
214 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 5, NO. 3, SEPTEMBER 2013

On Scalability, Generalization, and Hybridization of

Coevolutionary Learning: A Case Study for Othello
Marcin Szubert, Wojciech Jaśkowski, and Krzysztof Krawiec, Member, IEEE

Abstract—This study investigates different methods of learning

to play the game of Othello. The main questions posed concern

scalability of algorithms with respect to the search space size and

their capability to generalize and produce players that fare well

against various opponents. The considered algorithms represent

strategies as -tuple networks, and employ self-play temporal dif-

ference learning (TDL), evolutionary learning (EL) and coevolu-

tionary learning (CEL), and hybrids thereof. To assess the per-

formance, three different measures are used: score against an a

priori given opponent (a fixed heuristic strategy), against oppo-

nents trained by other methods (round-robin tournament), and

against the top-ranked players from the online Othello League.

We demonstrate that although evolutionary-based methods yield

players that fare best against a fixed heuristic player, it is the coevo-

lutionary temporal difference learning (CTDL), a hybrid of coevo-

lution and TDL, that generalizes better and proves superior when

confronted with a pool of previously unseen opponents. Moreover,

CTDL scales well with the size of representation, attaining better

results for larger -tuple networks. By showing that a strategy

learned in this way wins against the top entries from the Othello

League, we conclude that it is one of the best 1-ply Othello players

obtained to date without explicit use of human knowledge.

Index Terms—Coevolution, -tuple systems, Othello, temporal

difference learning (TDL).

I. INTRODUCTION

L EARNING a game-playing strategy can be naturally

viewed as searching through a space of all possible

strategies. Like in every other search problem, two questions

have to be answered in order to design an efficient search algo-

rithm. First, what is the search domain, i.e., how is the space

of candidate solutions defined? Second, what is the goal of

the search problem, i.e., what are the properties of the desired

outcome of the search?

These questions are particularly important in the domain of

games, where the learning problem alone typically does not pro-

vide obvious answers to them. Regarding the search space, for

most nontrivial games, it is impossible to represent a candidate

solution (i.e., a strategy) directly as a mapping from states to
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actions, due to a huge number of states. Thus, typically, a more

concise way of storing strategies is employed, for instance, a

position evaluation function approximated by a neural network.

Importantly, the choice of strategy representation determines

the size and characteristics of the search space of the learning

problem.

When it comes to search goals, in contrast to many combi-

natorial optimization problems, there are no predefined objec-

tive functions for learning game-playing strategies. Instead, the

goal of search can be defined using a solution concept [9] that

implicitly divides the search space into solutions and nonsolu-

tions. Among several solution concepts applicable to the inter-

active domain of games, like Nash equilibrium and Pareto opti-

mality, the most intuitive one ismaximization of expected utility,

i.e., maximization of the expected score against a randomly se-

lected opponent [8]. This concept corresponds to the measure

of generalization performance [7], which, in turn, follows the

notion of generalization in machine learning. For this concept,

the learning task becomes an optimization problem, in which

the objective function is the performance achieved in games

with all possible rival strategies. Elegant as it is, such formu-

lation raises a serious difficulty caused by the cost of objective

function calculation. Indeed, an explicit construction of such a

function is intractable for most games due to a vast number of

possible opponents.

This difficulty is typically overcome by dropping the objec-

tive function in favor of an evaluation function that is compu-

tationally cheaper and steers the search algorithm toward the

assumed goal. In the case of games, such an evaluation function

limits the number of opponents and can be static or dynamic. A

static evaluation function employs a fixed set of predefined ex-

pert players and might be used as a driving force for, e.g., evo-

lutionary learning (EL). A dynamic function uses a set of oppo-

nents that changes together with the learning players, and is typi-

cally employed in self-learning methods such as coevolutionary

algorithms. By exposing a learner to more different opponents,

learning algorithms that use dynamic evaluation functions can

be expected to produce players that win against a wider range

of opponents. On the other hand, dynamic evaluation functions

can be confusing for an algorithm and lead to undesired phe-

nomena such as coevolutionary pathologies [27], [43].

In this work, we explore the key issues pertaining to the above

questions about search space and search goal in the context of

learning strategies for the board game of Othello. In partic-

ular, we investigate how the size of the search space and the

type of evaluation function influence the performance of evo-

lutionary, coevolutionary, temporal difference learning (TDL)

algorithms, and their hybrids introduced in our previous works

1943-068X © 2013 IEEE
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Fig. 1. Othello board and its coloring according to heuristic player weights (darker color/greater weight). (a)Othello initial board state. (b) Heuristic WPCweights.

[36], [15]. This allows us also to discuss the benefits of global

and local search hybridization. We demonstrate that changing

the size of representation, which for the sake of this study is

an -tuple network, has a significant impact on learning re-

sults achieved by particular methods. Some algorithms scale up

well and easily utilize the opportunities offered by the larger

search space, while the performance of others tends to deterio-

rate. Most importantly, by gauging the results by means of dif-

ferent performance measures that involve different samples of

opponent strategies, we can verify which of the considered ap-

proaches generalizes better and is more capable of producing

strategies that can defeat a variety of strong opponents.

Overall, the major contributions of this paper include: 1) ex-

perimental evidence that a coevolutionary learning (CEL) algo-

rithm can provide itself with a sample of opponents/trainers that

are diversified enough to make the resulting strategies superior

to all other state-of-art learning algorithms considered in this

study; 2) demonstration of the synergy of combinatorial search

performed by coevolution with the gradient-based search car-

ried out by TDL, in particular TDL’s capability to support co-

evolution in highly dimensional search spaces; 3) investigation

into the impact of representation size; and, last but not least;

and 4) demonstration of discrepancies between players’ assess-

ments obtained using various performance measures.

