ( )wwV P  include this harmonic in their formulation, we 

can expect to see larger AE based on the NADM than the KTHA. ( )uvV P , ( )uwV P  

and ( )vwV P  are more or less in the same order in both approaches because of their 

independency from the zero-degree harmonic. However, it should be noted that  

( )uwV P  and  ( )vwV P  include also the first-degree harmonics.  

 
Table 3.7. AE on the SGG data at 250 km level based on NADM and KTHA up to 10 km in ORF. 

Unit: 1 mE 

 

 NADM KTHA 

 max mean min std max mean min std 

( )uuV P  -2.01 -2.21 -2.39 ± 0.08 -0.69 -0.88 -1.04 ± 0.07 

( )vvV P  -1.92 -2.22 -2.41 ± 0.11 -0.61 -0.88 -1.05 ± 0.10 

( )wwV P  4.62 4.44 3.94 ± 0.15 1.93 1.77 1.32 ± 0.14 

( )uvV P  0.07 -0.03 -0.11 ± 0.04 0.07 -0.02 -0.10 ± 0.04 

( )uwV P  0.30 0.01 -0.30 ± 0.11 0.26 0.01 -0.27 ± 0.10 

( )vwV P  0.35 0.01 -0.20 ± 0.09 0.32 0.01 -0.18 ± 0.09 

 

 

 
 
Figure 3.11. Behaviour of unitless zero-degree harmonic of the atmospheric potential versus various Z. 

(a) Z=0 to 50 km and (b) Z=0 to 250 km 
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Figure 3.11 illustrates values of the zero-degree harmonic based on the NADM and 

KTHA. As we know, the NADM is valid just up to 10 km height, and it is not 

surprising to see larger values when applying it for the external potential to higher 

elevations. The horizontal line presented in the figure is the true value of the zero-

degree harmonic computed by Eq. (3.32b). As could be expected, this harmonic 

should be treated as a bounded function when increasing the elevation. However, 

Figure 3.11a shows that the approximations of the true mathematical expressions with 

binomial expansion, which was used in Eq. (3.32b), is good just for elevations lower 

than 20 km. The zero-degree harmonic has smaller value up to 50 km when KTHA is 

used vs. the NADM, while it is larger at 250 km. It means that the approximation 

used Eq. (3.32b) is not good enough for higher elevations and can destroy the solution 

even worse than the NADM see Figure 3.11a. The simplest way to get a non-

diverging value for the zero-degree harmonic is to avoid approximations in this 

harmonic in the KTHA using Eq. (3.32b).  As we previously mentioned we can 

consider the atmospheric shells above 10 km and compute the atmospheric potential 

corresponding to each shell and add it in this harmonic; see Novák (2000).  

 

3.4.4 Reformulation of the SHCs of atmospheric potentials based on 

KTHA 
 

 

In the previous section we presented that the zero-degree harmonic varies 

unboundedly because of the approximation used in formulation of the SHCs. In this 

section we propose another expression in order to solve this problem. In other words, 

we reformulate the SHCs of the atmospheric potentials so that there is no need to 

consider the zero-degree harmonic separately.  

 

Proposition 3.9 The SHCs of the external atmospheric potential based on KTHA are 
(Eshagh 2009e): 
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Proof.  Considering Eqs. (3.2) and (3.3a) we can write the external potential as  
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The radial integral can be separated into two parts 
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The solution of the above integral is  
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            (3.36) 

 

Eq. (3.36) is substituted into Eq. (3.34), and we have 
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By using Eq. (3.3) and further simplifications the proposition is proven.  

            

Proposition 3.10 The SHCs of the internal atmospheric potential based on KTHA are 
(Eshagh 2009e): 
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Proof. According to Eqs. (3.2) and (3.3b) and also Eq. (3.12) we can write the 

internal type of the atmospheric potential  
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Similar to Eq. (3.35) we can divide the radial integral into two parts. Solution of the 

radial integral is: 
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Inserting Eqs. (3.39) into Eq. (3.38) we derive 
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and by considering Eq. (3.3) and simplification the proposition is proved.  

 

3.4.5 External and internal atmospheric potentials based on 

exponential ADM 

 
Ecker and Mittermayer (1969) have used an exponential model for approximating the 

atmospheric density. Because of the complicated formulation process (based on 

exponential model) most people prefer not to use this model and this is why it has not 

been further developed and applied. In this section we formulate and develop the 

atmospheric potential based on this model. Simple formulas for the harmonic 

coefficients of the spherical harmonic expansion of atmospheric potentials are 

presented. The SHCs of the atmospheric potentials based on exponential ADM is 

considered in this section.  

 

Proposition 3.11 The SHCs of external atmospheric potential based on the 
exponential ADM are (Eshagh 2009e): 
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Proof. Equation (3.41) is obtained from Eq. (3.1) by substituting from Eqs. (3.3a) and 

(3.13): 
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The radial integral can be separated into  
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Let the solution of the second integral from left be nI and we will see that we just 

need  0I  in our derivations, and there is no need to perform partial integration to 

solve the integral. The exponential function in the third integral from left of Eq. 

(3.42) is expanded by Taylor series and the integration performs: 
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If we use binomial expansion up to third-order for the first term in the squared 

bracket in Eq. (3.43) we obtain 
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Inserting Eq. (3.44) into Eq. (3.42) substituting the result into Eq. (3.41) we obtain  
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Using Eq. (3.3) which is the addition theorem of the fully-normalized spherical 

harmonics, Eq. (3.45) can further be simplified 
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Considering Eq. (3.7) and after further simplifications we obtain  
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The first term in the squared bracket consists of the solution of the first integral of Eq. 

(3.42) and we have:  
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The second term of the squared bracket of Eq. (3.47) needs more consideration and 

simplification. Let us start with Taylor expansion of  Re α ′′−  
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Then we can write 
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The first term of the second square bracket can be simplified more as: 
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Considering Eq. (3.49) we have 
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After further simplification we derive Eq. (3.53).  
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Inserting Eqs. (3.53) and (3.48) into Eq. (3.47) the proposition is proved. 

 

Proposition 3.12 The SHCs of internal atmospheric potential based on the 
exponential ADM are (Eshagh 2009e): 
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Proof. Considering Eqs. (3.2) and (3.3b) as the internal type of the Legendre 

expansion for 1 l  we can write 
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Similar to Proposition 3.11 we can divide the radial integral into two parts; see Eq. 

(3.42). Let the solution of the radial integral of Eq. (3.54) be nJ , the exponential 

function in the second radial integral is expanded into the binomial series and 

integration performs as: 
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After expanding the first term in the square bracket up to third-order we derive 
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Inserting Eq. (3.56) into Eq. (3.54) and using Eq. (3.3) the internal potential is 
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considering Eq. (3.7) and further simplifications we obtain: 
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The first term in the bracket is  

 

                              
( )

0

2 2 2

11
1 1

ZR
Z

eJ e Z
C e

R R R R

αα
α

α α

′′−′′
′′−

−  = = − + +  ′′ ′′  
,         (3.59) 

 

and similar to the proof of Proposition 3.11 the second term is simplified as: 
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Substituting Eq. (3.60) and Eq. (3.59) into Eq. (3.58) and after further simplifications 

the proposition is proved. 

 
 

Comparing Propositions 3.8 and 3.10, we can say that the main difference between 

these harmonic coefficients is related to the first terms in the brackets. These terms 

are the potential of the atmospheric shell from sea surface to any point P inside the 

atmosphere. The values of these terms are about 31.132 10−× and 31.127 10−×  derived 

according to the exponential ADM and KTHA, respectively. The second terms in 

Propositions 3.8 and 3.11 are related to the atmospheric roughness. In fact we have 

assumed that there are atmospheric masses between sea surfaces and the surface of 
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the Earth instead of topographic masses, which are subtracted from the atmospheric 

shell potential. This way of formulation is beneficial otherwise the derived zero-

degree harmonic coefficient cannot yield the real value because of the approximations 

used in the binomial expansion. In fact, we avoid using this expansion for expressing 

the shell between the sea levels and upper bound of the atmosphere. 

 

For further interpretation, let us compare the formulas numerically. First we have 

to determine the value ′′α  in Eq. (3.11). In this case we considered USSA76. The 

atmospheric density was generated based on this model up to 86 km (maximum 

elevation for the atmospheric density in this model) and by fitting a line into the 

logarithm of the atmospheric density versus elevation α ′′=1.3886 410−× was 

estimated. Also by similar fitting we can obtain value ν =890 for the Eq. (3.12). The 

exponential ADM and KTHA are equations of two coinciding lines in logarithmic 

scale of the atmospheric density; see Figure 3.14d. The atmospheric density which is 

estimated by standard model is not linear versus elevation, and the KTHA and 

exponential ADM both underestimate the most massive part of the atmospheric 

density below 10 km height. This matter does not affect the formulation, as we can fit 

both functions to get better match to this first 10 km level. Now let us return to our 

comparison of the topographic terms of Propositions 3.8 and 3.11. The first terms are 

exactly the same, but the second topographic terms are very similar. It is interesting to 

see that value Rα ′′ =885.6680=886 (R=6378137 m) and very close the ν =890 thus 

the second terms of the topography are also the same. The coefficients of the third 

roughness term is ( )( )2 2 2 1 2R n n Rα α′′ ′′+ + + −  in Proposition 3.11 corresponding 

to  

 

                                      ( )2 1
2 1 1

2

n
n n

n
ν ν + + + + − +  +  

            (3.61) 

 

in KTHA in Proposition 3.9 (after little simplification). It is easy to see that if n=0 

then ( )( )2 2 1 1.5n nν ν+ + + −  and when n increases the term ( ) ( )1 / 2n n+ + +1 goes 

to 2. Therefore in high degrees the SHCs of external potential of the atmosphere are 

more or less the same as Rα ν′′ ≈ . Similar comparison can be done for the harmonics 

of the internal type as above.  

 

For a numerical study a satellite orbit at 250 km altitude was generated by 4-th 

order Runge-Kutta algorithm for two-month revolutions at sampling rate of 30 

seconds. The SHCs of the height function H and its powers nmH , 2

nmH  and 3

nmH  

have to be generated through the global spherical harmonic synthesis and analysis. 

The SRTM global topographic height model (Wieczorek 2007) with resolution 

0.5 ×0.5  corresponding to degree of 360 was considered in this process. Figure 

3.12 shows the maps of the AE based on the exponential ADM on SGG data over 

Fennoscandia.  
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In Figure 3.12, ( )a

uuV P , ( )a

vvV P , ( )a

wwV P , ( )a

uvV P , ( )a

uwV P  and ( )a

vwV P  are the 

AEs on the gravitational gradients in ORF. ( )a

wwV P  is the largest because of 

including the zero-degree harmonic while ( )a

uvV P  is the smallest as it excludes zero- 

and first-degree harmonics. The statistics of the AEs on the SGG data over 

Fennoscandia are presented in Table 3.8, which shows that the AE on the SGG data 

based on both models are more or less the same in practice and the differences are 

very small.  

 

 

 
 

Figure 3.12. AE on SGG data at 250 km elevation, based on the exponential ADM in Fennoscandia in 

ORF, (a) a

uuV , (b) a

vvV , (c) a

wwV , (d) a

uvV  , (e) a

uwV  and (f)  a

vwV . Unit: 1 mE 

 

 

Table 3.8. Statistics of AE on SGG data at 250 km level over Fennoscandia based on exponential 

ADM and KTHA in ORF. Unit: 1 mE 

 
 Exponential ADM KTHA 

 max mean min std max mean min std 

( )a

uuV P  -0.83 -1.01 -1.17 ± 0.07 -0.82 -1.01 -1.17 ± 0.07 

( )a

vvV P  -0.75 -1.01 -1.18 ± 0.10 -0.74 -1.01 -1.17 ± 0.10 

( )a

wwV P  2.20 2.03 1.58 ± 0.14 2.19 2.02 1.57 ± 0.14 

( )a

uvV P  0.07 -0.02 -0.10 ± 0.04 0.07 -0.02 -0.10 ± 0.04 

( )a

uwV P  0.26 0.01 -0.27 ± 0.10 0.26 0.01 -0.27 ± 0.10 

( )a

vwV P  0.32 0.01 -0.18 ± 0.08 0.32 0.01 -0.18 ± 0.08 
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The gravity anomaly and disturbing potential can be derived from the SGG data in 

local gravity field determination using inversion of the second-order derivatives of 

the extended Stokes and Abel-Poisson integrals, see Chapter 5. In this case the 

removed AEs should be restored on these quantities as the indirect AE. Since these 

indirect effects are also dependent on the type of the ADM, we just present the map 

of the difference between indirect effects in Figures 3.13a and 3.13b in Fennoscandia.  

 

 
 

Figure 3.13. (a) and (b) difference between the indirect AEs due to the exponential ADM and KTHA, 

on the gravity anomaly and geoid, respectively. 

 

The value of this effect is about -4.6 m and 1.4 mGal on the geoid and gravity 

anomaly, respectively (using both exponential ADM and KTHA). The maximum 

difference between the indirect effects is less than 2 cm on the geoid and 0.02 mGal 

on gravity anomaly (in mountainous regions) and may be negligible in ordinary 

practical works.  

 
 

The SHCs of the external and internal atmospheric potentials derived based on the 

exponential function do not include any exponential function in the atmospheric 

roughness terms. The first term, contributing the zero-degree harmonic, includes the 

exponential function Ze α− , which is very close to zero when Z is large, for example at 

satellite level. No partial integration is needed for generating the potential of the 

atmosphere based on this model. The constant ν  in the KTHA is equivalent to Rα ′′  

in exponential ADM. This implies that the attenuation factor ( )R r  in this model 

corresponds to ( )exp 1 r R−  in exponential ADM. The first and second terms of the 

atmospheric topography are more or less the same and the difference is related to the 

third term. The difference in the third terms is related to the coefficient 2 of Rα ′′  and 

( ) ( )1 / 2 1n n + + +   of ν . When n=0 this coefficients is 1.5 and it goes to 2 by 

increasing the degrees. However, this difference is negligible when it is divided by 
36R . The main difference is related to the zero-degree harmonic including the 

potential of the atmospheric shell from sea level up to the elevation R+Z. They are 

completely different in formulation but the same in value. Numerical studies on the 

AEs on the SGG data over Fennoscandia shows insignificant difference for the direct 

AEs due to these ADMs (less than 0.01 mE). This difference is mainly related to the 

largest SHCs and its different formulations based on both exponential ADM and 
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KTHA. However, the maximum AE is about 2 mE when the satellite passes over this 

region based on both models. The indirect AE on the geoid and gravity anomaly is 

dependent on the type of ADM. In this study we found the maximum difference 2 cm 

and 0.02 mGal on the geoid and gravity anomaly in roughest part of Fennoscandia.  

 

3.4.6 Atmospheric potential based on the NKTHA 

 
Now we consider the NKTHA that we proposed in Subsection 3.4. This model is a 

combination of the NADM and the KTHA. In the following we express how to use 

this NKTHA for formulating the external and internal atmospheric potentials in 

spherical harmonics.  

 

Proposition 3.13 The SHCs of the external type of the atmospheric potential based 
on NKTHA are (Eshagh and Sjöberg 2009b): 
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Proof. Inserting the NKTHA into Eq. (3.1) and considering Eq. (3.2a) and the 

external type of expansion of 1 l  we obtain 
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The ADM in the first integral in the square bracket is related the upper function of 

Eq.(3.3a) and the second integral relates to the lower function.  Therefore the solution 

of the first term is the same as in Proposition 3.3. Considering the second part of Eq. 

(3.62) as the ADM above 0H , the solution of the second integral becomes 
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Since this term is a constant with respect to integration point Q in Eq. (3.63), it 

associates just with the zero-degree harmonic. The unitless SHCs of the external 

atmospheric potential can thus be written in the following form 
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where ( )a

ext
nm

F  was defined in Proposition 3.3,  and  
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Inserting Eqs. (3.65) and Proposition 3.3 into Eq. (3.64) and setting 0 0 0n nZ Hδ δ=  

the proposition is proved.  

 

We can also consider our new atmospheric model NKTHA to generate the internal 

type of the atmospheric potential. By considering Proposition 3.4 and Eq. (3.14) (the 

NKTHA) and reinserting into Eq. (3.1) we obtain 

 
Proposition 3.14 The SHCs of the internal type of the atmospheric potential based on 
NKTHA are (Eshagh and Sjöberg 2009b): 
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Proof. Inserting Eq. (3.14) into (3.2) considering (3.3b) we obtain: 
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The first integral in the square bracket is the same as in the internal type of the 

NADM and is also the same as Proposition 3.3. The second part can be written 
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and the SHCs of the internal atmospheric potential can thus be written  
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where ( )a

int nm
F  is the same as in Eq. (3.19) and 
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It should be noted that these SHCs should be inserted into Eq. (3.69) for generating 

the internal atmospheric potential.  

 

In the following figure we present the atmospheric densities generated by each ADM 

versus the height up to 90 km. 

 

 

 
 

Figure 3.14. (a) Modified KTHA in red (vertical axis is in logarithmic scale), (b) NKTHA based on 

the USSA76 in red (vertical axis is in logarithmic scale), (c) differences between approximating 

models of KTHA, modified KTHA New KTHA and USSA76. (d) fitting of the exponential ADM and 

KTHA to the atmospheric density of the standard model 

 

By fitting the KTHA to the USSA76 we obtain the value ν 930. This modified 

KTHA is visualized in Figure 3.14a, which figure shows that, although the modified 

KTHA has very good fit to the USSA76 in higher elevations, it underestimates the 

density of the most massive part of the atmosphere in low levels. Therefore it is 

expected to see small AE on the SGG data. In Table 3.9 the statistics of these AEs 

based on the KTHA and the modified KTHA over Fennoscandia are presented. The 

differences are again mainly related to the diagonal elements uuV , vvV  and wwV  of the 

gradiometric tensor as they, unlike the other elements, include the zero-degree 

harmonic. The difference between the AEs generated based on the original and 

modified KTHA is related to the underestimation of the atmospheric density in the 
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modified KTHA and also to significant overestimation of KTHA in higher elevation. 

However, since the most massive part of the atmosphere lies below 10 km level we 

can expect that the underestimation of the atmospheric density in the modified KTHA 

is the main reason for these differences. The only advantage of the modified KTHA 

relative to the original KTHA is thus to have a better fit in the higher elevations. 

Consequently, the modified KTHA is inferior to the original KTHA in context of the 

gravimetric data processing. 

 
Table 3.9. Statistics of AE on SGG data at 250 km level based on KTHA and modified KTHA in 

ORF. Unit: 1 mE 

 

 KTHA Modified KTHA 

 max mean min std max mean min std 

uuV  -0.87 -1.06 -1.22 ± 0.07 -0.78 -0.97 -1.12 ± 0.07 

vvV  -0.79 -1.06 -1.22 ± 0.10 -0.70 -0.96 -1.13 ± 0.10 

wwV  2.29 2.12 1.67 ± 0.14 2.10 1.93 1.48 ± 0.14 

uvV  0.07 -0.03 -0.10 ± 0.04 0.07 -0.02 -0.10 ± 0.04 

uwV  0.26 0.01 -0.27 ± 0.10 0.26 0.01 -0.27 ± 0.10 

vwV  0.32 0.01 -0.18 ± 0.08 0.32 0.01 -0.18 ± 0.08 

 

We also consider another approach in which the NADM is used for the heights 

below 10 km and another modified KTHA for considering higher levels. In this case 

the atmospheric density generated by the NADM at 10 km is considered as a 

reference value and the KTHA model is modified to get best fit to the densities of the 

USSA76 after 10 km. Figure 3.14b shows the result of this fitting. The figure shows 

that the atmospheric densities are overestimated by the NKTHA with respect to the 

USSA76 between 20 and 60 km levels. However since the atmospheric density 

decreases fast by increasing the elevation we can expect that such misfitness is 

insignificant in higher levels. In this case we estimate ν =890.1727 890, see Eq. 

(3.12). The RMSEs of the model fittings are 0.038, 0.032 and 0.0027 kg/m 3 for 

KTHA, modified KTHA and new KTHA, respectively. In Table 3.10 the statistics of 

the AE on the SGG data over Fennoscandia are presented based on the NKTHA. 
 

Table 3.10. Statistics of AE on SGG data at 250 level based on NKTHA in ORF. Unit: 1 mE 

 
NKTHA 

 
max mean min std 

uuV  -2.36 -2.56 -2.74 ± 0.08 

vvV  -2.27 -2.57 -2.76 ± 0.11 

wwV  5.32 5.14 4.63 ± 0.15 

uvV  0.07 -0.03 -0.11 ± 0.04 

uwV  0.30 0.01 -0.30 ± 0.11 

vwV  0.35 0.01 -0.20 ± 0.09 
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Since in the NKTHA we use the NADM for the elevations below 10 km, we expect to 

see a good fit to the effects for these ADMs, which are confirmed by the statistics 

presented in the tables.  

 

In the following we present the maps of the AE on the SGG data over 

Fennoscandia. Again two-month revolution of the satellite with 30 second integration 

step size was considered in our investigation over Fennoscandia.  The lower boundary 

of the atmosphere was considered the Earth surface and the upper bound at satellite 

level. The JGP95e global topographic model was also used to generate the 

topographic harmonics to degree and order 360.  

 

 

 
 

Figure 3.15. AE on the SGG at 250 km based on the NKTHA, (a) 
uuV , (b) 

vvV , (c) 
wwV , (d) 

uvV , (e) 

uwV and (f) 
vwV . Unit: 1 mE 

 
Figure 3.15 illustrates the AE on the SGG data at 250 km based on the NKTHA. (a), 

(b), (c), (d), (e) and (f) are uuV , vvV , wwV , uvV , uwV  and
vw

V

 vwV , respectively. The 

largest AE is about 5.1381 mE and related to wwV as would we expect, and the 

smallest effect (about -0.0276 mE) is related to uvV .  

 

3.4.7 Summary of AEs 
 

The KTHA was modified so that it yields better fit to the USSA76 than the original 

one (which was derived based on USSA61), and the constant ν =930 was obtained 

for the modified model. Numerical studies show that this model underestimates the 

most massive part of the atmosphere which is below 10 km more than the original 

one, but it has better fit for higher elevations, and this effect on the SGG is less than 1 
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mE. A combination of both ADMs presented by Novák (2000) and Sjöberg (1998) 

with a simple modification was proposed as the NKTHA. This model has good fit 

with the USSA76 for low and high levels. The SHCs of the atmospheric potential 

generated based on this new model were used to compute the AEs on the SGG data in 

the ORF. Numerical results show that the maximum effect is related to wwV  and about 

5.13 mE. In comparison with Novák (2000) model, which generate the corresponding 

value 4.44 mE, one can state that the effect of the atmospheric masses above 10 km is 

less than 1 mE but significant for validation or downward continuation of the SGG. 

We recommend the use of NKTHA in considering AEs in the SGG data processing 

and any other gravimetric applications. 

 

3.5 Remove-Compute-Restore scheme  

 
In the remove-compute-restore approach, the external topographic and atmospheric 

potentials are removed and the result will be a space with no-topography and no-

atmosphere. The effect of the topographic and atmospheric masses must be restored 

after computations (this is why the method is called remove-compute-restore). The 

gravity field can also be determined locally from SGG data using inversion of the 

second-order derivatives of extended Stokes or Abel-Poisson integrals. The 

downward continued gravity anomaly or disturbing potential at sea level is the results 

of this inversion process. One can also downward continue the SGG data directly to 

geoid height or gravity anomaly at sea level. In any case, the effect of the removed 

atmospheric potential should be restored on these quantities. In the following we 

present these indirect AEs on the gravity anomaly and geoid height.  

 

The direct and indirect effects are used in remove-compute-restore technique. 

However, when analytical continuation is considered one can perform downward 

continuation disregarding these effects and add the total effect (combination of direct 

and indirect effects) on the downward continued quantities. As mentioned in the 

introduction the downward continued quantities are the gravity anomaly or geoid. 

Based on the fundamental theorem of physical geodesy (Heiskanen and Moritz 1967) 

we have: 

 

     ( ) ( ) ( )2V P
g P V P

r r

δ
δ δ

∂
∆ = − −

∂
 ,          (3.70) 

 

where ( )V P  is either external or internal topographic potential. Therefore the direct 

and indirect effect on the gravity anomaly will be 
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Restoring the topographic or atmospheric potential on the continued SGG data to sea 

level can also be formulated using internal type of the spherical harmonic series. By 

using the internal type of the topographic and atmospheric potentials, Eq. (3.2b), and 

using the expression of the gravitational gradients in the LNOF presented by Reed 

(1973) we obtain: 
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and 
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The topographic bias (or the total effect) on the gravity anomaly will be: 
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Inserting Eq. (3.70a) and Eq. (3.70b)  for r=R into Eq. (3.71) yields 
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In a similar way as in Eq. (3.72) we can write the topographic bias on the disturbing 

potential as:  
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which is the same as the topographic bias in Sjöberg (2007).  
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Theorem 3.1 The potential of topographic bias is (Ågren 2004, Sjöberg 2007): 
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ρδ
ρ
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. 

 

  

3.6 Topographic and atmospheric biases in spherical harmonics on 

the SGG data 

 
According to the story we mentioned in the previous section, we can write the 

topographic and atmospheric biases in spherical harmonics as subtraction of the 

downward continued direct effect and the indirect effects on the geoid. Here we 

present general formulas for considering the topographic and atmospheric biases on 

the gravitational gradients: 
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and 
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These formulas are useful for practical computations, but it should be considered that 

the downward continuation using spherical harmonics is not true as the convergence 

of the spherical harmonic expansion does not hold. It can also make the results even 
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worse. Therefore it is recommended to remove the effects before downward 

continuation and restore them after computations. However, considering the 

topographic bias can easily be investigated without problem in convergence if the 

binomial expansion is used up to third-order. In the following we discuss the 

topographic bias on the gravitational gradients further.  

 

Proposition 3.15 The topographic bias on second-radial derivative of gravitational 
gradients at sea level (R ≈ r ) is: 
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. 

 

Proof. Double differentiating the equation in Theorem 3.15 with respect to PH  

proves the proposition. 

 

Corollary 3.2 The topographic bias on xzT , yzT and xyT  at geoid is zero. 

 

Proof. As we know, we can generally write 
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According to Theorem 3.1 the potential of the topographic bias is only function of 

radial distance and consequently its derivatives with respect to any another horizontal 

parameter will be zero.  

 

Proposition 3.16:  
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Proof. We already know 
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According to Theorem 3.1 the horizontal derivatives of the topographic bias vanish. 

Therefore the first terms of Eqs. (3.76a)-(3.76c) are the same and  
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Therefore the proposition is proved. 

 

According to this discussion, one can say that the gravitational gradients ( )t

xzV P , 

( )t

yzV P  and  ( )t

xyV P  can be continued downward without considering the TE, as the 

topographic bias on these gradients are zero. The topographic bias can easily be 

considered after downward continuation using Propositions 3.15 and 3.16 for 

diagonal elements of the gravitational tensor as they are extremely simple. These 

propositions show that the total TE (the topographic bias in opposite sign) is only a 

function of that part of topography which in below the point P.  

 



 93

 

 

 

 

 

Chapter 4 
 
 
 

Least-squares modification  
 

 

 
4.1 Introduction 
 
The SGG data should be validated before using. In order to do that different methods 
have been proposed. A simple way could be the direct comparing of the real SGG 
data with the synthesized gravitational gradients using an existing EGM. Another idea 
is to use regional gravity data to generate the gradients at satellite level. Haagmans et 
al. (2002) and Kern and Haagmans (2004) used the extended Stokes and extended 
Hotine formulas to generate the gravitational gradients using terrestrial gravity data. 
Denker (2002) used the least-squares spectral combination technique to generate and 
validate the gravitational gradients. Bouman et al. (2003) has set up a calibration 
model based on instrument (gradiometer) characteristics to validate the measurement. 
Muller et al. (2004) used the terrestrial gravity anomalies to generate the gravitational 
gradients, and after that Wolf (2007) investigated the deterministic approaches to 
modify the integrals and validate the SGG data. In fact, the spectral weighting scheme 
(Sjöberg 1980 and 1981 and Wenzel 1981) was used by Wolf (2007). Stochastic 
methods of modifying Stokes’ formula can be used for the extended Stokes’ formula 
as well; see Sjöberg (1984a), (1984b), (1991) and (2003). Least-squares collocation 
can be used for validation purposes. Tscherning et al. (2006) considered this method 
and concluded that the gradients can be predicted with an error of 2-3 mE in the case 
of an optimal size of the collection area and optimal resolution of data. Zielinski and 
Petrovskaya (2003) proposed a balloon-borne gradiometer to fly at 20-40 km altitude 
simultaneously with satellite mission and proposed downward continuation of 
satellite data and comparing them with balloon-borne data. Bouman and Koop (2003) 
presented an along-track interpolation method to detect the outliers. Their idea is to 
compare the along-tack interpolated gradients with measured gradients. If the 
interpolation error is small enough the differences should be predicted reasonably by 
an error model. Pail (2003) proposed a combined adjustment method supporting high 
quality gravity field information within the well-surveyed test area for continuation of 
local gravity field upward and validating the SGG data. Bouman et al. (2004) stated 
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that there are some limitations in generating the gravitational gradients using 
terrestrial gravimetry data and EGMs. When an EGM model is used, high degrees 
and orders should be taken into account and the recent EGMs seem to be able to 
remove the greater part of the systematic errors. In regional approach they concluded 
that the bias of the gradients can accurately be recovered using least-squares 
collocation. Also, they concluded that the method of validation using high-low 
satellite-to-satellite tracking data fails unless a higher resolution EGM is available. 
Kern et al. (2004) and (2005) presented an algorithm for detecting the outliers in the 
SGG data in the time domain.  

 
In this chapter our goal is to validate the SGG data in the presence of unknown 

sources of the systematic errors. Since the gravity anomaly is a simple measurement 
in physical geodetic applications, a way to relate this observable to the SGG data is 
sought. The second-order partial derivatives of the well-known extended stokes 
formula is used to generate the gravitational gradients at satellite level. In the geodetic 
application involved with gravity anomaly and terrestrial data we are restricted to a 
specific area. Therefore the integral formulas should be modified according to the cap 
of the existing data. Different ways of modifying these integral formulas exist, but in 
this chapter the emphasis is on the LSM to modify the second-order partial 
derivatives of the extended Stokes formula.  

 
The disturbing potential can be expressed by an integral which is well-known as 

the extended Stokes formula. This integral formula is (Heiskanen and Moritz 1967):     
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where R is the radius of the reference sphere, r  is the geocentric distance at 
computation point P, ψ  is the geocentric angle between the computation point P and 

the integration point Q with the following expression  
 

  ( )cos cos cos sin sin cosψ θ θ θ θ λ λ′ ′ ′= + − ,                        (4.2) 

 
and θ  and λ are the co-latitude and longitude of P and θ ′andλ′ are of the integration 

point Q. σ  is the unit sphere, ( )g Q∆  is the gravity anomaly at sea level  and   
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is the spectral form of the extended Stokes function (ESF) with the spectrum 
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Equation (4.1) shows that the integration should be performed globally, which 

means that ( )g Q∆  with a global coverage is required. Therefore we should look for 

an approach to modify the integral in such a way that the contribution of the far zone 
data is minimized. Different methods for modifying Stokes’ formula have been 
presented, but here the concentration is on stochastic approaches as in Sjöberg 
(1984a) and (1984b). In fact, the theory behind this part of the study was presented by 
him, but the main difference is that his emphasis was just on Stokes’ integral for 
geoid determination. However, we are going to test the capability of these stochastic 
approaches in modifying the extended Stokes formula and generating the SGG data 
for validation purposes. In the following we investigate the LSM and the Molodensky 
modification (MM) (Molodensky et al. 1962) of the extended Stokes formula. 

