
On SCADA Control System Command and Response

Injection and Intrusion Detection

Wei Gao, Thomas Morris, Bradley Reaves, and Drew Richey

Department of Electrical and Computer Engineering
Mississippi State University
Mississippi State, MS 39762

{wg135, morris, bgr39, djr2}@ece.msstate.edu

Abstract-SCADA systems are widely used in critical

infrastructure sectors, including electricity generation and

distribution, oil and gas production and distribution, and water

treatment and distribution. SCADA process control systems are

typically isolated from the internet via firewalls. However, they

may still be subject to illicit cyber penetrations and may be

subject to cyber threats from disgruntled insiders. We have

developed a set of command injection, data injection, and denial

of service attacks which leverage the lack of authentication in

many common control system communication protocols

including MODBUS, DNP3, and EtherNETIIP. We used these

exploits to aid in development of a neural network based

intrusion detection system which monitors control system

physical behavior to detect artifacts of command and response
injection attacks. Finally, we present intrusion detection accuracy

results for our neural network based IDS which includes input

features derived from physical properties of the control system.

Keywords: intrusion detection; SCADA control system; cyber

security

I. INTRODUCTION

Supervisory Control and Data Acquisition (SCADA)
systems are process control systems which interconnect and
monitor remote physical processes. SCADA systems collect
data from remote facilities about the state of the physical
process and send commands to control the physical process
creating a feedback control loop. SCADA systems are used in
power transmission and distribution systems for situational
awareness and control. Contemporary SCADA systems are
commonly connected to corporate intranets which may have
connections to the internet. SCADA communication protocols
such as MODBUS, DNP3, Allen Bradley's Ethernet Industrial
Protocol lack authentication features to prove the origin or
freshness of network traffic. This lack of authentication
capability leads to the potential for network penetrators and
disgruntled insiders to inject false command and false
response packets into a SCADA system either through direct
creation of such packets or replay attacks. In this paper we
have developed a set of command injection, response
injection, and denial of service attacks, subjected commercial
SCADA systems to these attacks, captured network traffic
associated with these attacks using a SCADA network
transaction data logger, and finally used the captured network
traffic in combination with captured traffic from the SCADA

978-1-4244-7761-6/10/$26.00 mOlD IEEE

control systems running normally to develop and validate a
neural network based intrusion detection system which
leverages knowledge of the physical properties of the
controlled system to detect false command and false response
injection attacks.

National Electric Reliability Council (NERC) Critical
Infrastructure Protection (CIP) Standards 002-3 through 009-3
[2] require utilities and other responsible entities to place
critical cyber assets within an electronic security perimeter.
The electronic security perimeters must be subjected to
vulnerability analyses, use access control technologies, and
include systems to monitor and log the electronic security
perimeter access. The Federal Energy Regulatory Commission
(FERC) requires responsible entities involved in bulk
electricity transmission to adhere to the NERC CIP 002-3
through 009-3 standards. No such regulation exists for the
electric distribution systems and other critical infrastructure,
such as water treatment and distribution, and gas distribution,
in the United States. Electronic perimeter security will
minimize the threat of illicit network penetrations, however,
persons with electronic access to SCADA systems within the
electronic security perimeter still remain a threat due to the
lack of authentication capabilities in these systems.
Additionally, the lack of authentication for process control
system communication protocols means that if an attacker
does penetrate the electronic security perimeter he will be able
to inject false commands and false responses into the process
control system without detection. As such, intrusion detection
systems tailored for use in process control systems are needed
to detect this behavior.

Team Cymru, a specialized Internet security research firm,
released a briefing paper in 2008 [1] which discussed
malicious port scan activity against their DarkNet (a honey
pot) searching for open ports on port numbers commonly
associated with SCADA system protocols. This report showed
heavy scanning activity from four areas: The ASIA, USA,
Western Europe and Eastern Europe. The report cited heavy
scanning of DNP3 ports from Russia and Taiwan, and heavy
scanning activities for MODBUS related ports in Western
Europe and China. This port scanning is potentially
indicative of attackers searching for SCADA systems for later
attack.

Stuxnet is the first known worm to target an industrial
control system. Stuxnet targeted PC's running the Siemens
WinCC SCADA software product. Infected systems had a
DLL replaced used by the WinCC Step7 tool. The worm then
monitored communications between the WinCC tool and a
remote terminal. If a specific signature related to the remote
terminal was found firmware on the remote terminal was
replaced with malicious code.

The remainder of this paper is organized as follows. Section
2 provides details on related works and an introduction to
SCADA systems. Section 3 presents a set of exploits
developed and tested in the Mississippi State University
(MSU) SCADA security laboratory. Section 4 introduces a
neural network based intrusion detection system (IDS) which
leverages knowledge of the physical properties of the
controlled system to detect false response injection attacks.
Section 4 includes experimental results including intrusion
detection accuracy, false positive rates, and false negative
rates. Finally, Section 5 provides conclusions and proposed
future works.