II. THE GAME OF OTHELLO

Othello is played by two players on an 8 8 board. Typically,

pieces are disks with white and black faces, each color repre-

senting one player. Fig. 1(a) shows the initial state of the board;

each player starts with two pieces in the middle of the grid. The

black player moves first, placing a piece, black face up, on one

of four shaded locations. Players make moves alternately until

no legal moves are possible.

A legal move consists of placing a piece on an empty square

and flipping appropriate pieces. To place a new piece, two con-

ditions must be fulfilled. First, the position of the piece must

be adjacent to an opponent’s piece. Second, the new piece and

some other piece of the current player must form vertical, hor-

izontal, or diagonal lines with a contiguous sequence of oppo-

nent’s pieces in between. After placing the piece, all such oppo-

nent’s pieces are flipped; if multiple lines exist, flipping affects

all of them. A legal move requires flipping at least one of the op-

ponent’s pieces. Making a move in each turn is obligatory, un-

less there are no legal moves. The game ends when both players

have no legal moves. The player who has more disks at the end

of the game wins; the game can also end with a draw.

A. Strategy Representation

There are two common ways in which game-playing strate-

gies can be represented, namely, as a move selector or as a state

evaluator (also referred to as a position evaluator). A move se-

lector takes the current game state as an input and returns amove

to be made. A state evaluator, on the other hand, is used to es-

timate how beneficial a given state is for the player. With the

help of a game tree search algorithm, this allows for selecting

the move that leads to the most favorable afterstate.

Most recent works on learning Othello strategies have fo-

cused on creating board evaluation functions [24], [26], and we

follow that trend in this study. Moreover, we focus our research

on comparison between learning procedures rather than devel-

oping efficient tree search algorithms. For this reason, to select

a move during the game, we evaluate all states at 1-ply—when

a player is to make a move, it expands the current game state to

all possible direct afterstates and evaluates each of them using

player’s evaluation function. The move that yields the highest

return value is selected.

B. The Othello League

A good overview of differentOthello player architectures and

their estimated performance is provided by the Othello Posi-
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tion Evaluation Function League [22]. The player’s rank in the

league is based on the score obtained in 100 games played at

1-ply (in which 10% of moves are forced to be random) against

the standard heuristic weighted piece counter (WPC) player.

WPC is a simple architecture, which may be viewed as an arti-

ficial neural network comprising a single linear neuron with in-

puts connected to all board locations. It assigns a single weight

to each location and calculates the utility of a given board state

by multiplying weights by color-based values of the pieces oc-

cupying corresponding locations. The standard heuristic player

developed by Yoshioka et al. [44] is illustrated in Fig. 1(b). We

also use it in our experiments as one of the opponents to mea-

sure the performance of evolved strategies.

Regarding the league results, all the best players submitted

to the competition are based on more complex architectures

than WPC. Examples of such architectures, which often operate

in a nonlinear fashion and involve numerous parameters are:

a symmetric -tuple network, a multilayer perceptron (MLP),

and a spatial MLP. At the time of writing, the league all-time

leader was an -tuple network with a winning percentage of just

below 80%. Such results can be achieved by a self-play training

with TDL (see Section III-A) [20]. In our research, we use the

same architecture to compare performance acquired by different

learning methods. To make the comparison more informative,

we used the best players from the league as opponents in a se-

ries of round-robin tournaments.

C. The -Tuple Network Architecture

The idea of -tuple systems was originated by Bledsoe and

Browning [3] for use in character recognition. Since then it has

been successfully applied to both classification [30] and func-

tion approximation tasks [14]. Their main advantages include

conceptual simplicity, speed of operation, and capability of re-

alizing nonlinear mappings to spaces of higher dimensionality.

Following significant research on using -tuple classifiers for

handwritten digits [21] and face recognition problems [23], re-

cently, Lucas proposed employing the -tuple architecture also

for game-playing purposes [20].

An -tuple system expects as input some compound entity

(matrix, tensor, image) , which elements (usually scalar vari-

ables) can be retrieved using some form of coordinates. An

-tuple network operates by sampling that input object with

-tuples. The th -tuple is a sequence of variables

, each corresponding to prede-

termined coordinates in the input. Assuming that each variable

takes on one of possible values, an -tuple can be viewed as a

template for an -digit number in base- numeral system.When

a specific input is given, it assumes one of possible values.

The number represented by the -tuple is used as an index

in an associated lookup table LUT , which contains parameters

equivalent to weights in standard neural networks. For a given

input , the output of the -tuple network can be calculated as

LUT (1)

where denotes retrieving from the element located at

the position indicated by .

Fig. 2. Two sample -tuples viewed as templates for base-3 numbers. Each

input location represents a ternary digit. Multiplying them by successive powers

of 3 leads to decimal values of and ,

which are used as indexes in the associated lookup tables.

In the context of Othello, an -tuple network acts as a state

evaluation function. It takes a board state as an input and re-

turns its utility. Input variables are identified with coordinates

on the board, and the value retrieved from a single location is 0,

2, or 1 if, respectively, it is occupied by a white piece, a black

piece, or is empty. Consequently, an -tuple represents a ternary

number which is used as an index for the associated lookup table

containing entries (see Fig. 2). Additionally, symmetric sam-

pling (introduced in [20]) can be incorporated; a single -tuple

is employed eight times, once for each possible board reflection

and rotation. LUT values indexed by all such equivalents are

summed together to form the output of the particular -tuple.

The final value of a board is simply the sum of all -tuple out-

puts [see (1)].

The number of possible -tuple instances is exponential in

function of the size of and , so assigning the initial input vari-

ables (board locations) to -tuples is an important design issue.

Typically, in pattern recognition applications, the simplest ap-

proach of random selection is commonly used. However, in the

context of games, the spatial neighborhood of chosen locations

is intuitively appealing. For this reason, and particularly forOth-

ello, connected sets of locations like a straight line or a rectangle

area are usually chosen. In our implementation, we allowed for

more flexible assignments in the form of snake shapes, proposed

by Lucas [20]. For each -tuple, we choose a random square on

the board from which a random walk of steps in any of the

maximum eight possible directions is taken. Other implementa-

tion details concerning -tuples are presented in Section IV-A.