 

4.2 LSM and MM of the extended Stokes formula 

 
A general estimator of the disturbing potential based on the extended Stokes formula 
is very similar to the general geoid estimator of Sjöberg (2003); and the only 
difference is related to the kernel function and its spectrum. Let us start the discussion 
by this general disturbing potential estimator: 
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where L is the maximum degree of modification, ( )nb r  is a parameter, which differs 

with the type of the disturbing potential estimator, and  
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is the modified ESF and ( )ns r  are the modification parameters, which are estimated. 

The closed form of the ESF is (Heiskanen and Moritz 1967, p. 93, Eq. 2-162): 
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where 
 

      2 2 2 cosl r R Rr ψ= + − ,                      (4.4d) 

 
is the spatial distance between points P and Q.  Also  
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is the Laplace harmonic expansion of ( )g P∆  (Heiskanen and Moritz 1967, p. 97), 

nmt  is the SHCs of the disturbing potential derived from subtraction of the normal 

gravitational field from an EGM. ( )nmY P  is the surface spherical harmonic of degree 

n and order m. GM is the geocentric gravitational constant. In order to show from 

which sources the gravity anomaly is derived we separate them into Tg∆  for the 

terrestrial and EGMg∆  for the EGM based data.  

 

In the MM the idea is to determine the modification parameters ( )ns r  in such a 

way that the upper bound of the truncation error the estimator (Eq. 4.4a) is 
minimized. These parameters are attained by differentiating the following integral: 

 

( )
0

2
, sinLS r d

σ σ

ψ ψ ψ
−

  ∫∫ ,           (4.4f) 

 

with respect to the parameters ( )ns r  and equating to zero. The result is the system of 

equations presented in Proposition 4.1. For more details the interested readers are 
referred to e.g., Molodensky et al. (1962) and Heiskanen and Moritz (1967, p. 263). 
 

Proposition 4.1 The MM parameters ( )rs r  of the disturbing potential are derived 

based on solving of the following system of equations (see e.g. Molodensky et al. 

1962, Sjöberg 2003): 
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where 
                  

               ( )0kr rk rka a E ψ= = . k , r=2,3,…,M            (4.5b) 

               ( ) ( )0,k kh r Q r ψ=  k=2,3,…,M,                          (4.5c) 
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According to the author’s numerical experiences, the Shepperd (1982) recursive 

formula of computing the truncation coefficients ( )0,kQ r ψ  is unstable and 

impractical at high altitudes. He mentioned that his formulas might be used for the 
altitudes below 20 km.  Another way is to evaluate these truncation coefficients 
numerically, but it was found out that the numerical integration error considerably 
affects the results. We use the spectral form of the truncation coefficients (Eq. 4.5g), 

involving zero-order Paul’s coefficients ( )0
0nne ψ′  which are not difficult to compute 

using the recursive formulas presented e.g. by Paul (1978).  
 
The LSM method considers the error of terrestrial and EGM data as well as the 

truncation error of the integral. Three different versions of the LSM method were 
presented by Sjöberg (2003) such as BLSM, ULSM and OLSM. The extended Stokes 
formula can be modified by these methods as well. In the following propositions, the 
elements of the system of equations, from which the modification parameters are 
derived, are presented.   
 
Proposition 4.2 The BLSM parameters for the disturbing potential estimator at 

satellite level are derived by setting ( )nb r  = ( )ns r  and solving the system of 

equations Eq. (4.5a) with the following elements (Sjöberg 2003): 
 

                        ( ) ( ) ( )2 0 2 0 2
0 0kr rk r r kr kr r rk ka a dc E Eσ δ ψ σ ψ σ= = + − − +         

                                      ( ) ( )( )0 0 2
0 0

2
nr nk n n

n

E E cψ ψ σ
∞

=

+ +∑          

                         ( ) ( ) ( ) 2
0,k k k kh r r Q r ψ σ = Ω − +   

                              ( )( ) ( ) ( )2 2 0
0 0

2

,n n n k n nk

n

Q r c r Eψ σ σ ψ
∞

=

+ + −Ω ∑ . 

                                k , r=2,3,…,M 
                  
where 2

kσ  is the error spectrum of the terrestrial gravimetric data and kdc  is the 

error spectrum of the gravity anomaly obtained from an existing EGM.  

 

For more details about the computation of 2
kσ  the reader is referred e.g. to Sjöberg 

(1986), Ågren (2004) and Ellmann (2005). The spectrum of the gravity anomaly is 
evaluated by using the EGM for those degrees below the maximum degree of 
modification, and analytical models like Kaula (1963), Tscherning and Rapp (1974) 
are used for the degrees above that maximum degree.  According to Ellmann (2004) 
and (2005) and Ågren (2004) the Tscherning-Rapp model is superior with respect to 
the others in modification aspect. Relying on their conclusion we use this model in 
our numerical studies through this thesis. 
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Proposition 4.3 The ULSM parameters of the disturbing potential estimator at 

satellite level are derived, if we select ( ) ( ) ( )0,L

n n nb r Q r s rψ= +  and solve the 

system of Eq. (4.5a) with the following elements (Sjöberg 2003): 
                             

         ( ) ( ) ( ) ( )0 0 0 0
0 0 0 0

2
kr rk r kr rk r kr k nr nk n

n

a a d E d E d E E dδ ψ ψ ψ ψ
∞

=

= = − − +∑ , 

          ( ) ( ) ( ) ( ) ( ) ( )2 2 0
0 0 0

2

, ,k k k k k n n n n nk

n

h r r Q r d Q r d r Eσ ψ ψ σ ψ
∞

=

= Ω − + −Ω ∑ , 

                                                                                                             k , r=2,3,…,M 

where 
2

n n nd dcσ= + . 

 
Proposition 4.4 The OLSM parameters of the disturbing potential estimator at 

satellite level are derived, if we set ( ) ( ) ( ) ( )0, /L

n n n n n nb r Q r s r c c dcψ = + +   and 

solve Eq. (4.5a) with the following elements (Sjöberg 2003): 
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0 0 0 0

2
kr rk r kr rk r kr k nr nk n

n

a a C E C E C E E Cδ ψ ψ ψ ψ
∞

=

= = − − +∑ ,    

                                                                                                             k , r=2,3,…,M 
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∞
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where  

          
( )2

/ 2k k k k

k k

k

c dc c dc k M
C

c k M
σ

 + ≤ ≤= + 
>

.            (4.6) 

 
  

4.2.1 Numerical studies on modification of the extended Stokes 

formula 

 
In order to test numerical capability of the LSM methods for modifying the extended 
Stokes formula and generating the disturbing potential at satellite level (250 km), the 
EGM96 is used to generate the degree variances of the gravity anomaly nc  and its 

error degree variance ndc . The error of the terrestrial data is considered to be 5 mGal 

with a correlation length of 0.1 . The maximum degree of modification is L=M=150. 
The three LSM methods and the MM are used to modify the formula.  Figure 4.1a 

shows the behaviour of the ESF in different geocentric angles ( 0ψ  ) within degree 4 . 

As the figure shows, all three LSM methods can modify the ESF for 3  cap size 
successfully. The behaviour of the ESF, which is modified using the ULSM and 
OLSM, is growing up after 3 . 
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Figure 4.1. (a) Behaviour of ESF before and after different LSM methods. (b) Behaviour of ESF 
before and after MM and BLSM with errorless data 

 

According to the author’s numerical experience it is better to estimate ( )ks r , which 

is a function of geocentric distance instead of ks  (which is the modification 

parameter of the simple Stokes function). For better comparison we consider the 
BLSM and MM methods. It should be mentioned that in the MM we do not consider 
errors in neither for terrestrial nor for satellite data.  If we want to compare the LSM 
with the MM we must put zero for the terrestrial and EGM data errors. Figure 4.1b 
shows the behaviour of the modified ESF according to the BLSM and the MM. 
However, it is not clear which one of these modification approaches is better unless 
we look at the global RMSE of the estimators. Figure 4.2a shows the global RMSE of 
the estimators modified based on the BLSM, ULSM and OLSM methods. 
 

 
 
Figure 4.2. (a) Global RMSE of disturbing potential estimators based on different LSM methods. (b) 

Global RMSE of disturbing potential estimator based on MM and BLSM with errorless data. Unit: 1 m 
 
 

The figure clearly shows that the ULSM and OLSM yield smaller global RMSE for 
the estimator than the BLSM. However, this difference is very small and may be 
negligible in practice. This numerical study shows very similar conclusion with the 
Ellmann (2005) results about the original Stokes function. Ellmann (2005) concluded 
that the differences among these types of modifying Stokes’ formula are very small 
and they will have the similar results in geoid determination. Again for comparing the 
LSM versus the MM, we consider terrestrial and the EGM data free of errors. The 
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global RMSE of the modified estimator by the BLSM and the MM are presented in 
Figure 4.2b. As the figure shows the BLSM method is slightly better than the MM for 

0ψ  between 2  and 4 .  

 
We select a point above the roughest part of Fennoscandia, which has larger  

gravity anomalies than other parts of Fennoscandia, to test the capability of the 
estimators. The latitude and longitude of the computation point are 62  and 10 , 
respectively.  Figure 4.3 shows the test area.  
 

Figure 4.3. Topographic height of Fennoscandia 
and test area. Unit: 1 m 

 
 
 

Table 4.1. Estimated disturbing potential 
using modified estimators by LSM divided 
by 9.8 at 250 km level with 1 mGal error for 
terrestrial data. Unit: 1 m 

 
 BLSM ULSM OLSM 

30′ × 30′  34.782 34.768 34.766 
15′ × 15′  34.773 34.761 34.759 
12′ × 12′  34.772 34.761 34.759 

6′ × 6′  34.768 34.759 34.757 
3′ × 3′  34.765 34.757 34.755 

 

 
Again the EGM96 is used to generate the gravity anomaly in the test region with 
cap size 3 for integration. Also the value of disturbing potential is estimated by 
EGM96 at the computation point at 250 km level. For better visualization of the 
test we divided the values of the disturbing potential roughly by 9.8 m/s 2  to 
change the units in metre. In this case, the estimated value using the EGM96 at 
250 km level is 34.888 m. Table 4.1 shows the estimated disturbing potential 
using the modified extended Stokes’ formula by BSLM, ULSM and OPLSM 
methods. In these computations we considered 1 mGal error for the terrestrial 
data. The differences between the BLSM and either the ULSM or OLSM methods 
in modifying extended Stokes’ formula are within 1 cm at 250 km level. Table 4.2 
shows the estimated disturbing potential using the modified estimator by LSM at 
250 km level when 5 mGal error is selected for the terrestrial data.  
 

Table 4.2. Different estimates of disturbing potential divided by 9.8 m/s
2  at 250 km with 5 mGal 

error of terrestrial data. Unit: 1 m 

 
 BLSM ULSM OLSM MM BLSM0 

30′ × 30′  34.857 34.858 34.855 34.888 34.887 
15′ × 15′  34.854 34.855 34.852 34.888 34.887 
12′ × 12′  34.853 34.854 34.851 34.888 34.887 

6′ × 6′  34.852 34.853 34.850 34.888 34.887 
3′ × 3′  34.851 34.852 34.849 34.888 34.887 
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Table 4.2 clearly presents that when the accuracy of the terrestrial data decreases 
the estimated disturbing potential comes closer to 34.888 m (which is considered 
as the true value).  In order to show this matter, we presented the MM and BLSM 
method with zero error for the terrestrial and the EGM data in Table 4.2.  
 

In the above study we wanted to present the capability of the modification 
methods to generate the disturbing potential at satellite level. However, in SGG 
the second-order partial derivatives of the disturbing potential are measured at 
satellite level. Therefore we should consider how we can use the modification 
methods to reduce the far zone effects. In the following section we concentrate on 
the second-order radial derivative (SOD) of the extended Stokes formula because 
of its simplicity.  
 

4.3 LSM and VV gravitational gradient 

  
The gravitational tensor is a symmetric tensor with 5 independent elements. This 
tensor is also traceless (trace of this tensor is zero) since the disturbing potential is 
harmonic outside the Earth’s surface. Therefore, if we present a method for 

validating the simplest components, such as ( )zzT P , in fact we validate 

( ) ( )xx yyT P T P+ , too, because the disturbing potential is harmonic outside the 

Earth’s surface. If ( )zzT P  is not equal to ( ) ( )xx yyT P T P− − , it means that there is 

error either in ( )zzT P  or ( ) ( )xx yyT P T P− − . Assuming the former is free of error, 

we conclude that the latter is erroneous, but we cannot say which one of the 

components ( )xxT P−  and ( )yyT P−  contains the blunder. In this section similar to 

the previous one we consider the LSM method of modifying the SOD of the 

extended Stokes formula to generate ( )zzT P  at point P at satellite level (250 km). 

The derivation is very similar to the propositions which already presented in 

Subsection 4.2. We define the following general estimator ( )zzT P : 

 

               ( ) ( ) ( ) ( ) ( )
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T EGM

2

,
4 2

L
L

zz zz n n

n

R R
T P S r g Q d b r g P

σ

ψ σ
π =

′′= ∆ + ∆∑∫∫ ,      (4.7a) 

 

where ( )nb r′′  is a parameter that should be estimated according to the type of 

estimator, and 
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, , cos

2
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zz zz n n
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n
S r S r s r Pψ ψ ψ
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+ ′′= −∑ ,              (4.7b) 

 

where ( )ns r′′  are the modification parameters to be estimated, and (Reed 1973, 

Eq. 5.35) 

       ( ) ( ) ( )23 2

2 5 3 3
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R D D D D
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1 cos

2 3 cos 15 6ln
2

t D
t

ψψ − + + − +  
 

,      (4.7c) 

 

where t R r=  and 21 2 cosD t tψ= − + .  

 
The modification parameters are derived in the following subsection.  
 

4.3.1 Modification of the SOD of ESF  

 
The LSM of SOD of the ESF is very similar to that of the ESF itself. If we 

estimate the modification parameter ( )ns r′′ , the left hand side of the system of 

equations (Eq. 4.5a) will not change and remain the same with those presented for 
the LSM of the ESF. The coefficients matrix A will have the same properties as 
that obtained for the ESF. Therefore, in the following we present how the 

modification parameters ( )ns r′′  are estimated. At the first step, we start with the 

following corollary which is related with the MM of the SOD of the ESF. 
 

Corollary 4.1 The modification parameters ( )ns r′′  based on the MM method are 

derived by solving Eq. (4.5a) and considering 

 

( ) ( ) ( ), ,k k zzzz k
h r Q r Q rψ ψ   = =     ,     (4.8a) 

 
where 
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π
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ψ ψ ψ ψ ψ  =  ∫ ,            (4.8b) 

or in spectral form 
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 where 

( ) ( )( ) ( )2

1 2
n n

n n
r r

r

+ +
′′Ω = Ω ,     (4.8d) 

 

where ( )n rΩ was introduced in Eq. (4.3b). 

 
 

Corollary 4.2 The BLSM parameters are derived by setting ( ) ( )n nb r s r′′ ′′=  and 

solving the system of equations Eq. (4.5a) with the following right hand side 

 

                      ( ) ( ) ( ){ } 2
0,k k k kzz

h r r Q r ψ σ′′  = Ω − +   

                                 ( ) ( ) ( ) ( )2 2 0
0 0
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Proof. The only difference between the biased geoid estimator of Sjöberg (1991) 
and the biased estimator is related to the truncation coefficients and spectrum of 
the SOD of ESF. If we consider the errors of terrestrial and satellite data by 

Tε and EGM
nε , respectively. We can write the following form of the error 

estimator: 
 

     ( ) ( ) ( ) ( ) ( )
0

T EGM

2

,
4 2

L
L

zz zz n n

n

R R
T P S r Q d s r P

σ

δ ψ ε σ ε
π =

′′= + ∑∫∫ .      (4.9) 

 
Sjöberg (1991) proved that the integral part of this equation has the following 
spectral form 
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 ( ) ( ) ( ) ( )0
0 0 0

2

, ,
L

L

n n k nkzz zz
k

Q r Q r s r Eψ ψ ψ
=

′′   = −    ∑ .    (4.11) 

 
Substituting Eq. (4.10) into Eq. (4.9) we obtain 
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  (4.12) 
 
By considering that the errors are random and with zero stochastic expectation,  
 

   ( ) ( )T EGM 0n nE Eε ε= = ,    (4.13a) 

we have 
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By differentiating Eq. (4.13b) with respect to ( )ks r′′  and equating the result to 

zero and rearranging the known and unknown parameters ( )ks r′′ , the proposition 

is proved.   
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Corollary 4.3 The ULSM parameters ( )ns r′′  are derived by considering 

( ) ( ) ( ){ }0,L

n n n
zz

b r Q r s rψ′′ ′′ = +   and solving the system of equations Eq. (4.5a) 

by considering 

               

( ) ( ) ( ) ( ) ( ){ } ( )2 2 0
0 0 0

2

, ,k k k k k k n n n nkzz zz
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Proof. Similar to the proof presented for Corollary 4.2 we can write the error 
estimator as: 
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              (4.14) 

where ( )0,L

n
zz

Q r ψ   was already presented in Eq. (4.11). The mathematical 

expectation of Eq. (4.14) shows that the estimator is unbiased through M, which is 
in fact the maximum degree of the EGM for generating the long wavelength 
structure of the estimator. By squaring the above equation and considering that the 
EGM and terrestrial data are not correlated (see Eq. 4.13a) and after taking the 
statistical expectation and the global average, as we did in Eq. (4.13b) we have the 
following spectral form for the global MSE: 
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By differentiating Eq. (4.14) with respect to modification parameters ( )ks r′′  and 

equating the result to zero and after further simplifications the proposition is 
proved.  
 

Corollary 4.4 The OLSM parameters ( )ns r′′  are derived by considering 

( ) ( ) ( ){ } ( )0,L

n n n n n n
zz

b r Q r s r c c dcψ′′ ′′ = + +   and solving the system of 

equations Eq. (4.5a) by considering 
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Proof. If the general error estimator Eq. (4.7a) is written in the following spectral 
form: 
  

                  ( ) ( ) ( ) ( ) ( )
0

T EGM

2

,
4 2

L
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zz zz n n

n

R R
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according to Eq. (4.7a) the spectral form of the above error estimator is: 
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The global MSE of the estimator will be: 
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Taking the derivative of Eq. (4.16c) with respect to ( )ks r′′  and after further 

simplification the proposition is proved. 
 

4.3.2 Numerical studies on modification of the SOD of ESF 

 
Similar to the previous numerical studies on the disturbing potential estimation, 
we select the EGM96 for generating nc and ndc . We consider M=L=150 (we 

assume the last EGM will have good accuracy up to this degree) and the terrestrial 

data error 5 mGal. Having assumed the cap size of integration 0ψ =3 , we modify 

the ( )zzT P  estimator using different LSM methods as well as the MM approach. 

The original SOD of ESF and the modified one are visualized in Figures 4.4.  
 

 
 

Figure 4.4. (a) Behaviour of original and modified SOD of ESF, (b) behaviour of original and 
modified SOD of ESF using MM and BLSM with errorless data 
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Figure 4.4a shows the modified SOD of ESF just up to 0ψ =3. The modified SOD 

of the ESF by the ULSM and OLSM methods are more or less the same, and both 
decay before end of the cap size. In order to compare the MM with the LSM 
method we have to equate the terrestrial and EGM data error to zero until just the 
truncation error is considered in the estimation. Figure 4.4b shows the modified 
SOD of ESF by the BLSM and the MM method. As can be seen, the modified 
SOD of ESF by the BLSM is above the MM. We cannot say which modification 
method is the better unless we consider the global RMSE of the estimator.  
  

 
 

Figure 4.5. (a) Global RMSE of ( )zzT P estimators based on different LSM methods. (b) Global 

RMSE of ( )zzT P  estimator based on MM and BLSM with errorless data. Unit: 1 E 

 
Figure 4.5a shows very good agreement for the global RMSE of estimators 
modified by the ULSM and OLSM methods and both are smaller than the BLSM.  
 
We consider the test point considered in Subsection 4.2.2; see Figure 4.3. We 

estimate ( )zzT P  = 0.3343 E at 250 km level using the EGM96. We derive the 

same value using the modified ( )zzT P  estimators. Since Figure 4.4 illustrates that 

the original SOD of the ESF decays toward zero, we should investigate if the 

modification of this integral is meaningful or not. To do this, We estimate ( )zzT P  

using the non-modified formula and compare it with the modified ones in Table 
4.3, where BLSM0 means that we have considered errorless data in modifying the 
estimator. Comparing the non-modified and modified one we can see significant 

improvements in the estimated ( )zzT P . It should be emphasized that it is not 

surprising to get far from the true values when we consider different precision for 
the data. However, the table shows that all the modified estimators can yield 

( )zzT P  well in 1 mE level of accuracy with different resolutions.  In this study 

we have considered 5 mGal for the terrestrial data error.  If the accuracy of the 
terrestrial data error increases, the solution goes away from the value obtained 
from the EGM; and it is typical, because contribution of the EGM is reduced. 
Conversely, if the accuracy of the terrestrial data decreases then contribution of 
the EGM increases and the obtained value get closer to the estimate value by the 
EGM.  

 

 

Geocentric angle (
0ψ ) Geocentric angle (

0ψ ) 

G
lo

ba
l 

R
M

S
E

  

G
lo

ba
l 

R
M

S
E

  

a) b) 



 107

Table 4.3. Different estimates for ( )zzT P  at 250 km using modified estimators with capsize of 

0 3ψ = . Unit: 1 cE  

 

 
Non-

modified 
BLSM ULSM OLSM MM 

 

BLSM0 
 

30′ × 30′  31.84 33.58 33.79 33.68 33.57 33.17 
15′ × 15′  31.54 33.51 33.66 33.54 33.61 33.15 
12′ × 12′  31.48 33.50 33.61 33.50 33.62 33.14 

6′ × 6′  31.35 33.47 33.53 33.42 33.64 33.13 
3′ × 3′  31.27 33.45 33.49 33.38 33.65 33.13 

 
 

4.4 Spectral form of VH gravitational gradients  

 

We name the gradients ( )xzT P  and ( )yzT P  VH gradients as they are vertical-

horizontal partial derivatives of the disturbing potential. These gradients can be 
expressed by the second-order VH derivatives of the extended Stokes integral 
formula: 

 

( )
( )

( ) ( )
cos

,
sin4

xz

yz

T P R
V r g Q d

T P σ

α
ψ σ

απ

   
= ∆   

   
∫∫ ,            (4.17a) 

 

where  

( ) ( ) ( )2

1 1
, , ,rV r S r S r

r r
ψ ψψ ψ ψ= − ,   (4.17b) 

 
is the integral kernel. Here we have (Heiskanen and Moritz 1967, Eq. 6-64b, p. 
235): 
 

     
( ) 2

2 2 3 2

, sin 2 6 1 cos 1 cos
8 3 3ln

sin 2

S r t t D t D

r r D D D

ψ ψ ψ ψ ψ
ψ

 − − − − +
= + − − − 

 
, 

            (4.17c) 
and (Reed 1973, Eq. 5.36, p. 72): 

 

               
( ) ( )23

5 3

3 1, sin 4 6 1 cos
13 6ln

2
r

tS r t t D

r Rr D D D

ψ ψ ψ ψ − − += + + − − +



 

                                               
( )

( )
cos 1

3
1 cos

t D

D t D

ψ
ψ

+
+ − + 

.    (4.17d) 

 
If we write this kernel function in spectral form, we obtain 
 

 

( ) ( ) ( ) ( )12
2

2 1
, cos

2
n n

n

n

r rn
V r P

r r
ψ ψ

∞

=

′ Ω Ω+
= − − 

 
∑ ,  (4.17e) 
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4.4.1 Truncation error for the VH gravitational gradients 

 
The truncation error formulation for VH gradients is done by defining the 
following kernel for the integral formula: 
 

   ( )
( )

0

0

0 0

, 1
,

2

V r
V r

ψ ψ
ψ

ψ ψ ψ π

≤ <
= 

≤ ≤

,              (4.18a) 

 
with the following spectral form for this kernel (see Hagiwara 1972) : 
 

                                  ( ) ( ) ( ) ( )0 1
2

2 1
, , cos

2 1
V

n n

n

n
V r Q r P

n n
ψ ψ ψ

∞

=

+
=

+∑ ,  (4.18b) 

 
and the truncation error coefficients are derived by: 
 

( ) ( ) ( )
0

0 1

1
, , cos sin

2
V

n nQ r V r P d

π

ψ

ψ ψ ψ ψ ψ= ∫ .          (4.18c) 

 
We can write the truncation error of the VH gravitational gradients by the 
following integral formula 
 

( )
( )

( ) ( )
1

1

cos
,

sin4

xz

yz

T P R
V r g Q d

T P σ

δ α
ψ σ

απδ

   
= ∆   

    
∫∫ .    (4.19) 

 
A similar spectral form for Eq. (4.19) was presented by Hagiwara (1972), but for 
Vening-Meinesz’s formula. Here, we take advantage of one of his results to find a 
spectral form for the truncation error of the VH gradients. It is presented in the 
following theorem. 
 
Theorem 4.1 (Hagiwara 1972): 

                     ( ) ( )

( )

( )1

cos 4
cos

sin 2 1

sin

n

n

n

g P

g Q P d
n g Pσ

α π θψ σ
α

θ λ

 ∂∆
   ∂ ∆ =  +  ∂∆ 
 

∂ 

∫∫ . 

 
Now, by substituting Eq. (4.18b) into Eq. (4.19) we have 
 

        
( )
( ) ( ) ( ) ( ) ( )

1

V
0 11

2

cos2 1
, cos

sin4 2 1

xz

n n

nyz

T P R n
Q r g Q P d

n nT P σ

δ α
ψ ψ σ

απδ

∞

=

   +
= ∆   +    

∑ ∫∫ . 

  (4.20) 
According to Theorem 4.1 we can simplify the integral part of Eq. (4.20) to: 
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( )
( )

( )

( )

( )

1

VH
01

2

,
2

sin

n

xz

n

n nyz

g P

T P R
Q r

g PT P

δ θψ
δ

θ λ

∞

=

 ∂∆
   ∂ = 
 ∂∆    

∂ 

∑ ,     (4.21) 

where  

( ) ( )
( )

V
0VH

0

,
,

1
n

n

Q r
Q r

n n

ψ
ψ =

+
.      (2.22) 

 
Equation (2.21) is the spectral form of the truncation error of the VH derivative of 
the extended Stokes formula. 

 

4.4.2 Error of terrestrial data in VH derivatives of the extended 

Stokes formula 
 
The error of the terrestrial data can be expressed by the following integral: 
 

( )
( )

( ) ( ) ( )
0

T

0

cos
, ,

sin4

xz

yz

T P R
V r V r Q d

T P σ

δ α
ψ ψ ε σ

απδ

   
 = −    

    
∫∫ .    (4.23) 

 

where Tε stands for error of the terrestrial data. Inserting the spectral forms of 

( ),V r ψ  and  ( ),V r ψ  into Eq. (4.23) we have  

 

( )
( )

( ) ( ) ( ) ( )
0

VH VH T
0 10

2

cos2 1
, cos

sin4 2

xz

n n n

nyz

T P R n
r Q r Q P d

T P σ

δ α
ψ ε ψ σ

απδ

∞

=

   +  = Ω −        
∑ ∫∫  

  (4.24) 
According to Theorem 4.1 we can write 
 

                      
( )
( )

( ) ( )

( )

( )
VH VH

0
2

,
2

sin

T

n

xz

n n T
nyz n

P

T P R
r Q r

T P P

ε
δ θψ
δ ε

θ λ

∞

=

 ∂
   ∂  = Ω −     ∂    

∂ 

∑ ,    (4.25) 

where 

( ) ( ) ( )VH

2

n n

n

r r
r

r r

′Ω Ω
Ω = − .      (4.26) 

 

Equation (4.27a) shows that the spectral form of the terrestrial error is derived 
from the spectrum of the kernel function minus the truncation error coefficients. 
We will take advantage of this in the LSM of the kernel.   
 

4.4.3 LSM of the VH derivatives of the extended Stokes formula 

 
Let the following general estimator for the VH gravitational gradients: 
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( )
( )

( ) ( ) ( )
0

EGM

T

EGM
2

( )
cos

,
sin4 2 ( )

sin

n
L

xz L

n

nyz n

g P
T P R R

V r g Q d b r
T P g Pσ

α θψ σ
απ

θ λ
=

 ∂∆
     ∂ = ∆ +   
 ∂∆      ∂ 

∑∫∫  

                                                                                                                          (4.27) 
where 

                          ( ) ( ) ( ) ( )1
1

2 1
, , cos

2

L
L

n n

n

n
V r V r v r Pψ ψ ψ

=

+
= +∑ .     (4.28) 

 

We are going to find the modification parameters ( )nv r  in a least-squares sense. 

As we can see in Eq. (4.17a), the integral kernel is not isotropic as it depends on 
the azimuth α  between the computation point P and the integration point Q. This 
problem is very similar with the modification of Vening-Meinesz’s integral 
formula, the truncation error was given by Hagiwara (1972), and the formula was 
also modified by the least-squares approach for the first time by Sjöberg (1984a), 
where the modification is performed considering the error of the SHCs and 
truncation error. Later on Sjöberg (1984b) developed the formulation to consider 
the error of terrestrial data as well. Neyman et al. (1996) worked further on the 
modification of this formula, but they used simple MM method in their work. 
Tziavos and Andritsanos (1998) also used this method and Hwang (1998) 
presented inverse formulas for Vening-Meinesz’s integral to recover gravity 
anomaly from satellite altimetry data. The LSM of VH derivatives of the extended 
Stokes formula seems to be new. However, in this section we use the strategy of 
Sjöberg (1984b) to modify the integral formulas of the VH gravitational gradients.  
 