II. BACKGROUND AND RELATED WORKS

A. Related Works

Within the area of SCADA control system security
researchers have developed pattern recognition systems which
monitor MODBUS network transactions watching for
signatures of known attacks and vulnerabilities [4].
Researchers have also used statistical techniques to monitor
sensor data to identify system faults [5].

Traditional signature based IDS (e.g. Snort) focus on
matching signatures stored in databases with network packets.
This approach is efficient when detecting known attacks.
However, the signature database depends on security experts'
knowledge and experience. Furthermore, signature based IDS
often cannot detect new attacks, so they are often behind
attackers.

Statistical IDS use statistical models to classify network
traffic as normal or abnormal (or into smaller sub-classes).
Various model types or classifiers can be used to build the
statistical model, including neural networks, linear methods,
regression models, and Bayesian networks [6]. The main
drawback of statistics based IDS is that they are not
deterministic. Therefore, they suffer from more inaccuracies
than signature-based intrusion detection systems. There are
two types of inaccuracies in IDS: false positives and false
negatives. False positives generate a false alarm when there is
no intrusion, while false negatives will miss an actual
intrusion. The accuracy of statistics-based intrusion detection
systems relies on training dataset completeness, proper input
feature development, and choice of classifier.

Artificial neural networks (ANN) model the biological
nervous system, and are widely used in pattern classification,
detection, and statistical analysis. ANN is one of the most
commonly used classifiers for intrusion detection systems. In
[7], Choudhary and Swarup describe research to apply neural
network approach for intrusion detection systems with very

high detection accuracy. However, implement artificial neural
network in intrusion detection system in SCADA environment
is still new research area.

This paper describes an IDS which uses device address,
MTU command contents, R TV response contents, command
and response frequency, and physical properties about the
control process as input features to detect command and
response injection attacks.

B. SCADA System Overview

SCADA control systems are distributed cyber-physical
systems. These systems consist of Remote Terminal
Units(RTU), Master Terminal Units (MTU), Human Machine
Interface software (HMI) and the sensors and actuators that
interface with the physical system. Remote terminal units
(R TU) are connected to sensors and actuators to interface
directly with the physical process. R TU commonly store
control parameters and execute programs which directly
control the physical process. For instance, an RTU may be
used to control the water level in a tank. It will be
programmed with a high water level and a low water level.
The RTU continuously monitors the water level with a
connected water level sensor. If the water level reaches the
programmed high level, the R TU turns off a pump which fills
the tank. If the water level reaches the low level the R TU
turns on the pump to add water to the system. The RTU, the
ladder logic (or other programmation), and the attached
sensors and actuators form a feedback control loop.

Master terminal units (MTU) are connected to the R TU via
communication links. The MTU polls the RTU periodically to
read physical quantities of the controlled system such a
voltage, pressure, water level etc. Typically this information
is displayed on a Human Machine Interface (HMI) to allow
operators to monitor the physical process. HMI typically
allow the operator to interact with the physical process.
Operators may change operating parameters. For example an
operator may change the high and low water levels, from the
previously mentioned water system example. The MTU,
RTU, communication link, HMI, and operator form a second
supervisory feedback control loop.

The communication links in SCADA systems can be
thought of occupying layers 1, 2 and 7 of the OSI model; these
are the physical, data link (and media access control), and
application layers, respectively. The physical layer may be
wired or wireless.. Wired networks may use leased lines,
category 5 or 6 cable" serial cable, and/or fiber optic cable.
Wireless networks may use standardized communication
systems such as IEEE 802.11, ZigBee, and/or WirelessHART.
Wireless links may also use proprietary non-standard
protocols. Finally, wireless links may include very long­
distance solutions such as satellite and microwave links. There
are many standards for layer 2 and 7 SCADA communication
including Fieldbus, Profibus, MODBUS, DeviceNet, and
Distributed Network Protocol version 3 (DNP3). DeviceNet
includes the common Ethernet-based protocol Ether Industrial
Protocol, abbreviated EthernetlIP or E/IP. All of these
protocols have versions that have been adapted to use TCP/IP
as network and transport layers for use with commodity

internet equipment. One common security flaw with all of
these communication protocols is that they do not include
cryptographic authentication, which means, RTU and MTU
cannot validate the origin of commands and responses
respectively.

