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Abstract-SCADA systems are widely used in critical 

infrastructure sectors, including electricity generation and 

distribution, oil and gas production and distribution, and water 

treatment and distribution. SCADA process control systems are 

typically isolated from the internet via firewalls. However, they 

may still be subject to illicit cyber penetrations and may be 

subject to cyber threats from disgruntled insiders. We have 

developed a set of command injection, data injection, and denial 

of service attacks which leverage the lack of authentication in 

many common control system communication protocols 

including MODBUS, DNP3, and EtherNETIIP. We used these 

exploits to aid in development of a neural network based 

intrusion detection system which monitors control system 

physical behavior to detect artifacts of command and response 
injection attacks. Finally, we present intrusion detection accuracy 

results for our neural network based IDS which includes input 

features derived from physical properties of the control system. 

Keywords: intrusion detection; SCADA control system; cyber 

security 

I. INTRODUCTION 

Supervisory Control and Data Acquisition (SCADA) 
systems are process control systems which interconnect and 
monitor remote physical processes. SCADA systems collect 
data from remote facilities about the state of the physical 
process and send commands to control the physical process 
creating a feedback control loop. SCADA systems are used in 
power transmission and distribution systems for situational 
awareness and control. Contemporary SCADA systems are 
commonly connected to corporate intranets which may have 
connections to the internet. SCADA communication protocols 
such as MODBUS, DNP3, Allen Bradley's Ethernet Industrial 
Protocol lack authentication features to prove the origin or 
freshness of network traffic. This lack of authentication 
capability leads to the potential for network penetrators and 
disgruntled insiders to inject false command and false 
response packets into a SCADA system either through direct 
creation of such packets or replay attacks. In this paper we 
have developed a set of command injection, response 
injection, and denial of service attacks, subjected commercial 
SCADA systems to these attacks, captured network traffic 
associated with these attacks using a SCADA network 
transaction data logger, and finally used the captured network 
traffic in combination with captured traffic from the SCADA 
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control systems running normally to develop and validate a 
neural network based intrusion detection system which 
leverages knowledge of the physical properties of the 
controlled system to detect false command and false response 
injection attacks. 

National Electric Reliability Council (NERC) Critical 
Infrastructure Protection (CIP) Standards 002-3 through 009-3 
[2] require utilities and other responsible entities to place 
critical cyber assets within an electronic security perimeter. 
The electronic security perimeters must be subjected to 
vulnerability analyses, use access control technologies, and 
include systems to monitor and log the electronic security 
perimeter access. The Federal Energy Regulatory Commission 
(FERC) requires responsible entities involved in bulk 
electricity transmission to adhere to the NERC CIP 002-3 
through 009-3 standards. No such regulation exists for the 
electric distribution systems and other critical infrastructure, 
such as water treatment and distribution, and gas distribution, 
in the United States. Electronic perimeter security will 
minimize the threat of illicit network penetrations, however, 
persons with electronic access to SCADA systems within the 
electronic security perimeter still remain a threat due to the 
lack of authentication capabilities in these systems. 
Additionally, the lack of authentication for process control 
system communication protocols means that if an attacker 
does penetrate the electronic security perimeter he will be able 
to inject false commands and false responses into the process 
control system without detection. As such, intrusion detection 
systems tailored for use in process control systems are needed 
to detect this behavior. 

Team Cymru, a specialized Internet security research firm, 
released a briefing paper in 2008 [1] which discussed 
malicious port scan activity against their DarkNet (a honey 
pot) searching for open ports on port numbers commonly 
associated with SCADA system protocols. This report showed 
heavy scanning activity from four areas: The ASIA, USA, 
Western Europe and Eastern Europe. The report cited heavy 
scanning of DNP3 ports from Russia and Taiwan, and heavy 
scanning activities for MODBUS related ports in Western 
Europe and China. This port scanning is potentially 
indicative of attackers searching for SCADA systems for later 
attack. 



Stuxnet is the first known worm to target an industrial 
control system. Stuxnet targeted PC's running the Siemens 
WinCC SCADA software product. Infected systems had a 
DLL replaced used by the WinCC Step7 tool. The worm then 
monitored communications between the WinCC tool and a 
remote terminal. If a specific signature related to the remote 
terminal was found firmware on the remote terminal was 
replaced with malicious code. 