D. Previous Research on Computer Othello

The game of Othello has been a subject of artificial intelli-

gence research for more than 20 years. The significant interest in
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this gamemay be explained by its simple rules, large state-space

cardinality (around 10 ), and high divergence rate causing that

it remains unsolved—a perfect Othello player has not been de-

veloped yet. For all these reasons, it remains an excellent bench-

mark for learning algorithms and player architectures.

Conventional Othello-playing programs are based on a

thorough human analysis of the game, leading to sophisticated

handcrafted evaluation functions. They often incorporate su-

pervised learning techniques that use large expert-labeled game

databases and efficient look-ahead game tree search. One of

the first examples representing such an approach was BILL

[18]. Besides using precomputed tables of board patterns, it

employed Bayesian learning to build in so-called features into

an evaluation function. Today, one of the strongest Othello

programs is Logistello [4], which makes use of advanced

search techniques and applies several methods to learn from

previous games. Its evaluation function is based on a predefined

pattern set including horizontal, vertical, and diagonal lines,

as well as special patterns covering edges and corners of the

board. Pattern configurations correspond to binary features

and have associated values. Evaluating a board consists in

summing values of occurring features, and thus, is very similar

to calculating the value of an -tuple network.

Recently, the mainstream research on Othello has moved to-

ward better understanding of what types of learning algorithms

and player architectures work best. The Congress on Evolu-

tionary Computation (CEC) Othello Competitions [22] pursued

this direction by limiting the ply depth to one, effectively dis-

qualifying the algorithms that employ a brute-force game tree

search.

The most challenging scenario of elaborating a game strategy

is learning without any support of human knowledge or oppo-

nent strategies given a priori. This task formulation is addressed

by, among others, TDL and CEL, which were applied to Oth-

ello by Lucas and Runarsson [24]. Other examples of using self-

learning approaches forOthello include coevolution of spatially

aware MLPs [5], TD-leaf learning of structured neural networks

[41], coevolutionary TDL (CTDL) [36], and Nash memory ap-

plied for coevolved -tuple networks [26]. That study inspired

our previous paper [36], in which we compare these methods

with their direct hybridization called CTDL.

III. METHODS

A. Temporal Difference Learning

Since the influential work of Tesauro [39] and the success of

his TD-Gammon player trained through self-play, TDL [33] has

become a well-known approach for elaborating game strategies

without help from human knowledge or expert strategies given

a priori.

The use of reinforcement learning techniques for such appli-

cations stems from modeling a game as a sequential decision

problem, where the task of the learner is to maximize the ex-

pected reward in the long run (game outcome). The essential

feature of this scenario is that the actual (true) reward is typi-

cally not known before the end of the game so some means are

necessary to propagate that information backwards through the

series of states, assign credit to particular decisions, and guide

the intragame learning.

The TD algorithm solves prediction learning problems

that consist in estimating the future behavior using the past

experience. Its goal is to make the preceding prediction match

more closely to the current prediction (taking into account

distinct system states observed in the corresponding time

steps). Technically, the prediction at a certain time step can

be considered as a function of two arguments: the outcome of

system observation and the vector of modifiable weights ,

which are updated by the following rule:

(2)

In our case, is realized by an -tuple network (1) whose out-

puts are squeezed to the interval by hyperbolic tangent.

Using such a prediction function within TD update rule (2)

results in changing LUT weights according to

LUT

This formula modifies only those LUT entries that correspond

to the elements of the board state selected by the -tuple, i.e.,

with indices generated by the -tuple. If the state observed at

time is terminal, the exact outcome of the game is used

instead of the prediction . The outcome is if the winner

is black, if the winner is white, and 0 when the game ends

in a draw.

The process of learning consists in applying the above for-

mula to the LUT entries after each move, i.e., with and

being, respectively, the network output before and after a move.

The training data for that process, i.e., a collection of games,

each of them being a sequence of states are acquired

in a method-specific way (e.g., via self-play). During training

games, moves are selected on the basis of the most recent eval-

uation function.

Othello is a deterministic game, thus the course of the game

between a particular pair of deterministic players is always the

same. This feature reduces the number of possible game trees

that a learner interacts with and explores, which makes learning

ineffective. To remedy this situation, at each turn, a random

move is forced with a probability (this is known as -greedy

policy [34]). After such a random move, the learning algorithm

does not update weights. Thanks to random moves, players are

confronted with a wide spectrum of possible behaviors of their

opponents.

B. Evolutionary and Coevolutionary Learning

The TDL approach is a gradient-based local search method

that maintains a single solution and as such may not be able to

escape from local optima [38]. Evolutionary computation [2], a

global search neo-Darwinian methodology of solving learning

and optimization problems, has completely opposite character-

istics; it maintains a population of candidate solutions (individ-

uals), but has nomeans for calculating individually adjusted cor-

rections for each solution parameter. It lessens the problem of

local optima by its implicit parallelism and randommodification
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of candidate solutions. Consequently, evolutionary computation

seems to be an attractive complementary alternative for TDL for

learning game strategies.

The fitness function is an indispensable component of evolu-

tionary computation that drives the search process by assigning

fitness values to candidate solutions. It is also the fitness

function that constitutes the major difference between evolu-

tionary and coevolutionary algorithms. While in evolutionary

algorithms this function is expected to be static and reflect an

individual’s absolute performance, coevolutionary algorithms

employ dynamic fitness functions that assess the relative per-

formance of individuals with respect to other individuals in the

population.