Proposition 4.5 The BLSM parameters are derived by setting ( )( )n nb r v r=  for 

the VH components of gravitational tensor and solving Eq. (4.5a) and considering 

with following elements: 

 

     ( ) ( )n ns r v r=  

 

( )( ) ( ) ( )2 1 2
01 1rk kr k k rk rk ka a k k dc r r Eσ δ ψ σ= = + + − + −  

              ( ) ( ) ( ) ( ) ( )( )1 2 1 1 2
0 0 0

2

1 1kr r nr nk n n

n

k k E E E n n cψ σ ψ ψ σ
∞

=

− + + + +∑ , 

            ( ) ( ) ( ) ( ){ } ( ) ( )VH VH 2 1
0 0

2

1 , 1k k k k nk

n

h r k k r Q r n n Eψ σ ψ
∞

=

= + Ω − − + ×∑  

               ( )( ) ( ){ }VH 2 VH 2
0,k n n k nQ r c rψ σ σ× + −Ω . 

 
where  

( ) ( )1 1
0 0

2 1

2
nk nk

k
E eψ ψ+

= ,    (4.29a) 

                ( ) ( ) ( )
0

1
0 1 1cos cos sinnk n ke P P d

π

ψ

ψ ψ ψ ψ ψ= − ∫ ,                   (4.29b) 

 
Proof. We suppose that the global MSE of the estimator contains three terms:  
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2 2 2 20 1 2

VH VH VH VHT T T Tδ δ δ δ= + + ,     (4.30) 

 

where 
20

VHTδ is the term related with terrestrial data error, 
21

VHTδ is related to 

the truncation error and 
22

VHTδ to the error of the geopotential coefficients. Now, 

we attempt to obtain these terms one by one in the following.  
 

Consider the spectral form of the modified Stokes formulas which is restricted 
to the cap size that we have data; see Eq. (4.27). Considering the relations 
between the gravitational gradients in geocentric and local frame and after some 
manipulation we obtain:  

              
( )
( )

( ) ( ) ( ){ }
( )

( )

T

VH VH
0 T

2

,
2

sin

n

Lxz

n n n

nyz n

P

T P R
r v r Q r

T P P

ε
θψ

ε
θ λ

∞
∗

=

 ∂
   ∂  = Ω + −     ∂    

∂ 

∑ .     (4.31a) 

If we square Eq. (4.31a) we obtain 
 

      
( )
( )

( ) ( ) ( ){ }
2 2

VH VH
02

2 2

,
4

Lxz

n n n

n nyz

T P R
v r r Q r

T P

δ
ψ

δ

∞ ∞
∗
′ ′ ′

′= =

 
 = −Ω −     

∑∑   

                             ( ) ( ) ( ){ }VH VH
0,

L

n n nv r r Q r ψ∗  −Ω −  

( ) ( )

( ) ( )

T T

T T

sin sin

n n

n n

P P

P P

ε ε
θ θ

ε ε
θ λ θ λ

′

′

 ∂ ∂
 ∂ ∂ 
 ∂ ∂
 

∂ ∂ 

,   (4.32a) 

  
where  

                                ( ) ( ) ( ) ( )VH VH 1
0 0 0

2

, ,
L

L

n n k nk

k

Q r Q r v r Eψ ψ ψ
=

  = −  ∑ .           (4.32b) 

 
According to Heiskanen and Mortiz (1967, Eq. 7-37, p. 262) we can write 
 

( ) ( ) ( ){ } ( ) ( )2 22 T T2
20 VH VH

VH 0
2

,
4 sin

L n n

n n n

n

P PR
T v r r Q r

ε ε
δ ψ

θ θ λ

∞
∗

=

    ∂ ∂
  = −Ω − +        ∂ ∂     

∑                   

             ( ) ( ) ( ){ } ( )
22

VH VH 2
0

2

, 1
4

L

n n n n

n

R
v r r Q r n nψ σ

∞
∗

=

 = −Ω − + ∑ .              (4.33a) 

 
In a very similar way can obtain: 
 

( ){ } ( )
22

21 VH
VH 0

2

, 1
4

L

n n

n

R
T Q r n n cδ ψ

∞

=

 = + ∑ ,  (4.33b) 

and 

( ) ( )
2

22 2
VH

2

1
4

L

n n

n

R
T v r n n dcδ

=

= +∑ .                             (4.33c) 
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Substituting Eqs. (4.33a)-(4.33c) into Eq. (4.30) and considering  
 

( )

2

VH
0

k

T

v r

δ∂
=

∂
,      (4.34) 

 
and after relatively long derivations the proposition is proved. 
 
Proposition 4.6 The ULSM parameters are derived is we select  

( ) ( )VH VH( ) ,L

n n nb r Q r v rψ = +   for the VH components of the gravitational 

tensor and solve Eq. (4.5a) with following elements: 

 

( ) ( )n ns r v r=  

( )( ) ( ) ( )( )2 1 2
01 1rk kr k k rk rk k ka a k k c r r E cσ δ ψ σ= = + + − + + −            

               ( ) ( )( ) ( ) ( ) ( )( )1 2 1 1 2
0 0 0

2

1 1kr r r nr nk n n

n

k k E c E E n n cψ σ ψ ψ σ
∞

=

− + + + + +∑ ,      

( ) ( ) ( ) ( ) ( ){ } ( ) ( )VHVH 2 2 1
0 0

2

1 , 1k k k k k k nk

n

h r k k r Q r c n n Eσ ψ σ ψ
∞

=

 = + Ω − + − + ×  ∑                 

           ( ) ( ) ( ){ }VH 2 VH 2
0,n n n k nQ r c rψ σ σ × + −Ω  . 

 

Proof. Sjöberg (1991) showed that if ( ) ( )VH
0( ) ,

L

n n nb r Q r v rψ = +  , the 

estimator will be unbiased. In this case, we can consider Eq. (4.30) for the error of 
the estimator.  The first term which is related to the terrestrial data error is the 
same with the unbiased type; see Eq. (4.33a), but we can merge the truncation and 
geopotential coefficients errors together. Therefore we can write 
 

( ) ( ){ } ( )
22

2 21 2 VH
VH VH 0

2

, 1
4

L

n n n

n

R
T T Q r v r n n dcδ δ ψ

∞
∗

=

 + = + + ∑ ,     (4.35) 

 
After summing up Eq. (4.33a) and the above equation and taking derivative with 

respect to ( )kv r∗ and equating the results to zero and some simplification the 

proposition is proved. The global MSE of the estimator can be obtained by using 
Eq. (4.30). 
 
Proposition 4.7 The OLSM parameters are derived by setting 

( ) ( ){ } ( )VH
0( ) , /

L

n n n n n nb r Q r v r c c dcψ = + +   for the VH components of 

gravitational tensor and solving Eq. (4.5a) and with the following elements: 

                   

          ( ) ( )n ns r v r=  

 

  ( ) ( ) ( ) ( ) ( )1 1
0 01 1 1kr rk r kr rk r kr ka a k k C r r E C k k E Cδ ψ ψ= = + − + − + +      
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                      ( ) ( ) ( )1 1
0 0

2

1nr nk n

n

E E n n Cψ ψ
∞

=

+ +∑ ,             k , r=2,3,…,M 

 

        ( ) ( ) ( ) ( ){ }VHVH 2
01 ,k k k k kh r k k r Q r Cσ ψ = + Ω − +   

          ( ) ( ){ } ( ) ( )VH VH 2 1
0 0

2

, 1k n n n nk

n

Q r C r n n Eψ σ ψ
∞

=

 + −Ω + ∑ , 

 
where kC has the same definitional as that of Eq. (4.6). 

 
Proof. The global MSE of the estimator is the same with that presented for the 
SOD of the disturbing potential: 
 

  ( ) ( ) ( ){
22

2 VH
VH 0

2

,
4

L

n n n n

n

R
T b r v r Q r cδ ψ

∞
∗ ∗

=

  = − − +   ∑  

               ( ) ( ) ( ) } ( )
22

VH VH 2 2
0

2

,
4

M
L

n n n n n n

n

R
r v r Q r b r dcψ σ∗

=

  + Ω − − +    ∑ ,    (4.36) 

 

taking derivative with respect to  ( )kv r  and equating the results to zero and 

further simplifications the proposition is proved.       
 

4.5 LSM and HH gravitational gradients 

 

We name the gradients ( )xxT P , ( )yyT P  and ( )xyT P , HH gradients. Similar to the 

previous subsection, we consider the following integral formula: 
 

        
( ) ( )

( )
( ) ( )cos 2

,
sin 242

xx xx

xy

T P T P R
H r g Q d

T P σ

α
ψ σ

απ

 −  
= ∆   

   
∫∫ ,           (4.37a) 

 

where (Reed 1973, Eq. 5.37) 
 

( ) ( ) ( ), , cot ,H r S r S rψψ ψψ ψ ψ ψ= − ,   (4.37b) 

 
and 
 

( ) 2

3 2

2 6 1 cos
, cos 8 3

sin

t D
S r t

D D D
ψψ

ψψ ψ
ψ

− −= − + − − −


 

                          3 2

5 3 2 2

1 cos 6 6 1
3ln sin 3

2 sin

t D D
t

D D D

ψ ψ
ψ

− + − − + + + +  
 

                          
( ) 2 2 2

1 1 cos 2cos 1
3 3

1 cos sin sin

D t D

D t D D t D

ψ ψ
ψ ψ ψ

 + − −
+ − +  − +  

,(4.37c) 

 
If the spectral form of Eq. (4.37b) is: 
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( ) ( ) ( )2
2

2 1
, cos

2
n n

n

n
H r r Pψ ψ

∞

=

+
= Ω∑ ,   (4.37d) 

 

where ( )n rΩ  is same as that of Eq. (4.3b).  

  

4.5.1 Truncation errors for the HH gravitational gradients 

 
Let the following kernel for the HH gravitational gradients: 
 

( )
( )

0

0

0 0

, 1
,

2

H r
H r

ψ ψ
ψ

ψ ψ ψ π

≤ <
= 

≤ ≤

,             (4. 38a) 

 
with the following spectral form 
 

         ( ) ( )( ) ( ) ( ) ( )H
0 2

2

2 1
, , cos

2 2 1 1
n n

n

n
H r Q r P

n n n n
ψ ψ ψ

∞

=

+
=

+ + −∑ ,(4.38b) 

 
and truncation error coefficients 

 

( ) ( ) ( )
0

H
0 2

1
, , cos sin

2
n nQ r H r P d

π

ψ

ψ ψ ψ ψ ψ= ∫ .        (4.38c) 

 
A spectral form for the truncation error of the HH gravitational gradients is 
sought. Let us first introduce the following lemma before presenting the 
mathematical derivations. By using the lemma a theorem is presented which is 
useful for the LSM of the HH derivative of the extended Stokes formula. 

 
Theorem 4.2:  

 

     ( ) ( )2

cos 2
cos

sin 2ng Q P d
σ

α
ψ σ

α
 

∆ = 
 

∫∫  

                                   

( ) ( ) ( )

( ) ( )

2 2

2 2 2

2

1
cot

4 sin
2 1 1 1

cot
sin sin

n n n

n n

g P g P g P

n g P g P

θ
π θ θ θ λ

θ
θ λ θ θ λ

 ∂ ∆ ∂∆ ∂ ∆
− − ∂ ∂ ∂ =

+  ∂ ∆ ∂∆
− 

∂ ∂ ∂ 

.  

 

Proof. Let us first consider that part of the theorem containing cos 2α , this term 
can be written as: 
 

( ) ( )2 cos cos 2ng Q P d
σ

ψ α σ∆ =∫∫  

                ( ) ( ) ( ) ( )2 2

2 2 2

cos cos cos1
cot

sin
n n nP P P

g Q d
σ

ψ ψ ψ
θ σ

θ θ θ λ
 ∂ ∂ ∂

= ∆ − − ∂ ∂ ∂ 
∫∫ , 
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  (4.39) 
 
Equation (4.39) consists of three terms and here we simplified each terms in the 
following. First, we consider the first term. By using the addition theorem of 
spherical harmonics, Eq. (3.3) we have 
 

( ) ( ) ( ) ( ) ( )
2 2

2 2

cos 1

2 1

n
n nm

nm

m n

P Y P
g Q d g Q Y Q d

nσ σ

ψ
σ σ

θ θ=−

∂ ∂
∆ = ∆ +

∂ + ∂∑∫∫ ∫∫  

                                         
( ) ( )2 2

2 2

4 4

2 1 2 1

n
nm n

nm

m n

Y P g P
g

n n

π π
θ θ=−

∂ ∂ ∆
= ∆ =

+ ∂ + ∂∑ ,   (4.40a) 

 
the second term 
 

( ) ( ) ( ) ( ) ( )cos cot
cot

2 1
n nm

nm

P Y P
g Q d g Q Y Q d

nσ σ

ψ θθ σ σ
θ θ

∂ ∂
∆ = ∆ +

∂ + ∂∫∫ ∫∫  

                                
( ) ( )4 cot 4 cot

2 1 2 1

n
nm n

nm

m n

Y P g P
g

n n

π θ π θ
θ θ=−

∂ ∂∆
= ∆ =

+ ∂ + ∂∑ ,       (4.40b) 

 
and the last term 
 

( ) ( ) ( ) ( ) ( )
2 2

2 2 2 2

cos1 1 1

sin 2 1 sin

n
n nm

nm

m n

P Y P
g Q d g Q Y Q d

nσ σ

ψ
σ σ

θ λ θ λ=−

∂ ∂
∆ = ∆

∂ + ∂∑∫∫ ∫∫  

                      
( ) ( )2 2

2 2 2 2

4 1 4 1

2 1 sin 2 1 sin

n
nm n

nm

m n

Y P g P
g

n n

π π
θ λ θ λ=−

∂ ∂ ∆
= ∆ =

+ ∂ + ∂∑ . (4.40c) 

 
Now by substituting Eqs. (4.40a)-(4.40c) into Eq. (4.39) we obtain: 
 

   ( ) ( ) ( )2

2 2

4
cos cos 2

2 1
n

n

g P
g Q P d

nσ

πψ α σ
θ

 ∂ ∆
∆ = −+ ∂

∫∫  

                                                       
( ) ( )2

2 2

1
cot

sin
n ng P g P

θ
θ θ λ

∂∆ ∂ ∆
− − ∂ ∂ 

.   (4.41a) 

In a very similar way we can prove that  
 

    ( ) ( ) ( ) ( )2

2

4
cos sin 2 cot

2 1 sin sin
n n

n

g P g P
g Q P d

nσ

πψ α σ θ
θ λ θ θ λ

 ∂ ∆ ∂∆
∆ = −  + ∂ ∂ ∂ 

∫∫ .(4.41b) 

 
Therefore the theorem is proved. 
 
 
By considering Theorem 4.2 it will not be difficult to obtain the spectral form of 
the truncation error formula. Substituting Eq. (4.38b) into (4.38a) and inserting 
the result into Eq. (4.37a) we obtain: 
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( ) ( )

( )
( )

( )( ) ( )

1 1 H
0

1
2

,

2 2 1 12

xx yy n

nxy

T P T P Q rR

n n n nT P

δ δ ψ

δ

∞

=

 −
= × 

+ + −  
∑      

                                                              ( ) ( )2

cos 2
cos

sin 2ng Q P d
σ

α
ψ σ

α
∗  

× ∆  
 

∫∫ , (4.42) 

 
According to Theorem 4.2 the integral part of Eq. (4.42) is simplified and finally 
we can write the spectral form of the truncation error formula as: 
 
 

( ) ( )
( )

( )
1 1

HH
01

2

,
2

xx yy

n

nxy

T P T P
Q r

T P

δ δ
ψ

δ

∞

=

 −
= × 

  
∑       
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where 

 ( ) ( )
( )( ) ( )

H
0HH

0

,
,

2 1 1
n

n

Q r
Q r

n n n n

ψ
ψ =

+ + −
.   (4.43b) 

 

4.5.2 Error of terrestrial data of HH derivatives of the extended 

Stokes formula 
 
Let the following integral formula for the error of terrestrial data 
 

     
( ) ( )

( )
( ) ( ) ( )

0 0

T

0
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, ,

sin42
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xy

T P T P R
H r H r Q d

T P σ

δ δ α
ψ ψ ε σ

απδ

 −  
 = −    

    
∫∫ .     (4.44) 

 

Considering the spectral forms of ( ),H r ψ  and ( ),H r ψ (see Eqs. 4.37d and 

4.38b) and inserting them into Eq. (4.44) we have  
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∫∫ .     (4.45) 

 
According to Theorem 4.2 we obtain 
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4.5.3 LSM of the HH derivatives of the extended Stokes formula 

 
Let us consider the following estimator for the HH gravitational gradients: 
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where 

                           ( ) ( ) ( ) ( )2
1

2 1
, , cos

2

L
L

n n

n

n
H r H r h r Pψ ψ ψ

=

+ ′= −∑ .  (4.47b) 

 

Similar to the previous derivation the problem is to determine the modification 

parameters ( )nh r′  in such a way that the global MSE of the estimator is 

minimized in a least-squares scene. In the following, the mathematical derivations 
are summarized in three propositions as before. 
 

Proposition 4.8 The BLSM parameters ( )nh r′  are derived if we set 

( )( )n nb r h r′=  for the HH components of gravitational tensor and solve Eq. (4.5a) 

with following elements: 

 

( ) ( )n ns r h r′=  

        ( ) ( )( )( )21 1 2rk kr k k rka a k k k k dcσ δ= = − + + + −                                         

                      ( ) ( )( ) ( )2 2
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2
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k
E eψ ψ+
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                  ( ) ( ) ( )
0

2
0 2 2cos cos sinnk n ke P P d

π

ψ

ψ ψ ψ ψ ψ= ∫ .  (4.48b) 

 

Proof. Again the global MSE of the estimator can be written as: 
 

 
2 2 2 20 1 2

HH HH HH HHT T T Tδ δ δ δ= + + .     (4.49) 

 
 
The first term is related to the terrestrial data error; the second and the third are 
related to the truncation and geopotential coefficients errors with following 
expressions 
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and  

   ( ) ( ) ( ) ( )HH HH 2
0 0 0
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, ,
L

L
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Q r Q r h r Eψ ψ ψ
=

′  = −  ∑ .        (4.51) 

     
According to  

( )

2

HH
0

k

T

s r

δ∂
=

∂
,      (4.52) 

 
and simplifying the results the proposition is proved.  

 

Proposition 4.9 The ULSM parameters ( )nh r′  of the HH components of 

gravitational tensor is derived by setting ( ) ( ) ( )HH
0,

L

n n nb r Q r h rψ ′ = +   and 

solving Eq. (4.5a) with the following elements 

 

           ( ) ( )n ns r h r′=  

            ( ) ( )( )1 1 2rk kr k rka a k k k k d δ= = − + + −                                         

                          ( ) ( )( ) ( )2
01 1 2 rk kr r r r E dψ− − + + −  

                          ( ) ( )( ) ( )2
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Proof. If we consider Eq. (4.31a) for the first term of global MSE of the estimator 
(Eq. 4.27a) which is related to the terrestrial data error and also  
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for truncation and geopotential coefficients error.  The proposition is proved in a 
similar way of Proposition 4.6.  
                
Proposition 4.10 The OLSM parameters of the HH components of the 

gravitational tensor are derived by setting  

( ) ( ){ } ( )HH
0( ) , /

L

n n n n n nb r Q r h r c c dcψ ′ = + +   solving Eq. (4.5a) with the 

following elements 
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Proof. The proof is very similar to that of presented for Proposition 4.7. 
                

According to the estimator presented in Eq. (4.7a) and Eq. (4.47a) it is easy to 
validate the diagonal elements of the gravitational tensor. Since the Laplacian 

operator shows ( ) ( ) ( )( )zz xx yyT P T P T P= − +  therefore by estimating the 

( )zzT P  the summation of the ( ) ( )xx yyT P T P+  is validated as well as ( )zzT P . 

However, Eq. (4.47a) shows that ( ) ( )xx yyT P T P−  can also be evaluated, thus 

each elements of  ( )xxT P  and ( )yyT P  can easily be estimated by combining 

these two estimators. No problem is seen for evaluation of the VH gradients 
according to Eq. (4.28a) as they can be separately estimated. The numerical 
studies on this matter are left for future work.  
 

4.6. Modification with data in a spherical ring 

 
Modification of Stokes’ formula or its second-order derivatives can be done in 
such a way that the terrestrial data are restricted between two caps or in other 
words, we have data inside a ring around the computation point. This way of 
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modification is beneficial for the case where we have no data in the inner zone. 
This theory was originally presented by Sjöberg and Eshagh (2009) to estimate 
the geoid with data gaps. Here, we develop the theory to the extended Stokes 
formula and its second-order partial derivatives. This technique could also be 
useful to validate the SGG data when the satellite is flying over lakes or deserts 
with lack of terrestrial data. It can be used to estimate the SGG data to fill-in data 
in regions lacking the SGG data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 4.6. Truncation area of restricted data to a ring 
 

Figure 4.6 clearly shows the spherical ring containing the terrestrial gravimetric 
data. The truncation areas are 0σ  and 1σ σ− . The problem is to modify the 

extended Stokes formula or its second-order derivatives so that the effect of 
truncation errors is minimized. First we start with MM, in which the upper bound 
of the truncation error is minimized. This upper bound can mathematically be 
expressed by; see also Sjöberg and Eshagh (2009): 
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where ( ),LS r ψ  is the modified extended Stokes formula (Eq. 4.4a). By 

differentiating Eq. (4.35a) with respect to ( )ks r  and equating the results to zero,  

a system of equations equivalent to Eq. (4.5a) is obtained, in which the elements 
of the coefficients matrix is: 
 

                                       ( ) ( ){ }0 0
1 0kr kr kr kra E Eδ ψ ψ = + −  ,                         (4.54a) 

 
and for the right hand side of the system of equations we have: 
 

                                       ( ) ( ) 1 0( , ) ( , )k n k kh r r Q r Q rψ ψ= Ω + − .                 (4.54b) 

 

1σ σ−  

0σ  
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In this case the global mean square truncation error of the disturbing potential 
estimator becomes: 
 

     ( ) ( ) ( ) ( ){ }22 2 2 *
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             (4.55) 
 

In a very similar way we can obtain the elements of the system of equations (Eq. 
4.5a) in such a way that the solution of the system yields the biased type of LSM 
(BLSM). In this part of the thesis we confine ourselves on the biased type ring 
modification, which is the simplest type in comparison with the ULSM and 
OLSM (the discussion about the other types of the LSM is left for future works).        
 
Proposition 4.11 Solution of system of equations Eq. (4.5a) by the following 

elements is the BLSM of the disturbing potential estimator at radius r based on a 

spherical ring between 0 1ψ ψ ψ< < : 
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Proof. Let the disturbing potential be expressed by the following equation: 
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The spectral form of the above equation is  
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  (4.57) 
with the error 
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The statistical expectation of the global average of ( )T Pδ  becomes: 
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                      ( ) ( ) ( ) }2 22
0 1, ,L L
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Differentiation the above equation with respect to ( )ks r  and equating the results 

to zero and after some manipulations the proposition is proved.  
 
Corollary 4.5 The ring BLSM of the SOD of the extended Stokes function, is 

derived by selecting the following elements for the right hand side of Eq. (4.5a) 
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Corollary 4.6 The ring BLSM of the VH derivative of the extended Stokes  

formula is derived by selecting the following elements for Eq. (4.5a) 
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Corollary 4.7 The ring BLSM of the HH derivative of the extended Stokes formula 

is derived by selecting the following elements for Eq. (4.5a) 
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and 
                                                   

         ( ) ( ) ( )( ) ( ) ( ) ( ){ }HH HH
0 11 1 2 , ,k k k k kh r k k k k r Q r Q r cψ ψ= − + + Ω − + +              

                   ( ) ( ) ( ){ HH HH
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, ,n n n n

n

Q r Q r r cψ ψ
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The proofs of Corollary 4.6 and 4.7 are not presented here, as they are very 
similar to the proof of Proposition 4.10 and we avoid repeating them again.  
 

4.7 Derivations of ( )0
0nk

e ψ , ( )1
0nk

e ψ and ( )2
0nk

e ψ  

 
The LSM of the gradients are involved with integral product of two ALFs. In the 

LSM of the VV, VH and HH gradients we are involved with ( )0
0nke ψ , ( )1

0nke ψ  

and ( )2
0nke ψ , respectively. We name these coefficients, zero-, first- and second-

order Paul’s coefficients. Therefore we have to derive some formulas to 
practically evaluate these coefficients in the LSM respect. The first-order Paul 

coefficients ( )0
0nke ψ  is the integral of product of two ALFs with order zero. Paul 

(1973) proposed a recursive formula to generate these coefficients. The first-order 

Paul coefficients ( )1
0nke ψ  are the integral product of two ALFs with order 1. In 

general the recursive formulas for the integral product of the two ALFs was 
obtained by Mainville (1986) and after that Hwang (1995) worked further on this 
matter and developed a formula to convert this integral product to a simple 
integral of the ALFs. Since the recursive formula for the integral of the ALFs was 
derived by Paul (1973), his idea can be used to compute the integral product of 
two ALFs. However, we already know that higher order terms than 2 is not 
needed for the LSM goal. Generating the ALFs up to very high degrees and orders 
may be unstable. Hwang (2008, personal communication) mentioned that he has 
generated the integral product of the ALFs just to degree and order 50 and 
generation of higher degrees (in the LSM we need for example 2000) will be 
unstable. In the LSM nothing has been reported about instability of the recursive 
algorithm of the associated Legendre polynomial to high degree (at least to 2000). 

Therefore, it would be preferable to develop some relations between ( )1
0nke ψ  and 

( )0
0nke ψ  which is more stable. The computation of ( )1

0nke ψ  which is integral 

product of two first-order ALFs was also presented by those geodesists working 

on Vening-Meinesz’s formulas and it can easily be shown that ( )1
0nke ψ  is related 

to ( )0
0nke ψ  by the following relation: 

 

  ( ) ( ) ( ) ( ) ( ) ( )1 0
0 0 0 1 0 0 01 cos cos cos cosnk nk k n ne n n e n P P Pψ ψ ψ ψ ψ ψ− = + − −  . 

  (4.60) 
For more details and other forms for this relation the reader is referred e.g. to  
Chen (1982), Hsu (1984) and Neyman et al. (1996). According to these relations it 

is not difficult to compute ( )1
0nke ψ . The problem of deriving the second-order 
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Paul coefficient ( )2
0nke ψ  was not considered until now, because this problem is 

mostly related to gravity gradiometry, which is a special branch of geodesy. In the 
following we obtain a relation between this function and the first-order Paul 

coefficient ( )1
0nke ψ .  

 

Proposition 4.12 The relation between the second-order ( )2
0nke ψ  and the firs- 

order Paul coefficients ( )1
0nke ψ  is: 
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1 1 1 1 cos cos

2
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ψψ ψ ψ   = − + + + + +     

              ( ) ( ) ( ) ( ) ( )1
0 1 0 0 01 2 1 cos cos cosnk k ke n n n n k P Pψ ψ ψ ψ−   + + − + + −    . 

 

Proof. Let the well-known Legendre equation (Heiskanen and Mortitz 1967, p. 
22): 
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we can also write 
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2
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After integrating Eq. (4.62), the first term in the left hand side will be nothing else 

but ( )2
0nke ψ , namely: 
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Therefore Eq. (4.62) can be re-written as: 
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            (4.64) 
The first and second integrals in the right hand side of Eq. (4.64) can be solved 
partially 
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,  (4.65a) 

where 
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1 1
x x
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C x dx x x dx

dx dx dx dx dx− −

 
= − + − 

 
∫ ∫ ,  (4.65b) 

           ( ) ( ) ( ) ( ) ( ) ( )
0 0

1 2
0 1 1

1 1

1
x x

n k

nk n n

dP x dP x
e x x dx P x P x dx

dx dx− −

= − =∫ ∫ ,  (4.65c) 

    ( ) ( ) ( ) ( ) ( ) ( )0 0

2

1 1

1 1
x x

n k k

n

dP x dP x dP xd
x x dx n n xP x dx

dx dx dx dx− −
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∫ ∫ , (4.65d) 

 
and after further simplifications 
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Substituting Eqs. (4.65e) and (4.65f) into (4.65) we obtain: 
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and after changing the variable x to cosψ we have: 
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ψ
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ψ ψ

ψ
− + .       (4.67) 

 
Substitution of the limits and further simplifications prove the proposition.  
 

4.8 A simple numerical study on modification with a spherical 

ring 

 
For a numerical test we consider the extended Stokes function and its SOD. We 
leave modification of the VH and HH derivatives with spherical ring for future 
works. At the first step we consider the MM and BLSM.  The EGM96 to degree 
and order 360 is used for generating the spectra of the gravity anomalies and their 
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corresponding error spectra. Figure 4.7 shows the modified ESF for two rings, a) a 

ring limited between 0ψ =1 and 1ψ =5 and, b) a ring between 0ψ =5 and 

1ψ =20 . 

 
 

Figure 4.7. (a) MM of ESF for a ring between 0ψ =1 and 1ψ =5 and, (b) 0ψ =5 and 1ψ =20 . 

 

The figure shows that the modified ESF is considerably reduced but as we can see 
in the figure, minimization of the kernel for the truncation area outside of the ring 
suppresses the kernel not to change inside the considered ring. In order to show 
the feasibility of this type of modification, we increase the area of the ring. We 

select 0 5ψ = and 1 20ψ =  and modify the kernel function using the MM. 

Figure 4.7b presents the modified kernel versus the original one. As the figure 
shows the kernel behaviours differ inside the selected ring. Actually, this way of 
modification amplifies that part of the kernel which is are related with the data 
inside the ring. Now let us consider the BLSM method with errorless data in order 
to see its capability to modify the ESF for a spherical ring.  

 

 
 

Figure 4.8. (a) BLSM of ESF for a ring between 0 1ψ = and 1 5ψ = and, (b) 0 5ψ = and 

1 20ψ = with errorless data 

 
Similar to the previous figure, Figure 4.8a shows the modified kernel based on a 

ring limited to 1 5ψ< < . The same interpretation as that of Figure 4.7a can be 

made for this figure. Again the area of the ring is increased to 0 5ψ = and 

1 20ψ = caps. In this case, some changes are seen in the modified kernel when 

the geocentric angle varies from 5 to 20 . The general pattern of Figure 4.8b is 
very similar with Figure 4.7b, but larger fluctuation is visible in the figure than 
that of Figure. 4.7b. In order to do better comparison we estimate the global 
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RMSE of the estimators for both the MM and the BLSM. If we consider the ring 

between 0 1ψ = and 1 5ψ =  the global RMSE of the estimator will be 2.67 cm 

for the MM and 9.08 510−× cm for the BLSM, which show better performance of 
the BLSM in modifying the ESF.  
 

Next, the errors of the terrestrial and EGM data are taken into account. We 
used the Sjöberg (1984a) model to generate the error spectrum of the terrestrial 
gravity anomalies. In this case we consider 5 mGal as the standard deviation for 

the terrestrial data with correlation length of 0.1 . For more details about the 
numerical computations of the error spectrum of the gravity anomalies the reader 
is referred to e.g. Ågren (2004) or Ellmann (2005). The following figure shows 
the results of considering the two aforementioned rings but the kernels are 
modified by considering the errors of the data as well as the truncation error. 

 

 
 

Figure 4.9. (a) BLSM of ESF for ring between 0 1ψ = and 1 5ψ = and, (b) 0ψ =5 and 

1ψ =20 with erroneous data 

 

Figure 4.9a illustrates the modified ESF for a rind restricted between geocentric 
angles 1 and 5 . As we can see in the figure, a slight change occurs in the 
modified kernel. If we increase the size of ring and limit it to geocentric angles 
between 5 and 20  a small changes can be seen in the modified kernel inside the 
ring. The global RMSE of the estimator is both cases are 4.13 and 4.36 cm when 

the ring is between 0 1ψ = and 1 5ψ = and 0ψ =5 and 1ψ =20 , respectively.  