The remainder of this paper is organized as follows. Section 
2 provides details on related works and an introduction to 
SCADA systems. Section 3 presents a set of exploits 
developed and tested in the Mississippi State University 
(MSU) SCADA security laboratory. Section 4 introduces a 
neural network based intrusion detection system (IDS) which 
leverages knowledge of the physical properties of the 
controlled system to detect false response injection attacks. 
Section 4 includes experimental results including intrusion 
detection accuracy, false positive rates, and false negative 
rates. Finally, Section 5 provides conclusions and proposed 
future works. 

II. BACKGROUND AND RELATED WORKS 

A. Related Works 

Within the area of SCADA control system security 
researchers have developed pattern recognition systems which 
monitor MODBUS network transactions watching for 
signatures of known attacks and vulnerabilities [4]. 
Researchers have also used statistical techniques to monitor 
sensor data to identify system faults [5]. 

Traditional signature based IDS (e.g. Snort) focus on 
matching signatures stored in databases with network packets. 
This approach is efficient when detecting known attacks. 
However, the signature database depends on security experts' 
knowledge and experience. Furthermore, signature based IDS 
often cannot detect new attacks, so they are often behind 
attackers. 

Statistical IDS use statistical models to classify network 
traffic as normal or abnormal (or into smaller sub-classes). 
Various model types or classifiers can be used to build the 
statistical model, including neural networks, linear methods, 
regression models, and Bayesian networks [6]. The main 
drawback of statistics based IDS is that they are not 
deterministic. Therefore, they suffer from more inaccuracies 
than signature-based intrusion detection systems. There are 
two types of inaccuracies in IDS: false positives and false 
negatives. False positives generate a false alarm when there is 
no intrusion, while false negatives will miss an actual 
intrusion. The accuracy of statistics-based intrusion detection 
systems relies on training dataset completeness, proper input 
feature development, and choice of classifier. 

Artificial neural networks (ANN) model the biological 
nervous system, and are widely used in pattern classification, 
detection, and statistical analysis. ANN is one of the most 
commonly used classifiers for intrusion detection systems. In 
[7], Choudhary and Swarup describe research to apply neural 
network approach for intrusion detection systems with very 

high detection accuracy. However, implement artificial neural 
network in intrusion detection system in SCADA environment 
is still new research area. 

This paper describes an IDS which uses device address, 
MTU command contents, R TV response contents, command 
and response frequency, and physical properties about the 
control process as input features to detect command and 
response injection attacks. 

B. SCADA System Overview 

SCADA control systems are distributed cyber-physical 
systems. These systems consist of Remote Terminal 
Units(RTU), Master Terminal Units (MTU), Human Machine 
Interface software (HMI) and the sensors and actuators that 
interface with the physical system. Remote terminal units 
(R TU) are connected to sensors and actuators to interface 
directly with the physical process. R TU commonly store 
control parameters and execute programs which directly 
control the physical process. For instance, an RTU may be 
used to control the water level in a tank. It will be 
programmed with a high water level and a low water level. 
The RTU continuously monitors the water level with a 
connected water level sensor. If the water level reaches the 
programmed high level, the R TU turns off a pump which fills 
the tank. If the water level reaches the low level the R TU 
turns on the pump to add water to the system. The RTU, the 
ladder logic (or other programmation), and the attached 
sensors and actuators form a feedback control loop. 

Master terminal units (MTU) are connected to the R TU via 
communication links. The MTU polls the RTU periodically to 
read physical quantities of the controlled system such a 
voltage, pressure, water level etc. Typically this information 
is displayed on a Human Machine Interface (HMI) to allow 
operators to monitor the physical process. HMI typically 
allow the operator to interact with the physical process. 
Operators may change operating parameters. For example an 
operator may change the high and low water levels, from the 
previously mentioned water system example. The MTU, 
RTU, communication link, HMI, and operator form a second 
supervisory feedback control loop. 

The communication links in SCADA systems can be 
thought of occupying layers 1, 2 and 7 of the OSI model; these 
are the physical, data link (and media access control), and 
application layers, respectively. The physical layer may be 
wired or wireless.. Wired networks may use leased lines, 
category 5 or 6 cable" serial cable, and/or fiber optic cable. 
Wireless networks may use standardized communication 
systems such as IEEE 802.11, ZigBee, and/or WirelessHART. 
Wireless links may also use proprietary non-standard 
protocols. Finally, wireless links may include very long­
distance solutions such as satellite and microwave links. There 
are many standards for layer 2 and 7 SCADA communication 
including Fieldbus, Profibus, MODBUS, DeviceNet, and 
Distributed Network Protocol version 3 (DNP3). DeviceNet 
includes the common Ethernet-based protocol Ether Industrial 
Protocol, abbreviated EthernetlIP or E/IP. All of these 
protocols have versions that have been adapted to use TCP/IP 
as network and transport layers for use with commodity 



internet equipment. One common security flaw with all of 
these communication protocols is that they do not include 
cryptographic authentication, which means, RTU and MTU 
cannot validate the origin of commands and responses 
respectively. 