However, one faces substantial difficulty when designing an

absolute fitness function for the task of learning game strate-

gies. A truly objective assessment of an individual’s utility in

case of games can be done only by playing against all possible

opponent strategies. For the majority of games, this is compu-

tationally intractable. An alternative is to consider only a lim-

ited number of opponents, and thus, lessen the computational

burden. In this case, the sample of opponents used for evaluation

could be formed by a predefined expert player(s) or a sample of

random opponents; such an approach was recently found suc-

cessful [6].

In this context, coevolution is an appealing alternative that

offers a natural way of designing fitness function. Indeed, rel-

ative performance of individuals is calculated on the basis of

the results of their interactions with other population members.

In learning game strategies, an interaction consists in playing a

game and increasing the fitness of the winner while decreasing

the fitness of the loser. It means that individuals just play games

with each other in a round-robin fashion, and the outcomes of

these interactions determine their fitness values. This evaluation

scheme is termed as competitive coevolution [1].

EL and CEL of game strategies used in this study follow the

above ideas and typically start with generating a random initial

population of player individuals. Individuals are evaluated with

a static or dynamic fitness function, respectively. The best per-

forming strategies are selected, undergo genetic modifications

such as mutation or crossover, and their offspring replace some

of (or all) former individuals. In practice, this generic scheme

is supplemented with various details, which causes EL and

CEL to embrace a broad class of algorithms that have been

successfully applied to many two-person games, including

Backgammon [29], Checkers [11], and a small version of Go

[31]. In particular, Lucas and Runarsson used and

evolution strategies in a competitive environment to learn a

strategy for the game of Othello [24].

C. Hybrid Learning

The past results of learning WPC strategies for Othello [24]

and small-board Go [31] demonstrate that TDL and CEL ex-

hibit complementary features. CEL progresses slower, but, if

properly tuned, eventually outperforms TDL. With respect to

learning -tuple networks, though, CEL is reported to be less

successful, while TDL confirms its strength [20]. Still, it sounds

reasonable to combine these approaches into a hybrid algorithm

exploiting different characteristics of the search process per-

formed by each method. In our previous works [36], [16], a

method termed CTDL was proposed and applied to learn WPC

strategies. CTDL maintains a population of players and alter-

nately performs TDL and CEL. In the TDL phase, each player

is subject to TD training. Then, in the CEL phase, individuals

are evaluated on the basis of a round-robin tournament. Finally,

a new generation of individuals is obtained using selection and

variation operators, and the cycle repeats. The idea realized by

this method can be called coevolutionary gradient search [17].

The overall conclusion was positive for CTDL, which produced

strategies that, on average, defeated those learned by TDL and

CEL. Encouraged by these results, we wonder whether CTDL

would prove beneficial also for more complex -tuple network

architectures. Additionally, for the sake of completeness, we in-

troduce also an analogous hybrid approach of evolutionary tem-

poral difference learning (ETDL), which in an analogous way

combines EL and TDL.

It is worth noting that hybridization of EL and TDL can be

considered as a form of memetic algorithm. Memetic algo-

rithms [28] are hybrid approaches coupling a population-based

global search method with some form of local improvement.

Since these algorithms usually employ evolutionary search,

they are often referred to as Lamarckian evolution, to commem-

orate Jean-Baptiste Lamarck who hypothesized, incorrectly

in the view of today’s neo-Darwinism, that the traits acquired

by an individual during its lifetime can be passed on to its

offspring. Technically, memetic algorithms typically alternate

genetic search for the population and local search for individual

solutions.

Other hybrids of TDL and CEL or EL have been occasion-

ally examined in the past. Kim et al. [13] trained a population of

neural networks with TD and used the resulting strategies as

an input for the standard genetic algorithm with mutation as the

only variation operator. In [26], a coevolutionary algorithm is

combined with TDL used as a weight mutation operator and ap-

plied to the game ofOthello. Contrary to the approach presented

here that uses straightforward coevolution with no long-term

memorymechanism,Manning [26] employed the Nashmemory

algorithm [10] with bounded archives.

IV. EXPERIMENTAL SETUP

All algorithms presented above were implemented using our

coevolutionary algorithms library called cECJ [35], built upon

evolutionary computation in Java (ECJ) framework [25]. Our

unit of computational effort is a single game, and the time of

other operations is neglected. To provide a fair comparison, all

runs were stopped when the number of games played reached

3 000 000. Each experiment was repeated 24 times.

A. Player Architecture

We rely on -tuple networks because of its appealing poten-

tial demonstrated in recent studies [26], [20] and promising re-

sults in the Othello League [22]. We start from small networks

formed by seven instances of 4-tuples (7 4), which include

567 weights. Later, we move to 9 5 networks (2187 weights

on aggregate) to end up with the largest 12 6 architecture

(8748 weights) that has recently been successfully applied to
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Othello by Manning [26]. This progression enables us to ob-

serve how particular methods cope with the growing dimension-

ality of the search space.

We decided to employ the input assignment procedure

that results in randomly placed snake-shaped tuples (see

Section II-C). Regarding the LUT weights, their initial values

depend on the particular learning algorithm. As previous re-

search shows [37], TDL learns faster when it is 0-initialized.

Evolutionary methods, on the other hand, assume that the

population is randomly dispersed in the search space. For this

reason, in the purely coevolutionary algorithm (i.e., without

TDL), we start from weights initialized randomly in the

range.

B. Search Operators

The considered search heuristics operate in two spaces: a dis-

crete network topology space and a continuous weight space.

Dimensions of the topology space are: the number of tuples,

their size, and input connections. Dimensionality of the weight

space depends directly on the number of weights and grows

exponentially with tuple length. We search both spaces in par-

allel as it gives the learner more flexibility than searching only

one of them. However, to avoid excessive complexification, we

limit topology changes just to input assignment; the number of

-tuples and their length stay the same throughout learning. Al-

though the majority of methods applied to train neural networks

are based on a fixed structure and search only the weight space,

there are some exceptions which explore topology space as well

[32], [40].