 
The numerical study presented here, discusses the modification of the ESF with 

a spherical ring. However, in SGG, the emphasis is on the modification of the 
SOD of the ESF. In the following we numerically investigate the ring 
modification of the SOD of ESF. Similar to previous study we consider two rings 

of 2 8ψ< <  and  8 20ψ< < . 
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Figure 4.10. (a) MM of SOD of ESF for a ring between 0ψ =2 and 1ψ =8 and, (b) 0ψ =8 and 

1ψ =20  

 

We have selected 2 8ψ< <  in our studies to visualize the variation of the 

modified kernel better in Figure 4.10a. As the figure shows the SOD of the ESF is 
better-behave than the ESF. This is why that we present the original and modified 

kernels to geocentric angle equal to 10 , while it was 30  for the ESF. The SOD 
of ESF has been modified using MM modification. Figure 4.11 presents the same 
problem but the modification approach is the BLSM with errorless data.  

 

 
 

Figure 4.11. (a) BLSM of SOD of ESF for a ring between 0ψ =2 and 1ψ =8 and, (b) 

0ψ =8 and 1ψ =20 with errorless data 

 
The figure illustrates different behaviour for the modified kernel by the BLSM. 
However, the figure demonstrates that the BLSM with errorless data (considering 
just truncation error) is also capable to modify the SOD of the ESF very well. 
Figure 4.11b shows smaller variations for the modified kernel by the BLSM than 
the MM (Figure 4.10b) in the equivalent ring.  In order to compare these two 
modification errors it is enough just to look at the estimated global RMSE of the 

estimators. The errors are 1.2 mE and 2.46 510−× mE when the MM and the BLSM 

are used with a spherical ring 2 8ψ< < , respectively. The RMSE of the 

estimators show that there is no doubt that the BLSM is better than the MM. Let 
us now take the erroneous data into account in the BLSM process. Figure 4.12 
shows that the kernel has been modified very well for both considered rings. The 
global RMSE of the LSM estimators are 16.86 mE and 17.42 mE for the ring 

2 8ψ< <  and 8 20ψ< < , respectively. 
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Figure 4.12. (a) BLSM of SOD of ESF for a ring between 0ψ =2 and 1ψ =8 and, (b) 

0ψ =8 and 1ψ =20 with errorless data 
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Chapter 5 

 

 

 

Local gravity field determination  

 
 

 
5. 1 Introduction 

 
The second-order partial derivatives of the extended Stokes formula can be used to 

recover the gravity anomaly. In fact, the integral formulas are solved in reverse case 

by considering them as integral equations, namely the gravitational gradients are 

observed at satellite level and the unknowns are the gravity anomalies at sea level. In 

practice, these integral equations have to be descritized prior to computations. The 

solutions of these integral equations yield the downward continued gravity anomaly. 

They are classified as the solutions of ill-posed problems, which among other 

properties are sensitive to the errors of the data. Any small errors in the data can vary 

the solution considerably. Regularization is one method to stabilize such a system of 

equations.  

 
Reed (1973) was one of the earliest persons who suggested direct downward 

continuation of the SGG data in a local gravitational field respect. He derived the 

corresponding kernels of the second-order partial derivatives of the extended Stokes 

formula. The performed numerical studies of Reed (1973) were very promising. The 

ill-posed problems of downward continuation of his simulation were solved by 

defining some constraints to the system of equations. After that Rummel (1976) 

theoretically investigated the downward continuation of satellite data in stochastic 

and deterministic views. Zielinski (1975) considered least-squares collocation for 

downward continuation and concluded that the additional information is not local but 

global in statistical characters, and it is impossible to get rigorously exact results. 

Rummel et al. (1979) compared and presented the relation between regularization and 

least-squares collocation. Krarup and Tscherning (1984) evaluated the isotropic 

covariance function of torsion balance observations. Arabelos and Tscherning (1990) 

used these covariance functions to determine the local gravity field from SGG data. 

They concluded that the gravity anomaly can be recovered within 8.3 mGal and the 

geoid within 0.33 m accuracies. Visser (1992) investigated downward continuation of 
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satellite accelerations. He used the Tikhonov regularization and the least-squares 

collocation as deterministic and stochastic methods and concluded that collocation is 

superior to the Tikhonov regularization. Tscherning (1993) derived the covariance of 

derivatives of the gravity anomalous potential in a rotated frame and later on 

Arabelos and Tscherning (1995) used the covariance functions to recover the gravity 

field locally from the observed SGG data in the ORF. Least-squares collocation relies 

on the a priori information about the unknowns and Xu (1991) investigated the 

robustness of this method against incorrect prior information of data. Xu (1992) 

started the discussion of determining the gravity anomaly from the SGG data without 

a-priori information by using the Tikhonov regularization. He presented a 

regularization method minimizing the mean square error of the estimated anomalies. 

Xu and Rummel (1994) investigated the smoothness of the regional gravity field and 

concluded that the biased estimators improve the least-squares solution, but the 

improvements are quite different. They proposed an iterative ridge estimator in this 

respect. The truncated singular value decomposition was used by Xu (1998).  

Gelderean and Rummel (2001) and (2002) presented the closed form expressions of 

the Green functions of the GBVPs and removed the zero- and first-degree harmonics 

from their derivations. Martinec (2003) stated that one can consider these degrees 

without problem for the VV component and first-degree harmonics for the VH 

components. Both of the Green functions presented by Gelderen and Rummel (2001) 

and (2002) and Martinec (2003) can be used to upward or downward continue the 

gravitational gradient to mean orbital sphere. However, they cannot be used for 

downward continuation of the gradients to some quantities at sea level. Toth et al. 

(2004) and (2006) investigated the downward and upward continuation of the 

gravitational gradient. The difference between their approach and other is to 

downward/upward continue the gradients to the same type of gradients at mean 

orbital sphere. They assumed the second-order Taylor expansion for this continuation 

and derived corresponding kernel formulas in spectral forms. Toth et al. (2007) 

investigated the practical aspects of this continuation using band limited kernels and 

concluded that a cap size of 8  is needed, if sufficient suppression of omission errors 

is required for both upward and downward continuation with band pass filtered 

kernels. Kotsakis (2007) presented a covariance-adaptive method for regularization 

and used this method for determining the gravity anomaly at sea level from second-

order radial derivative of the gravitational gradients. This method is sensitive to 

choice of covariance-adaptive matrix which, should a priori be known.  

 

This chapter numerically investigates inversion of all gravitational gradients to 

recover the gravity anomalies in the presence of Gaussian noise of 1 mE and 1 cE. 

There are different methods for regularization, but in this chapter, the well-known 

Tikhonov regularization is used because of its simplicity. The resolution of the SGG 

data and the required gravity anomalies are tested according to the introduced noise 

levels. The biases and propagated errors are investigated and discussed as well. At the 

end, a method to approximate the truncation error of the integrals is proposed.  
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5.2 Inversion by second-order derivatives of the extended Stokes 

formula 

 
The second-order partial derivatives of the extended Stokes formulas in the LNOF 

are: 

( ) ( ) ( ),
4

zz rr

R
T P S r g Q d

σ

ψ σ
π

∗= ∆∫∫ ,                     (5.1a) 
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ψ σ
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         and 

( ) ( ) ( )1 1
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r r
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. 

 

Here, ( )ijT P , i, j = x, y, z are the gravitational gradients at the computation point P 

(at satellite level), ( )g Q∗∆ is the downward continued gravity anomaly at the 

integration point Q (at sea level), R is the radius of the sphere approximating sea 

levels, r is the geocentric radius of the computation point P and α  is the azimuth 

between P and Q.   
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The above integral formulas hold if there is a global coverage of gravity 

anomalies. However, the problem is not to generate the gravitational gradients, but it 

is inverse solution of the integral in order to obtain the local gravitational field. Here, 

the integral formulas must be discretized according to the resolution of the available 

data (gravitational gradients) and the unknown parameters (gravity anomaly at sea 

levels). These discretized forms of the above integrals can be written: 
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where n is the number of cells according to the resolution of the gravity anomaly 

being determined, i and j are the indices related to P and Q in the integral equations.  

zzA , xxA , yyA , xyA , xzA , yzA are the matrix forms of the integrals, zzT , xxT , yyT , 

xyT , xzT , yzT  are the vectors of the gravitational gradients, ∆g  is the vector of the 

unknowns (downward continued gravity anomalies) and sini i i id dσ θ θ λ∆ =  is the 

integration element ( iθ  and iλ  are the co-latitude and longitude of the point i) .   

 

Equations (5.1a)-(5.1f) are Fredholm integral equations of the first kind, and the 

inverse solutions of such integrals are ill-posed. The above equations also present the 

matrix forms of the integral equations, which are suitable for numerical computations. 

An important matter about these matrix equations is related to the resolution of the 

data and discretization. In general, we can have different number of unknowns and 

observables in the solution. Some geoscientists consider equal number of observables 

and unknowns and some others use more observables than the number of unknowns 

to have over-determination in their solution. In both cases, we have to solve an ill-

posed problem, in which the solution is very sensitive to the existing errors in the 

observations, which are amplified through the inversion process. In this case, the 

integral coefficient matrices are ill-conditioned and unstable, and we have to 

somehow stabilize them by some regulator.  

 

5.3 Singularity investigations on isotropic kernels 
In some of the kernels presented in Eqs. (5.1a)-(5.1c) singularity occurs when the 

integration point Q approaches the computation point P. In this section, we 
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investigate these numerical singularities theoretically and simplify the kernels in the 

singular points. It should be mentioned that in our derivation it is assumed that t < 0, 

as the computation point is at satellite level. No singularity is observed for 

( ),rS r ψ and ( ),rrS r ψ  as they are: 
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                  (5.3b) 

Therefore we should not worry about singularity of the SOD of the extended Stokes 

formula and the first terms of the kernels of Eqs. (5.2b) and (5.2c). Consequently, we 

concentrate on investigating the other kernels. Let us consider the following lemmas, 

which are useful through the derivations.  

 

Lemma 5.1:  
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Proof.  As we presented previously, ( )
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Lemma 5.2: 
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Proof. Using Hopital’s law we have 
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Theorem 5.1:  
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Proof. According to Eq. (4.17d) it is easy to show that  

 

          

       ( ), 0rS rψ ψ = ,             (5.5a) 

 

therefore we should show that the first term of the limit is also equal zero. In order to 

do that we consider Eq. (4.17c) and taking limit of that equation we obtain 
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        (5.5b) 

 

Theorem 5.2:  
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Proof. Considering Eq. (4.17c) and after simplifications we have 
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Considering Lemma 5.2 we can further simplify the above relation and prove the 

theorem.  

 

Theorem 5.3:  
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Proof. Considering Eqs. (4.37c) we obtain in the limit: 
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Using Lemma 5.2 the theorem follows.  

 

5.4 Regularization  

 
As was already mentioned, the inverse solution of an integral equation is very 

sensitive to the errors of the data. A small fluctuation in the data will lead to large 

changes in the estimated parameters. Therefore, the system of equations is unstable 

and it should be stabilized. This stabilization problem is called regularization. Let us 

start our discussion by the following Gauss-Markov model: 

 

= −Ax L ε ,               (5.8) 

 

where, A can be one of the coefficient matrices zzA , xxA , yyA , xyA , xzA , yzA , L 

can be one of the vectors zzT , xxT , yyT , xyT , xzT , yzT , ε  is the error of the 

observations L and x is the vector of unknown parameters. Based on this model we 

consider the well-known Tikhonov regularization method in the following. 

 

5.4.1 Tikhonov regularization 

 
In the Tikhonov regularization the problem is to solve the following optimization 

problem 

 

             ( )2 22 minα+ →Ax - L x (with respect to x)                 (5.9a) 

 

where 
2

Ax - L is the squared norm of the errors, 
2

x is a norm x . 2α > 0 is the 

Tikhonov regularization parameter. The regularized solution of Eq. (5.8) based on the 

Tikhonov regularization is (Tikhonov 1963): 

 

( )-1
2 1

reg = +T T Tα −=x A PA I A PL N A PL .           (5.9b) 

 

The important parameter here is the regularization parameter 2α , which can be 

estimated in different ways. Here we use the L-curve and the generalized cross-

validation (GCV) for estimating this parameter. The interested readers are referred to 

Hansen (1998) for the details of these methods. If 2α  is large regx  contains more bias 

than the case where 2α  is small. In other words, the former case leads to over-

smoothing and the latter to under-smoothing. The over-smoothing means that the 

solution is smoother than the true one and under-smoothing means that it is rougher; 

see Hansen (1998) for more details. Here, we take advantage of the regularization 

toolbox of MATLAB, which was given to the author by a personal communication 

with Hansen (2008).  
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5.5 Numerical studies on downward continuation of the SGG data  

 
We start this section with numerical studies on downward continuation of the SGG 

data to gravity anomalies at sea level. The L-curve and the GCV methods are used to 

estimate the regularization parameter in the Tikhonov regularization. We need a 

criterion to select the best method of estimation the regularization parameter; in this 

case we consider three different simulation studies to see which method yields the 

closest result to the simulated values.  

 

A regular grid of gravity anomalies are generated using EGM96 to degree and 

order 360. The integral formulas that we presented for the gravitational gradients at 

satellite level are employed to generate the SGG data at 250 km level. Two Gaussian 

noise models of 1 mE and 1 cE are generated and added to the generated SGG data. 

In fact, considering these Gaussian noise level gives us some ideas about the quality 

of the inversion, to see which regularization method can provide closer results to the 

true gravity anomalies. 

  

As before, we select Fennoscandia as our test area, and in order to provide some 

ideas about the gravity anomalies in this region Figure 5.1 is presented.  

 

 
           

 

Figure 5.1. Gravity anomalies generated by EGM96 with 1 ×1 resolution in Fennoscandia. Unit: 1 

mGal 

 

It shows negative gravity anomalies in the Baltic Sea and positive anomalies over the 

Norwegian mountains. The maximum, minimum, mean and standard deviation of the 

gravity anomalies in this area are 57.48, -51.83, 0.09 and 17.84 mGal, respectively. 
 

 

We consider three simulated examples to test the ability of the regularization 

methods in recovering the gravity anomalies from gravitational gradients at satellite 

level. First we test the Tikhonov regularization to recover a grid of 1 ×1 gravity 
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anomalies from 0.5 ×0.5 grid of the SGG data. In the next subsection, we want to 

recover a 0.5 ×0.5 grid of gravity anomalies from 0.25 ×0.25 SGG data. In the 

last part of this numerical simulation studies, we consider the problem of recovering 

1 ×1 gravity anomalies from 0.25 ×0.25 SGG data to see how much over-

determination can suppress the noise in an ill-posed problem.  

 

5.5.1 Recovery of 1 ×1   gravity anomaly from 0.5 ×0.5  SGG 

data  

 
We have to consider the condition number of the system of equations related to each 

gravitational gradient. The condition number is the ratio of the maximum and 

minimum eigenvalues of the coefficients matrix of the system of equations. A 

positive-definite matrix has only positive eigenvalues (singular values).  A system of 

equations having a coefficient matrix with a high condition number is more sensitive 

to data errors than that with a smaller condition number. Here, based on Eqs. (5.2a)-

(5.2f) and 1 ×1  synthesized gravity anomalies and 0.5 ×0.5 SGG data by the 

EGM96, the coefficient matrices are constructed.  

 

 
 

Figure 5.2. Singular values of zzA , xxA , yyA , xyA , xzA  and yzA matrices, for recovering 

1 ×1 gravity anomaly from 0.5 ×0.5 SGG data 

 

Figure 5.2 illustrates the singular values. A very similar pattern can be seen for 

singular values of zzA , xxA , yyA  and xzA , but this pattern is similar for xyA and 

yzA . For the sake of competence, Table 5.1 is given, which presents the maxima and 

minima singular values of the coefficient matrices of Eqs. (5.2a)-(5.2f) as well as 

their corresponding condition numbers.  

 

 

 

 

Number of singular values 

S
in

g
u
la

r 
v

al
u

es
 



 139

Table 5.1. Maxima and minima of singular values of different system of equations and their 

corresponding condition numbers κ  for recovering 1 ×1 gravity anomaly from 0.5 ×0.5 SGG 

data 

 

 xxA  yyA  
zzA  xyA  

xzA  yzA  

maxλ  2.39× 310−  2.44× 310−  2.49× 310−  1.48× 410−  2.54× 310−  3.86× 310−  

minλ  8.38× 1010−  1.67× 810−  4.46× 910−  9.87× 610−  4.35× 1010−  1.51× 510−  

κ  2.85× 710  1.46× 610  5.57× 610  1.49× 310  5.83× 710  2.56× 310  

 

 

The smallest condition numbers are related to xyA and yzA , which means that they 

are less sensitive to errors in the data compare to other design matrices.  

 

We know that in the real situation the solution are always involved with noise and 

biases in the data. Here, we consider two Gaussian types of noise levels of 1 mE and 

1 cE for the observations. Adding the random noise to the synthesized SGG data at 

250 km level may bring the problem closer to reality. Figure 5.3 shows the generated 

noise for the gravitational gradients. 

 

 
 

Figure 5.3. Generated Gaussian noise of (a) 1 mE and (b) 1 cE on gravitational gradients  

 

The same noise is considered for all the gradients for easy comparison of results. 

 

The differences between the recovered and the true (simulated) gravity anomalies 

can be a good criterion to judge about quality of the regularization method. The 

statistics of these differences are summarized in Table 5.2. The table shows that the 

GCV method of selecting the regularization parameter yields better results than the L-

curve method. 
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Table 5.2. Statistics of errors of  1 ×1 recovered gravity anomalies from 0.5 ×0.5  SGG data 

using Tikhonov regularization (based on L-curve and GCV) with Gaussian noise of 1 mE. Unit: 1 

mGal 

 
 L-curve GCV 

 min mean max std min mean max std 

xxT g ∗→∆  -18.81 -0.01 17.29 6.02 -19.03 -0.00 16.60 4.97 

yyT g ∗→∆  -18.33 -0.01 15.30 6.33 -12.44 -0.01 14.75 4.69 

zzT g ∗→∆  -15.14 0.02 16.92 6.14 -10.10 0.01 9.58 3.32 

xyT g ∗→∆  -16.85 -0.12 18.90 5.75 -12.96 -0.13 13.78 4.41 

xzT g ∗→∆  -16.36 0.05 16.98 5.58 -13.42 0.04 12.00 4.11 

yzT g ∗→∆  -12.92 -0.00 12.82 4.27 -12.28 -0.00 15.02 4.02 

 

 

Most of the estimated standard deviations of the differences (the difference between 

the recovered and the true values of the gravity anomalies) by the GCV are smaller 

than those estimated by the L-curve. Now, let us increase the noise to 1 cE, the 

statistics of the differences between the recovered and true gravity anomalies are 

presented below.  
 

Table 5.3. Statistics of errors of  1 ×1 recovered gravity anomalies from 0.5 ×0.5  SGG data 

using Tikhonov regularization (based on L-curve and GCV) with Gaussian noise of 1 cE. Unit: 1 mGal 

 

 L-curve GCV 

 min mean max std min mean max std 

xxT g ∗→∆  -29.02 -0.11 29.55 7.90 -26.75 -0.11 27.70 7.89 

yyT g ∗→∆  -21.89 -0.11 28.80 7.37 -23.88 -0.11 28.37 7.29 

zzT g ∗→∆  -20.69 0.07 21.57 6.76 -22.94 0.07 24.32 6.13 

xyT g ∗→∆  -28.04 -0.56 31.26 10.08 -28.60 -0.59 31.33 9.97 

xzT g ∗→∆  -26.30 -0.03 21.26 7.67 -27.43 -0.04 22.39 7.40 

yzT g ∗→∆  -27.99 -0.04 38.61 8.68 -28.54 -0.03 35.92 7.93 

 

 

Table 5.3 clearly shows that both methods of selecting the regularization parameter in 

the Tikhonov regularization yield more or less the same results. Again Table 5.3 

suggests the GCV method for estimating the regularization parameter. Table 5.4 

shows the estimated regularization parameters. The table shows that all the 

regularization parameters are in the order of 210− .  The regularization parameters, 

which were estimated using the L-curve are smaller than those estimated by the GCV. 

It means that the bias of the recovered gravity anomalies based on the L-curve are 

smaller than that of the GCV, but as we assumed in the beginning of this section, our 

criterion is the closeness of the recovered gravity anomalies to the true ones 

(simulated one), and since the GCV provided closer results to the true ones we prefer 

to use the GCV for estimating the regularization parameter, even if it may be more 

biased than the L-curve solution.  
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Table 5.4. Values of regularization parameter of the coefficient matrices for recovering 1 ×1 gravity 

anomaly from 0.5 ×0.5 SGG data derived for Tikhonov regularization using L-curve and GCV, for 

1 mE and 1 cE noise on SGG data 

 

 1 mE 1 cE 

 L-curve GCV L-curve GCV 

xxT g ∗→∆  4.11× 210−  7.01× 210−  5.31× 210−  4.60× 210−  

yyT g ∗→∆  3.92× 210−  9.72× 210−  5.20× 210−  6.66× 210−  

zzT g ∗→∆  3.48× 210−  9.24× 210−  4.55× 210−  7.17× 210−  

xyT g ∗→∆  5.03× 210−  8.74× 210−  5.13× 210−  5.52× 210−  

xzT g ∗→∆  3.76× 210−  8.26× 210−  3.94× 210−  4.50× 210−  

yzT g ∗→∆  7.83× 210−  10.97× 210−  4.94× 210−  7.95× 210−  

 

 

 

5.5.2 Recovery of 0.5 ×0.5  gravity anomaly from 0.25 ×0.25  

SGG data 

 

Xu (1992) stated that the recovery of gravity anomaly with resolution of 0.5 ×0.5  is 

not easy when the noise of the SGG data are about 0.01 E. However, in this section 

we are going to test the possibility of recovering a grid of 0.5 ×0.5 gravity anomaly, 

if the noise level is reduced to 1 mE. In this respect, the gravitational gradients are 

synthesized at 250 km level with 0.25  ×0.25  resolution to recover the gravity 

anomalies with 0.5 ×0.5  resolution. Figure 5.4 shows the singular values of the 

coefficient matrices of the discretized integrals corresponding to each element of the 

gravitational tensor. Those values of zzA and xzA are similar and they are different 

for xxA and yyA . The singular values of xyA and yzA are again similar to those in the 

previous section. 
 

 

Figure 5.4.  Singular values of zzA , xxA , 
yyA , 

xyA , xzA and
yzA matrices, for recovering 

0.5 ×0.5 gravity anomaly from 0.25 ×0.25 SGG data 
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In Table 5.5 the maxima and minima of the singular values and their corresponding 

condition numbers are presented.  
 

 

Table 5.5. Maxima and minima of singular values of different system of equations and their 

corresponding condition numbers κ  for recovering 0.5 ×0.5 gravity anomaly from 

0.25 ×0.25 SGG data 

 

 xxA  yyA  
zzA  xyA  

xzA  yzA  

maxλ  5.94× 310−  6.04× 310−  6.20× 310−  3.66× 310−  6.32× 310−  9.55× 310−  

minλ  5.40× 1110−  8.51× 1010−  6.41× 1710−  3.07× 910−  2.52× 1710−  2.63× 910−  

κ  1.10× 810  7.10× 610  9.68× 1310  1.19× 610  2.51× 1410  3.63× 610  

 

In this case, the condition numbers of yyA , xyA and yzA are smaller than the other 

coefficient matrices, and they are expected to be less sensitive to noise vs. for the 

other coefficient matrices. It should be noted the condition numbers of zzA and xzA  

are considerably large compared with those of other matrices. We will use the 

Gaussian noise of 1 mE and 1 cE in the inversion process. Figure 5.5 shows the 

generated noises.  

 

 
 

Figure 5.5. Generated Gaussian noise of (a) 1 mE and (b) 1 cE on gravitational gradients.  

 

 

Table 5.6 presents the statistics of error of the recovered gravity anomalies. In this 

step we have added 1 mE noise (see Figure 5.5a) for each type of SGG data. One can 

learn from the table that the L-curve and the GCV methods work well in the presence 

of 1 mE noise in the data, in spite of having unstable system of equations. The 

difference between the recovered data based on the L-curve and the GCV is about 1 

mGal and may be negligible in practical considerations. 
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Table 5.6. Statistics of errors of 0.5 ×0.5 recovered gravity anomalies from 0.25 ×0.25  SGG 

data using Tikhonov regularization (based on L-curve and GCV) with Gaussian noise of 1 mE. Unit: 1 

mGal 

 
 L-curve GCV 

 min mean max std min mean max std 

xxT g ∗→∆  -15.38 -0.01 19.89 4.83 -15.49 -0.01 19.55 4.88 

yyT g ∗→∆  -16.72 -0.00 13.90 4.77 -16.63 -0.00 14.01 4.71 

zzT g ∗→∆  -13.05 0.00 17.31 3.87 -12.67 -0.00 16.68 3.68 

xyT g ∗→∆  -19.44 -0.04 19.59 5.94 -16.94 -0.06 17.74 5.13 

xzT g ∗→∆  -15.33 -0.02 17.46 4.38 -14.83 -0.03 17.50 4.30 

yzT g ∗→∆  -20.74 -0.00 20.45 5.63 -17.32 -0.00 15.82 4.62 

 
 

Table 5.7. Statistics of errors of 0.5 ×0.5 recovered gravity anomalies from 0.25 ×0.25  SGG 

data using Tikhonov regularization (based on L-curve and GCV) with Gaussian noise of 1 cE. Unit: 1 

mGal 

 
 L-curve GCV 

 min mean max std min mean max std 

xxT g ∗→∆  -33.69 -0.01 36.20 7.59 -26.51 0.03 29.15 7.32 

yyT g ∗→∆  -26.39 0.01 22.93 6.71 -23.90 0.01 23.62 6.74 

zzT g ∗→∆  -21.12 -0.01 25.75 5.68 -19.66 -0.00 26.80 5.71 

xyT g ∗→∆  -28.88 -0.35 31.08 8.55 -31.34 -0.25 33.28 8.73 

xzT g ∗→∆  -26.36 -0.20 28.04 6.75 -26.33 -0.17 34.63 6.90 

yzT g ∗→∆  -21.01 -0.03 29.49 7.08 -23.64 -0.03 27.78 7.20 

 
 

Table 5.8. Values of regularization parameter of the coefficient matrices for recovering 

0.5 ×0.5 gravity anomaly from 0.25 ×0.25 SGG data derived for Tikhonov regularization using 

L-curve and GCV, for 1 mE and 1 cE noise on SGG data 

 

 1 mE 1 cE 

 L-curve GCV L-curve GCV 

xxT g ∗→∆  5.05 210−×  4.79 210−×  5.37 210−×  2.59 210−×  

yyT g ∗→∆  5.19 210−×  5.58 210−×  5.12 210−×  3.47 210−×  

zzT g ∗→∆  5.40 210−×  7.10 210−×  5.24 210−×  4.39 210−×  

xyT g ∗→∆  4.88 210−×  6.66 210−×  4.90 210−×  3.21 210−×  

xzT g ∗→∆  5.25 210−×  5.96 210−×  5.07 210−×  2.92 210−×  

yzT g ∗→∆  4.71 210−×  8.45 210−×  5.65 210−×  4.69 210−×  

 

In a general view the table shows that the regularization parameter changes slightly 

when we considered 1 mE vs. 1 cE noise in the SGG data. The regularization 

parameter related with 
yzT g ∗→∆  differs when the noise level changes. The 
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regularization parameter estimated by the GCV considerably changes by the noise 

level. One might interpret this matter in such a way that the estimation process of the 

regularization parameter by the GCV rely more on the data. However, the 

consequence of these changes is not important as the standard deviations of the 

differences do not change considerably.   

 

5.5.3 Recovery of 1 ×  1  gravity anomaly from 0.25 ×0.25  SGG 

data 
In this part of the study we present how much over-determination of the SGG data 

affects recovering of gravity anomalies. In this case, we organize the system of 

equations in such a way that the resolution of the data are 0.25 ×0.25  and the goal 

is to estimate a 1 ×1  grid of gravity anomalies. At the first step, we have to analyze 

the coefficient matrices of the descritized integral equations. Figure 5.6 shows the 

singular values of the coefficient matrices. 
 

 
 

Figure 5.6.  Singular values of zzA , xxA , yyA , xyA , xzA and yzA matrices, for recovering 

1 ×1 gravity anomaly from 0.25 ×0.25 SGG data 

 

 

Table 5.9 shows the maxima and minima of the singular values of the coefficient 

matrices as well as their condition numbers. As the table shows the condition 

numbers of xxA , yyA and zzA are all in the order of 610 , and they are also in the same 

order for xyA and yzA and in order of 310 .  Therefore we can expected that the 

recovered gravity anomalies from xyT and yzT are less affected by noise in the data. 

 

Table 5.10 confirms our last statement about xyT and yzT components when we use 

the L-curve method for estimating the regularization parameter. However, as we can 

see when using the GCV method, we have smallest standard deviation of the 

differences related with zzT . If we increase the noise to 1 cE level, the result of our 

inversion is given by Table 5.11. 
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Table 5.9. Maxima and minima of singular values of different system of equations and their 

corresponding condition numbers κ  for recovering 1 ×1 gravity anomaly from 0.25 ×0.25 SGG 

data 

 xxA  yyA  
zzA  xyA  

xzA  yzA  

maxλ  4.76× 310−  4.86× 310−  4.97× 310−  2.95× 310−  5.07× 310−  7.70× 310−  

minλ  8.67× 910−  2.17× 810−  8.11× 910−  1.57× 510−  6.65× 1010−  2.49× 510−  

κ  5.49× 610  2.24× 610  6.12× 610  1.88× 310  7.61× 710  3.09× 310  

 

Table 5.10. Statistics of errors of  1 ×1 recovered gravity anomalies from 0.25 ×0.25  SGG data 

using Tikhonov regularization (based on L-curve and GCV) with Gaussian noise of 1 mE. Unit: 1 

mGal 

 

 L-curve GCV 

 min mean max std min mean max std 

xxT g ∗→∆  -13.79 -0.01 15.42 5.10 -14.24 -0.01 14.73 4.18 

yyT g ∗→∆  -18.63 -0.01 19.15 6.36 -12.66 -0.00 10.99 3.74 

zzT g ∗→∆  -19.76 0.01 14.27 5.50 -7.97 0.00 8.36 2.78 

xyT g ∗→∆  -12.13 0.01 15.99 4.13 -11.51 0.00 12.61 3.41 

xzT g ∗→∆  -14.90 -0.00 17.26 4.80 -9.43 -0.00 12.62 3.40 

yzT g ∗→∆  -9.39 0.00 10.41 2.99 -10.29 0.00 10.05 3.18 

 

Table 5.11. Statistics of errors of  1 ×1 recovered gravity anomalies from 0.25 ×0.25  SGG data 

using Tikhonov regularization (based on L-curve and GCV) with Gaussian noise of 1 cE. Unit: 1 mGal 

 
 L-curve GCV 

 min mean max std min mean max std 

xxT g ∗→∆  -24.01 0.06 23.72 6.49 -23.60 0.06 23.09 6.55 

yyT g ∗→∆  -21.16 0.00 21.16 6.85 -22.96 0.01 19.83 6.50 

zzT g ∗→∆  -17.95 0.01 27.76 5.93 -15.69 -0.00 23.15 5.18 

xyT g ∗→∆  -23.05 -0.10 30.40 8.72 -22.31 -0.19 29.29 8.31 

xzT g ∗→∆  -20.81 -0.16 23.25 7.03 -18.77 -0.17 21.86 6.40 

yzT g ∗→∆  -24.28 -0.01 29.13 9.13 -16.26 -0.02 22.26 6.74 

 

 

Table 5.12 shows that the regularization parameters estimated by the L-curve and 

GCV are more or less in the same order. However, as we can see, all the values are 

larger for the GCV than for the L-curve when the error is about 1 mE, except for yzT . 