C. Mississippi State University SCADA Security Laboratory 

The MSU SCADA security laboratory (henceforth called 
the lab) was used to develop a set of SCADA control system 
exploits. The lab contains 5 laboratory scale SCADA control 
systems [8].  Each SCADA control system includes Control 
Microsystems, INC SCADAPack Light PLCs as MTU and 
RTU. The MTU is connected via RS-232 serial port to a PC 
running the OE IFIX human machine interface software. The 
MTU and RTU are connected wirelessly using integrated 
Freewave FOR 900MHz radios. The MTU and RTU can be 
configured to communicate using DNP3, MODBUS ASCII, or 
MODBUS RTU communication standards. The 5 laboratory 
scale control systems model a gas pipeline, a factory assembly 
line, a water tower, a water storage tank, and an industrial 
blower. All 5 control systems are mechanically functional 
models. The IDS system, accompanying training data, and 
exploits discussed in this paper were developed and validated 
using the water storage tank control system. 
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Fig. I: Water Tank Control System Schematic 

The water storage tank control system contains a 2 liter 
storage tank, a pump to force water into the tank, and a 
variable level water sensor. The RTU contains HI and LO 
water level registers which are programmed by the HMI. The 
RTU contains a water level register which is set by a sensor 
monitoring water level in the water tank. The RTU also 
contains a pump state register which may be programmed by 
the RTU or control logic. The RTU control logic attempts to 
maintain water level in the water tank between the HI and LO 
levels by turning on and off the water pump. The HMI 
periodically polls the RTU (every second) to read the water 
level for display on an operator's graphical user interface. The 
HMI also allows an operator to manually control the system to 

tum the pump on and off and set the HI and LO water level 
values. A water tank schematic is shown in Fig. 1. 
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Fig. 2: MODBUS Link Layer Protocol Data Unit 

The water tank control system uses the MODBUS protocol. 
The MODBUS protocol is a command response protocol. The 
control system HMI interfaces to the MODBUS application 
layer to send commands and receive responses to and from the 
control system respectively. Commands and responses are 
transmitted using a data link layer protocol data unit (LPDU). 
The physical layer (denoted as communication link in Figure 
1) uses a RS-232 serial link configured for 9600 BPS 
communication with 8 data bits, 1 stop bit, no parity bit, and 
no flow control. No other Open System Interconnections 
(OS!) layers are used for the MODBUS communication. The 
MODBUS LPDU contains an address field, a function code, a 
data value, and a cyclic redundancy code (CRC) used for error 
detection. Fig. 2 shows a diagram of the MODBUS LPDU. 
The water level, HI and LO register values, and the pump 
status are encapsulated in the data field of the MODBUS 
LPDU. 

III. ATTACKS ON SCADA CONTROL SYSTEMS 

Many SCADA control systems are distributed over large 
distances and therefore use wireless networks to connect 
master terminals and remote terminals. Many industrial radios 
are vulnerable to illicit penetration from cyber intruders [9]. 
Once an intruder penetrates a SCADA control system, he or 
she may inject false responses into the control system to 
falsify physical process data or inject invalid control 
commands to R TU. Both scenarios can lead to harmful results. 
In 2000, a Maroochy, Queensland, Australia sewage control 
system was penetrated wirelessly by a cyber intruder who 
injected falsified commands to open flood gates [12]. Over 1 
million liters of raw sewage leaked into 2 local fresh water 
streams over 3 month period while the intruder went 
undetected. 

Three primary threats to process control systems are 
response injection, command injection, and denial of service. 

Response injection attacks inject false responses into a 
control system. Since control systems rely on feedback 
control loops which monitor physical process data before 
making control decisions protecting the integrity of the sensor 
measurements from the physical process is critical. False 
response injection can be used by hackers to cause control 
algorithms to make misinformed decisions. 

Many SCADA control system network standards do not 
include mechanisms to support response integrity. 