C. Mississippi State University SCADA Security Laboratory

The MSU SCADA security laboratory (henceforth called
the lab) was used to develop a set of SCADA control system
exploits. The lab contains 5 laboratory scale SCADA control
systems [8]. Each SCADA control system includes Control
Microsystems, INC SCADAPack Light PLCs as MTU and
RTU. The MTU is connected via RS-232 serial port to a PC
running the OE IFIX human machine interface software. The
MTU and RTU are connected wirelessly using integrated
Freewave FOR 900MHz radios. The MTU and RTU can be
configured to communicate using DNP3, MODBUS ASCII, or
MODBUS RTU communication standards. The 5 laboratory
scale control systems model a gas pipeline, a factory assembly
line, a water tower, a water storage tank, and an industrial
blower. All 5 control systems are mechanically functional
models. The IDS system, accompanying training data, and
exploits discussed in this paper were developed and validated
using the water storage tank control system.

G
��'

, communication link

RTU

Fig. I: Water Tank Control System Schematic

The water storage tank control system contains a 2 liter
storage tank, a pump to force water into the tank, and a
variable level water sensor. The RTU contains HI and LO
water level registers which are programmed by the HMI. The
RTU contains a water level register which is set by a sensor
monitoring water level in the water tank. The RTU also
contains a pump state register which may be programmed by
the RTU or control logic. The RTU control logic attempts to
maintain water level in the water tank between the HI and LO
levels by turning on and off the water pump. The HMI
periodically polls the RTU (every second) to read the water
level for display on an operator's graphical user interface. The
HMI also allows an operator to manually control the system to

tum the pump on and off and set the HI and LO water level
values. A water tank schematic is shown in Fig. 1.

address I function code I data I CRC

I water level HI LO pump I
Fig. 2: MODBUS Link Layer Protocol Data Unit

The water tank control system uses the MODBUS protocol.
The MODBUS protocol is a command response protocol. The
control system HMI interfaces to the MODBUS application
layer to send commands and receive responses to and from the
control system respectively. Commands and responses are
transmitted using a data link layer protocol data unit (LPDU).
The physical layer (denoted as communication link in Figure
1) uses a RS-232 serial link configured for 9600 BPS
communication with 8 data bits, 1 stop bit, no parity bit, and
no flow control. No other Open System Interconnections
(OS!) layers are used for the MODBUS communication. The
MODBUS LPDU contains an address field, a function code, a
data value, and a cyclic redundancy code (CRC) used for error
detection. Fig. 2 shows a diagram of the MODBUS LPDU.
The water level, HI and LO register values, and the pump
status are encapsulated in the data field of the MODBUS
LPDU.

III. ATTACKS ON SCADA CONTROL SYSTEMS

Many SCADA control systems are distributed over large
distances and therefore use wireless networks to connect
master terminals and remote terminals. Many industrial radios
are vulnerable to illicit penetration from cyber intruders [9].
Once an intruder penetrates a SCADA control system, he or
she may inject false responses into the control system to
falsify physical process data or inject invalid control
commands to R TU. Both scenarios can lead to harmful results.
In 2000, a Maroochy, Queensland, Australia sewage control
system was penetrated wirelessly by a cyber intruder who
injected falsified commands to open flood gates [12]. Over 1
million liters of raw sewage leaked into 2 local fresh water
streams over 3 month period while the intruder went
undetected.

Three primary threats to process control systems are
response injection, command injection, and denial of service.

Response injection attacks inject false responses into a
control system. Since control systems rely on feedback
control loops which monitor physical process data before
making control decisions protecting the integrity of the sensor
measurements from the physical process is critical. False
response injection can be used by hackers to cause control
algorithms to make misinformed decisions.

Many SCADA control system network standards do not
include mechanisms to support response integrity.

Command injection attacks inject false control commands
into a control system. Control injection can be classified into
2 categories. First, human operators oversee control systems

and occasionally intercede with supervisory control actions,
such as opening a breaker. Hackers may attempt to inject false
supervisory control actions into a control system network.
Second, remote terminals and intelligent electronic devices are
generally programmed to automatically monitor and control
the physical process directly at a remote site. This
programming takes the form of ladder logic, C code, with
registers which hold key control parameters such as high and
low limits gating process control actions. Hackers can use
command injection attacks to overwrite RTU programming
and remote terminal register settings.

Denial of Service (DOS) attacks disrupt the communication
link between the remote terminal and master terminal or
human machine interface. Breaking the communication link
between master terminal or human machine interface and the
remote terminal breaks the feedback control loop and makes
process monitoring and control impossible. A common theme
in DOS attacks is to cause hardware or software on one end of
the network to become unresponsive responsive. Many
varying mechanisms are used to cause the hardware or
software to become unresponsive.