According to Table 5.11 we can see that this magnitude is not significant when 

inverting yzT . If we increase the noise to 1 cE level, we will obtain smaller values for 

the regularization parameters. The regularization parameters estimated by the L-curve 

are very close to each other for each system of equations, while they are very 

different for the GCV. One may interpret this result as the fact of direct sensitivity of 

the GCV to the data.  
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Table 5.12. Values of regularization parameter of the coefficient matrices for recovering 

1 ×1 gravity anomaly from 0.25 ×0.25 SGG data derived for Tikhonov regularization using L-

curve and GCV, for 1 mE and 1 cE noise on SGG data 

 

 

1 mE 1 cE 
 

L-curve GCV L-curve GCV 

xxT g ∗→∆  4.53 210−×  8.13 210−×  4.63 210−×  4.39 210−×  

yyT g ∗→∆  3.81 210−×  9.86 210−×  5.18 210−×  6.83 210−×  

zzT g ∗→∆  3.93 210−×  11.69 210−×  4.81 210−×  8.21 210−×  

xyT g ∗→∆  6.47 210−×  9.81 210−×  4.99 210−×  6.13 210−×  

xzT g ∗→∆  4.42 210−×  9.44 210−×  4.01 210−×  5.02 210−×  

yzT g ∗→∆  14.80 210−×  9.36 210−×  3.81 210−×  8.09 210−×  

 

 

 

5.6 Inversion of Eötvös type gradients 

 
The previous section showed that the Tikhonov regularization using the GCV method 

is better than the L-curve method. In this part of our study we want to test downward 

continuation of the Eötvös type gradients, which are combinations of the HH 

gradients. In this case we use xx yyT T− and 2 xyT for recovering the gravity anomaly. 

In Chapter 4 we have presented their mathematical formulas. Here we concentrate on 

their inversions. We want to recover the 1 ×1 gravity anomalies from 0.5 ×0.5 and 

0.25 ×0.25 grids of the gravitational gradients. The singular values of the 

coefficient matrices are presented in Figure 5.17.   

 

 
 

Figure 5.7.  Singular values of xxA - yyA , 2 xyA , xzA and yzA for recovering 1  ×  1 gravity 

anomalies from  (a) 0.25  ×0.25  and, (b) 0.5  ×0.5 SGG data  

 

The statistics of the inversion are presented in Table 5.13. 
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Table 5.13. Statistics of errors of  1 ×1 recovered gravity anomalies obtained from inversion of 

0.5 ×0.5  and 0.25 ×0.25  Eötvös type gradients. Unit: 1 mGal 

 

0.5 ×0.5  0.25 ×0.25  
 min mean max std min mean max std 

( ),2xx yy xyT T T g− →∆ ∗  -10.39 -0.01 11.15 3.92 -8.91 0.00 9.07 2.98 

1
 m

E
 

( ),xz yzT T g→∆ ∗  -5.85 -0.00 7.89 2.53 -6.97 -0.00 7.62 1.95 

( ),2xx yy xyT T T g− →∆ ∗  -21.87 -0.04 29.02 8.20 -15.89 0.06 25.48 6.88 

1
 c

E
 

( ),xz yzT T g→∆ ∗  -25.07 -0.02 22.31 6.19 -15.06 -0.04 14.76 4.92 

 
As we saw in the previous section, over-determination helps the regularization 

process to suppress the random noise in the data. Table 5.13 shows that the main 

reason for decreasing the standard error of the differences between the recovered and 

the true gravity anomalies is related to higher redundancy of the data in joint 

inversion of xzT and yzT . In this case, there are no changes in the kernel functions of 

the integrals. The small standard deviation is due to over-determination. The situation 

is different for inversion of the HH gradients as their kernels change as well. As the 

table shows considerable improvement is achieved for the HH Eötvös type gradients 

relative to inversion of each single HH gradient.   
 

5.7 Estimated errors  

 
In the present section, we will study the estimated error of recovered gravity 

anomalies, assuming that the SGG data only contains random error. A result of the 

previous numerical studies was that, the GCV method yields better results with 

respect to those obtained by the L-curve. Here only the propagation of random errors 

and biases of regularization based on the GCV method will be considered. We start 

with estimating the propagated random errors. By considering Eq. (5.9b) and using 

the propagation law of random errors we obtain the covariance matrix of the 

estimated unknowns: 

 

     
reg

2 1 1

0

Tσ − −=xC N A PAN ,            (5.10) 

 

in which 2

0σ  is the variance of unit weight. Figure 5.8 shows the estimated errors of 

the gravity anomalies from the SGG data contaminated with Gaussian noise of 1 mE. 

In computing errors we set 2

0σ  to 1 (later on we will show how to estimate the a-

posteriori variance factor in such an ill-posed problem). Here, we have presented the 

propagated errors from 0.5 ×0.5 gravitational gradients at 250 km altitude. 
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Figure 5.8. Estimated error of 1 ×1 recovered gravity anomalies from 0.5 ×0.5  (a) xxT , (b) 

yyT , (c) zzT , (d) xyT , (e) xzT  and (f) yzT  with 1 mE Gaussian noise. Unit: 1 mGal 

 

In the figure “unknowns” stands for recovered gravity anomalies. The horizontal axis 

of the figures shows the serial number of recovered gravity anomalies from north to 

south and parallel by parallel in Fennoscandia. The jumps that we see in the figures 

illustrate that the errors quickly grow up in the end of each parallel of the selected 

region (Fennoscandia). The figure shows that the largest propagated error are related 

to inversion of xyT and the smallest one to zzT .  The general patterns of the errors are 

decreasing for inversion of xxT , yyT , zzT  and xzT from north to south, but they are 

increasing for xyT and yzT . The propagated error in inversion of yyT is slightly 

different with those of xxT and zzT , as we see smaller errors for the first (northern) 

and last (southern) parallels. Similar error behaviour is seen for xyT as the errors are 

increasing and larger in the southern part of the region. The propagated error of 

inverting yzT is small at the most northern parallel. The statistics of the estimated 

errors for the recovered gravity anomalies are presented in Table 5.14. The table 

shows that the smallest standard deviation of the propagated errors are related to the 

gravity anomalies recovered from xyT and yzT  and the largest ones are related to  

xxT and xzT .   

 

In Figure 5.9 we present the propagated errors of 0.5 ×0.5 gravity anomalies 

from 0.25 ×0.25 grids of the SGG data in order to see how the errors look like. 

Again we plot the errors by considering 1 mE noise in the SGG data. Again in the 

figure we see that the errors are decreasing from north to south of the region 

(Fennoscandia) for all inversion process except that for xyT . The smallest error is 

related to yzT , and it should be noted that there are two jumps in its plot for the most 

northern and the least southern parallels, but both jumps are smaller comparing with 

Serial number of unknowns 

Serial number of unknowns Serial number of unknowns 

Serial number of unknowns Serial number of unknowns 

Serial number of unknowns 

E
st

im
at

ed
 e

rr
o

r 
E

st
im

at
ed

 e
rr

o
r 

E
st

im
at

ed
 e

rr
o

r 

E
st

im
at

ed
 e

rr
o

r 
E

st
im

at
ed

 e
rr

o
r 

E
st

im
at

ed
 e

rr
o

r 

a) b) 

d) e) f) 

c) 



 149

the errors of the other gradients. Comparing the errors with the errors of the previous 

example we see that the magnitudes of these errors are larger.   

 
 

Table 5.14. Statistics of estimated error of 1 ×1 recovered gravity anomalies from 0.5 ×0.5  SGG 

data (with 1 mE and 1 cE Gaussian noise). Unit: 1 mGal 

 

1 mE 1 cE 
 

min mean max std min mean max std 

xxT g ∗→∆  1.44 2.76 3.81 0.40 3.10 4.51 6.78 0.64 

yyT g ∗→∆  1.78 2.56 3.13 0.25 2.61 3.34 4.86 0.34 

zzT g ∗→∆  1.64 2.30 3.05 0.24 2.48 3.27 4.54 0.38 

xyT g ∗→∆  3.35 3.64 4.20 0.16 4.20 5.61 6.50 0.48 

xzT g ∗→∆  1.49 2.46 3.38 0.31 3.64 4.86 7.07 0.65 

yzT g ∗→∆  2.18 2.64 3.07 0.14 3.59 3.95 4.67 0.20 

 

 

 

 
 

 

Figure 5.9. Estimated error of 0.5 ×0.5 recovered gravity anomalies from 0.25 ×0.25  (a) xxT , 

(b) yyT , (c) zzT , (d) xyT , (e) xzT and (f) yzT with 1 mE Gaussian noise. Unit: 1 mGal 

 

The statistics of the estimated errors are presented in Table 5.15. The largest error is 

related to inversion of xxT and the smallest one to zzT and the least standard deviation 

is related to yzT . In average point of view we can say that zzT is the best and xyT is the 

worst gradients for inversion. Now, we consider the case where the 1 ×1 gravity 

anomalies are recovered from the 0.25 ×0.25 SGG data. 
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Table 5.15. Statistics of estimated error of 1 ×1 recovered gravity anomalies from 0.5 ×0.5  SGG 

data (with 1 mE and 1 cE Gaussian noise). Unit: 1 mGal 

 

1 mE 1 cE 
 

min mean max std min mean max std 

xxT g ∗→∆  2.02 2.84 5.30 0.39 3.53 4.69 8.86 0.64 

yyT g ∗→∆  1.84 2.42 4.65 0.30 2.31 3.42 6.55 0.47 

zzT g ∗→∆  1.59 2.02 3.67 0.25 2.09 2.93 5.59 0.39 

xyT g ∗→∆  2.95 3.65 4.70 0.24 4.45 5.58 7.67 0.55 

xzT g ∗→∆  1.67 2.34 4.36 0.32 3.15 4.30 8.24 0.59 

yzT g ∗→∆  2.26 2.71 3.61 0.19 3.24 4.15 5.67 0.35 

 

 

Figure 5.10 shows the propagated errors when 1 mE noise are considered in the SGG 

data.  

 

 

 
 

Figure 5.10. Estimated error of 1 ×1  recovered gravity anomalies from 0.25 ×0.25  (a) xxT , 

(b) yyT , (c) zzT , (d) xyT , (e) xzT and (f) yzT with 1 mE Gaussian noise. Unit: 1 mGal 

 

The patterns of the propagated errors of the 1 ×1 gravity anomalies are very similar 

with those of Figure 5.9, which means that the distribution of the gravity anomalies 

(grid resolution) may be related to the propagated error patterns. Again the errors are 

decreasing from north to south for xxT , yyT ,  zzT and xzT , while they are increasing 

for 
xyT and 

yzT . Table 5.16 shows that zzT is the best gradients in average.  
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Table 5.16. Statistics of estimated error of  1 ×1  recovered gravity anomalies from 0.25 ×0.25  

SGG data (with 1 mE and 1 cE Gaussian noise). Unit: 1 mGal 

 

1 mE 1 cE 
 

min mean max std min mean max std 

xxT g ∗→∆  1.23 2.35 3.15 0.31 3.00 4.57 6.87 0.72 

yyT g ∗→∆  1.75 2.46 2.99 0.24 2.80 3.43 4.70 0.33 

zzT g ∗→∆  1.36 1.79 2.39 0.18 2.04 2.80 3.80 0.33 

xyT g ∗→∆  2.54 2.95 3.64 0.21 4.26 5.38 6.09 0.37 

xzT g ∗→∆  1.41 2.12 2.88 0.25 3.07 4.24 6.12 0.59 

yzT g ∗→∆  1.82 2.69 3.17 0.24 3.59 3.93 4.48 0.31 

 

In any adjustment process, when we want to estimate the error of the unknown 

parameters (in this case the gravity anomalies), we should consider an a-priori 

variance factor. In our computations, we have assumed that it is equal to 1, and this 

assumption is not far from reality, because we already know how much noise we have 

added to the SGG data.  However, we can re-scale the variance-covariance matrix of 

the estimated parameters by the a-posteriori variance factor. Estimation of the 

variance of unit weight (a-posteriori variance factor) in an ill-posed problem is not as 

easy as in an ordinary adjustment. In this case, the estimation will not be an unbiased 

estimation and subsequently the estimated a-posteriori variance factor of an ordinary 

adjustment is wrong. The scaled variance-covariance matrix of the estimated 

parameters in an ill-posed problem is: 

 

   
reg

2 1 1

0
ˆ ˆ Tσ − −=xC N A PAN ,          (5.11a) 

 

where 2

0σ̂ is the a-posteriori variance factor. The unbiased estimation of this factor has 

the following from (Xu et al. 2006, Eq. 22, p. 73): 

 

   
{ }

{ }
4 1 2 2

reg reg2

0 4 2
ˆ

trace

T T

n r

α α
σ

α

− −

−

− −
=

− +

ε Pε x N N x

N
,         (5.11b) 

 

where n and r are the number of observables and unknown parameters, respectively.  

regε  stands for the biased residuals, which are estimated from the regularized solution 

by  

        ( )0

reg reg= −ε I A L ,          (5.11c) 

where 
0 1

reg reg

T− −= =A AA AN A P .          (5.11d) 

 

In order to perform some numerical studies about estimation of the a-posteriori 

variance factor, we use the aforementioned system of equations (Eqs. 5.2a-5.2f). We 

generate again two types of Gaussian noise. The a-posteriori variance factor is 

estimated using Eq. (5.11b) as well as the bias (Eq. 5.11e). The results of our 
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computations are presented Tables 5.17 and 5.18. The tables show that the estimated 

a-posteriori variance factors in such ill-posed problem are close to 1. The differences 

between 2

0σ̂  and a-priori variance factor, which we assumed 2

0 1σ = , are due to the 

bias of the regularization. One can also use the standard formula for estimating the a-

posteriori variance factor, but the estimate will not be unbiased. In such a case, it is 

possible to estimate the bias and remove it from the estimated variance factor. A 

formula for this bias was proposed by Xu et al. (2006), which is given in Eq. (5.11e). 

 

Table 5.17. A-posteriori variance factors and biases due to regularization in recovering 1 ×1  

gravity anomalies from 0.5 ×0.5  and 0.25 ×0.25  SGG data 

 

0.5 ×0.5  0.25 ×0.25  

1 mE 1 cE 1 mE 1 cE  
2

0σ̂  Bias
2

0σ̂  
2

0σ̂  Bias
2

0σ̂  
2

0σ̂  Bias
2

0σ̂  
2

0σ̂  Bias
2

0σ̂  

xxT g ∗→∆  1.47 0.20 1.64 0.26 1.04 0.04 1.12 0.05 

yyT g ∗→∆  1.41 0.20 1.67 0.27 1.03 0.03 1.12 0.05 

zzT g ∗→∆  1.35 0.16 1.55 0.24 1.02 0.03 1.10 0.04 

xyT g ∗→∆  1.17 0.10 1.55 0.25 0.99 0.01 1.10 0.04 

xzT g ∗→∆  1.42 0.19 1.57 0.24 1.04 0.03 1.11 0.04 

yzT g ∗→∆  1.15 0.09 1.48 0.23 0.98 0.01 1.08 0.04 

 

Table 5.18 A-posteriori variance factors and biases in recovering 0.5 ×0.5  gravity anomalies from  

0.25 ×0.25  SGG data 

 

 
2

0σ̂ (1 mE) 
2

0σ̂  (1 cE) 

xxT g ∗→∆  1.76 1.94 

yyT g ∗→∆  1.76 1.95 

zzT g ∗→∆  1.72 1.91 

xyT g ∗→∆  1.58 1.89 

xzT g ∗→∆  1.75 1.92 

yzT g ∗→∆  1.54 1.85 

 

The bias in Tables 5.17 and 5.18 is :  

 

( ) { }4 1 1 2 2

02

0

trace trace
ˆBias

T T

n r

α σ
σ

− − −   +   =
−

PAN xx N A N
.       (5.11e) 

 

Equation (5.11e) is the estimated bias of the a posteriori variance factor which must 

be removed. We did not present the biases in Table 5.18, because the size of matrices 

was considerably large and our software was not able to handle them. However, the 

consequence of the estimated a-posteriori variance factors is similar to that of Table 

5.17. In estimating the a-posteriori variance factor using the standard formula (of an 
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ordinary adjustment) we obtained very close values to 1. Subtracting the biases from 

such variance factors yields negative values which is meaningless. Consequently, 

estimation of a-posteriori variance factor using Eq. (5.11b) is good enough for such 

ill-posed problems. 

 

5.8 Biased-corrected estimation of the gravity anomalies 

 
The Tikhonov regularization is a biased estimation and this bias is the penalty we pay 

for stabilizing the system of equations. However, the bias can be estimated and 

removed from the estimated parameter. We call this removal step the bias-correction 

step, and the corrected unknowns are called biased-corrected parameters. It is not 

difficult to show that this bias is given by: 

 

   ( ) 2 1

regbias α −= −x N x ,            (5.12) 

 

where x  is the true value of unknown parameters. regx  can be selected as an 

approximation of  x  to estimate the bias. In the following we present the biases of 

three examples that we considered for the local gravity field determination. We start 

with the case where a grid of 1 ×1 gravity anomalies are recovered from 0.5 ×0.5  

of the SGG data. The following figure shows the estimated biases from the SGG data 

with 1 mE noise.  

 

 
 

Figure 5.11. Estimated biases of  1 ×1  recovered gravity anomalies from 0.5 ×0.5  (a) xxT , (b) 

yyT , (c) zzT , (d) xyT , (e) xzT and (f) yzT with 1 mE Gaussian noise. Unit: 1 mGal 

 

In the figure “unknowns” stands for recovered gravity anomalies. Comparing the 

Figures (5.11a)-(5.11f) we see that the smallest bias is related with  zzT , and the other 

biases are within 15 mGal level. In illustrating these biases we considered 1 mE 

Gaussian noise in the SGG data, in Table 5.19 we present the statistics of the biased-
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corrected recovered gravity anomalies for both 1 mE and 1 cE Gaussian noise in the 

simulated data.  

Table 5.19. Statistics of errors of biased-corrected 1 ×1  recovered gravity anomalies from 

0.5 ×0.5  SGG data (contaminated by 1 mE and 1 cE Gaussian noise). Unit: 1 mGal 

 

1 mE 1 cE 
 

min mean max std min mean max std 

xxT g ∗→∆  -12.75 -0.01 9.40 2.79 -13.66 -0.12 13.76 4.34 

yyT g ∗→∆  -7.31 -0.01 7.80 2.65 -7.80 -0.10 7.91 2.90 

zzT g ∗→∆  -5.51 0.01 7.33 2.31 -9.14 0.07 7.98 3.04 

xyT g ∗→∆  -9.81 -0.10 12.11 3.53 -14.25 -0.23 14.35 5.12 

xzT g ∗→∆  -6.43 0.04 6.89 2.43 -14.34 0.04 16.37 4.67 

yzT g ∗→∆  -6.71 -0.00 7.89 2.48 -11.10 -0.03 12.52 3.66 

 

At first view we see considerable improvements for the recovered gravity anomalies 

(cf. Table 5.19). The standard deviations in the table show that the recovered 

parameters from zzT are closer to the true values (simulated values). However, the 

other gradients can be inverted with more or less the same quality when the noise is in 

1 mE level. The largest standard deviation is related to xyT as it was expected. When 

we increase the noise to 1 cE level, the inversion process behaviour a little bit 

changes as we can see the closer estimated parameter to the true ones for zzT and yyT . 

xzT and xxT provide the gravity anomalies with the same order and the largest 

differences are related with  xyT . Let us increase the resolution of the SGG data to 

0.5 ×0.5 in order to see how much over-determination improve the biased-corrected 

recovered gravity anomalies. Figure 5.12 shows the biases of inversions of the 

simulated SGG data with 1 mE Gaussian noise.  The differences between the biased-

corrected recovered gravity anomalies are the true ones are presented in Table 5.20.  

 
Figure 5.12. Estimated biases of 1 ×1  recovered gravity anomalies from 0.25 ×0.25  (a) xxT , 

(b) 
yyT , (c) zzT , (d) 

xyT , (e) xzT  and  (f) 
yzT with 1 mE Gaussian noise. Unit: 1 mGal 
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Table 5.20. Statistics of errors of biased-corrected recovered 1 ×1 gravity anomalies from 

0.25 ×0.25  SGG data contaminated by 1 mE and 1 cE Gaussian noise. Unit: 1 mGal 

 

1 mE 1 cE 
 

min mean max std min mean max std 

xxT g ∗→∆  -7.87 -0.01 7.37 2.37 -12.47 0.05 22.12 4.56 

yyT g ∗→∆  -8.28 -0.00 8.20 2.51 -8.30 0.00 10.71 3.27 

zzT g ∗→∆  -5.91 0.00 5.28 1.82 -10.44 -0.00 7.92 2.75 

xyT g ∗→∆  -8.64 0.01 8.79 2.89 -13.77 0.07 17.12 5.28 

xzT g ∗→∆  -6.47 -0.00 6.04 2.13 -15.12 -0.13 13.18 4.34 

yzT g ∗→∆  -7.02 -0.00 7.30 2.89 -10.80 -0.01 10.52 3.83 

 

 

Some improvements are seen in the inversion process although they are at less than 1 

mGal level for data with 1 mE noise. Similar conclusion can also be made for the 

noisy data with 1 cE standard deviation. The last example, in which the resolution of 

the required gravity anomalies is 0.5 ×0.5 and the resolution of the simulated data is 

0.25 ×0.25  is shown in Figure 5.13, which illustrates that the biases are in 15 mGal 

level except for xxT when the noise is at 1 mE level. 

 
 

 

 
 

Figure 5.13. Estimated biases of 0.5 ×0.5  recovered gravity anomalies from 0.25 ×0.25 (a) xxT , 

(b) yyT , (c) zzT , (d) xyT , (e) xzT and (f) yzT  with 1 mE Gaussian noise. Unit: 1 mGal 

 

The biased-corrected parameters are presented in Table 5.21, where, again, the 

Gaussian noise levels of 1 mE and 1 cE are considered.  
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Table 5.21. Statistics of difference of biased-corrected recovered 0.5 ×0.5 gravity anomalies from 

0.25 ×0.25  SGG data (with 1 mE and 1 cE Gaussian noise). Unit: 1 mGal 

 

1 mE 1 cE 
 

min mean max std min mean max std 

xxT g ∗→∆  -11.46 -0.01 9.39 2.87 -14.29 0.02 24.93 4.75 

yyT g ∗→∆  -8.20 -0.00 8.53 2.47 -10.03 0.01 12.23 3.26 

zzT g ∗→∆  -6.71 0.00 7.00 2.02 -11.67 0.00 8.78 2.86 

xyT g ∗→∆  -11.66 0.02 12.57 3.58 -17.60 0.00 20.60 5.42 

xzT g ∗→∆  -8.21 -0.00 7.820 2.30 -17.03 -0.06 15.84 4.23 

yzT g ∗→∆  -12.66 -0.00 9.09 2.71 -15.72 -0.02 10.72 3.89 

 

 

5.9 Truncation errors of the integral formulas 
   

Truncating the integrals with isotropic kernels, which means that the kernel function 

just changes by geocentric angle ψ , are easier than those with non-isotropic kernels. 

However, isotropy does not hold after differentiation. Here, we present another way 

for truncating the integral formulas with non-isotropic kernels. The truncation error of 

the integral formulas generating the gradients can be presented by the following 

integral: 

                                    ( ) ( ) ( )
0

,
4

ij ij

R
T P S r g Q d

σ σ

δ ψ σ
π

∗

−

= ∆∫∫ ,        (5.13) 

 
where i, j =x, y, and z. The integration domain 0σ σ−  is related to those part of the 

integral which are outside of 0σ , which is the inversion area and ( )g Q∗∆  is the 

gravity anomaly at sea level.  

 

Equation (5.13) can be written as: 

 

           ( ) ( ) ( ) ( ) ( )
0

, ,
4 4

ij ij ij

R R
T P S r g Q d S r g Q d

σ σ

δ ψ σ ψ σ
π π

∗ ∗= ∆ − ∆∫∫ ∫∫ ,      (5.14) 

 

The integration domain of the first integral is all over the globe and this integral, 

which is the space formulas of the gravitational gradients, can be expressed in terms 

of spherical harmonics.  

 

The integration domain of the second integral is a specific area for local gravity field 

determination. In other words, the gravity anomalies inside the integral can be 

generated with a specific resolution by using an existing EGM and the integration 

performs to generate the gravitational gradients at satellite level. Subtraction of these 
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two integrals can be an approximation for the truncation error of the integrals.  In the 

following, these truncation errors are presented and discussed. At the first step of our 

numerical studies, the gravitational gradients were generated using the EGM96 at 250 

km altitude with 0.25 ×0.25  and 0.5 ×0.5 resolutions. A grid of 1 ×1  gravity 

anomalies at sea level is generated. Figure 5.15 shows the truncation error estimated 

by Eq. (5.14). 

 
 

 
 

Figure 5.14. Truncation error of  0.5 ×0.5 estimated gravitational gradients (a) xxTδ , (b) yyTδ , 

(c) zzTδ , (d) xyTδ , (e) xzTδ  and (f) yzTδ from 1 ×1 gravity anomalies, respectively. Unit: 1 E 

 

The horizontal axis of the figures presents the serial number of gravitational 

gradients, which were put in a column vector row by row from the generated grid. 

The vertical axis shows the truncation error of each gradient. In this study we have 

1581 gravitational gradients at the satellite level (250 km) which are estimated from 

416 gravity anomalies at sea level. The statistics of these truncation errors are 

presented in Table 5.22, which shows significant error due to neglecting those 

portions of gravitational signal in gravitational gradients. The table illustrates the 

largest truncation error in yzT   and the smallest ones are related with xxT and 
yyT .  

 

We increased the resolution of the gravitational gradients to 0.25 ×0.25 and 

obtained similar results to Table 5.22.  

 

 Let us increase the resolution of the gravity anomalies and gradients to 

0.5 ×0.5 and 0.25 ×0.25 , respectively. Figure 5.15 shows the result of this 

investigation.  
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Figure 5.15. Truncation error of  0.25 ×0.25 estimated gravitational gradients (a) xxTδ , (b) yyTδ , 

(c) zzTδ , (d) xyTδ , (e) xzTδ  and (f) yzTδ from 0.5 ×0.5 gravity anomalies. Unit: 1 E 

 

The figure shows that the truncation errors of the integrals follow a very similar 

pattern independent of resolution of the SGG and terrestrial data. However, the 

magnitudes of these truncation errors differ.  
 

 

Table 5.22. Statistics of truncation error of 

estimated 0.5 ×0.5 gravitational gradients 

from 1 ×1 gravity anomalies using Eq. 

(5.14). Unit: 1 E 

 
 min mean max std 

xxTδ  -0.04 0.01 0.11 ± 0.02 

yyTδ  -0.09 -0.00 0.07 ± 0.02 

zzTδ  -0.13 -0.02 0.16 ± 0.04 

xyTδ  -0.12 0.02 0.17 ± 0.07 

xzTδ  -0.24 -0.01 0.08 ± 0.05 

yzTδ  -0.59 -0.18  0.19 ± 0.15 

 
 

Table 5.23. Statistics of truncation error of 

0.25 ×0.25 gravitational gradients from 

1 ×1 gravity anomalies using Eq. (5.14). 

Unit: 1 E 

 
 min mean max std 

xxTδ  -0.06 0.01 0.10 0.02 

yyTδ  -0.10 -0.00 0.07 0.03 

zzTδ  -0.13 -0.02 0.18 0.04 

xyTδ  -0.13 0.02 0.17 0.07 

xzTδ  -0.25 -0.02 0.08 0.05 

yzTδ  -0.59 -0.18 0.20 0.15 

 

At first attention on Tables 5.22-5.23 one might conclude that the truncation errors 

are very similar. However, it should be kept in mind that the truncation error is 

categorized as a systematic error and they must be removed from the SGG data prior 

to downward continuation and inversion even if they are very small. As Tables 5.22 

and 5.23 shows the truncation errors are in 1 cE level and considerable.   
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Chapter 6 
 

 

 

Combinations of SGG data 

 
 
6.1 Introduction 

 
In global geopotential modeling using SGG, three different sets of solutions of the 

geopotential coefficients are obtained. These solutions are nothing else than the 

solutions of the VV, VH and HH GBVPs as Martinec (2003) presented. In fact the 

solution of the Laplace equation is sought using gradiometric boundary values, which 

are the gradiometric observables. The simple and weighted means are two simple 

methods of combining the solutions of the GBVPs. This chapter presents some ways 

for optimal combination of the solution using condition adjustment model and VCE. 

In local gravity field determination, the simple joint inversion of the SGG data and re-

weighting observation using VCE is investigated.  

 

Bjerhammar (1983) was one of the earliest authors suggested using VCE to mix 

the boundary values problems and called this way of combination stochastic approach 

with reference to Holota (1983a) and (1983b) and Svensson (1982). In fact he used 

VCs to update the observation weights in an iterative adjustment problem. The VCE 

is a well-known topic in geodetic and related sciences. Different methods exist for 

computing the VCs. One of the most famous methods is the MInimum Norm 

Quadratic Unbiased Estimator (MINQUE), presented by Rao (1971). Helmert’s 

method is another approach presented by Kelm (1978) and by Grafarend and 

Schaffrin (1979). The method of LaMotte (1973) and Pukelsheim (1981), which is 

very popular in statistics, was generalized by Schaffrin (1981) for applications in 

geodesy. Sjöberg (1985) presented a VC estimator for the adjustment model with a 

singular covariance matrix. VCE and applications can also be found in Rao and 

Kleffe (1988). Maximum likelihood estimation of VCs was first presented for 

geodetic applications by Kubik (1970), Patterson and Thompson (1971) and (1975), 

Persson (1980) and Koch (1986). Searle et al. (1992) and Koch (1999) provided 

useful discussions on the concepts of VCs. As an alternative approach a Monte-Carlo 

algorithm can be used for VC estimation (e.g., Kusche 2003) and Fotopoulous (2003) 

and (2005). In Grafarend (2006) many details of the Gauss-Markov and Gauss-

Helmert models are presented, and VCE is treated both theoretically and numerically. 
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Xu et al. (2006) presented a method for computing VCs in linear ill-posed models. 