Command injection attacks inject false control commands 
into a control system. Control injection can be classified into 
2 categories. First, human operators oversee control systems 



and occasionally intercede with supervisory control actions, 
such as opening a breaker. Hackers may attempt to inject false 
supervisory control actions into a control system network. 
Second, remote terminals and intelligent electronic devices are 
generally programmed to automatically monitor and control 
the physical process directly at a remote site. This 
programming takes the form of ladder logic, C code, with 
registers which hold key control parameters such as high and 
low limits gating process control actions. Hackers can use 
command injection attacks to overwrite RTU programming 
and remote terminal register settings. 

Denial of Service (DOS) attacks disrupt the communication 
link between the remote terminal and master terminal or 
human machine interface. Breaking the communication link 
between master terminal or human machine interface and the 
remote terminal breaks the feedback control loop and makes 
process monitoring and control impossible. A common theme 
in DOS attacks is to cause hardware or software on one end of 
the network to become unresponsive responsive. Many 
varying mechanisms are used to cause the hardware or 
software to become unresponsive. 

There are three modes of SCADA control system attack. 
First, an attack may be launched via external network 
connection. In this case, the attacker penetrates the SCADA 
control system network via network interface to gain access to 
the control system network. Such attacks include penetration 
via connections to the internet or penetration through dial-up 
connections. Second, an attacker may penetrate the SCADA 
network via wireless network connecting the MTU and R TV. 
In [9], Reaves and Morris discuss how to discover and 
penetrate a proprietary SCADA radio network and then inject 
false responses and denial of service attacks into the network. 
Finally, an insider with physical or electronic access to the 
SCADA control system may inject commands and responses 
over a network ordinarily isolated from outside connections, 
or an attacker may connect directly to control system 
equipment to initiate an attack. 

A set of SCADA control system exploits have been 
developed for use in the MSU SCADA Security Laboratory. 
The exploits are grouped into six categories: illicit injection of 
false responses from RTU to MTU, illicit injection of false 
commands from MTU to RTU, man-in-the-middle attacks, 
replay attacks, and denial of service (DOS) attacks. 

First, in [9] Reaves and Morris describe a SCADA 
proprietary wireless network denial of service vulnerability. 
The vulnerability allows a rogue wireless device to connect to 
a network and then prevent RTU from sending responses to 
MTU commands by continuously transmitting. The device 
causing the DOS may transmit anything. Since other slaves 
connected to the same radio network use a carrier sense back 
off mechanism before transmitting, and there is no limit on 
transmission length, the attacking device may continue 
transmitting indefinitely. A false response injection attack 
was developed which exploits this vulnerability. In the attack, 
a rogue slave radio joins the network via mechanisms 
described in [9]. All MTU communications are transmitted to 
all connected slave radios, allowing the rogue slave to monitor 

all MTU commands. The rogue slave transmits random 
numbers continuously while eavesdropping on MTU 
transmissions. Other slaves also receive master transmission, 
but may not transmit because the rogue slave is transmitting. 
The rogue slave device deciphers each master command and 
chooses between two response options. First, if the rogue 
slave prefers to transmit a response, it continues transmitting 
random numbers until a response is prepared and then 
transmits the false response in place of random numbers. 
After the false response is sent the rogue slave resumes 
sending random numbers. Second, if the rogue slave prefers 
the addressed slave to respond to the issued command, it 
simply stops transmitting random numbers long enough for the 
slave to transmit. The rogue slave cannot listen to slave 
transmissions in this attack. Therefore, the rogue slave would 
back off for a prescribed time long enough for the addressed 
slave to process and respond to the command. In practice, it 
may be easier for the rogue slave to simply respond to all 
commands and never allow the real slave to transmit. 

MODBUS and DNP3 are subject to false response injection 
from a rogue slave which inserts a response to a command 
sent to another slave before the addressed slave can respond. 
The MTU is required to discard responses which are not 
associated with a command. There is no command sequence 
number in the MODBUS or DNP3 LPDUs. The RTU 
associates the first response received after transmitting a 
command with that command. Also, there is no digital 
signature or authentication mechanism in the MODBUS or 
DNP3 LPDUs to allow the MTU to confirm the response is 
from the addressed RTU. This vulnerability allows rogue 
slaves to eavesdrop on MODBUS or DNP3 communications 
and attempt to respond to a command before the address slave 
responds. If the illicit response arrives at the MTU first, the 
MTU will assume it is the correct response. A false response 
injection attack was developed which leverages this 
vulnerability. As with the previous attack, a rogue slave radio 
first joins the control system network via mechanisms 
described in [9]. Next, the rogue slave monitors transmission 
from the MTU. The rogue slave device deciphers each master 
command and chooses between two response options. First, if 
the rogue slave prefers to transmit a response, it immediately 
transmits a response. If the illicit response arrives at the MTU 
before the valid response it will be accepted. If the illicit 
response arrives after the valid response it will be ignored. 
Second, if the rogue slave prefers the addressed slave to 
respond to the issued command, it remains silent. This attack 
is not successful all the time due to the response race. Slaves 
using the proprietary radio network, as previously described, 
use a carrier sense back off mechanism. Therefore, if the 
addressed begins its response before the rogue slave, the rogue 
slave will wait until the address slave completes its 
transmission. In laboratory experiments exploit works 
approximately 50% of the time. The rogue slave in laboratory 
experiments used a Windows laptop computer connected to a 
radio. The network stack ran in a VMWare Linux virtual 
machine. It is believed that OS serial port queuing limited the 