There are three modes of SCADA control system attack.
First, an attack may be launched via external network
connection. In this case, the attacker penetrates the SCADA
control system network via network interface to gain access to
the control system network. Such attacks include penetration
via connections to the internet or penetration through dial-up
connections. Second, an attacker may penetrate the SCADA
network via wireless network connecting the MTU and R TV.
In [9], Reaves and Morris discuss how to discover and
penetrate a proprietary SCADA radio network and then inject
false responses and denial of service attacks into the network.
Finally, an insider with physical or electronic access to the
SCADA control system may inject commands and responses
over a network ordinarily isolated from outside connections,
or an attacker may connect directly to control system
equipment to initiate an attack.

A set of SCADA control system exploits have been
developed for use in the MSU SCADA Security Laboratory.
The exploits are grouped into six categories: illicit injection of
false responses from RTU to MTU, illicit injection of false
commands from MTU to RTU, man-in-the-middle attacks,
replay attacks, and denial of service (DOS) attacks.

First, in [9] Reaves and Morris describe a SCADA
proprietary wireless network denial of service vulnerability.
The vulnerability allows a rogue wireless device to connect to
a network and then prevent RTU from sending responses to
MTU commands by continuously transmitting. The device
causing the DOS may transmit anything. Since other slaves
connected to the same radio network use a carrier sense back
off mechanism before transmitting, and there is no limit on
transmission length, the attacking device may continue
transmitting indefinitely. A false response injection attack
was developed which exploits this vulnerability. In the attack,
a rogue slave radio joins the network via mechanisms
described in [9]. All MTU communications are transmitted to
all connected slave radios, allowing the rogue slave to monitor

all MTU commands. The rogue slave transmits random
numbers continuously while eavesdropping on MTU
transmissions. Other slaves also receive master transmission,
but may not transmit because the rogue slave is transmitting.
The rogue slave device deciphers each master command and
chooses between two response options. First, if the rogue
slave prefers to transmit a response, it continues transmitting
random numbers until a response is prepared and then
transmits the false response in place of random numbers.
After the false response is sent the rogue slave resumes
sending random numbers. Second, if the rogue slave prefers
the addressed slave to respond to the issued command, it
simply stops transmitting random numbers long enough for the
slave to transmit. The rogue slave cannot listen to slave
transmissions in this attack. Therefore, the rogue slave would
back off for a prescribed time long enough for the addressed
slave to process and respond to the command. In practice, it
may be easier for the rogue slave to simply respond to all
commands and never allow the real slave to transmit.

MODBUS and DNP3 are subject to false response injection
from a rogue slave which inserts a response to a command
sent to another slave before the addressed slave can respond.
The MTU is required to discard responses which are not
associated with a command. There is no command sequence
number in the MODBUS or DNP3 LPDUs. The RTU
associates the first response received after transmitting a
command with that command. Also, there is no digital
signature or authentication mechanism in the MODBUS or
DNP3 LPDUs to allow the MTU to confirm the response is
from the addressed RTU. This vulnerability allows rogue
slaves to eavesdrop on MODBUS or DNP3 communications
and attempt to respond to a command before the address slave
responds. If the illicit response arrives at the MTU first, the
MTU will assume it is the correct response. A false response
injection attack was developed which leverages this
vulnerability. As with the previous attack, a rogue slave radio
first joins the control system network via mechanisms
described in [9]. Next, the rogue slave monitors transmission
from the MTU. The rogue slave device deciphers each master
command and chooses between two response options. First, if
the rogue slave prefers to transmit a response, it immediately
transmits a response. If the illicit response arrives at the MTU
before the valid response it will be accepted. If the illicit
response arrives after the valid response it will be ignored.
Second, if the rogue slave prefers the addressed slave to
respond to the issued command, it remains silent. This attack
is not successful all the time due to the response race. Slaves
using the proprietary radio network, as previously described,
use a carrier sense back off mechanism. Therefore, if the
addressed begins its response before the rogue slave, the rogue
slave will wait until the address slave completes its
transmission. In laboratory experiments exploit works
approximately 50% of the time. The rogue slave in laboratory
experiments used a Windows laptop computer connected to a
radio. The network stack ran in a VMWare Linux virtual
machine. It is believed that OS serial port queuing limited the

effectiveness of this attack, and that a similar attack run from
an embedded platform would be more successful.

MODBUS over TCP/IP and DNP3 over Ethernet suffer
from similar false command and false response vulnerabilities.
Both standards lack digital signature or authentication
mechanisms. The TCP layer does include a sequence number;
however, TCP sequence numbers are unique from each
communicating party and are not used to match a command to
a response. DNP3 and MODBUS both will accept the first
response received and discard additional responses and
therefore all suffer from similar race condition vulnerabilities.
As such, an attacker which penetrates the control system
Ethernet subnet may transmit false responses. In many cases
control system subnets are not isolated from other corporate
subnets. As such any employee or contractor with access to
the corporate network may transmit illicit responses from any
type of connection to the corporate network; wired, wireless,
or VPN. In better managed networks, control system subnets
are isolated from other portions of the corporate network. In
this case, false response injection is limited to employees and
contractors with privileges on the control system subnet or
external attackers which penetrate the control system network.
EtherIP response injection attacks conducted in a laboratory
setting have similar success rates to the MODBUS race
condition based response injection attack.