In accordance with the twofold nature of this search space,

we employ two types of operators: genetic and gradient based.

Let us note that the former ones rely on the direct encoding of

strategies, i.e., the individual’s genome is a concatenation of

LUT weights associated with its -tuples. Overall, we use the

following genetic operators:

� weight mutation: each weight (LUT entry) with probability

undergoes Gaussian mutation ;

� topology mutation: each input (board location) is replaced,

with probability , by another input from its

neighborhood;

� topology crossover: sexual reproduction with probability

; two individuals mate and exchange genes, i.e.,

entire tuples with LUTs; an offspring inherits ran-

domly selected tuples from each.

The only gradient-based operator works in the weight space and

consists in running a single self-play game incorporating TD

algorithm (see Section III-A). We use learning rate

and force random moves with probability .

C. Learning Algorithms

TDL searches only the weight space using a single network

and self-play TD as the only search operator.

EL is a generational evolutionary algorithmwith a population

of 50 individuals. The algorithm operates in a well-recognized

loop of: 1) evaluation: the fitness of each individual is calculated

as a sum of points obtained in 50 randomized games against

the WPC-heuristic player; 2) selection: evaluated individuals

are subject to tournament selection [12] with tournament size 5;

3) recombination: individuals undergo topology crossover; and

4) mutation: individuals are modified by weight and topology

mutation.

CEL is a generational coevolutionary algorithm with a pop-

ulation of 50 individuals. The algorithm operates in a similar

fashion to EL, except for the evaluation phase, where a round-

robin tournament is played between all individuals, with wins,

draws, and losses rewarded by 3, 1, and 0 points, respectively,

and the total number of points becomes the individual’s compet-

itive fitness. For each pair of individuals, two games are played,

with players swapping the roles of the black and white players.

ETDL combines EL and TDL, as described in Section III-C.

Similarly to EL, it uses topology mutation and topology

crossover, but instead of weight mutation, it employs self-play

TDL training. By default, in each TDL phase, a budget of 5000

training games is allocated to the players in the population.

Thus, each individual plays 100 games during this learning

phase.

CTDL combines CEL and TDL, as described in Section III-C.

The algorithm operates as ETDL but uses competitive fitness

like CEL.

Notice that CTDL extends CEL in the same way as ETDL

extends EL. Moreover, CEL and CTDL (also, EL and ETDL)

differ only in the way they search the weight space (weight mu-

tation versus TDL).

Furthermore, where possible, the parameters for the above

algorithms were taken directly from our previous research [36],

[16] or related works [20], [24], [26]. In some cases, the pa-

rameters were determined by preliminary experiments. This in-

cludes the value of for weight mutation and the number of

TDL games in a single phase of hybrid algorithms. It should be

emphasized though that our goal was not to find the best pa-

rameters for this particular problem, but to compare learning

methods using reasonable settings.

D. Performance Measures

To monitor the progress of learning in our experiments, 50

times per run (approximately every 60 000 games), we appoint

the individual with the highest fitness as the best-of-genera-

tion individual (for TDL, the single strategy maintained by the

method is the best-of-generation by definition). The best-of-

generation players from all runs of a method form a team. In par-

ticular experiments, the performance of a team, and indirectly of

the method it represents, is calculated using the following mea-

sures (see Section V for details):

1) performance against a heuristic player, i.e., percentage

score against a predefined, human-designed WPC strategy

(the opponent used to rank the players in the Othello

League; Section V-A);

2) the number of points in a round-robin tournament between

the teams of best-of-generation players produced by algo-

rithms (Section V-B);

3) the place taken in a round-robin tournament in-

volving the best entries from the online Othello League

(Section V-C1).

It should be emphasized that the outcomes of performance as-

sessments are unavailable to learning algorithms and thus do not
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Fig. 3. Comparison of learning methods for three network sizes. Average performance of the best-of-generation individuals measured as a percentage score against

the WPC heuristic.

influence the learning process. In a machine learning perspec-

tive, the opponents used in the above measures form a testing set

and are intended to verify the generalization capability. The only

exceptions to this rule are EL and ETDL, where fitness assess-

ment uses the same opponent as the first performance measure.

More details on designing performance measures for game

strategies can be found in the recent work of Li et al. on the

iterated prisoner’s dilemma [19].

V. RESULTS

We conducted several experiments focused on comparing

how particular learning methods (Section IV-C) fare for dif-

ferent sizes of strategy representation (Section IV-A) with

respect to particular performance measures (Section IV-D). In

particular, we aimed to answer the following questions: How

do the algorithms scale with the size of strategy representation

(Section V-A1)? Is the performance against a heuristic player

a good predictor of a player’s likelihood to beat other oppo-

nents? What is the ability of the players trained using particular

methods to play against new, previously unseen opponents

(Section V-C1)?

A. Performance Against a Heuristic Player

This performance measure, used in previous works [26], [36]

and employed in theOthelloLeague to rank the contestants [22],

is the percentage of points (1.0 point awarded for a win, 0.5 for

a draw, calculated with respect to the maximum possible total

score) obtained in 1000 games (500 as black and 500 as white)

played against the WPC heuristic, a fixed player using the WPC

architecture with weights graphically illustrated in Fig. 1(b). All

players in our experiments are deterministic, as well as the game

of Othello itself. Thus, in order to have a more precise estima-

tion of the relative strength of a given trained player versus the

WPC heuristic, following Lucas and Runarsson [24], we force

both players to make random moves with probability .

1) Scalability: In the first experiments, we focus on the

scalability with respect to the representation size. Fig. 3 illus-

trates how the various methods’ performance against a heuristic

player changes when moving from 7 4 to 9 5 and to 12 6

-tuple networks. The plots show the performance as a function

of the total number of training games played, i.e., the games

required by fitness calculation (either absolute or relative) as

well as the games played in the TDL phase (where applicable).