They have considered a zero-order Tikhonov regularization method (Tikhonov 1963) 

for estimating the VCs. They also found out that the simultaneous estimation of the 

regularization parameter and VCs is advantageous. Xu et al. (2007) discussed the 

estimability of the VCs and proved (as could be expected) that they are not estimable 

for a fully-unknown variance-covariance matrix. Amiri-Simkooei (2007) and 

Teunissen and Amiri-Simkooei (2008) explored a new type of least-squares estimator 

to the VCs.   

 

This chapter starts with the well-known Gauss-Helmert adjustment model. After 

that some methods of VCE are briefly reviewed and used in combining the SGG data.  

 

6.2 The Gauss-Helmert adjustment model 

 
The Gauss-Helmert model is a generalized model of the Gauss-Markov and the 

condition adjustment model, i.e. these models are special cases of the Gauss-Helmert 

model. This model has the following form (Sjöberg 1984c): 

  

                               + =Ax Bε w , with { }TE =εε Q , and { } 0E =ε ,                      (6.1) 

 

where,  A and B are the first and second design matrices of dimensions (k ×m) and (k 

×n), respectively with n≥ k≥m, x is the vector of unknowns, ε  is a stochastic 

residual vector, w is the vector of misclosures, Q is the covariance matrix of 

observations and {}E ⋅  stands for the statistical expectation. We assume that the 

variance-covariance matrix model is  

 

                                                           2

1

q

i i

i

σ
=

=∑Q Q               (6.2) 

 

where iQ are known positive semi-definite sub-matrices of Q, and 2

iσ  are the 

unknown VCs. The above equation can easily be converted to the condition model as 

(Sjöberg 1984c) 

 

                                           0 0( ) ( )− = −I A Bε I A w , or =Bε w ,                             (6.3)  

 

where, ( )0 −= =
-

T - T -A AA A A C A A C . Hence, −
A  stands for a specific generalized 

inverse of A, namely ( )-
- T - T -A = A A C A A C , where 

 

                                      2

1

q

i i

i

σ
=

=∑C C  and T

i i=C BQ B  , (rank(C)=k)            (6.4) 
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Alternatively, we obtain the condition model by designing A=0 in Eq. (6.1). (This 

implies also that B will be different.) Similarly, the method of adjustment by elements 

(or Gauss-Markov model) is obtained by selecting B=I and w=L in Eq. (6.1), where 

L is the vector of observations. 

 

6.3 The BQUE of a VC 

 

Now, suppose that we want to estimate a linear combination 2

1

q
T

i i

i

p σ
=

=∑p σ of the 

VCs related with Eq. (6.1), where ip  are arbitrary coefficients. A sufficient condition 

for unbiasedness of the estimator T
w Mw  of Tp σ  is that (Rao 1971; Sjöberg 1983, 

Rao and Kleffe 1988) 

 

                                                      trace( )i ip = MK ,            (6.5a)  

where 

                                                  ( ) ( )0 0
T

i i= − −K I A C I A ,               (6.5b) 

 

and, in case of normally distributed observation errors, the BQUE, and, in the general 

case, the MInimum Norm Quadratic Unbiased Estimator of Tp σ is provided by 
T −

p S u , where −
S is any generalized inverse of S and (Sjöberg 1984c) 

 

                                ( )traceij i js = RC RC       ;i , j=1, 2,…, q        (6.6a) 

                                T

i iu = w RC Rw     ;      i=1, 2,…, q        (6.6b) 

                                ( ) ( )1 0 0 1
T− −= − = −R C I A I A C .           (6.6c) 

 

6.4 The BQUNE of a VC 

 

Suppose that T
w Mw , where M is a symmetric matrix, is an unbiased estimator of 

T
p σ . The estimator is not necessarily positive, but if we restrict M to the class of 

matrices T
M = GG , where G is an arbitrary matrix of compatible dimensions, the 

quadratic form of T
w Mw  will be non-negative. A sufficient condition for the 

estimator to be unbiased in this case is (Sjöberg 1984c) 

 

                                      ( ) ( ){ }0 0trace
T

T

i ip = − −G I A C I A G .            (6.7) 

 

As pointed out by LaMotte (1973) unbiased, non-negative estimators satisfying this 

relation exist only in special cases. We will restrict the discussion to the unbiased 

estimation of individual VCs. First we transform w into 

 

                                                                 i i=γ F w ,                       (6.8) 
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where we have chosen the projection iF  as 

 

                                          0 0i i i

−= −F I C C  and 2

0i i iσ= −C C C ,                (6.9a) 

 

with  

                                                T=C BQB  and T

i i=C BQ B .                    (6.9b) 

 

Let us introduce ( )0
T

i i i i= −P F C I A F . It can be shown (Sjöberg 1984c) that for 

0i ≠HP  the quadratic form 

 

                                                   2 / trace( )T

i i i iσ = γ Hγ HP            (6.10) 

 

is a general quadratic unbiased non-negative estimator of 2

iσ  for any non-negative 

definite matrix H, and for normally distributed observations the variance of 2

iσ is 

given by  

 

                                 { } { }22 4Var 2 trace( ) / trace( )i i i i iσ σ= HP HP HP .                    (6.11) 

 

where 2

iσ  is the true VC (see Eshagh and Sjöberg 2008 for a proof). Sjöberg (1984c) 

proved that the following estimator is the BQUNE (in the sense of having the smallest 

variance) among all candidates of Eq. (6.10): 

 

                                                  2ˆ / rank( )T

i i i i iσ −= γ P γ P ,           (6.12) 

 

where i

−
P  is any generalized inverse of iP . 

 

6.5 The MBQUNE of a VC 

 
We will now introduce the MBQUNE. In the Gauss-Markov model of adjustment the 

MBQUNE and BQUNE are the same. The difference only appears in the condition 

adjustment and Gauss-Helmert models. As we saw in Eq. (6.1), the Gauss-Helmert 

model can be converted to the condition adjustment model. However, in these cases 

0iC  of Eq. (6.9a) is frequently regular, implying that iF  = 0, and the BQUNE will 

not exist, but so will MBQUNE, as we will show. Hence, this is the main and 

important difference between the two estimators. This method was proposed by 

Eshagh and Sjöberg (2008b) and implemented by Kiamehr and Eshagh (2008) in 

order to combine the geometric and gravimetric geoid models in Iran. It should be 

mentioned that iF  = 0 occurs when we want to combine the solutions of a GBVPs too 

and this is why we have to consider the MBQUNE for estimating the VCs in our 

solution.  
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When deriving the BQUNE, iγ  of Eq. (6.8) was set to iF w , but, as stated above, 

iF  vanishes for a regular 0iC . In deriving the MBQUNE we define  

 

                                                            ˆ
i i=γ F ε ,                                                   (6.13) 

 

where 0 0i i i

−= −F I Q Q  and 2

0i i iσ= −Q Q Q , also ε̂  is the minimum norm solution to 

the matrix system Bε = w , i.e. 

 

                                                        ˆ T −ε = QB C w .                     (6.14) 

 

This residual vector is thus related to iγ  by the equation 

 

                                                    ˆT

i i i

−= =γ F QB C w F ε .                   (6.15) 

 

In this case, iF  is defined as it is used in the Gauss-Markov model. Based on 

normally distribution observations with zero expectation of errors, this holds also for 

iγ , yielding (Eshagh and Sjöberg 2008b): 

 

                                                       T

i i i

−=P F QB C BQF .                (6.16) 

 

Here iF  separates the residuals (and produces a matrix iP , that plays the role of a 

variance-covariance matrix for the i-th group) for each group of observations. 

 

6.6 Optimal combination of integral solution of GBVPs  

 
The gravitational tensor has five impendent elements, which are measured at satellite 

level. By using combinations of these observables one can obtain three sets of 

geopotential coefficients. The main reason of obtaining different solutions could be 

due to discretization error of the integrals and noise in real data. In practice, one 

cannot obtain the same solutions by these integrals. Usually, the least-squares 

approach is used to compute an EGM and five independent elements of the 

gravitational tensor will increase the redundancy in the solution. As was mentioned in 

the previous chapter, noise is amplified in the inversion process therefore over-

determination should be beneficial. However, this chapter emphasizes on the integral 

formulas, which are solutions of the GBVPs, to determine the geopotential 

coefficients. Such solutions are not optimal but we want to obtain an optimal solution 

by combining them. At the first step, the simple and weighted means are studied and 

after that a condition model is constructed so that VCE can be used to re-weight the 

observation.  
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6.6.1 Simple mean versus weighted mean 

 
Rummel et al. (1993) and Gelderen and Rummel (2001) and (2002) investigated the 

least-squares solutions of the VV, VH and HH GBVPs. However, the simple and 

weighted mean can be two simple combinations for the integral solutions. 

 

In order to test the simple and weighted mean, equivalent errors is considered for 

all types of the SGG data, namely 0.01 E
zz xz yz xx yy xy

σ σ σ σ σ σ= = = = = =t t t t t t
as 

well as 30 30′ ′× resolution for the data at 250 km level. The EGM96 is used to 

synthesize the data at satellite level and analyze the gravitational field using 

descretized integrals of Eqs. (2.67a)-(2.67c). Also the EGM96 is supposed as the true 

solution in this investigation. The degree of resolution for the grid of the SGG data 

with 30 30′ ′×  resolution at 250 km level is about 198, 199 and 230 for HH, VH and 

VV solutions, respectively. Figure 6.1a and 6.1b show the combinations based on the 

simple and weighted mean of the solutions of the GBVPs (VV, VH and HH 

solutions). 

 

 
           

Figure 6.1.  (a) Simple mean, (b) weighted mean, (c) error degree variance of simple and weighted 

mean 

 

As can be seen, both solutions yield more or less the same results. Their spectral 

differences are visualized in Figure 6.1c. Even the error degree variances of these 

solutions are more or less the same and this is natural in the presence of the same 

noise for all SGG data. In the following another way of the combination of the 

GBVPs is presented. We want to use VCE, as a weighting scheme for the 

observations, to update the observation weights and obtain an optimal solution. The 

simple and weighted mean are not suitable tools in this respect, therefore we construct 

condition equations for the discrete integrals in such a way that we can take 

advantage of the VCE. In the following subsection, the adjustment of condition model 

is briefly reviewed.  

 

6.6.2 Adjustment by condition model 

 
The condition adjustment model is: 

 

                                  ( ) ′− = = −B L ε w c BL   and { } 2

0

TE σ=εε Q  ,          (6.17) 
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where B is the coefficient matrix of observations, ε  stands for the vector of 

observation noise and w is the misclosure vector, Q is the variance-covariance matrix 

of the observations, ′c is the constant vector of the condition model, L is the 

observation vector and, finally, 2

0σ is the a-priori variance factor. The least-squares 

solution of the above model will be:  

 

                                                            ˆ −= QOε B w  ,            (6.18) 

 

where ( )T T
−− =QOB QB BQB is a left (normal) inverse of the matrix B; and minus sign 

superscripted over the parenthesis stands for generalized inverse (Bjerhammar 1973).  

 

Considering Eqs. (2.67a)-(2.67c), two independent condition models can be 

constructed:   

 

 

                                                         ( ) 0nm =B l - ε ,            (6.19) 

where 

 

              
T

zz xx yy xy xz yz
 =  L t t t t t t          (6.20a) 

and 

                           
0 0

0 0 0

nm nm nm nm

zz xx yy xynm

nm nm nm

zz xz yz

 − − −
=  − −  

b b b b
B

b b b
 .       (6.20b) 

 

Also if we assume that the observations are not correlated, we will have a block-

diagonal variance-covariance matrix: 

 

                             diag zz xx yy xy xz yz
 =  Q Q Q Q Q Q Q ,          (6.20c) 

 

where zzQ , xxQ , yyQ , xyQ , xzQ and yzQ are the co-factor matrices of 

zzt , xxt , yyt , xyt , xzt and yzt , respectively, and ( )Tnm nm nm=C B Q B . Superscripts n 

and m mean that the element changes by degree n and order m. The number of rows 

of nm
B  is always equal to 2, but the number of columns depends on the resolution of 

the analysis and descretized integrals. Subsequently, nm
C is a 2 by 2 matrix 

independent on the SGG data with elements: 

 

      ( ) ( ) ( ) ( ),

11

T T T T
nm nm nm nm nm nm n m nm nm

zz zz zz xx xx xx yy yy yy xy xy xyc = + + +b Q b b Q b b Q b b Q b    (6.21a)    

      ( ) ( ) ( )22

T T T
nm nm nm nm nm nm nm

zz zz zz xz xz xz yz yz yzc = + +b Q b b Q b b Q b                                 (6.21b)                     

 

and 
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      ( )21 12

T
nm nm nm nm

zz zz zzc c= = b Q b .                       (6.21c) 

 

Similarly, the misclosure vector is a 1 by 2 vector with elements: 

 

 
( ) ( ) ( ) ( )

( ) ( ) ( )
1

2

T T T T
nm nm nm nmnm
zz zz xx xx yy yy xy xy

nm T T T
nm nm nm

zz zz xz xz yz yz

w

w

 − + + +   = =      − + +  

b t b t b t b t
w

b t b t b t

.         (6.22) 

 

Substituting Eqs. (6.21a)-(6.21c) and (6.22) into Eq. (6.18) and after further 

simplification, the explicit adjusted error vector is obtained: 

  

     

( ) ( ) ( ) ( )
( ) ( )
( ) ( )
( )

22 1 12 2 11 2 21 1

22 1 12 2

22 1 12 2

22 1 1

ˆ

ˆ

ˆ 1

ˆ

ˆ

ˆ

T T
nm nm nm nm nm nm nm nm nm nm

zz zz zz zz
nm

zz T
nm nm nm nm nm

nm xx xx
xx

T
nm nm nm nm nmnm

yy yyyy

nm nm T
nm nm nm

xy
xy xy

nm

xz

nm

yz

c w c w c w c w

c w c w

c w c w

c w c

− + −
 
  − −
 
  − −  = 

− − 
 
 
  

Q b Q b
ε

Q bε
Q bε

ε C Q b

ε
ε

( )
( ) ( )
( ) ( )

2 2

11 2 21 1

11 2 21 1

nm nm

T
nm nm nm nm nm

xz xz

T
nm nm nm nm nm

yz yz

w

c w c w

c w c w

 
 
 
 
 
 
 
 
 
 − − 
 

− −  

Q b

Q b

                  (6.23) 

where ⋅  is the determinant operation.  

 

In the adjustment with condition models, the residual vector is estimated and 

subtracted from the observations. The results will be the adjusted observations; see 

E.q (6.24a). In such a case, one can use one condition equation to obtain the unknown 

parameters. In the case of GBVPs, it does not matter which integral is used to 

compute the coefficients, one can use the simplest integral, or in other words, the VV 

solution of the GBVPs (Eq. 2.67a is preferred)  

 

                         ˆ ˆ−L = L ε .             (6.24a) 

 

By using the well-known error propagation laws, the variance-covariance matrix of 

the corrected observations can be estimated: 

 

                    ( ) ( ) ( )ˆ ˆ

T T T
nm nm nm nm nm nm

−
 = + = +   L εL

Q Q Q b Q b Q b b Q b b Q . (6.24b) 

 

where, 
LQ is the variance-covariance matrix of the observations and ε̂Q is for the 

estimated residuals (the corrections). 
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Figure 6.2 shows the condition adjustment solution of three GBVPs.  

 

 
 

Figure 6.2 (a) Condition adjustment solution. (b) Difference between condition adjustment solution 

and simple mean 

 

 

Comparing this figure with Figure 6.1a and 6.1b we can say that the solutions are 

very similar as expected. The differences between the two solutions are provided in 

Figure 6.2b. The differences are very small compared to the signal itself (see Fig. 

6.2a) and in the order of the numerical error. The question is: why should the 

complicated solution of the condition model be used, while the simple mean 

practically provides the same results and it is extremely simple? The idea is not just to 

use the condition model in combination, but we are seeking a way to re-weight the 

observations to get better solution. The condition model provides this by considering 

the VCE technique. In the following section the concept of the VCE is briefly 

reviewed and expressed how to use the VCE in spectral combination of the GBVPs 

solutions.  

 

6.6.3 VCE and re-weighting solution 

 
As mentioned in the previous subsection, the idea of constructing the condition 

models is to use VCE to update the observation weights and obtain an optimal 

solution. Each condition equation has a misclosure vector which can be used to 

determine the VCs (according to a pre-described stochastic model for the 

observations error). The observation weights are re-scaled in order to get better match 

between the residuals and misclosures. In the following sections the well-known 

methods of the VCE, namely the BQUE and BQUNE (Sjöberg 1984c) and the 

MBQUNE (Eshagh and Sjöberg, 2008) are presented. The discussion is continued by 

the Gauss-Helmert model, which is more general than the condition and the Gauss-

Markov models and after that we come to the special case of the condition 

adjustment. The degree-order VCs (DOVC) as a VC which is estimated according to 

the stochastic model and the degree and order of solution is defined. 
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Proposition 6.1 The BQUE of DOVC based on Eq. (6.19) and stochastic model 1 

 

                              2 2 2

VV VV HH HH HV VHσ σ σ′ ′ ′= + +Q Q Q Q  (stochastic model 1) 

where 

 

                                    ( )VV diag 0 0 0 0 0zz
′ =Q Q  

( )HH diag 0 0 0xx yy zz
′ =Q Q Q Q  

                                    ( )VH diag 0 0 0 0 xz yz
′ =Q Q Q  

is (Eshagh 2009f): 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2

1 2 22 12 1 2 22 11 12
2

2 2 2

22 12 11

2
ˆ

2

nm nm nm nm nm nm nm nm nm

nm

j
nm nm nm nm

j

w w c c w w c c c

k c c c

σ
   + + − +      =

 + +  

. 

 

Proof. The VCs are determined by T -p S u , the elements of the coefficients matrix S 

are: 

 

( ) ( )1 1

trace nm nm nm nm

ij i js
− − =   

K K K K           (6.25) 

 

and the right-hand side vector elements are: 

 

( ) ( ) ( )1 1T
nm nm nm nm nm

i iu k
− −

= w K K w ,           (6.26) 

where 

                        ( )VV

T
nm nm nm

zz zz zzk = b Q b ,              (6.27) 

                        ( ) ( ) ( )HH

T T T
nm nm nm nm nm nm nm

xx xx xx yy yy yy xy xy xyk = + +b Q b b Q b b Q b ,             (6.28) 

and 

                        ( ) ( )VH

T T
nm nm nm nm nm

xz xz xz yz yz yzk = +b Q b b Q b .            (6.29) 

 

Substituting Eqs. (6.27)-(6.29) into Eq. (6.25) we have 

 

( ) ( ) ( )2 2 2

22 12 11

2

2nm nm nm nm nm

i j

ij
nm

k k c c c

s

 + +  =
C

 .          (6.30) 

 

Also by substituting Eqs. (6.27a)-(6.29c) into Eq. (6.26) we obtain 
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( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 2 2 2 2 2

1 22 12 1 2 21 22 11 2 11 122
2

nm
nm nm nm nm nm nm nm nm nm nm nmi

i
nm

k
u w c c w w c c c w c c   = + − + + +      C

                  (6.31) 

By inserting Eq. (6.31) and Eq. (6.30) into T -p S u  and after simplification the 

proposition is proven.  

 

The DOVCs of the gravitational gradients can easily be estimated using 

Proposition 6.1 based on stochastic model 1. As the proposition shows the numerator 

of this estimator is independent of the form of the stochastic model. The only 

parameter which depends on the stochastic model is jk  corresponding to each 

( )2ˆ
nm

jσ (DOVC). In this combination approach for estimating each geopotential 

coefficient with degree n and order m, three DOVCs are estimated which differ by 

degrees and orders. 

 

According to Proposition 6.1 the denominator of the proposition is always positive 

as it is a quadratic form. Here, the only possible way of the DOVC to come out 

negative is to have negative numerator. The first term of the numerator is always 

positive too, thus the following condition can be written to get negative DOVCs:  

 

          
( ) ( ) ( ) ( )

( )

2 2 2 2

1 2 22 12

1 2

22 11 122

nm nm nm nm

nm nm

nm nm nm

w w c c

w w
c c c

   + +       <
+

         (6.32) 

 

The left hand side of this inequality is always positive but the right hand side will be 

positive if either 1 2, 0w w < or 1 2, 0w w > . The problem is when the positive value 

1 2w w  is larger than the left hand side of Eq. (6.32), we will get negative DOVCs. In 

the case where 1w and 2w have opposite signs we will also get positive DOVCs as this 

negative number is always smaller than the positive number in left hand side.   

 

Corollary 2.1 The BQUE of DOVCs based on Eq. (6.19) and stochastic model 2 

 

          2 2 2 2 2 2

zz zz xx xx yy yy xy xy xz xz yz yzσ σ σ σ σ σ′ ′ ′ ′ ′ ′= + + + + +Q Q Q Q Q Q Q  

(stochastic model 2) 

where 

( )diag 0 0 0 0 0zz zz
′ =Q Q  

( )diag 0 0 0 0 0xx xx
′ =Q Q  

( )diag 0 0 0 0 0yy yy
′ =Q Q  

( )diag 0 0 0 0 0xy xy
′ =Q Q  

( )diag 0 0 0 0 0xz xz
′ =Q Q  

( )diag 0 0 0 0 0yz yz
′ =Q Q  



 170

 

is the same as in Proposition 6.1. 

 

Proof. The corollary follows as the only parameter depending on the stochastic model 

is nm

jk and the estimator presented in Proposition 6.1 does not change by the 

stochastic model.  

 

 

Proposition 6.2 The MBQUNE of DOVCs in the condition model based on stochastic 

model 1 for VV solution is: 

 

( ) ( )
( )( ) ( )( )

( )( )
22 12 11

2 2

ˆ ˆ2
ˆ ˆ

rank

T T
nm nm nm nm nm nm nm

zz zz zz zz zz zznm nm

VV zz T
nm nm nm

zz zz zz zz

c c c

σ σ

−

− +
= =

ε Q b b Q ε

C Q b b Q

, 0nm ≠C . 

 

Proof. Proof of this proposition will be presented with the proof of the next 

proposition, because of having very similar structure. 

 

Proposition 6.3 The MBQUNE of DOVCs based on stochastic model 1 for HH and 

VH solution is (Eshagh 2009f): 

 

( ) ( ) ( )
( )

2
ˆ ˆ

ˆ
rank

T
nm nm nm nm

nm k k i i i

i nm nm

i

c
σ

−

′ ′
=

ε P ε

C P
  where 

2

1

HH k
i

VH k

′ =
=  ′ =

 and 0nm ≠C  

 

where ( )ˆ ˆ ˆ ˆ
T T

nm nm nm nm

HH xx yy xy
 =  ε ε ε ε , ( )ˆ ˆ ˆ

T T
nm nm nm

VH xz yz
 =  ε ε ε , 

  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

T T T
nm nm nm nm nm nm

xx xx xx xx xx xx yy yy xx xx xy xy

T T T
nm nm nm nm nm nm

HH yy yy xx xx yy yy yy yy yy yy xy xy

T T T
nm nm nm nm nm

xy xy xx xx xy xy yy yy xy xy xy xy

 
 
 =  
 
  

Q b b Q Q b b Q Q b b Q

P Q b b Q Q b b Q Q b b Q

Q b b Q Q b b Q Q b b Q

 

and 

( ) ( )
( ) ( )

T T
nm nm nm nm

xz xz xz xz xz xz yz yz
nm

VH T T
nm nm nm nm

yz yz xz xz yz yz yz yz

 
 =  
  

Q b b Q Q b b Q
P

Q b b Q Q b b Q

. 

 

Proof. The adjustment model which is used in our derivation is the condition model; 

by putting A=0 in Eq. (6.16) we obtain 

 

  1T

i i i

−=P F QB C BQF ,                                 (6.33) 
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where i=VV, HH, and VH, respectively, and according to the stochastic model 1 we 

obtain 

[ ]( )VV diag 0 0 0 0 0F = I ,          (6.34a) 

[ ]( )HH diag 0 0 0F = I I I ,          (6.34b) 

[ ]( )VH diag 0 0 0 0F = I I  ,          (6.34c) 

 

and finally by using Eqs. (6.34a)-(6.34c), we have  

 

( ) ( )1

VV 12 12 122P C Q b b Q
−

= − +
T

nm nm nm nm nm nm nm

zz zz zz zzc c c ,                         (6.35a) 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

22
HH

Q b b Q Q b b Q Q b b Q

P Q b b Q Q b b Q Q b b Q
C

Q b b Q Q b b Q Q b b Q

 
 
 =  
 
  

T T T
nm nm nm nm nm nm

xx xx xx xx xx xx yy yy xx xx xy xy

nm
T T T

nm nm nm nm nm nm nm

yy yy xx xx yy yy yy yy yy yy xy xynm

T T T
nm nm nm nm nm nm

xy xy xx xx xy xy yy yy xy xy xy xy

c
, (6.35b)                      

and 

( ) ( )
( ) ( )

11
VH

Q b b Q Q b b Q
P

C Q b b Q Q b b Q

 
 =  
  

T T
nm nm nm nm

nm
xz xz xz xz xz xz yz yz

nm

nm T T
nm nm nm nm

yz yz xz xz yz yz yz yz

c
 .                               (6.35c) 

 

Propositions 6.2 and 6.3 follow by inserting Eqs. (6.35a)-(6.35c) into Eq. (6.33).  

 

Proposition 6.4 The MBQUNE of DOVCs based on stochastic model 2 for HH and 

VH solution is (Eshagh 2009f): 

 

( )
( ) ( ) ( )( )

( )( )
2

ˆ ˆ

ˆ

rank

T T T
nm nm nm nm nm nm nm

i i i kk i i i i i inm

i T
nm nm nm

i i i i

c

σ

−
 
  =
b Q b ε Q b b Q ε

C Q b b Q

 , 0nm ≠C  

where 

, , 2

, 1

xx yy xy k
i

xz yz k

=
=  =

. 

 

Proof. The mathematical proof of the proposition is very similar to that of  

Proposition 6.3. The differences are just due to projector iF , i=xx, yy, xy, xz and yz 

and stochastic model 2.  

 

[ ]( )diag 0 0 0 0 0xx I=F ,        (6.36a) 

[ ]( )diag 0 0 0 0 0yy I=F  ,        (6.36b) 

[ ]( )diag 0 0 0 0 0xy I=F ,         (6.36c) 



 172

[ ]( )diag 0 0 0 0 0xz I=F ,        (6.36d) 

[ ]( )diag 0 0 0 0 0yz I=F  ,         (6.36e) 

and 

( ) 1 0

0 0

T
nm nm nm

i i i i

 
=  

 
C b Q b , i=xx, yy and xy                  (6.37a) 

( ) 0 0

0 1

T
nm nm nm

j j j j

 
=  

 
C b Q b , j=xz and yz.                      (6.37b) 

 

The proposition is proved by substituting Eqs. (6.36a)-(6.36e) and Eqs. (6.37a)- 

(6.37b) into Eq. (6.33) and further simplifications.  

 

6.6.4 Numerical investigation in VCE and re-weighting process 

 
Now we will test the combined solutions using the DOVC estimation. This process is 

considered in two different cases: first the stochastic model 1 in which one DOCV is 

estimated for each integral solution is considered and named “combined solution 1”. 

Correspondingly, if the stochastic model 2 with estimation of one DOVC for each 

type of observation (six DOVCs) is considered and the solution will be called 

“combined solution 2”. Figure 6.3 shows the true and simple mean solution with 

respect to the combined solution 1. The figure shows that the solution is very close to 

the simple mean. In some degrees it is superior and in some is inferior with respect to 

the simple mean. In general one cannot say that the combined solution 1 is better than 

the simple mean unless their differences are considered. Such differences are 

presented in Figure 6.6.   

 
Figure 6.3. True, simple mean and combined solution 1 

 

For some degrees and orders the observables have different weights in the 

combination. Another important matter is occurrence of the negative DOVC for zonal 

terms. The BQUNE does not exist for the present problem and we have to use the 

MBQUNE to estimate the DOVCs. Let us now explain the practical problem to use 

this estimator. There is the parameter ( )Tnm nm

zz zz zz zzQ b b Q in Proposition 6.3. nm

zzb is a 

row vector and its dimensions depends directly on the resolution of the data. In the 

present case, a 30 30′ ′×  grid of the SGG data is considered. Therefore this vector will 
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have 360×720=259200 column-wise elements.  Consequently, ( )Tnm nm

zz zzb b  will be a 

matrix with dimensions of 259200×259200=67184640000. As Proposition 6.2 

shows, ( )Tnm nm

zz zz zz zzQ b b Q should be inverted by a generalized inverse (Bjerhammar 

1973). This action is very complicated for ordinary computers, and the situation 

becomes even worse for estimating the DOVCs of the VV and HH solutions as the 

dimensions of the matrices are even larger. As a consequence, the MBQUNE is not 

practical for the time being. It will hopefully be implemental for supercomputers. 

Considering that the computer technology is being advanced this problem will not be 

serious in the future.  

 

In order to escape from the negative DOVCs, the simple mean was used for the 

combination of the corresponding degrees. The investigation shows larger errors for 

lower orders than higher ones in the three integral solutions of the GBVPs; and after 

the order 10 the differences are very small or even zero.  

 

In order to present the performance of the DOVC estimation process, the degree 

n=200 and the order m=2 coefficients (for which the negative DOVC does not 

happen, are considered) as an instant, but these are not the only coefficient for which 

the positive DOVC occurs. Figure 6.4 shows the VC ratios of the VV, VH and HH 

solutions for these degree and order. 

 

 
      

Figure 6.4. VC ratios for (a) VV solution, (b) HH solution and (c) VH solution for n=200 and m=2 

 

The figure presents the speed of convergence of the DOVC ratios to 1. The ratio 

converges quickly to 1 in the VV solution, but it is very slow for the HH and VH 

solutions. (The ratios up to 50 iterations are presented). According to the author’s 

investigation the ratios do not converge to 1 even until 500 iterations, but they come 

closer to 1. Table 6.1 shows the DOVCs of the VV, HH and VH solutions, and it 

should be stated that the DOVC estimation process is done for cosine and sine 

coefficients separately. At first view, one can see larger values for the DOVCs for 

estimating 200,2Ŝ than 200,2Ĉ , but it is not important in the re-weighing process. The 

DOVCs estimation balances the accuracy of the observations and misclosures; and 

since the latter is very small, it is natural to get small values for the DOVC. Another 

important matter is to get smallest DOVC for the VH solution. However one see 

smaller value of the DOVC for the HH solution than the VV solution too. If 

Proposition 6.1 is considered, the only parameter which depends on the stochastic 
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model is jk . This parameter was presented in Eqs. (6.27)-(6.29). One reason to 

obtain smaller DOVC for the HH solution is that HHk  becomes larger, than VVk  

because of including three quadratic forms (see Eq. 6.27). The ratios of the DOVCs in 

these solutions show that the relative weights in the solutions of both cosine and sine 

coefficients are the same.  

 

Table 6.1 shows the DOVCs of the VV, HH and VH solutions. Larger DOVCs are 

observed for 200,2Ŝ than 200,2Ĉ . In Table 6.2 the ratios of the DOVCs are presented for 

some degrees and orders. 