MODBUS TCP/IP, DNP3 Ethernet, and Allen Bradley
EtherNET/IP all suffer from similar command injection
vulnerabilities. Control system R TU contain registers which
hold process set points. Process set points can be used to set
minimum and maximum levels for process parameters or to
control the state of mechanisms such as pumps and switches.
The lack of digital signatures or authentication mechanisms
allows a penetrating attacker to inject commands to control
RTU. For example, an attacker may transmit a command to
change the high and low water levels used to control the water
tank control system in the MSU SCADA Security Laboratory.
The illicit command will arrive from a IP address associated
with the attacker and therefore the R TU response will be
returned to the attackers IP address rather than to the MTU's
IP address.

Ethernet based control systems can be subject to ARP
poisoning. Attackers with local access to a control system
subnet can use an ARP poisoning application such as Ettercap
to setup and manage a man-in-the-middle attack. Ettercap
supports active packet content analysis and filtering. Man-in­
the-middle attacks can be used to inject false commands, false
responses, or to create a replay attack which includes false
commands and false responses. Commands may be passed
from MTU to RTU unchanged, may be filtered to alter
command contents, or may be discarded. Similarly, responses
may be passed from RTU to MTU unchanged, may be filtered
to alter response contents, or may discarded. Additionally, a
man-in-the-middle node does not need to wait for an actual
command to initiate an attack. False commands may be issued
at anytime.

A second man-in-the-middle attack requires physical access
to the control system MTU or RTU. In this case, a device is

physically placed adjacent to the MTU or RTU which captures
MODBUS, DNP3, or EtherNET/IP transactions at their source
and alters or replaces those transactions. Laboratory
experiments were conducted with 3 such man-in-the-middle
scenarios. A MODBUS transaction data logger device [13]
was upgraded to support command and response filtering and
command injection. In the first scenario the man-in-the­
middle node is physically connected to the MTU. The man-in­
the-middle node captured MODBUS LPDU as they arrived
from the MTU and as they left the RTU. The second scenario
moves the man-in-the-middle node from the RTU edge to the
MTU edge. This scenario is offered because it adds the ability
to monitor and alter commands and responses to and from all
control system slaves communicating with the MTU rather
than just one. The third scenario uses a software data logger
described in [13] for the man-in-the-middle node. The
software man-in-the-middle node can be used in placed of a
separate device to monitor communications at the MTU edge.
The software man-in-the-middle node is run in a virtual
machine on the human machine interface (HMI) node. The
man-in-the-middle node is connected to the physical serial
port and the HMI software is connected to a virtual serial port
which routes communications through the software data
logger. The software man-in-the-middle node was also altered
to inject false responses in the same way as the stand alone
man-in-the-middle node. The software man-in-the-middle
node may be advantageous to an attacker since it may be
possible to install it remotely after gaining control of the HMI
node through the use of malware, or advanced persistent threat
type attacks. In laboratory experiments the man-in-the-middle
node was used to turn on and off a pump and to alter water
level response values in the MSU SCADA Security
Laboratory water tank control system.

There are multiple types of control system denial of service
attacks. First, as previously mentioned, certain proprietary
radio systems commonly used in SCADA networks suffer
from a denial of service vulnerability which allow attackers to
exploit the carier sense back off mechanism used for
congestion control to stop other slaves from transmitting.

Many SCADA RTU will stop code execution when the
denominator of a division function is set to zero. The typical
response is for the processor in the R TU to fault which results
in the R TU executable code ceasing to function and a
complete stoppage of any process the R TU is controlling. The
results of this can range from annoyance to catastrophe,
depending on the manufacturing process. In a chemical
process, a stoppage of this nature might result in an entire
batch of product being scrapped and a tedious cleanup and
setup process to take place. In an assembly process, machines
and stations may require resetting. Regardless of the collateral
consequences of the stoppage, the production will remain
down until a maintenance person can return the processor to
"run" mode. This could take an extended amount of time
depending on the ability of the maintenance personnel to
quickly diagnose the problem.

Control system MTU and R TU are network appliances
which may have unintended side effects when malformed

network transactions are sent to the device. For example, in
laboratory experiments a SYN flood attack consisting of a few
thousand packets cause an RTU cease responding for several
minutes. The RTU did eventually recover. In separate
laboratory experiments a Mu Dynamics network tester was
used to send malformed network packets to multiple control
system network appliances. System responses to the
malformed packets varied. In one case a device reset itself
after receiving a malformed packet.