As game playing is the most costly component of all considered

algorithms, this comparison is fair in terms of computational

effort.

Interestingly, increasing the network size is not necessarily

beneficial for all tested methods. Only TDL is able to signifi-

cantly improve its performance by utilizing the possibilities of-

fered by larger networks. On the contrary, EL and CEL perform

even worse with larger networks than with the smaller ones.

For the largest 12 6 networks, CEL gains barely a few per-

cent within the entire learning process. We hypothesize that the

weight mutation operator is not sufficiently efficient to elab-

orate fast progress in the larger (higher dimensional) weight

search space. This hypothesis is supported by all plots; only the

methods involving weight mutation (EL and CEL) have such

problems.

To make sure that this is not due to possibly unfavorable

settings of weight mutation, we performed another experiment

with different standard deviations of weight mutation. Re-

sults for EL with network sizes 7 4 and 12 6 presented in

Fig. 4 show that our choice is among the best

values of deviation. Importantly, no matter what value of is

used, the performance is lower with the larger networks. Con-

versely, when no weight mutation is used , larger net-

works allow for achieving better results. In this case, the weights

remain unchanged, and the evolutionary process modifies only

the topologies of networks. Although this implies that weights

remain fixed for an entire evolutionary run, and, therefore, the

total number of strategies that can be represented by individuals

is more limited, the resulting search problem is easier and evo-

lution eventually benefits from the larger network size.

Finally, the hybrid methods work either on a par with this

performance measure (CTDL) or slightly better with larger net-

works (ETDL). Apparently, using the TDL method to search

the weight space of -tuple networks is a better idea than ap-

plying random mutations, especially when the search space is

larger. Hybridization allows evolutionary components to focus
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Fig. 4. EL with different of weight mutation for 7 4 and 12 6 networks.

entirely on searching the topology space while leaving the con-

tinuous weight space to a dedicated gradient-based algorithm,

which works well on this problem when applied separately.

2) Method Comparison: After answering the question

whether larger representations pay off, we ask which method

works best. Fig. 5 compares all the methods for the three

considered representation sizes. The results for the smallest

7 4 network confirm our previous findings [36] for the WPC

strategy representation: the CTDL hybrid in the long run signif-

icantly outperforms the nonhybrid algorithms, TDL and CEL.

Moreover, as also observed in previous research [24], TDL

learns rapidly, whereas CEL advances slower but eventually

reaches a similar or even slightly higher performance level.

However, while the superiority of CTDL is still observable

for 9 5 networks, for the 12 6 ones, there is no difference

between TDL and CTDL, which both score between 65% and

70%. This level is similar to that reported by Manning [26]

for 12 6 networks trained by a complex Nash memory ap-

proach (between 66% and 68%). This indicates a ceiling ef-

fect [42] in the evaluation of self-learning methods with the

WPC-heuristic performance measure. We hypothesize that the

randomizedWPC-heuristic player does not offer sufficiently di-

versified challenge to differentiate the strategies produced by

these algorithms. To verify this claim and to differentiate the al-

gorithms in terms of their performance, we conducted a series

of performance assessments on a pool of opponents, detailed in

Sections V-B and V-C1.

Let us note that the above ceiling effect should not be inter-

preted in absolute terms. The plots clearly show that the WPC

heuristic managed to differentiate the performance of evolu-

tionary algorithms (EL and ETDL) versus the other ones (TDL

and CTDL), with the former performing better or equal. This

is, however, not surprising, given that the former methods have

been guided by the WPC heuristic. As we will demonstrate in

subsequent sections, these observations tell us very little about

the performance of the trained players on another, more sophis-

ticated, sample of opponents.

Last but not least, let us note that ETDL performs better than

EL for larger representations. This is further evidence that sup-

Fig. 5. Comparison of learning methods for three network sizes. Average per-

formance of the best-of-generation individuals measured as a percentage score

against the WPC heuristic: (a) 7 4 -tuple network; (b) 9 5 -tuple net-

work; and (c) 12 6 -tuple network.

ports our claim that TDL mutation is much more efficient than

weight mutation.

B. Generational Round-Robin Tournament

The handcrafted heuristic strategy, even when randomized,

cannot be expected to represent in full the richness of possible
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Fig. 6. Generational round-robin tournament for CEL and CTDL using dif-

ferent network sizes.

behaviors of Othello strategies. To avoid the ceiling effect

caused by a too narrow range of assessment opponents, we

let the considered methods generate assessment opponents for

each other. Technically, every 60 000 games played we create

teams that embrace all the best-of-generation strategies found

by 24 runs of particular methods. Next, we play a round-robin

tournament between the teams representing particular methods,

where each team member plays against all members from the

opponent teams. The score of a team is the overall sum of points

obtained by its players. As the tournaments are played multiple

times during learning, we call this method the generational

round-robin tournament.

Note that this assessment scheme is relative: gain for one

team implies loss for others. A team can be judged good due

to its virtues, but also due to the weaknesses of other teams. As

another advantage, the generational round-robin tournament al-

lows us to drop the randomization of moves, since the presence

of multiple strategies in the opponent team provides enough be-

havioral variability.

Fig. 6 plots the relative performance of the CEL and CTDL

algorithms for different network sizes. The score is given in

percents; a method can maximally obtain 100%, which means

that it wins all games. In this confrontation, CEL 7 4 not

only beats CEL with larger networks, but its advantage even

increases with learning time. This confirms our results obtained

for the WPC-heuristic performance measure: CEL has difficul-

ties in coping with larger search spaces. On the other hand,

when weight mutation is replaced by a TDL operator (CTDL),

larger representations enable achieving better strategies. It is in-

teresting to compare the latter figure with Fig. 3, in which CTDL

seems indifferent to network size. This supports the ceiling ef-

fect hypothesis; differences between certain methods cannot be

uncovered using the WPC-heuristic performance measure.