 
Table 6.1. DOVCs of VV, HH and VH 

solution for n=200 and m=2 

 

 
200,2Ĉ  200,2Ŝ  

( )200,2
2

VVσ̂  7.97 910−×  2.41 610−×  

( )200,2
2

HHσ̂  7.75 1110−×  2.34 810−×  

( )200,2
2

VHσ̂  2.27 1110−×  6.87
910−×  

 

Table 6.2. DOVC ratios for VV, HH and VH 

solutions based on stochastic model 1 for 

n=200, m=2, n=230, m=5, n=245, m=8 

 

 
n=200 

 m=2 

n=230 

 m=5 

n=245 

m=8 

( ) ( )2 2

VH HH
ˆ ˆ

nm nm

σ σ  0.29 0.08 0.04 

( ) ( )2 2

VV HH
ˆ ˆ

nm nm

σ σ  408.32 404.79 401.04 

 

The stochastic model 2 is considered, or in other words, the combined solution 

2, which was presented in Corollary 6.1. Here one DOVC is estimated for each set 

of observations. The study is confined just to the cases where the positive DOVCs 

come out. Each time the negative DOVCs are derived the simple mean is selected 

for combining the coefficients. The negative DOVCs were seen for the zonal 

coefficients and for some others. According to the author’s investigation the 

negative DOVC frequently occur in the combined solution 2. However they mostly 

belong to the orders higher than 14 and as it was mentioned before; the author did 

not observed significant difference among the VV, HH and VH solutions for the 

higher orders. The result of this combination is visualized in Figure 6.5.  

 

 
 

Figure 6.5. True, simple mean, combined   

solution 1 and 2 

 

 
 

Figure 6.6. Difference between true and 

simple mean, combined solution 1 and 2 
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The figure clearly shows that the combined solution 2 is very close to the true 

solution. For better visualization, we consider the differences between all the 

solutions and the true solution in Figure 6.6.  In the figure the dash line ( -- ), the 

solid line ( - )  and the tick solid line ( - ) stand for the  differences between the 

simple mean, combined solution 1 and 2, respectively with the true solution. The 

figure shows that the even degrees are well estimated in the combined solution 1, 

but they are at the same as level as the simple mean in odd degrees. Therefore the 

combine solution 1 is slightly better than the simple mean. Since the VH solution 

was closer than the VV and HH solutions to the true one, the difference between 

the true and the VH solution is plotted in Figure 6.6; in order to show that the 

combined solution 1 is a solution between the simple mean and the VH solution. 

However, as can be seen, the combined solution 2 is even superior to the VH 

solution. According to the numerical investigations the DOVCs converge fast in 

this combined solution. After about 3 iterations all the DOVC ratios converge to 1. 

Perhaps this is due to the stochastic model which is used. However, the problem of 

this combination method is to get frequent negative DOVCs for the orders above 

14.  

 

 
 

Figure 6.7. VC ratios for zzT , xxT , yyT , xyT , xzT  and yzT  

 

The figure shows that the DOVC ratios for n=200 and m=2 of zzT , xxT , yyT and xzT  

are very similar and they converge to 1 in 3 iterations. This is not like the combined 

solution 1 in which the DOVC ratios has uniform convergence. The DOVC ratios 

of xyT and yzT  in the combined solution 2 are very similar as they are decreasing 

for the cosine coefficients and increasing for sine coefficients.  

 

The DOVCs of these observations in the combined solution 2 are tabulated in 

Table 6.3. It illustrates the DOVCs of zzT , xxT , yyT , xyT , xzT  and yzT , respectively 

for n=200 and m=2. As the table shows ( )200,2
2ˆ
xxσ is equal to ( )200,2

2ˆ
yyσ  in both sine 

and cosine coefficients. The reason is that the coefficient matrices b
nm

xx and bnm

yy
are 

exactly the same in magnitude but they differ in sign. This is why the same DOVCs 
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for these types of observations are estimated. According to the Laplace equation, 

the DOVC of zzT should be in order of the DOVCs of yyT and xyT  and this is why 

we obtained ( )200,2
2ˆ
zzσ in order of ( )200,2

2ˆ
xxσ and ( )200,2

2ˆ
yyσ .  The DOVC of xzT is 

also in order of ( )200,2
2ˆ
zzσ , ( )200,2

2ˆ
xxσ and ( )200,2

2ˆ
yyσ ; and it is closer to ( )200,2

2ˆ
zzσ . It 

seems that there is more or less the same power of the gravitational signal in 

zzT and xzT . Larger DOVCs are related to xyT and yzT as presented in Table 6.3. 

The ratios of the VCs are given in Table 6.4 as well.  

 

 
Table 6.3. DOVCs of 

zzT , xxT , yyT , xyT , xzT  and yzT  for n=200 

and m=2 

 

 200,2Ĉ  
200,2Ŝ  

( )200,2
2ˆ
zzσ  5.74 910−×  1.6

610−×  

( )200,2
2ˆ
xxσ  5.64 910−×  1.57 610−×  

( )200,2
2ˆ
yyσ  5.64 910−×  1.57 610−×  

( )200,2
2ˆ
xyσ  7.00 710−×  1.96

410−×  

( )200,2
2ˆ
xzσ  5.72

910−×  1.60 610−×  

( )200,2
2ˆ
yzσ  9.60

610−×  2.7
410−×  

  

Table 6.4. DOVC ratios of 

zzT , xxT , yyT , xyT , xzT  and yzT  based on 

stochastic model 2 for n=200, m=2, n=230, 

m=5, n=245, m=8 

 

 
n=200 

m=2 

n=230 

m=5 

n=245 

m=8 

( ) ( )2 2ˆ ˆ
nm nm

xx zzσ σ  0.98 0.99 1.00 

( ) ( )2 2ˆ ˆ
nm nm

yy zzσ σ  0.98 0.99 1.00 

( ) ( )2 2ˆ ˆ
nm nm

xy zzσ σ  122.0 30.92 15.24 

( ) ( )2 2ˆ ˆ
nm nm

xz zzσ σ  0.99 1.00 1.00 

( ) ( )2 2ˆ ˆ
nm nm

yz zzσ σ  1671.50 406.13 195.41 

 

This example shows the details of the re-weighting process using the DOVC 

estimation procedure. However, according to our numerical investigations the 

general pattern of these DOVCs is more or less the same procedure in other degrees 

and orders. Table 6.4 shows that 
xyT and 

yzT contribute more in the l combination 

of higher degrees and orders. Also xyT seems to contain more power than yzT even 

in higher degrees and orders in the combination based one the stochastic model 2.  

 

6.7 Combination of the gravitational gradients in local gravity field 

determination 

 
In the previous chapter the problem of determining the gravity anomaly at sea level 

from the SGG data was investigated. Each element of the gravitational tensor was 

considered separately in local gravity field determination. This section presents the 

joint inversion of the SGG data or local gravity field determination using full 

gravitational tensor. In this section, the simple joint inversion by least-squares and 

after that re-weighting of the observation by VCE is investigated.  

 

6.7.1 Simple joint inversion of the SGG data by least-squares 
 

This section discusses how all the gravitational gradients are merged in one system 

of equations. We name inversion of such a system of equations simple joint 
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inversion, because we do not use the VCE in the inversion. Putting the system of 

equations (Eqs. 5.2a-5.2f) in one system of equations yields: 

 

             

zz zz zz

xx xx xx

yy yy yy

xy xy xy

xz xz xz

yz yz yz

     
     
     
     
     = +
     
     
     
          

A t ε
A t ε
A t ε

x
A t ε
A t ε
A t ε

,       (6.38) 

 
where the elements of the coefficient matrix were given in Chapter 4. We assume 

that the stochastic model is the same as of Eq. (6.20c). The least-squares solution of 

Eq. (6.38) is: 

              1ˆ −=x M L ,             (6.39) 

 

where 
6

1

1

T

i i i

i

−

=

=∑M A Q A   and 
6

1

1

T

i i i i

i

−

=

=∑L A Q t , and i=1,2,…,5 and 6 correspond 

to zz, xx, yy, xy, xz  and yz, respectively. The solution of Eq. (6.39) is that of an ill-

posed problem being very sensitive to the errors of the SGG data. Therefore the 

system of equations should be regularized. The Tikhonov regularization method is 

selected with the GCV. In this case, Eq. (6.39) will be converted to  

 

                                                            1

reg

−=x N L ,         (6.40) 

where ( ) 1
1 2α

−− = +N M I .  

 

In this part, the resolutions of 0.5 ×0.5 and 1 ×1 are considered for the SGG 

data and the gravity anomaly at sea level, respectively. The singular values of the 

combined coefficients matrix are presented in Figure 6.8.  

 

 
 

Figure 6.8. Singular values of the 

coefficients matrix of joint inversion problem 

Eq. (6.38), when resolution of SGG data is 

0.5  ×0.5  and required gravity anomalies 

is 1  ×  1 . 

 

 
 

Figure 6.9. Recovered gravity anomalies 

from joint inversion of SGG data 

contaminated with 1 mE noise. Unit: 1 mGal 
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The maximum and minimum singular values are 5.37 210−× and 2.02 510−× , 

respectively. The condition number is 2.66 310×  which means that the joint 

inversion of the SGG data is more stable than the inversion of each elements of 

gravitational tensor separately. Two types of Gaussian noise with 1 mE and 1 cE 

standard deviations are added to the synthesized SGG data. Figure 6.9 shows the 

recovered gravity anomalies from the joint inversion of SGG data containing 1 mE 

noise. The error of the estimated gravity anomalies can be estimate using Eq. (5. 

10) are presented in Figure 6.10, which shows the estimated errors of the recovered 

gravity anomalies when the SGG data are contaminated with 1 mE noise and 

Figure 6.10b for 1 cE. The horizontal axis is number of gravity anomalies from 

north to south and the jumps are the north-south boundaries of the area. The figure 

shows considerable changes in error at the highest and lowest parallels of the area 

(Fennoscandia). The errors of the recovered data are about 2 and 3 mGal when the 

noise is 1 mE and 1 cE, respectively.  

 

 

 
 

Figure 6.10. Estimated error of recovered gravity anomalies in joint inversion of SGG data with (a) 

1 mE and (b) 1 cE noise. Unit: 1 mGal 

 

 

Equation (5.12) can be used to estimate the bias of the estimated parameters in the 

numerical example. The biases are presented in Figure 6.11. It is not surprising that 

the biases will be small when the noise is small. The figure shows that the biases 

are within 5 mGal and 20 mGal when the noise is 1 mE and 1 cE, respectively. The 

corresponding regularization parameters, which were estimated using the GCV 

method, are 0.15 and 0.09, respectively.  

 
 

 

Figure 6.11. Biases of recovered gravity anomalies from SGG data with (a) 1 mE and (b) 1 cE 

noise. Unit: 1 mGal 
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In Table 6.5 the statistics of the difference between the recovered and the true 

gravity anomalies are presented. The table illustrates that the gravity anomalies can 

very well recovered from joint inversion of the SGG data if the noise of the data is 

in 1 mE level. The standard deviation is 2.10 mGal which shows that how much the 

recovered quantities are close to the reality if the noise level is 1 mE. It is 5.15 

mGal if the noise of the SGG data is 1 cE. Table 6.6 shows the errors of the biased-

corrected estimation of the gravity anomalies and some improvements in the 

recovery. The improvements for the estimate parameter is not considerable when 

the noise of the data is about 1 mE, but it is important to reduce the biases for the 

case where the noise is in 1 cE level.  

 
Table 6.5. Statistics of errors of recovered gravity anomalies from SGG data with 1 mE and 1 cE 

noise levels. Unit: 1 mGal 

 

 min mean max std 

1 mE -5.74 -0.00 6.70 2.10 

1 cE -19.11 -0.04 16.83 5.15 

 

 
Table 6.6. Statistics of errors of bias-corrected recovered gravity anomalies from SGG data with 1 

mE and 1 cE noise levels. Unit: 1 mGal 

 

 min mean max std 

1 mE -3.89 -0.00 4.52 1.57 

1 cE -9.08 -0.03 8.01 2.91 

 

 

6.7.2 Joint inversion of SGG data and VCE 

 
In the simple joint inversion of SGG data, which was studied in the previous 

subsection, the same weights were considered for all the data. We already know 

that there are different types of gravitational gradients in the gravitational tensor 

and quality of the gradients is not the same. Here, we will use VCE in such an ill-

posed problem to see if the re-weighting process improves the solution. In local 

gravity field determination, the VCE is not the same as it is in an ordinary least-

squares problem. Here, we will investigate how the VCE is performed in such an 

ill-posed problem. 

 

6.7.2.1 VCE in ill-posed problems 

 
VCE in ill-posed problems has been considered by some authors, for example 

Koch and Kusche (2002). However, they regularized the ill-posed problem 

iteratively, and during the iteration process they estimated the VCs as well.  Xu et 

al. (2006) presented a method for estimating the VCs in an ill-posed problem of 

gravitational field determination from orbital perturbations. They considered the 

BQUE and introduced a new VC estimator, which was called biased-corrected 

estimator. In the following, the BQUE of the VC is investigated, and after that the 

Sjöberg (1984c) VC estimator (BQUNE). However, first the biases (due to 

regularization) of the estimated VCs will be analyzed in a linear ill-posed problem. 
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6.7.2.2 Bias analysis of the BQUE  

 
The VCE process in local gravity field determination using the SGG data is an 

example of VCE in linear ill-posed problems. To do this, it is assumed that the 

variance-covariance matrix of the data has a block-diagonal structure. The six 

elements of the gravitational tensor should be inverted in one system of equations 

to estimate the gravity anomaly. Two different stochastic models were already 

introduced for the data. In the stochastic model 1, in which for each solution of the 

VV, VH and HH GBVPs one VC is estimated. In a very similar manner one VC is 

estimated for each gradient based on stochastic model 2.  Since the combined 

estimation of local gravity field determination requires working with a large system 

of equations, the VCE process is not practical. However, since the stochastic model 

has a block-diagonal structure, simple formula for the system of equations from 

which the VCs are estimated, can be derived. In this case the size of the matrices is 

reduced six times. Considering the stochastic model 1 or 2, the elements of the 

coefficient matrix of the system of equations (from which the VCs are estimated) 

are presented in the following proposition.  

 

Proposition 6.5 The elements of the system of equations =Sσ u  based on a Gauss-

Markov model with a block-diagonal structure stochastic model is:  

 

                    ( )2
1 1trace T

ij n i i i ij

i

s δ− − 
= − + 

 
∑ I Q A N A  

  ( )1 1 1 1trace 1T T

i i j j j i ij

i j

δ− − − −
  

+ −  
   
∑ ∑Q A N A Q A N A , 

and 
1 1T T

i i i i i i i

i i

u − − −′ ′= =∑ ∑ε Q Q Q ε ε Q ε , 

 

 

where i and j = 1, 2, 3 stands for VV, VH, and HH (combined solution 1). i and j = 

1, 2, 3, 4, 5,6  stands for zz, xx, yy, xy, xz and yz (stochastic model 2), respectively, 

which are selected based on type of the stochastic model. δ is the Kronecker delta. 

 

Proof. The proposition follows by considering stochastic model 1 or 2 based on 

Eqs. (6.6a)-(6.6c). After a relatively long algebraic derivation the proposition is 

proved.  

 

The proposition clearly shows that the size of the system of equations is six 

times smaller than the standard formulas and the formulas of the proposition are 

efficient in computer programming as the formulation does not contain very big 

null matrices. This proposition can be used in any application in which the 

stochastic model has a block diagonal structure.  

 

Until now, the effect of ill-posedness of the system of equations was not 

considered. The main difference between the VCE in well-posed and ill-posed 

problems is related to the matrix N and the residual vector ε , as the former 

includes a regularization matrix, and the latter is a biased estimation of the residual, 

because the estimated parameters are biased. If the VCE formulas for an ill-posed 



 181

problem are considered as they are for a well-posed one, we should write (Xu et al. 

2006) 

 

      ( ) ( )1 0 1 0

reg regtraceij i js − − ′ ′= − − Q I A Q Q I A Q ,    (6.41a) 

 

and 

 

 reg reg

T

i iu −′= ε Q ε .      (6.41b) 

 

The definition of Q is the same as that of Eq. (6.20c). regε  and 0

regA have already 

been defined in Eqs. (5.11c) and (5.11d). The biased estimation of the errors can be 

written in terms of the bias as: 

 

( )2 1 0

reg regα −= + −ε AN x I A ε ,        (6.42) 

 

Substituting Eq. (6.44) into Eq. (6.43b) and taking the expectation operator we 

obtain 

 

                    { } ( ) ( )1 0 1 0 2

reg reg

1

trace
m

i i j j

j

E u σ− −

=

 ′ ′= − − + ∑ Q I A Q Q I A Q  

                               4 1 1trace T T

iα − − −′ +  Q AN xx N A ,         (6.43) 

 

Now if we directly take expectation from =Sσ u we have  

 

 

{ } { }ˆE E=S σ u .        (6.44) 

 

Considering Eq. (6.44) and Eq. (6.43) we obtain 

 

 

                        { } 1ˆE −= +σ σ S du ,        (6.45) 

 

where the second term of the above equation is the bias of the VCs due to 

regularization, and the elements of the vector du is (Xu et al. 2006, Eq. 10, p. 71): 

 

 

 ( )1 1 1trace T T

i i i i

i

du − − −=∑ Q A N xx N A .      (6.46) 

 

6.7.2.3 Biased-corrected VCE 

 
As was explained in the previous section, the estimated VCs contain biases due to 

regularization of the system of equations. It is possible is to estimate and remove 

the biases from the estimated VCs. However, in some practical applications the 

VCs may come out negative by this subtraction. It means that the estimated biases 

are unrealistically large. Therefore this idea does not seem practical. We have to 

use another way of VCE, which remove the biases before VCE process. This idea 
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was presented and discussed by Xu et al. (2006) which is briefly presented here. 

The relation between the true and biased estimates is: 

 

                       2 1

reg α −= −x x N x ,        (6.47) 

 

Inserting the estimated x into Eq. (6.47) yields 

      

                                            1 1 2 2 1

reg

T Tα− − − −= −x N A Q L N A Q L ,       (6.48) 

 

and the residuals are 

 

( )2 1 0 2 2 1

reg reg

Tα α− − −= + − −ε AN x I A AN A Q ε ,      (6.49) 

 

The quadratic form of the biased-corrected residual is: 

 

( ) ( )2 1 2 1

reg reg

T

i iu α α− − −′= − −ε AN x Q ε AN x .      (6.50) 

 

Taking the statistical expectation from Eq. (6.50) yields 

 

  { } ( )1 0 2 2 1

reg

1

trace
m

T

i i

j

E u α− − −

=

 ′= − − ×∑ Q I A AN A Q Q  

                                     ( )1 0 2 2 1 2

reg

T

j jα σ− − − ′× − − Q I A AN A Q Q ,       (6.51) 

 

and the biased-corrected VCs are estimated by solving the following system of 

equations 

 

            =Sσ u .        (6.52) 

 

Again the problem of working with very large matrices occurs here. However, as 

the stochastic model is block-diagonal, the formulas can further be simplified.  

 

Proposition 6.6 The elements of the matrix S  for estimating the biased-corrected 

VCs when the stochastic model is block-diagonal are: 

                                       

       ( ) ( )2
1 1 2 1 1trace 2 traceT T

ij ij n i i i n i i i

i i

s δ α− − − −   
= − − − ×   

  
∑ ∑I Q A N A I Q A N A  

            } ( )1 2 1 1 1 11 traceT T T

i i i ij i i j j j i

i j

δ− − − − − −
  × + −        

∑ ∑Q A N A Q A N A Q A N A  

            2 1 1 2trace -1 T T

j j i i i j

j i

α − − −  
+ +  

  
∑ ∑Q A N A Q A N A  

            2 1 1 2trace -1 T T

i i j j j i

i j

α − − −
  

+   
   

∑ ∑Q A N A Q A N A  
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            4 1 2 1 2trace T T

j j i i i j

j i

α − − − −
   +   

   
∑ ∑Q A N A Q A N A . 

 

and 

( ) ( )2 1 1 2 1

reg reg

T

i i i i i i

i

u α α− − −= − −∑ ε A N x Q ε A N x . 

 

6.7.2.4 Numerical studies on VCE in ill-posed problems 

 
In this section the example presented in Subsection 6.7.1 is considered again. First, 

we consider the stochastic model 1, in which three VCs for the VV, VH and HH 

gradients are estimated. The Gaussian noise of 1 mE and 1 cE is considered in this 

study. The following figures show the VC ratios during the VCE process and based 

on stochastic model 1. 

 

 
 

Figure 6.12. VC ratios during VCE process when noise level is (a) 1 mE and (b) 1 cE 

 

 

Figure 6.12 shows that the ratios of the VCs of the VV and VH components are 

decreasing and increasing respectively before convergence. The VC ratio of HH 

components differs by the noise level. It should be stated that equivalents initial 

VCs are considered and they are equal to 1. Since the noise level is previously 

known it is expected that the VCs are close to 1. The deviation of the VCs from 

one could be due to the different structure of the gradient and how they are related 

to each other in a joint adjustment. The VC ratios presented in Figure 6.12 show 

clearly these deviations around 1 before convergence. The biased-corrected VC 

ratios during iterative VCE are presented in Figure 6.13. The figure has very 

similar pattern as Figure 6.12 but the magnitudes of the VC ratios are slightly 

different. Since the VCs are very close to their corresponding initial values they 

cannot considerably change the estimated error of the recovered gravity anomalies.  
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Figure 6.13. VC ratios during biased-corrected VCE process when noise level is (a) 1 mE and (b) 1 

cE 

 

The regularization parameter varies during iteration and VCE process. The 

following figure is provided to illustrate its variations.  
 

 
 

Figure 6.14. Regularization parameter variations during VCE process when noise level is (a) 1 mE 

and (b) 1 cE 

 

Small changes are seen in the regularization parameter during the VCE and one 

may say that these changes are not significant. The regularization parameter is 

decreasing and increasing when the noise level is 1 mE and 1 cE, respectively. 

However, it converges to a certain value as the VCs do. The variation of this 

parameter in both biased-corrected VCE and ordinary VCE are more or less the 

same. Table 6.7 shows the magnitudes of the VCs and their biases and the biased-

corrected VCs. The table illustrates the VCs estimated from the VCE process in 

which the noise level of the SGG data is 1 mE and 1 cE. 

 
Table 6.7. VC, biases due to regularization and biased-corrected VCs 

 
1 mE 1 cE 1 mE 1 cE 

 
VC Bias VC Bias Biased-corrected VC 

2

VVσ̂  1.04 7.25 1.02 50.37 1.03 1.01 

2

VHσ̂  0.99 3.99 0.97 17.16 0.99 0.98 

2

HHσ̂  1.02 9.33 0.99 49.42 1.02 0.99 

 

 

It is known the VCE balances the precision of the observables (the SGG data) and 

the estimated residual. In 1 mE noise level, the VCs of the VV and HH components 
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are overestimated than the VH. Although these overestimations and 

underestimations are not significant but they means that the estimated residual for 

each components do not agree with the initial one. The estimated biases due to 

regularization are considerable larger than the estimated VCs. Therefore the idea of 

estimating the biases and removing them form the VCs is not true in this case as 

the values of the VCs are unrealistically large and negative. One can conclude that 

the biased estimation of the VCs (bias due to regularization) is more realistic. The 

biased-corrected VCs are very close to the VCs and they differences may be 

insignificant.  

 

The statistics of the differences between the true and recovered gravity anomalies 

after VCE are presented in Table 6.8. No improvements are seen in the recovered 

gravity anomalies during the VCE according to Table 6.8. The experiments have 

been repeated and in some cases, some small improvements were seen and in some 

not. In any case, very small changes were observed which are below 1 mGal level 

and insignificant.  
 

Table 6.8. Statistics of errors of recovered gravity anomalies considering VCE and biased-corrected 

VCE. Unit: 1 mGal 

 

  min mean max std 

1 mE -5.71 -0.00 6.74 2.11 Ordinary 

VCs 1 cE -19.14 -0.04 16.87 5.16 

1 mE -3.93 -0.00 4.51 1.58 Biased-

corrected 

VCs 
1 cE -9.20 -0.03 8.10 2.93 

 

 

Now, the stochastic model 2 in which one VC is estimated for each set of the 

gradients is considered. The following figure represents the VC ratios of each 

gravitational gradient during the VCE process.  

 

 
 

Figure 6.15. VC ratios during VCE process when noise level is (a) 1 mE and (b) 1 cE 

 

Since the initial VCs are close to the true values small changes are seen the VC 

ratios. As the figure shows, some of the VCs change the behaviour when the noise 

level changes. The following figure illustrates the biased-corrected VCs ratios in 

two 1 mE and 1 cE noise levels. 
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Figure 6.16. Biased-corrected VC ratios during VCE process when noise level is (a) 1 mE and (b) 1 

cE 

 

Figure 6.16 can be interpreted as that of Figure 6.15 and the explanation is not 

repeated here. However, as Figure 6.16 shows the ratios of the biased-corrected 

VCs are closer to 1 at the first iteration. It means that biased-correction process 

slightly improves the VCs. The following figure shows the behaviour of the 

regularization parameter during VCE.  

 

 
 

Figure 6.17. Regularization parameter variations during VCE process when noise level is (a) 1 mE 

and (b) 1 cE 

 

The changes of the regularization parameter are very similar to that of the 

stochastic model 1. The regularization parameter converges as the VCs converge.  

 
Table 6.9. VCs, biases due to regularization and biased-corrected VCs 

 
1 mE 1 cE 1 mE 1 cE 

 
VC Bias VC Bias Biased-corrected VC 

2ˆ
zzσ  1.04 5.29 1.01 50.43 1.03 1.01 

2ˆ
xxσ  1.01 1.76 0.98 17.49 1.02 0.98 

2ˆ
yyσ  1.05 1.23 1.01 15.60 1.05 1.00 

2ˆ
xyσ  0.99 4.59 0.97 18.32 1.00 0.97 

2ˆ
xzσ  0.98 3.03 0.97 27.82 0.97 0.97 

2ˆ
yzσ  1.00 9.37 0.97 71.73 1.01 0.98 
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Again the table shows very small and insignificant difference between the cases 

where the standard formulas or biased-corrected ones are used to estimate the VCs. 

One might conclude that the standard formulas of the VCE can be used in solving 

the ill-posed as well.  Table 6.10 shows insignificant improvement of re-weighting 

least squares solution by VCE.  

 
Table 6.10. Statistics of errors of recovered gravity anomalies. Unit: 1 mGal 

 

  min mean max std 

1 mE -5.75 -0.00 6.71 2.11 
VC 

1 cE -19.14 -0.04 16.89 5.17 

1 mE -3.95 -0.00 4.58 1.59 Biased-

corrected 

VC 
1 cE -9.18 -0.03 8.10 2.94 

 

 

6.7.3 Bias analysis of Sjöberg’s VC estimator in an ill-posed 

problem 

 
One reason to establish a biased-corrected VC estimator is to obtain positive values 

for the VCs. However, if the biased-corrected VCs come out negative, another way 

of VCE should be sought. It means that a non-negative method should be biased-

corrected. One example of these non-negative estimators is the BQUNE which was 

presented in the beginning of this chapter. This part of thesis concentrates on 

BQUNE, or the Sjöberg (1984c) VC estimator, which was presented in Eq. (6.12). 

This estimator is directly involved with the residuals estimated from a least-squares 

adjustment solution. The beauty of this estimator is its simplicity to use, as Eshagh 

(2005a) and (2005b) and Eshagh and Sjöberg (2008b) numerically presented the 

BQUE and BQUNE (Sjöberg estimator) are equivalent if the VCs come out 

positive. iγ  in this estimator is a projector that separates the residual vectors 

according to the pre-scribed stochastic model. In the following the bias of 

Sjöberg’s VC estimator is presented.  

 

Proposition 6.7 The bias of Sjöberg’s VC estimator is: 

 

( ) ( )
4 1 1

2Bias
trace

T T T

i i
i

i

ασ
− −

=
x A N F HF N Ax

HP
 

where 

                          

    ( ) ( )0 0

reg reg

T
T

i i i i
′= − −P F I A Q I A F  

 

Proof. Equation (6.8), which is the main part of Sjöberg’s estimator, will have the 

following form (see Eq. 6.44): 

 

      ( )2 1 0

regi i iα −= + −γ F AN x F I A ε ,        (6.53) 

 

Consider the following general quadratic VC estimator  

 

                                               ( ) 2trace T

i i i iσ =HP γ Hγ .        (6.54) 
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substituting Eq. (6.53) into the right hand side of Eq. (6.54) becomes: 

 

         ( ) ( )4 1 1 0 0

reg reg

T
T T T T T T

i i i i i iα − −= + − −γ Hγ x A N F HF N Ax ε I A F HF I A ε , (6.55a) 

 

or 

      ( ) ( )( )4 1 1 0 0

reg regtrace
T

T T T T T T

i i i i i iα − −= + − −γ Hγ x A N F HF N Ax HF I A εε I A F . 

  (6.55b) 

 

Substituting Eq. (6.55b) into Eq. (6.54) and taking statistical expectation from both 

sides one obtains: 

  

                                      { } ( )
1 1

2 2 4

trace

T T T

i i
i i

i

E σ σ α
− −

= +
x A N F HF N Ax

HP
.       (6.56) 

 

The second term in right hand side of Eq. (6.56) is nothing else than the bias of the 

Sjöberg’s VC estimator due to regularization. It should be reminded that the 

estimator is unbiased if i

−=H P and the bias of the estimator is just due to 

regularization.  

 

Type of the stochastic model is introduced in the formula by the projection 

operator iF . It will have the same structure as Eqs. (6.34a)-(6.34c) if the stochastic 

model 1 is chosen and Eqs. (6.36a)-(6.36e) is the stochastic model 2 is selected.  

 

6.7.4 Biased-corrected Sjöberg’s VC estimator  

 
Sjöberg’s VC estimator or BQUNE which is a non-negative estimator may yield 

negative VC if the bias of the regularization is larger than the VCs. In order to 

solve this numerical problem the biased-corrected version of Sjöberg’s VC 

estimator are proposed. This estimator is: 

 

2ˆ
trace( )

T

i i i
i

i i

σ
−

−=
γ P γ

P P
,        (6.57a) 

where 

 

                      ( )2 1

regi i α −= −γ F ε A N x ,                            (6.57b) 

 

          ( ) ( )0 2 2 1 0 2 2 1

reg reg

T
T T T

i i i iα α− − − −′= − − − −P F I A AN A Q Q I A AN A Q F .  (6.57c) 

 

Using Eq. (6.57a)-(6.57c) one can make sure to obtain positive values for the 

biased-corrected VCs.   
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Chapter 7 
 

 

 

The polar gaps  
 

 

 

7.1 Introduction 

 
Polar orbits are suitable orbits for applications of dynamic satellite geodesy because 

of observing geodetic data with a global coverage. However, the sun-synchronized 

orbits are preferred for low Earth orbiting satellites. If the inclination of low orbiters is 

not equal to 90 , then the polar areas are not covered with satellite observations. If a 

quadrature integral formula is used to compute the geopotential coefficients, a global 

coverage of SGG data is required. However, the solution of the geopotential 

coefficients is biased due to the polar gaps.  