IV. IDS FOR SCADA CONTROL SYSTEMS

Many of the attacks described in the previous section can
be detected by a signature based IDS such as SNORT. For
example, a previously described false response injection attack
continuously sends random numbers to stop other control
system slaves from transmitting before the attacker transmits a
response. A signature based IDS can be programmed alarm if
it detects continuous transmissions greater than a set length.
Signature based IDS can be programmed alarm when an ARP
poisoning attack is detected. A third attack described above
used attempts to leverage a race condition to inject false
responses. A signature IDS could be programmed if two
responses to the same command were detected in close
proximity to one another.

Signature based IDS require prior knowledge of threats to
develop signatures. New attacks and variants on existing
attacks can be missed by signature based IDS. Also, certain
attacks are difficult for a signature IDS to detect. For instance,
in Ethernet based systems a rogue may inject false commands
to change RTU set points. These commands are very similar
to valid commands. IDS signatures can be developed to detect
invalid set commands, such as commands which move a set
point above or below specific threshold values. However, it is
much more difficult to create an IDS signature which alarms
when a rogue changes a set point to a legal value. Replay
attacks are equally difficult for a signature IDS to detect.

Statistical IDS can be used to classify network activity into
normal and abnormal categories. To test the effectiveness of
statistical IDS in SCADA control system networks a set of
false response injection exploits were developed for the water
tank control system in the MSU SCADA Security Laboratory.
A neural network was used to classify network transactions as
normal or abnormal.

A. IDS Dataset

An experimental dataset was developed to train and test the
IDS. The dataset included data from normal operation and 6
types of false responses from the MSU SCADA Security
Laboratory water tank control system described in section
II.C.

The water tank control system uses HH, H, L, and LL set
points in the RTU to manage the system. The HH set points
are alarm levels, the water level exceeds HH or is lower than
LL an alarm is triggered. The H and L set points control the
water pump. If the water level exceeds H, the pump is turned
off. If the water level is below L, the pump is turned on.

Each type of injected false response was a false water level.
The water tank MTU periodically sends a command to the
RTU to read the water level in the water tank. The water level
is returned as a single-precision floating point number. The
first type of false response was a negative water level. In
normal practice the water level should always be greater than
or equal to O. The second type of false response was a water
level greater than the HH set point. The water level should
rarely approach or exceed the HH set point. The third type of
false response was a water level which was greater than the H
set point, but less than the HH set point. In normal operation,
the water level often slightly exceeds the H set point value due
to time lag between reading the water level and the pump
being turned off. The fourth type of false response was a
water level which was less than the L set point and greater
than the LL set point. In normal operation, the water level
often slightly under cuts the L set point value due to time lag
between reading the water level and the pump being turned on.
The fifth type of false response was a water level less than the
LL set point. The water level should rarely approach or
exceed the LL set point. The sixth type of false response is a
random water level value.

The experimental dataset included commands and responses
from the system running in normal mode for approximately 4
hours. The data set from normal operating conditions includes
12,000 captured network packets. A second experimental
dataset includes commands and responses captured during a
man-in-the-middle attack. The man-in-the-middle node
in�ected false responses every randomly after every 3Td, 4th, or
5t command. This dataset includes 5,000 captured packets.
A third experimental dataset includes commands and
responses captured during a DOS enabled false response
attack. In this dataset the rogue node was configured to
always inject a false response, i.e. never allowing the
addressed slave to respond. Finally, in a fourth dataset a
replay attack was created which substituted previously
captured water level response packets for valid water level
response packets.

Normal Operation

80

70

:2
60

� SO

Qj
40 >

t\ "" I
/ ",/ � /

/ �I �j
�
� 30 "'
== 20

10

0
Time

Fig. 3: Water Level Trend during Normal Operation

Fig. 3 shows the first 250 responses from the normal
operation dataset. The water level can be seen rising and
falling with L set point of 40% and H set point of 70%.

False Response Water Level > HH

150

125

:2 100
�
Qj

75 >

.3
2i 50 '"
:;:

III I I I j I
I�LJUl)�l. '--- '-J'-J �LJLJL

1/ '-..IJ 1/ ---'--
25

0
TIme

Fig. 4: Water Level Trend with False Responses> HH Set Point

Fig. 4 shows the first 250 responses from the dataset which
includes a man-in-the-middle attack injecting responses
greater than the HH set point which is set to 80%.