effectiveness of this attack, and that a similar attack run from 
an embedded platform would be more successful. 

MODBUS over TCP/IP and DNP3 over Ethernet suffer 
from similar false command and false response vulnerabilities. 
Both standards lack digital signature or authentication 
mechanisms. The TCP layer does include a sequence number; 
however, TCP sequence numbers are unique from each 
communicating party and are not used to match a command to 
a response. DNP3 and MODBUS both will accept the first 
response received and discard additional responses and 
therefore all suffer from similar race condition vulnerabilities. 
As such, an attacker which penetrates the control system 
Ethernet subnet may transmit false responses. In many cases 
control system subnets are not isolated from other corporate 
subnets. As such any employee or contractor with access to 
the corporate network may transmit illicit responses from any 
type of connection to the corporate network; wired, wireless, 
or VPN. In better managed networks, control system subnets 
are isolated from other portions of the corporate network. In 
this case, false response injection is limited to employees and 
contractors with privileges on the control system subnet or 
external attackers which penetrate the control system network. 
EtherIP response injection attacks conducted in a laboratory 
setting have similar success rates to the MODBUS race 
condition based response injection attack. 

MODBUS TCP/IP, DNP3 Ethernet, and Allen Bradley 
EtherNET/IP all suffer from similar command injection 
vulnerabilities. Control system R TU contain registers which 
hold process set points. Process set points can be used to set 
minimum and maximum levels for process parameters or to 
control the state of mechanisms such as pumps and switches. 
The lack of digital signatures or authentication mechanisms 
allows a penetrating attacker to inject commands to control 
RTU. For example, an attacker may transmit a command to 
change the high and low water levels used to control the water 
tank control system in the MSU SCADA Security Laboratory. 
The illicit command will arrive from a IP address associated 
with the attacker and therefore the R TU response will be 
returned to the attackers IP address rather than to the MTU's 
IP address. 

Ethernet based control systems can be subject to ARP 
poisoning. Attackers with local access to a control system 
subnet can use an ARP poisoning application such as Ettercap 
to setup and manage a man-in-the-middle attack. Ettercap 
supports active packet content analysis and filtering. Man-in­
the-middle attacks can be used to inject false commands, false 
responses, or to create a replay attack which includes false 
commands and false responses. Commands may be passed 
from MTU to RTU unchanged, may be filtered to alter 
command contents, or may be discarded. Similarly, responses 
may be passed from RTU to MTU unchanged, may be filtered 
to alter response contents, or may discarded. Additionally, a 
man-in-the-middle node does not need to wait for an actual 
command to initiate an attack. False commands may be issued 
at anytime. 

A second man-in-the-middle attack requires physical access 
to the control system MTU or RTU. In this case, a device is 

physically placed adjacent to the MTU or RTU which captures 
MODBUS, DNP3, or EtherNET/IP transactions at their source 
and alters or replaces those transactions. Laboratory 
experiments were conducted with 3 such man-in-the-middle 
scenarios. A MODBUS transaction data logger device [13] 
was upgraded to support command and response filtering and 
command injection. In the first scenario the man-in-the­
middle node is physically connected to the MTU. The man-in­
the-middle node captured MODBUS LPDU as they arrived 
from the MTU and as they left the RTU. The second scenario 
moves the man-in-the-middle node from the RTU edge to the 
MTU edge. This scenario is offered because it adds the ability 
to monitor and alter commands and responses to and from all 
control system slaves communicating with the MTU rather 
than just one. The third scenario uses a software data logger 
described in [13] for the man-in-the-middle node. The 
software man-in-the-middle node can be used in placed of a 
separate device to monitor communications at the MTU edge. 
The software man-in-the-middle node is run in a virtual 
machine on the human machine interface (HMI) node. The 
man-in-the-middle node is connected to the physical serial 
port and the HMI software is connected to a virtual serial port 
which routes communications through the software data 
logger. The software man-in-the-middle node was also altered 
to inject false responses in the same way as the stand alone 
man-in-the-middle node. The software man-in-the-middle 
node may be advantageous to an attacker since it may be 
possible to install it remotely after gaining control of the HMI 
node through the use of malware, or advanced persistent threat 
type attacks. In laboratory experiments the man-in-the-middle 
node was used to turn on and off a pump and to alter water 
level response values in the MSU SCADA Security 
Laboratory water tank control system. 