Fig. 7 plots the relative performance of all the algorithms

using the 12 6 network. Again, the players produced by TDL,

CTDL, and EL, which played at the same level against theWPC

heuristic [cf. Fig. 5(c)] turn out to generate players of diametri-

cally different competence when compared on a different pool

of assessment opponents. As these opponents uncovered previ-

ously unobserved differences between methods and have been

Fig. 7. Generational round-robin tournament for all methods using 12 6

networks.

trained using diametrically different algorithms (as opposed to

WPC-heuristic opponents that differ only in the randomized

moves), we hypothesize that they are behaviorally more diversi-

fied. Verifying this claim would, however, require an additional

analysis that is beyond the scope of this paper. Let us empha-

size that the teams confronted here are composed of the same

best-of-generation individuals that produced the results reported

in Fig. 5(c), i.e., we assess here the outcomes of the same runs

of learning algorithms.

In the tournament confrontation, the CTDL hybrid is clearly

the winner and beats its constituent methods, TDL and CEL.

Also, its advantage over the competitors increases over time.

What is, however, more interesting, is that CTDL defeats

ETDL, which supports our intuition expressed in Section V-A2

that ETDL tends to overfit: it performs best against the WPC

heuristic, but fails when faced with another set of players that

is likely to be behaviorally more diversified. On the other hand,

ETDL is still quite good, and, in particular, better than TDL.

We cannot say the same about EL, which wins only around

10% of games. The self-learning TDL component of ETDL

reduces the negative effects of overfitting.

C. Othello League

1) Generational Othello League Tournament: One of the

goals we were heading toward in this study was to create a

strategy that would win in a direct confrontation with the best

entries in the Othello League [22]. Thanks to the courtesy of

the league organizers, we were provided with strategies sub-

mitted to the league by anonymous contestants. We selected

the top 14 strategies (from several hundreds submitted to the

league) to form a pool of opponents. Each of our best-of-gener-

ation players was assessed by adding it to the pool and playing

a deterministic round-robin tournament among all 15 strategies,

with wins, draws, and losses rewarded by 3, 1, and 0 points, re-

spectively. Note that each player faces every other player twice:

once as black and once as white.

Fig. 8 shows the performance of our players expressed as a

percentage of the maximum score possible to attain when con-

fronted with the league pool. Each method (represented by 24

best-of-generation players) could obtain maximally
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Fig. 8. Generational Othello League tournament. Percentage score is the score

of a team of best-of-generation individuals obtained against the team formed by

the league players, normalized by the maximum possible score.

points (100%). It is easily noticeable that this as-

sessment ranks the methods roughly in the same order as in the

generational round-robin tournament (cf. Fig. 5). Once again we

can observe that ETDL turns out inferior to CTDL when the op-

ponents are different from the strategy it was taught with. CTDL

scores approximately 5%–10% more points. Methods that use

weight mutation instead of TDL do not perform well.

The total number of points is a valuable relative performance

measure, but it does not inform us about the absolute places

taken in the tournament by our best-of-generation players.

Fig. 9(a) and (b) shows how many times the 24 players pro-

duced by, respectively, ETDL and CTDL rank among the

top three players of the league. Clearly, the coevolutionary

approach leads to winning the tournament much more often

than the evolutionary method.

2) ETDL Players in Othello League: The above experiments

have shown that the players produced by ETDL are less versa-

tile than the ones produced by CTDL. However, when evalu-

ated against the WPC heuristic, ETDL appears remarkably suc-

cessful. As we could see in Fig. 5(c), in an average run, it at-

tained a performance level of 80%. Moreover, one of the runs

produced a player that reached 87.1% and took the lead when

submitted to the onlineOthelloLeague [22] under the name epT-

DLmpx_12 6. Table I shows the results of the top ten entries

in the league at the time of writing.1 All players in the table are

based on the same -tuple network architecture, but of various

sizes.

D. Analysis of Network Topology

Besides measuring and comparing the performance of the

learning algorithms, we were also interested in the internal rep-

resentation of the best strategies. For this purpose, we examined

the topologies of produced -tuple networks and gathered sta-

tistics on the best-of-run players evolved by the CTDL method.

Fig. 10 demonstrates how many times a particular field of the

Othello board was covered by the tuples of the best players.

1In the online league, players play only 100 games, which is the difference

between our estimation of epTDLmpx_12 6 performance (87.1%) and 89.5

obtained in the league [89 points (for wins) points (for a draw)].

Fig. 9. Frequency distribution of ranks obtained by ETDL and CTDL

best-of-generation individuals in a round-robin competition with Othello

League players. Bar height indicates how many times a particular rank was

obtained by the 24 evolved players. (a) Ranks obtained by ETDL. (b) Ranks

obtained by CTDL.

TABLE I

OTHELLO LEAGUE RANKING

The shades reflect the number of times a field appeared in net-

works. Note that the frequency pattern is reminiscent of the con-

figuration of weights in the WPC-heuristic player illustrated in

Fig. 1(b). Certainly, tuples cumulate around corners, which ap-

pear to be the most important fields on the board. Also, topology

mutations pressured networks to abandon central fields which,

on the contrary, have less influence on the board evaluation, and

the central four of them are already occupied at the beginning

of the game.
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Fig. 10. Frequency of board field occurrences in -tuples.

Fig. 11. The tuples of the best CTDL player superimposed on the Othello

board.

Fig. 11 presents the topology of the best CTDL 12 6-tuple

player. The arrangement may seem sparse, but due to the later

eightfold mirroring (not shown here), this strategy, in fact,

covers almost all board fields. Most tuples watch the combina-

tions of fields that are known to be strategically important in

Othello: neighboring fields close to corners, or the corners on

two opposite sides of the board.