False Response Negative Water Level

60

:2
40

�
Qj

20 >

,... t r r---.. r--..
Iv r---.. /

"r--- I f"-,r---r------ I'--
.3
2i '"
:;: 0 I- -

-20
Time

Fig. 5: Water Level Trend with Negative False Responses

Fig. 5 shows the first 250 responses from the dataset which
includes a man-in-the-middle attack injecting negative water
level responses.

False Response with L> Water Level> LL
80,---------------------------------------

70

� 60
�
Q; 50 > !l
e
�

40

30

20
Time

Fig. 6: Water Level Trend with False Responses, L> Water Level> LL

Fig. 6 shows the first 250 responses from the dataset which
includes a DOS based attack injecting false water level
responses where the injected water level is below the L set
point and above the LL set point. The L set point is set at 40%
and the H set point is 70%. Most of the data shown are false
responses. Only the peaks of the spikes in the graph are from
valid responses.

Plots are not provided for the other datasets.

B. IDS Input Features

We used a back propagation algorithm to build a 3 stage
neural network which classifies SCADA network transactions
as normal or abnormal based upon 4 input features.

The first input feature was the water level expressed as a
percentage. Fig. 4 and Fig. 5 show water levels from the
water storage tank control system under attack. The water
level normally trends between the L and H set points. The
false responses are shown as spikes in the data. The water
level feature should easily identify the large spikes as
violations of the water level trend and classify these packets as
abnormal. The false response datasets which inject water
levels above the H set point and below the L set point, but not
beyond the HH and LL alarm levels, are less obvious and
therefore more difficult for the neural network to correctly
classify based on only the water level input feature.

The second input feature was command response frequency.
During normal operating conditions the control system
network includes commands and responses in pairs. In many
of the attack scenarios a command will be followed by 2
responses; a false injected response, and a valid response from
the addressed slave.

The third input feature is the mode of operation of the
control system. The mode of operation can be set as either
automatic or manual. In automatic mode, the R TU
automatically maintains the water level between the L and H
set points. In manual mode, the R TU waits for input from the
MTU to control the water level. This input comes in the form
of turning the water tank pump on and off. For all of the
attacks used for this work the mode of operation is set to
automatic. This feature is reserved for more complex data
sets.

The fourth input feature is the state of the water tank pump.
As previously mentioned the pump can be set to on or off.
The pump state can be changed by a command received from
the MTU (or an illicit command from an network penetrator)
or can be changed automatically by the RTU when the control
system is in automatic mode. The water level should increase
when the pump is on and decrease when the pump is off.

C. IDS Experimental Results

Collected data from laboratory experiments were used to
train and test the neural network IDS developed.

Table 1: Classification Results for Man-in-the-Middle Response Injection

Exploit % False % False Accuracy
Scenario Positive Negative

Negative Response 0.0% 0.0% 100.0%
Response> HH 4.5% 0.0% 95.5%
HH> Response> H 2.3% 3.0% 94.7%
L > Response> LL 2.4% 3 0% 94.6%
Response < LL 3.2% 0.0% 96.8%
Random Response 6.2% 8.9% 84.9%

For each dataset a Perl script was used to classify
individual network packets as normal or abnormal before

training the neural network. The neural network was trained
with 80% of the available samples and 20% percent of the
available samples were used to validate the neural network.

Table 1 shows the classification results from the man-in­
the-middle response injection exploits. Results included 100%
accuracy for negative water level values. This is expected as a
negative value is always abnormal. For the Response> HH,
Response> HH, L > Response> LL, Response < LL exploit
scenarios accuracy ranged between 94.6% and 95.5%. The
inaccuracies are primarily related to the inability of the neural
network to classify false responses which are very close to the
L, H, LL, HH set points depending upon the exploit scenario.
The random water level response shows the worst accuracy
with 84.9%. This is due to the fact that the some many of the
random false responses are within L and H set points and
therefore indistinguishable from normal data.

Table 2: Classification Results for DOS Based Response Injection

Exploit % False % False Accuracy
Scenario Positive Negative
Ne"ative Response 0.0% 0.00% 100.0%
Response> HH 0.1% 1.2% 98.7%
HH > Response> H 1.2% 2.0% 96.9%
L > Response> LL 1.0% 1.3% 97.7%
Response < LL 0.2% 1.0% 98.9%
Random Response 8.2% 1.0% 90.9%

Table 2 shows the classification results from the DOS based
response injection exploits. IDS accuracy is similar to the
results from the man-in-the-middle response injection exploits.
Results again included 100% accuracy for negative water level
values. For the Response > HH, Response > HH, L >
Response > LL, Response < LL exploit scenarios accuracy
ranged between 96.9% and 98.9%. These results represent an
improvement over the man-in-the-middle accuracy results.
The DOS dataset included continuous false data injection
rather than random false data injection. Results indicate the
neural network performs better when classifying the
continuous injection attacks.