There are multiple types of control system denial of service 
attacks. First, as previously mentioned, certain proprietary 
radio systems commonly used in SCADA networks suffer 
from a denial of service vulnerability which allow attackers to 
exploit the carier sense back off mechanism used for 
congestion control to stop other slaves from transmitting. 

Many SCADA RTU will stop code execution when the 
denominator of a division function is set to zero. The typical 
response is for the processor in the R TU to fault which results 
in the R TU executable code ceasing to function and a 
complete stoppage of any process the R TU is controlling. The 
results of this can range from annoyance to catastrophe, 
depending on the manufacturing process. In a chemical 
process, a stoppage of this nature might result in an entire 
batch of product being scrapped and a tedious cleanup and 
setup process to take place. In an assembly process, machines 
and stations may require resetting. Regardless of the collateral 
consequences of the stoppage, the production will remain 
down until a maintenance person can return the processor to 
"run" mode. This could take an extended amount of time 
depending on the ability of the maintenance personnel to 
quickly diagnose the problem. 

Control system MTU and R TU are network appliances 
which may have unintended side effects when malformed 



network transactions are sent to the device. For example, in 
laboratory experiments a SYN flood attack consisting of a few 
thousand packets cause an RTU cease responding for several 
minutes. The RTU did eventually recover. In separate 
laboratory experiments a Mu Dynamics network tester was 
used to send malformed network packets to multiple control 
system network appliances. System responses to the 
malformed packets varied. In one case a device reset itself 
after receiving a malformed packet. 

IV. IDS FOR SCADA CONTROL SYSTEMS 

Many of the attacks described in the previous section can 
be detected by a signature based IDS such as SNORT. For 
example, a previously described false response injection attack 
continuously sends random numbers to stop other control 
system slaves from transmitting before the attacker transmits a 
response. A signature based IDS can be programmed alarm if 
it detects continuous transmissions greater than a set length. 
Signature based IDS can be programmed alarm when an ARP 
poisoning attack is detected. A third attack described above 
used attempts to leverage a race condition to inject false 
responses. A signature IDS could be programmed if two 
responses to the same command were detected in close 
proximity to one another. 

Signature based IDS require prior knowledge of threats to 
develop signatures. New attacks and variants on existing 
attacks can be missed by signature based IDS. Also, certain 
attacks are difficult for a signature IDS to detect. For instance, 
in Ethernet based systems a rogue may inject false commands 
to change RTU set points. These commands are very similar 
to valid commands. IDS signatures can be developed to detect 
invalid set commands, such as commands which move a set 
point above or below specific threshold values. However, it is 
much more difficult to create an IDS signature which alarms 
when a rogue changes a set point to a legal value. Replay 
attacks are equally difficult for a signature IDS to detect. 

Statistical IDS can be used to classify network activity into 
normal and abnormal categories. To test the effectiveness of 
statistical IDS in SCADA control system networks a set of 
false response injection exploits were developed for the water 
tank control system in the MSU SCADA Security Laboratory. 
A neural network was used to classify network transactions as 
normal or abnormal. 

A. IDS Dataset 

An experimental dataset was developed to train and test the 
IDS. The dataset included data from normal operation and 6 
types of false responses from the MSU SCADA Security 
Laboratory water tank control system described in section 
II.C. 

The water tank control system uses HH, H, L, and LL set 
points in the RTU to manage the system. The HH set points 
are alarm levels, the water level exceeds HH or is lower than 
LL an alarm is triggered. The H and L set points control the 
water pump. If the water level exceeds H, the pump is turned 
off. If the water level is below L, the pump is turned on. 