VI. DISCUSSION

Although our best ETDL-evolved player currently leads the

Othello League, it fares much worse when facing head-to-head

other players from the League and the players evolved by means

of coevolutionary algorithms. This phenomenon may be ex-

plained in terms of solution concepts [9]. ETDL uses the evalu-

ation function based on the WPC-heuristic player, and so opti-

mizes the players’ behavior against this specific opponent. The

strategies it trains do not have a chance to play with different

opponents and learn from such experience. Clearly, randomiza-

tion of theWPC heuristic, intended to increase behavioral diver-

sity, does not help in this regard. Formally, ETDL implements

the specific solution concept of maximization of expected score

against the WPC heuristic,2 which, at least for the game of Oth-

ello, does not seem to be a good approximation of the general

maximal expected utility solution concept. This observation ap-

plies also to the way the Othello League ranks strategies, and

limits the conclusions that may be drawn from that ranking.

2In Othello with randomized moves.

In contrast, CTDL, a self-learning method equipped with dy-

namic evaluation function and based on coevolution and TDL,

yields players that generalize much better and successfully com-

pete with a variety of opponents: evolved, coevolved, trained

by TDL, and the top strategies submitted to the Othello League.

In particular the last ones, by implementing various approaches

and submitted by different researchers, can be claimed to rep-

resent a richer repertoire of behaviors. Having said that, we do

not argue that CTDL implements any named solution concept.

However, the results of extensive round-robin tournaments in-

dicate that it is closer to the solution concept of maximization

of expected utility for 1-ply Othello than any other method used

in this paper, in particular, the top-ranked strategies from the

Othello League.

Lucas and Runarsson [24] have found that coevolution ap-

plied to strategies represented asWPCs learns much slower than

TDL, but eventually converges to solutions of similar quality.

The results reported in Section V-A1 shed new light on this

issue. The performance gap between coevolutionary algorithms

and TDL strongly depends on the dimensionality of the search

space. For 7 4-tuple networks (567 weights), the coevolu-

tionary algorithm (CEL) in the long run indeed achieves results

comparable to TDL, but TDL proves far better for larger search

spaces of 9 5 and 12 6 networks (2187 and 8748 weights,

respectively). Its gradient-based learning rule is relatively in-

sensitive to the number of variables of consideration, while co-

evolution does not seem to be able to catch up, even in the long

run.

The evolutionary algorithm (EL), despite obtaining higher

absolute scores against the WPC heuristic, also tends to attain

worse performance for larger networks. The common factor that

appears to be responsible for these difficulties is the weight

mutation operator, which seems to work reasonably well only

in smaller search spaces (cf. Fig. 4). On the other hand, some

form of mutation is necessary for the evolutionary approach

(Fig. 4 shows that without mutation the score is even worse).

Indeed, even random mutation proved effective in high-dimen-

sional spaces in some previous studies [11], [13].

However, given the virtues of gradient-based searchmethods,

it seems natural to couple them with coevolution, as we did here

in the CTDL algorithm. This hybridization turns out truly ad-

vantageous when coevolution operates exclusively in the net-

work topology search space, leaving the search in the space of

weight values entirely to TDL. This approach is an interesting

mixture that can be considered as a realization of Lamarckian

coevolution, since players pass on to the offspring the traits

acquired in their lifetime. Finally, combining two completely

different search operators for neuroevolution seems to be espe-

cially appealing.

VII. CONCLUSION

This study demonstrates that, at least for the game of Othello

and strategies represented as -tuple networks, the CEL algo-

rithm can autonomously select and maintain a dynamic sample

of opponents/trainers that make the resulting strategies gener-

alize better than the strategies trained by an evolutionary ap-

proach. The samples of opponents used by the latter method, ob-

tained by randomization of a fixed strategy (WPC), are clearly
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inferior in that respect. At this stage of research, we can only

hypothesize that the major reason for this is greater behavioral

diversity of coevolutionary opponents. What nevertheless fol-

lows from the experimental results is that the coevolutionary

opponents are diversified “in the right way,” i.e., they guide the

learning process toward more versatile strategies.

However, to find the candidates for a sample of opponents in

the first place, an effective search operator is indispensable, par-

ticularly when the dimensionality of representation is high. The

gradient-based search operator (TDL) provedmost useful in this

respect, in contrast to purely random mutation. The resulting

hybrid, CTDL, may then be seen as a successful combination

of an effective learning mechanism (TDL) with an appropriate

method for filtering out the right opponents (coevolution). In-

terestingly, this hybrid seems to scale well with the dimension-

ality of the search space, i.e., the strategies it yields generalize

better for larger representations ( -tuple networks). Future re-

search could investigate in more detail the interplay between

the combinatorial, evolutionary search in the space of -tuple

topologies, and continuous, gradient-based search in the space

of weights performed by TDL or other variants of reinforcement

learning (e.g., by trying to find out the most efficient proportions

of usage of these search operators).

Another lesson learned from this work is that assessing

players using various performance measures can lead to qual-

itatively different outcomes, even if all of them take care to

ensure that the opponents are diverse. Thus, great caution

should be taken when drawing conclusions from such results.

In a broader perspective, the results presented here show that

solution concepts, which define an ultimate goal to be achieved

in a learning process, are not purely theoretical formalisms of in-

teractive domains (of which games are a special case), but also

essential tools of practical relevance. They help to understand

the behavior of algorithms, in particular, why they fail or suc-

ceed. They can serve as guidelines for designing better learning

methods, particularly for determining the choice of opponents

and the desired structure of interactions between learners. Fi-

nally, they suggest how algorithms should be externally and ob-

jectively evaluated, so that an assessment reflects the true use-

fulness of a strategy.

VIII. ADDITIONAL MATERIAL

The accompanying material for this study (software im-

plementation, parameter files, and the best evolved players)

is available online at http://www.cs.put.poznan.pl/mszubert/

projects/cecj.html.
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