Table 3: Classification Results for Replay Based Response Injection

% False
Positive

45.1%

Accuracy

12.1%

Table 3 shows the classification results from a replay based
response injection exploits. Accuracy for this dataset was very
low. This indicates a neural network with the aforementioned
input features is unable to detect a replay attack. This is
expected since the replay data looks exactly like real data.

V. FUTURE WORK AND CONCLUSION

A. Future work

This paper applied a back propagation algorithm to build
the neural network for the intrusion detection system. Because
the back propagation algorithm is supervised learning, training
requires target output values. In future work, an unsupervised
learning algorithm will be used to build the neural network
using to support training only using input vectors.

Also, more work is required to develop input features for
the neural network. This paper presents preliminary work.
SCADA control systems control physical processes which
must obey the laws of physics. For the water tank control
system this means that water level may only change at rates
based upon tank capacity and pipe diameters. Methods which
train the neural network based upon physical properties will
likely lead to more accurate classification results.
Additionally, neural network inputs can be extended to include
the n-most recent water level values to allow the neural
network to recognize trends in the water level or other
features.

Replay attacks prove particularly difficult to detect. Input
Research to indentify features which improve replay detection
accuracy to acceptable levels is required. Improvements may
require upgrading SCADA control system networking
protocols to include sequence numbers or time stamps or other
mechanisms to assist in identification of replayed packets.

Finally, a Bayesian network will be used in future work to
compare the accuracy to the neural network results.

B. Conclusion

In this paper we presented a set of command and response
injection attacks and denial of service (DOS) attacks on
SCADA control systems. Attacks were targeted at a
commercial SCADA control system and a SCADA network
transaction data logger was used to capture network traffic
associated with the attacks. Finally, captured exploit network
traffic was used in combination with captured traffic from the
SCADA control systems running normally to train and
validate a neural network based intrusion detection system
which leverages knowledge of the physical properties of the
controlled system to detect false response injection attacks.
IDS results show that a neural network is a promising
mechanism for detecting false responses however future work
is required to developed input features which improve IDS
accuracy and to find features capable of detecting replay
attacks.

REFERENCES

[I] Santorelli, S. Who is looking for your SCADA infrastructure? March
2009. Published online. Sample June 30, 2010.

http://www. team-cymru.org/ReadingRoom/Whitepapers/2009/scada. pdf

[2] http://www.nerc.com/page.php?cid=2120

[3] Ronald L. Krutz, Securing SCADA Systems. Wiled Publishing, Inc.
Indianapolis, Indiana, November 28,2005

[4] Oman, P., Phillips, M. Intrusion Detection and Event Monitoring in
SCADA Networks. In Critical Infrastructure Protection. Spring Boston
2007.

[5] Monticelli, A. State Estimation in Electric Power Systems: A
Generalized Approach. Springer. 1999

[6] Wang, Y, Statistical Techniques for Network Security, Modem
Statistically-Based Intrusion Detection and Protection. IGI Global.
October 2008

[7] Amit Kumar Choudhary, Akhilesh Swarup, Neural network approach for
intrusion detection. Proceedings of the 2nd International Conference on
Interaction Sciences: Information Technology, Culture and Human,
Seoul, Korea, 2009

[8] Morris T., Srivastava A. Reaves 8., Pavurapu K., Abdelwahed S.,
Vaughn R., McGrew W., Dandass Y. Engineering Future Cyber-

Physical Energy Systems: Challenges, Research Needs, and Roadmap .
2009 IEEE North American Power Symposium. October 4-6, 2009,
Starkville, MS

[9] Reaves, B., Morris, T., Discovery, Infiltration, and Denial of Service in a
Process Control System Wireless Network. IEEE eCrime Researchers
Summit. October 20-21,2009. Tacoma, WA

[10] Martin T. Hagan, Howard B. Demuth, Mark H. Beale, Neural network
design, PWS Pub, 1996

[11] Ke Wang., Salvateore 1. Stolfo. Anomalous Payload-based Network
Intrusion Detection. Lecture Notes in Compuer Science, Volume
3224/2004

[12] Slay, J., Miller, M. Lessons Learned From the Maroochy Water Breach.
In IFIP International Federation for Information Processing. Volume
253. Critical Infrastructure Protection, eds. E. Goetz, S. Shenoi. Boston
Springer. Pages 73-S2. 200S.

[13] Morris, T., Pavurapu K. A Retrofit Network Transaction Data Logger
for SCADA Control Systems. Submitted for publication 2010 IEEE
SmartGridComm.

[14] Falliere, N., Exploring Stuxnet's PLC Infection Process,
http://tinyurl.com/3ykxS5p