Each type of injected false response was a false water level. 
The water tank MTU periodically sends a command to the 
RTU to read the water level in the water tank. The water level 
is returned as a single-precision floating point number. The 
first type of false response was a negative water level. In 
normal practice the water level should always be greater than 
or equal to O. The second type of false response was a water 
level greater than the HH set point. The water level should 
rarely approach or exceed the HH set point. The third type of 
false response was a water level which was greater than the H 
set point, but less than the HH set point. In normal operation, 
the water level often slightly exceeds the H set point value due 
to time lag between reading the water level and the pump 
being turned off. The fourth type of false response was a 
water level which was less than the L set point and greater 
than the LL set point. In normal operation, the water level 
often slightly under cuts the L set point value due to time lag 
between reading the water level and the pump being turned on. 
The fifth type of false response was a water level less than the 
LL set point. The water level should rarely approach or 
exceed the LL set point. The sixth type of false response is a 
random water level value. 

The experimental dataset included commands and responses 
from the system running in normal mode for approximately 4 
hours. The data set from normal operating conditions includes 
12,000 captured network packets. A second experimental 
dataset includes commands and responses captured during a 
man-in-the-middle attack. The man-in-the-middle node 
in�ected false responses every randomly after every 3Td, 4th, or 
5t command. This dataset includes 5,000 captured packets. 
A third experimental dataset includes commands and 
responses captured during a DOS enabled false response 
attack. In this dataset the rogue node was configured to 
always inject a false response, i.e. never allowing the 
addressed slave to respond. Finally, in a fourth dataset a 
replay attack was created which substituted previously 
captured water level response packets for valid water level 
response packets. 
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Fig. 3: Water Level Trend during Normal Operation 

Fig. 3 shows the first 250 responses from the normal 
operation dataset. The water level can be seen rising and 
falling with L set point of 40% and H set point of 70%. 
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Fig. 4: Water Level Trend with False Responses> HH Set Point 

Fig. 4 shows the first 250 responses from the dataset which 
includes a man-in-the-middle attack injecting responses 
greater than the HH set point which is set to 80%. 
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Fig. 5: Water Level Trend with Negative False Responses 

Fig. 5 shows the first 250 responses from the dataset which 
includes a man-in-the-middle attack injecting negative water 
level responses. 
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Fig. 6: Water Level Trend with False Responses, L> Water Level> LL 

Fig. 6 shows the first 250 responses from the dataset which 
includes a DOS based attack injecting false water level 
responses where the injected water level is below the L set 
point and above the LL set point. The L set point is set at 40% 
and the H set point is 70%. Most of the data shown are false 
responses. Only the peaks of the spikes in the graph are from 
valid responses. 

Plots are not provided for the other datasets. 

B. IDS Input Features 

We used a back propagation algorithm to build a 3 stage 
neural network which classifies SCADA network transactions 
as normal or abnormal based upon 4 input features. 

The first input feature was the water level expressed as a 
percentage. Fig. 4 and Fig. 5 show water levels from the 
water storage tank control system under attack. The water 
level normally trends between the L and H set points. The 
false responses are shown as spikes in the data. The water 
level feature should easily identify the large spikes as 
violations of the water level trend and classify these packets as 
abnormal. The false response datasets which inject water 
levels above the H set point and below the L set point, but not 
beyond the HH and LL alarm levels, are less obvious and 
therefore more difficult for the neural network to correctly 
classify based on only the water level input feature. 

The second input feature was command response frequency. 
During normal operating conditions the control system 
network includes commands and responses in pairs. In many 
of the attack scenarios a command will be followed by 2 
responses; a false injected response, and a valid response from 
the addressed slave. 

The third input feature is the mode of operation of the 
control system. The mode of operation can be set as either 
automatic or manual. In automatic mode, the R TU 
automatically maintains the water level between the L and H 
set points. In manual mode, the R TU waits for input from the 
MTU to control the water level. This input comes in the form 
of turning the water tank pump on and off. For all of the 
attacks used for this work the mode of operation is set to 
automatic. This feature is reserved for more complex data 
sets. 

The fourth input feature is the state of the water tank pump. 
As previously mentioned the pump can be set to on or off. 
The pump state can be changed by a command received from 
the MTU (or an illicit command from an network penetrator) 
or can be changed automatically by the RTU when the control 
system is in automatic mode. The water level should increase 
when the pump is on and decrease when the pump is off. 

C. IDS Experimental Results 

Collected data from laboratory experiments were used to 
train and test the neural network IDS developed. 