 

The polar gaps problem was described by Rummel et al. (1993) and Koop (1993) 

with concentration on determining the spherical harmonic coefficients (SHCs) using 

the least-squares method. Sneeuw and van Gelderen (1997) also studied this problem 

and explained why the near-zonal harmonics are weakly determined in geopotential 

modeling. They have considered both space-wise and time-wise approaches in their 

discussions. Tscherning et al. (2000) investigated the polar gaps problem using least-

squares collocation. They concluded that the inclusion of gravity data in the gaps will 

improve the estimates of the geopotential coefficients, for which the quality depends 

on the availability of global data. Tscherning (2001b) mentioned that the near-zonal 

harmonics were typically two times larger than the other harmonics when the poles 

were not covered. He found that if ground gravity data is used to fill-in the gaps, the 

data should have a resolution twice the one of zzT also concluded that the available 

airborne and sub-marine gravimetry data would not improve GOCE solution if data 

from CHAMP and GRACE are available. Pail et al. (2001) used an 

orthonormalization scheme to orthonomalize the base functions with reference to 

Hwang (1991) and (1993). They recovered the geopotential coefficients without 

filling-in the gaps. Rudolph et al. (2002) considered the polar gaps filling-in problem 

from the SGG data, they conclude that 1 1× gravity anomaly blocks can be 

recovered. They also mentioned that the error of the recovered gravity anomalies 

reduced from 3 to 10-12 mGal from the rim to the centre of gap. They found also the 

cross-track direction contain the most information. Metzler and Pail (2005) presented 

a spherical cap regularization method considering an analytical function, which is 

defined in the polar region using an EGM. Simons and Dahlen (2006) used the 
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spherical Slepian function for the polar gaps, and they proposed a new method that 

expands the source field in terms of a truncated basis set of spherical Slepian function 

and compared it a with least-squares method. Siemes et al. (2007) incorporated three 

strategies: augmenting data in the gaps, introducing a priori information for 

regularization and the Slepian approach again. 

 

In this chapter, it is investigated which parts of the gravitational signal are not well 

estimated in the spectral solutions of the GBVPs, and it will also be studied how to 

estimate the gravity anomaly in these areas by direct downward continuation of the 

SGG data.   

 

7.2 Loss of power of gravitational signal due to polar gaps in SGG 

 
In the integral solutions of the GBVPs, combinations of the gravitational gradients are 

considered. The polar gaps destroy the unbiasedness of the solution, and some parts of 

the gravitational signal are weakly determined. For better explanation Figure 7.1 

shows a schematic shape of a sphere σ  with gaps Nσ  and Sσ  (the NPG and the SPG, 

respectively). If this sphere is the mean sphere of the satellite orbit, the polar gaps are 

those parts of this sphere, which are not covered by satellite passes (and data).  

 

                                         

         
Figure 7.1. Polar gaps 

 

The loss of power of the gravitational 

signal due to polar gaps was 

investigated by Sneeuw and Gelderen 

(1997) by a simple integral approach 

on the VV gradient ( zzT ). They found 

that the zonal and the near zonal 

geopotential coefficients are weakly 

estimated because of the polar gaps. 

Mathematically this idea can be 

expressed by Eq. (7.1), which is a 

simple global spherical harmonic 

analysis of any function f(Q) on the 

sphere σ . 

         

 

                                            ( ) ( )1

4
nm nmt f Q Y Q d

σ

σ
π

= ∫∫ ,                         (7.1) 

 

where Q is the integration point and nmt  are the SHCs of the function f(Q). The 

following quadrature estimator of the geopotential coefficients is considered: 

 

                                           ( ) ( )
N S

1ˆ
4

nm nmt f Q Y Q d
σ σ σ

σ
π − −

= ∫∫ .                              (7.2) 

 
In the case of SGG, the NPG and SPG have the same size 0σ , i.e. N S 0σ σ σ= = . 

According to Eq. (7.2) the spectral solutions of the GBVPs can be written: 

 

Nσ  

Sσ  

σ  
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( )( ) ( ) ( )
0

33

2

ˆ
4 1 2

n

nm zz nm

R r
t T Q Y Q d

GM n n R σ σ

σ
π

+

−

 =  + +   ∫∫ ,                      (7.3a) 

( )( ) ( ) ( ) ( ) ( )[ ] σ
π σσ

dQFQTQEQT
R
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nnGM

R
t nmyznmxz

n

nm ∫∫
−

+

+







++
=

02

33

214
ˆ ,                (7.3b) 

and 

( ) ( )( ) ( ) ( )( ) ( )
0

33

2

ˆ
4 1 1 2

n

nm xx yy nm

R r
t T Q T Q G Q

GM n n n n R σ σπ

+

−

  = − +  − + +   ∫∫          

     ( ) ( )2 xy nmT Q H Q dσ+  .                           (7.3c) 

 

The relative error in the geopotential coefficients is ( )ˆ
nm nm nm nmt t tε = − .  

 

In order to study the loss of power of the gravitational signal numerically, the 

EGM96 is used to generate the gradients at satellite level (250 km) with 

0.5 ×0.5 resolution. Equations (7.3a)-(7.3c) are used to estimate the geopotential 

coefficients considering 7 polar gaps in the coverage of SGG data. The NPG and 

SPG are the regions at latitudes above 83 and below -83 , respectively.  

 

 

 
 

Figure 7.2. Relative error of geopotential coefficients obtained from (a) VV, (b) VH and (c) HH 

GBVPs 

 

Figure 7.2 shows the triangle spectra of the sine and cosine coefficients below degree 

and order 50. The left part of each triangle shows the cosine and the right one the sine 
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geopotential coefficients. The figure shows that the near zonal coefficients are 

influenced by the polar gaps. It can be seen that the VH gradients are the most 

influenced gradients. The wedge shape power loss revealed for the VV and HH 

solutions is the narrowest and widest, respectively. It means that in the VV solution 

the closer coefficients to the zonal coefficients are weakly determined with respect to 

that in the HH solution.  

 

7.3 The gravitational gradients around polar gaps 
 

In order to see the significant gradients around the gaps, the gravity anomalies are 

generated in the NPG and SPG (using the EGM96 to degree and order 360) and Eq. 

(7.4) is used to generate the gradients at 250 km level. The gradients are computed in 

the local north oriented frame with 1 ×1 resolution. Figure 7.3 illustrates the 

produced gravity anomalies in the gaps. The maximum, minimum, mean and standard 

deviation of the gravity anomaly is 58.80, -79.44, -8.59 and 20.68 mGal, respectively 

in the SPG, and 46.86, -25.06, 8.95 and 11.14 mGal in the NPG. The figure and the 

presented statistics show smoother pattern of the gravity anomaly in the NPG than the 

SPG.  

  

 
 

Figure 7.3. Generated gravity anomalies in (a) NPG and (b) SPG. Unit: 1 mGal 

 

 
Here, we take advantage of the compartment gridding scheme (Heiskanen and Moritz 

1967, p. 127, Section 3-2) for recovering the gravity anomaly in the polar gaps. First, 

we have to investigate up to which limited area around the polar gaps the SGG data is 

significant. In order to determine this area, the following gradient estimator is used:  

 

                           ( ) ( ) ( )
0

,
4

ij ij

R
T P S r g Q d

σ

ψ σ
π

∗= ∆∫∫ ,  0σσ −⊂P  ; 0σ⊂Q  ,   (7.4) 

   

where i, j = x, y, z are the derivative symbols and ( )g Q∗∆  is the gravity anomaly at 

seal level and the integration point Q.  

a) b) 
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Figure 7.4. Generated gravitational gradients (a) xxT , (b) yyT , (c) zzT , (d) xyT , (e) xzT and (f) 

yzT at 250 km level from gravity anomalies in NPG. Unit: 1 E 

 

Figures (7.4a)-(7.4c) demonstrate that xxT , yyT  and zzT  are insignificant at 

latitudes below 70  around the NPG. xyT  and xzT  are insignificant at latitudes below 

75  and yzT  is negligible at latitudes below 80 . Figure 7.5 shows that xxT , yyT  and 

zzT  are considerably small at latitudes above -70  around the SPG. The gradients 

xyT , xzT  and  yzT at latitudes above 75 are insignificant. 

 

 

 
 

Figure 7.5. Generated gravitational gradients (a) xxT , (b) yyT , (c) zzT , (d) xyT , (e) xzT and (f) 

yzT at 250 km level from gravity anomalies in SPG. Unit: 1 E 

a) b) c) 

d) e) f) 
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d) e) f) 
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7.4 Gravity field recovery in the polar gaps  

 
In order to determine gravity anomaly 

in the polar gaps from the SGG data, 

Eq. (7.4) can be solved reversely. It is 

assumed that the truncation error (from 

region 0σ σ− ) of Eq. (7.4) has been 

removed. The solution of such an 

inversion process will be sensitive to 

the noise contaminated with the 

gradients. Here a Gaussian noise level 

of 1 mE is generated (see Figure 7.6) 

and added to each gradient to compare 

the recovery processes of the gravity 

anomaly. The system of equations 

related to the inversion of each 

gradient is stabilized and solved by the 

Tikhonov regularization method and 

the GCV is used to estimate its 

regularization parameter. The 

recovered gravity anomalies are 

compared with those computed from 

the EGM96 (the true values). The 

errors of the recovered gravity 

anomalies can be a criterion for testing 

the quality of inversion.  

 
 

Figure 7.6. Generated Gaussian noise of 1 

mE. Unit: 1 E 

 

 
 

Figure 7.7. Errors of recovered gravity anomalies in (a) NPG and (b) SPG. Unit: 1 mGal 

 

Figure 7.7 represents errors of the recovered gravity anomalies from the rim to the 

centre of the NPG and the SPG. The figure shows that the errors at latitudes below 

84.5  are within 5 mGal. The errors of recovery from xxT , 
yyT , zzT and xzT  are more 

or less in the same level. In the NPG, the errors are increasing to the latitude 87.5  

and decreasing after 87.5 . Figure 7.7a shows that yzT  is better than xxT , yyT , zzT  

and xzT  at latitudes below 87.5  and it is the worst at 89.5 . xyT  seems to be the best 

gradient in the NPG. According to Figure 7.7b, the errors considerably differ in the 

SPG.  The errors are similar and more or less in the same level for the recovered 

gravity anomalies from xxT , yyT , zzT  and xzT . xzT  and xxT  seem to be better than the 
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others at the latitude  -89.5 .  yzT  is the worst gradient at -89.5 , but it is better than 

the others at latitudes below -78.5  except for xyT  which is the best at latitudes 

between -84.5  and -88.5 . Figure 7.7 cannot give a general conclusion about the 

quality of the inversions and suitability of the gradients. Table 7.1 presents conclusive 

statistics of the total errors of each gradient. The table shows that xxT , zzT  and xzT  

have more or less the same capability in both NPG and SPG. yzT  is better than yyT , 

and xyT  is the best gradient.  

 
Table 7.1. Statistics of total errors of recovered gravity anomalies in polar gaps. Unit: 1 mGal 

 

NPG SPG 
 

Min mean max std min mean max std 

xxT g ∗→∆  -31.63 0.03 25.92 7.14 -33.36 0.01 38.26 10.70 

yyT g ∗→∆  -34.71 -0.06 27.38 6.60 -28.96 0.00 28.41 7.95 

zzT g ∗→∆  -39.00 -0.03 31.64 6.98 -32.29 -0.01 28.23 10.14 

xyT g ∗→∆  -17.96 0.15 18.62 4.12 -15.09 0.09 16.00 5.50 

xzT g ∗→∆  -36.00 -0.04 28.45 6.98 -30.58 0.01 28.14 9.02 

yzT g ∗→∆  -22.25 -0.37 18.19 5.35 -16.82 0.17 23.41 6.63 

 

 
 

Figure 7.8. Estimated error of recovered gravity anomalies in (a) NPG and (b) SPG. Unit: 1 mGal 

 

Figure 7.8 shows the estimated error (propagated random error) of recovered gravity 

anomalies in the gaps. The general pattern of the figure is similar to that of Figure 

7.7. In the NPG, the estimated errors are smaller than the others at latitudes below 

85.5  except for zzT . The errors are increasing to the latitude 87.5  and they are 

decreasing after 87.5  except for xyT  and zzT . yzT  is the worst gradient at the latitude 

89.5 . Figure 7.9b can be interpreted in a similar way. It shows that the errors of the 

recovery, from zzT , xxT , yyT  and xzT , have similar pattern for the latitudes above -

86.5  and larger than those from xyT  and yzT . zzT  and yyT  seem to be better than the 

others in propagating the random errors. In average, the errors are 3.29, 2.01, 2.09, 

2.83, 2.22, 4.53 mGal for the recovered gravity anomalies from xxT , yyT , zzT , xyT , 
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xzT and yzT , respectively in the NPG, and 5.70, 3.36, 4.28, 3.64, 4.37, 5.45 mGal in 

the SPG.  

 
 
Figure 7.9. Errors of biased-corrected recovered gravity anomalies in (a) NPG and (b) SPG. Unit: 1 mGal 

 

The bias of the regularization can be estimated and removed from the recovered 

gravity anomalies and the result will be the biased-corrected gravity anomalies. Figure 

7.9 shows the errors of the biased-corrected gravity anomalies and some improvements 

in the recovered quantities. Table 7.2 shows the statistics of errors of the biased-

corrected gravity anomalies. It shows that the bias-correction improves the result about 

2 mGal in inversion of xyT . In general, it can be stated that the bias-correction process 

improves the results of inversion of all the SGG data about 3 mGal.  

 
Table 7.2. Statistics of total errors of biased-corrected recovered gravity anomalies in polar gaps. Unit: 

1 mGal 

 

NPG SPG 
 

Min mean max std min mean max std 

xxT g ∗→∆  -19.46 0.03 23.91 4.80 -33.54 0.01 39.44 8.48 

yyT g ∗→∆  -14.19 -0.05 9.95 3.30 -21.02 -0.00 19.07 5.22 

zzT g ∗→∆  -11.58 -0.03 15.44 3.51 -32.23 -0.01 29.48 7.50 

xyT g ∗→∆  -9.56 0.13 10.91 2.69 -8.28 -0.00 11.65 2.91 

xzT g ∗→∆  -16.45 -0.04 17.24 3.35 -26.24 0.00 28.62 6.98 

yzT g ∗→∆  -23.35 -0.32 16.73 4.31 -13.07 -0.00 19.71 4.27 

 

7.5 Joint inversion of SGG data for recovering gravity anomaly in 

polar gaps 

 
Increasing the number of observations or over-determination suppresses noise of data. In 

this section, we use all types of SGG data and construct one system of equations for the 

inversion. The system is regularized using the Tikhonov regularization by assuming that 

the data are contaminated with 1 mE noise.  
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Figure 7.10. Errors of recovered gravity anomalies by joint and biased-corrected joint inversion in (a) 

NPG and (b) SPG. Unit: 1 mGal 

 

Figure 7.10 shows the errors of the recovered and biased-corrected recovered gravity 

anomalies. In the figure “Joint” means the errors of recovered gravity anomalies from 

simple joint inversion and “biased-corrected joint” means errors of those recovered from 

the biased-corrected joint inversion. By comparing Figure 7.8 with Figure 7.10 one may 

conclude that the joint inversion of the SGG data performs better than inversion of each 

single gradient. Figure 7.10 shows that the joint inversion is even better than the biased-

corrected recovery from the inversion of each single gradient; see Figure 7.9. Figure 

7.10 presents that the errors of biased-corrected gravity anomalies are smaller than those 

of the simple joint inversion. One may conclude that the joint inversion performs well in 

rim of the gaps. The statistics of the errors of the joint inversions are presented in Table 

7.3. The total error of biased-corrected joint inversion for the NPG and SPG can reach to 

1 and 3 mGal, respectively if the noise of the SGG data is 1 mE.  

 
Table 7.3. Statistics of errors of joint recovered and biased-corrected joint recovered gravity 

anomalies from SGG data in polar gaps. Unit: 1 mGal 

 

 method min mean max std 

Joint -14.87 -0.02 12.16 2.84 

NPG Biased-corrected 

joint 
-4.64 -0.01 5.09 1.12 

Joint -12.51 0.01 15.03 4.70 

SPG Biased-corrected 

joint 
-11.74 0.00 12.04 2.88 

 

Table 7.4 represents that the estimated errors of the recovered gravity anomalies are 

equal at latitudes below 88.5  in the NPG and above -88.5  in the SPG. The reason 

could be due to the stable of system of equations in these regions 
 

Table 7.4. Estimated errors of recovered gravity anomalies from joint inversion of SGG data. Unit: 1 

mGal 

 

latitude ∓ 83.5  ∓ 84.5 ∓ 85.6 ∓ 86.5 ∓ 87.5 ∓ 88.5 ∓ 89.5  

SPG 0.27 0.61 1.35 2.61 4.12 1.88 1.63 

NPG 0.27 0.61 1.35 2.61 4.11 3.33 0.63 
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Chapter 8 
 

 

 

Conclusions and future works 

 

 
8.1 Conclusions 

 
In Chapter 2 the simplified version of the geopotential force acting on a satellite was 

used to study the contribution of orbital perturbations in the satellite gravity 

gradiometry (SGG) data. It was found that xxT , yyT and xyT are more influenced by the 

perturbations than the other gradients. In general, the perturbations affect the gradients 

within 2 E. Perturbation of the satellite track azimuth influences the gradients within 

0.2 E. Numerical studies on the new expressions of the gravitational gradients and the 

tensor spherical harmonics verify the correctness of the formulas. It was illustrated 

that the vertical-horizontal (VH) solution of the gradiometric boundary value 

problems (GBVPs) is better than the other solutions in recovering the gravitational 

field from SGG data. Considering 1 % relative error in degree variances of the 

solution, an Earth gravitational model (EGM) to degree and order 313 can be 

computed by solving the VH solution of GBVPs with 5 5′ ′× noise-free SGG data. This 

number will be 288 and 295 for the VH and the horizontal-horizontal (HH) solutions, 

respectively. The degree of resolution is 218, 218 and 202 for the vertical-vertical 

(VV), VH and HH solutions, respectively, if the resolution of the data is 5 5′ ′× . 

According to Institute of Electrical and Electronics Engineers (IEEE), double-

precision environment, the maximum degree of achievable EGM is 358 in average 

(which is very optimistic).  

 

In Chapter 3 we have investigated different ways of formulating the topographic 

effect (TE) and atmospheric effect (AE) in spherical harmonics. The effects have been 

computed and presented for an imaginary satellite at 250 km level over Fennoscandia 

and Iran. Computations show that the TE is quite significant on the SGG data and 

should be considered in modeling of the gravity field and in the downward 

continuation process. The maxima of TE are 3 and 1 E in Iran and Fennoscandia 

based on the spherical harmonic expansion of topography to degree 360. A simple 

study on the lateral density variation (LDV) of the topographic masses was done, 

which shows very significant effects on the SGG data. The lateral density variation 

effect (LDVE) is 116 mE in Iran and 56 mE in Fennoscandia. Different atmospheric 

density models (ADMs) were investigated, and a new model was proposed as 

NKTHA, which is better than the other analytical ADMs. Numerical studies show that 
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the maximum AE is within 5 mE in these regions based on this ADM. The largest 

effects occurs on zzV , and the least on xyV .  

 

The topographic and atmospheric biases on the gravitational gradients were also 

formulated in Chapter 3. The important matter in this formulation is the divergence of 

the spherical harmonic series. If this series is not convergent, the downward continued 

atmospheric potential is not reliable. The downward continuation using a divergent 

series is theoretically wrong and definitely the obtained numbers are wrong as well.  

However, it has been proved by Sjöberg (2007) that the TE until third-order 

approximation is convergent and can be continued down to sea level without any 

problem. Based on this philosophy we presented the topographic bias on the 

downward continued gravitational gradients to sea level. We found simple formulas 

for the topographic bias on the diagonal elements of the gravitational tensor and we 

proved that there is no topographic bias on the non-diagonal elements of the tensor. 

These elements can easily be continued downward to sea level without considering 

the TE.  

 

Chapter 4 presented the relations between the gravitational gradients and gravity 

anomaly. The idea is to modify the extended Stokes formula using the least-squares 

modification (LSM) method. In this respect, a general estimator was presented for the 

disturbing potential. The elements of the system of equations, from which the 

modification parameters are estimated, were derived mathematically. For modifying 

the second-order radial derivative (SOD) of the extended Stokes formula, the 

coefficient matrix remains the same with that of original extended Stokes’ formula 

(the disturbing potential), if the derivative of modification parameter is estimated 

directly. In such a case the right hand side of the system of equations will change. In 

order to generate the truncation coefficients of the SOD of the extended Stokes 

function (ESF) and the original ESF, the spectral form of the truncation errors is 

recommended. Numerical studies on estimating the disturbing potential at satellite 

level show that the resolution of the data is not very significant (below cm level) for 

all types of the LSM. It will be within 1 mE level for the SOD of the ESF as well. 

Modification of the VH gravitational gradients is very similar to modification of the 

Vening-Meinesz formulas. The difference is related to the spectra of their kernel 

functions. The truncation error of these formulas is very similar to that presented by 

Hagiwara (1973). In Chapter 4 we presented a general estimator for the VH gradients.  

The elements of the system of equations for estimating the modification parameters 

using the LSM methods are derived. The same process was repeated for the HH 

gradients as well.  

 

According to the general estimators, which were presented for VV, VH and HH 

gradients, it is easy to validate the diagonal elements of the gravitational tensor. The 

Laplacian operator yields that ( )zzT P  is equal to ( ) ( )xx yyT P T P− − , and therefore,  

by estimating ( )zzT P , the minus of the sum ( ) ( )xx yyT P T P+ is validated as well. 

Also we showed that ( ) ( )xx yyT P T P− can be validated by the LSM of the HH 

gradients of the extended Stokes formula. Consequently, ( )xxT P  and ( )yyT P can 

easily be estimated from the previous combination. No problem is observed for 

validating the VH gradients, as they can be estimated separately.  
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In Chapter 5 the emphasis was on determining the gravity anomaly from SGG data. 

The second-order partial derivatives of the extended Stokes formula were inverted in 

this respect. The singularity analysis of their isotropic kernels was done for the case 

where the integration and computation points coincide. The analysis showed that the 

kernel functions ( ),0zzS r , ( ),0xxS r  and ( ),0yyS r  are not singular and ( ),0xzS r , 

( ),0yzS r , ( ),0xyS r  are equal to zero. The numerical studies on the inversions (using 

Tikhonov regularization) show that the GCV is slightly better than the L-curve 

method of estimating the regularization parameter. The condition numbers of the 

coefficient matrices of the integrals are in the same level when the resolution of SGG 

data are 0.5 ×0.5  and 0.25 ×0.25 for recovering a grid of 1 ×1 gravity anomaly 

in Fennoscandia. The system of equations is considerably unstable for estimating 

0.5 ×0.5 gravity anomalies from 0.25 ×0.25 SGG data, but the recovery is 

possible if the system of equations is well-regularized.  The condition number of the 

coefficient matrices xxA , yyA , zzA  and xzA are at the same level except for  xyA and 

yzA , for which the condition numbers are smaller. However, the simulation studies 

show that the recovered gravity anomaly from these gradients is not as good as those 

from the others. The small gradient magnitudes might be a reason for this 

phenomenon, as by adding the noise most part of the gradient is destroyed. In general, 

one can conclude that for local gravity field determination zzT is the best gradient. 

After that xxT , 
yyT  and xzT  are more suited than the rest. Inversion of the Eötvös type 

gradients xxT - yyT and  2 xyT show better performance. One reason of this could be 

over-determination and another is the change of the integral kernel. However, 

numerical studies show that the over-determination is more significant than the 

kernel.  The system of equations related with zzT and yzT propagates the noise less 

than the others. In general, the errors are larger in margins of the area under 

investigation. The propagated random errors are decreasing from north to south for 

xxT , yyT , zzT and xzT and increasing for yzT . The numerical study on estimating the a-

posteriori variance factor and its bias shows that removing the estimated bias due to 

the regularization cannot improve the estimates of the a-posteriori variance factor. 

Bias-correction procedure on the recovered quantity can improve the result about 3 

mGal. Since the integral kernels are not isotropic (except for zzT ), the direct inversion 

of each gradient was studied. It is not possible to formulate the truncation error of 

non-isotropic kernels in spectral form. Therefore it was proposed to transfer the 

truncation integral formula to space domain instead of spectral domain; although this 

error will be contaminated with discretization error. Numerical studies on the error, 

based on the EGM96 to degree and order 360, show that the truncation error is 

slightly dependent on the resolution of the SGG data.  If the grid resolution of 

unknowns increases as well, the error changes slightly. The truncation error of the 

integrals is within 1 cE. The numerical studies show that it is not possible to achieve 

gravity anomaly with 1 mGal accuracy by inverting a single gradient unless the 

resolution of the grid of gradients increase considerably.  

 

Chapter 6 deals with the optimal combination of the integral solutions of the 

GBVPs. The variance component estimation (VCE) concept is used in a non-standard 

way to update the weight of observations. Numerical studies show that estimating one 

degree-order variance component (DOVC) for each type of observation is better than 
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the case where the DOVC is estimated for each integral solution. The modified best 

quadratic unbiased non-negative estimation of the variance components is not 

practical, as large matrices are involved in the combination. Construction of the 

condition equations in the simplest way is recommended. The formulas presented in 

this study are well-suited for the GBVPs. For combining solutions of other boundary 

value problems, we have to reconstruct the mathematical models.  

 

Fennoscandia (latitudes from 55  to 70 , longitudes between 5  and 30 ) was 

used as a test area for the joint inversion study. A 1 ×1  grid of gravity anomalies 

was recovered from 0.5 ×0.5  SGG data. The coefficient matrix of the simple joint 

inversion of the SGG data has larger condition number than the inversion of each 

gradient (except for xyT and yzT , which have condition number in the same level). The 

estimated error of the recovered gravity anomalies are increasing and decreasing from 

the northern to southern part of Fennoscandia for noise of 1 mE and 1 cE, 

respectively. This study shows that the gravity anomaly can be recovered within 2 and 

5 mGal at 1 mE and 1 cE noise level, respectively. The bias-correction procedure 

improves these numbers to 2 and 3 mGal, respectively. It is expected to reach to 1 

mGal accuracy, if the resolution of the SGG data increases.   

 

A large system of equations is constructed for the joint inversion of five 

independent gradients of the gravitational tensor. It is not easy to use the standard 

formulas of VCE, as their matrices are relatively big. Assuming that the variance-

covariance matrix of the SGG data has a block-diagonal structure, the VCE formulas 

can be simplified. The bias due to regularization has been formulated as well as the 

biased-corrected VCE. Numerical studies show that the biases are mostly larger than 

the VCs and the removal of them usually leads to negative VCs. The biased-corrected 

VCE may yield better result than the biased VCE, but in the numerical studies 

insignificant differences were found.  

 

The polar gaps, due to the inclined orbit of satellite, were the main subject of 

Chapter 7. A numerical study on the spectral solutions of the GBVPs shows that the 

near zonal spherical harmonic coefficients are very much influenced by the polar 

gaps. This influence is even more for the VH solution vs. the others by these regions. 

One may conclude that the VH gradients are more suited for determining the gravity 

field in polar gaps. For determining the gravity anomaly a special gridding scheme 

should be used. The compartment gridding algorithm presents a good capability in 

this respect. Numerical studies show that only the data which is around the gaps and 

close to the rim is significant. The gradients zzT , xxT , yyT  and xzT  need more data 

around the polar gaps than xyT and yzT . xyT  and yzT  show better capability than the 

other in polar gaps gravity anomaly recovery. The ring by ring inversion shows that 

zzT , xxT , yyT and xzT are suited for the gaps rim. The joint inversion of SGG data 

shows a recovery in the north polar gap within 3 mGal error, and it is 5 within mGal 

in the south polar gap. These numbers will change to 1 and 3 mGal after bias-

correction. The recovery of the gravity field in the north polar gap is simpler than that 

in the south polar gap, as there is no topography in the former and the gravitational 

signal is smoother.  
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8.2 Future works 

 
This dissertation investigated a number of issues related with SGG and the obtained 

results are promising for future works. The following subjects can be considered for 

further investigations in the future.  

 

1. In the numerical studies presented in Chapter 2, noise-free SGG data was used to 

recover the geopotential coefficients. The next step of the study could be to 

include noise to the data. The solutions of the GBVPs are sensitive to the noise 

of SGG data. Over-determination helps the solution to suppress the noise, but in 

the solutions of GBVPs there is no redundancy. This subject is considered for 

further works. The semi-vectorization numerical algorithm is an efficient 

technique in synthesis and analysis in SGG developed by Eshagh and 

Abdollahzadeh (2009a).  

 

2. Considering a numerical atmospheric density model (ADM) is also in our 

research plan and we are going to find a way to formulate it analytically. The 

presented formulation could be the first approximation of the AE. Another study 

can be done on the topographic and atmospheric biases, some part of this 

investigation has been considered by Sjöberg and Eshagh (in preparation), but it 

needs more works before coming to a good conclusion. The presented formulas 

can easily be used to investigate the topographic and atmospheric biases on the 

geopotential coefficients and even direct downward continuation of the 

gravitational gradients.  

 

3. The truncation error of the VH and HH integrals were derived in Chapter 4 as 

well as the elements of the system of equations from which the biased LSM, 

unbiased LSM and optimum LSM are obtained. Numerical studies on the LSM 

of these integrals are left for future. The zero- and first-order Paul coefficients 

( )0

0erk ψ  and ( )1

0erk ψ  are well-known, and we have derived a relation between 

the second-order Paul coefficient ( )2

0erk ψ and ( )1

0erk ψ . Numerical studies on 

this subject are considered for future works. The relations between the VH 

truncation coefficients ( )HH

0,nQ r ψ , ( )VH

0,nQ r ψ  and ( )VV

0,nQ r ψ  can be 

constructed as well. The theory of modification with a spherical ring which was 

originally presented by Sjöberg and Eshagh (2009) were developed to SGG. 

This numerical study is restricted to the biased type of the LSM and the VV 

gradients. The numerical studies on the unbiased and optimum LSMs and the 

other gradients are left for future works.  

 

4. In Chapter 5 the truncation error of the integral formulas were estimated in 

spatial domain. However combination of the VH and/or HH gravitational 

gradients opens another way to formulate the truncation error in spectral domain 

before downward continuation.   

 

5. In the presented numerical study on combining the gravitational gradients, no 

negative VCs came out. If the biased-corrected VCE yields negative VCs, 

Sjöberg’s non-negative VC estimator should be used. The bias due to the 
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regularization was formulated for this estimator, and its biased-corrected version 

was formulated as well. Numerical studies and practical comparison of this VC 

estimator and the standard method of best quadratic unbiased estimation are left 

for future work.  

 

6. All the carried out numerical studies were based on simulations, as no real 

GOCE data is available. Working with real SGG data of GOCE is in our 

research plan for the future.   
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