Table 1: Classification Results for Man-in-the-Middle Response Injection 

Exploit % False % False Accuracy 
Scenario Positive Negative 

Negative Response 0.0% 0.0% 100.0% 
Response> HH 4.5% 0.0% 95.5% 
HH> Response> H 2.3% 3.0% 94.7% 
L > Response> LL 2.4% 3 0% 94.6% 
Response < LL 3.2% 0.0% 96.8% 
Random Response 6.2% 8.9% 84.9% 

For each dataset a Perl script was used to classify 
individual network packets as normal or abnormal before 



training the neural network. The neural network was trained 
with 80% of the available samples and 20% percent of the 
available samples were used to validate the neural network. 

Table 1 shows the classification results from the man-in­
the-middle response injection exploits. Results included 100% 
accuracy for negative water level values. This is expected as a 
negative value is always abnormal. For the Response> HH, 
Response> HH, L > Response> LL, Response < LL exploit 
scenarios accuracy ranged between 94.6% and 95.5%. The 
inaccuracies are primarily related to the inability of the neural 
network to classify false responses which are very close to the 
L, H, LL, HH set points depending upon the exploit scenario. 
The random water level response shows the worst accuracy 
with 84.9%. This is due to the fact that the some many of the 
random false responses are within L and H set points and 
therefore indistinguishable from normal data. 

Table 2: Classification Results for DOS Based Response Injection 

Exploit % False % False Accuracy 
Scenario Positive Negative 
Ne"ative Response 0.0% 0.00% 100.0% 
Response> HH 0.1% 1.2% 98.7% 
HH > Response> H 1.2% 2.0% 96.9% 
L > Response> LL 1.0% 1.3% 97.7% 
Response < LL 0.2% 1.0% 98.9% 
Random Response 8.2% 1.0% 90.9% 

Table 2 shows the classification results from the DOS based 
response injection exploits. IDS accuracy is similar to the 
results from the man-in-the-middle response injection exploits. 
Results again included 100% accuracy for negative water level 
values. For the Response > HH, Response > HH, L > 
Response > LL, Response < LL exploit scenarios accuracy 
ranged between 96.9% and 98.9%. These results represent an 
improvement over the man-in-the-middle accuracy results. 
The DOS dataset included continuous false data injection 
rather than random false data injection. Results indicate the 
neural network performs better when classifying the 
continuous injection attacks. 

Table 3: Classification Results for Replay Based Response Injection 

% False 
Positive 

45.1% 

Accuracy 

12.1% 

Table 3 shows the classification results from a replay based 
response injection exploits. Accuracy for this dataset was very 
low. This indicates a neural network with the aforementioned 
input features is unable to detect a replay attack. This is 
expected since the replay data looks exactly like real data. 

V. FUTURE WORK AND CONCLUSION 

A. Future work 

This paper applied a back propagation algorithm to build 
the neural network for the intrusion detection system. Because 
the back propagation algorithm is supervised learning, training 
requires target output values. In future work, an unsupervised 
learning algorithm will be used to build the neural network 
using to support training only using input vectors. 

Also, more work is required to develop input features for 
the neural network. This paper presents preliminary work. 
SCADA control systems control physical processes which 
must obey the laws of physics. For the water tank control 
system this means that water level may only change at rates 
based upon tank capacity and pipe diameters. Methods which 
train the neural network based upon physical properties will 
likely lead to more accurate classification results. 
Additionally, neural network inputs can be extended to include 
the n-most recent water level values to allow the neural 
network to recognize trends in the water level or other 
features. 

Replay attacks prove particularly difficult to detect. Input 
Research to indentify features which improve replay detection 
accuracy to acceptable levels is required. Improvements may 
require upgrading SCADA control system networking 
protocols to include sequence numbers or time stamps or other 
mechanisms to assist in identification of replayed packets. 

Finally, a Bayesian network will be used in future work to 
compare the accuracy to the neural network results. 

B. Conclusion 

In this paper we presented a set of command and response 
injection attacks and denial of service (DOS) attacks on 
SCADA control systems. Attacks were targeted at a 
commercial SCADA control system and a SCADA network 
transaction data logger was used to capture network traffic 
associated with the attacks. Finally, captured exploit network 
traffic was used in combination with captured traffic from the 
SCADA control systems running normally to train and 
validate a neural network based intrusion detection system 
which leverages knowledge of the physical properties of the 
controlled system to detect false response injection attacks. 
IDS results show that a neural network is a promising 
mechanism for detecting false responses however future work 
is required to developed input features which improve IDS 
accuracy and to find features capable of detecting replay 
attacks. 
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