ON SCHEDULING CYCLE SHOPS: CLASSIFICATION,
COMPLEXITY AND APPROXIMATION

MARTIN MIDDENDORF! AND VADIM G. TIMKOVSKY*

TInstitute of Applied Computer Science and Formal Description
Methods, University of Karlsruhe, Karlsruhe, Germany
*Star Data Systems Inc., Toronto, Ontario, Canada

November 18, 1999

ABsTRACT. This paper considers problems of finding nonperiodic and periodic schedules in
a cycle shop which is a special case of a job shop but an extension of a flow shop. The
cycle shop means the machine environment where all jobs have to pass the machines over
the same route like in a flow shop but some of the machines in the route can be met more
than once. We propose a classification of cycle shops and show that recently studied reentrant
flow shops, robotic flow shops, loop reentrant flowshops and V shops are special cases of cycle
shops. Problems solvable in polynomial time, pseudopolynomial time, NP-hard problems and
performance guarantee approximations are presented. Related earlier results are surveyed.

1. INTRODUCTION

A cycle shop introduced by Degtiarev and Timkovsky [DT76] (see also [T77, T86, T92,
T98]) is a special case of a job shop but an extension of a flow shop. All jobs in a cycle
shop have the same sequence of operations on the machines, but in contrast to a flow shop,
some operations can be repeated on some machines a number of times, and this number can
differ from one machine to another. Cycle-shop scheduling problems arose from the VLSI
technologes research that was held in the middle seventies in Soviet electronic industry.
The term “cycle shop” was chosen because the sequence of operations on the machines can
be nicely depicted by a spiral cyclogram (see Figure 1.1) that was a favourite tool of VLSI
technologies designers. Cycle shops and their special cases have been considered under
different names such as a flow line with an operator of Livshits et al. [LMC74], a reentrant
flowshop of Graves et al. [GMSZ83], Morton and Pentico [MP93], a V-shop of Lev and
Adiri [LA84], a robotic flowshop of Asfahl [A85], a periodic job-shop of Serafini and Ukovich

1991 Mathematics Subject Classification. 68Q25, 90B35.
Key words and phrases. Parallel machines, cycle shop, job shop, robotic flow shop, scheduling, complex-
ity, approximation.

Typeset by AmS-TEX

2 MIDDENDORF AND TIMKOVSKY

[SU89|, a repetitive flowshop of Ramazani and Younis [RY92], a cyclic job shop of Roundy
[R92], a robotic cell of Sethi et al. [SSSBK92|, a loop reentrant flowshop of Gupta [G93], a
chain-reentrant shop of Wang et al. [WSVI7], a cyclic robotic flowshop of Kats and Levner
[KL97] and a flow shop with transportation times and a single robot of Hurink and Knust
[HK98]. Recent papers on periodic scheduling surveyed by Crama et al. [CKKL99] pay
a special attention to such an environment due to applications to robotic manufacturing.
Besides, a cycle shop represents a traffic light scheduling model [SU89A].

Machine 1

Machine 4 Machine 2

Machine 3

FiGURE 1.1. A cyclogram for a 4-machine cycle shop with 12-operation jobs:
Machine 1 processes the 1st, 7th and 10th operation, Machine 2 processes the
2nd, 4th and 8th operation, Machine 3 processes the 5th and 11th operation,
Machine 4 processes the 3rd, 6th, 9th and 12th operation of each job.

This paper presents new results on the complexity and approximation of cycle-shop sched-
uling. Section 2 gives a classification of cycle-shops and related scheduling problems and
surveys results obtained earlier and in this paper. Section 3 presents cycle-shopping iso-
morphisms between problems on modulated identical parallel machines and problems in
a perfect cycle shop, and the cycle-shopping theorem which is a general polynomial-time
reduction of problems on identical parallel machines with equal-processing-time jobs to
problems in a cycle shop with unit-time operations. Along with the flow-shopping theo-
rem [BK98, T98A] and the open-shopping theorem [T98A] it represents one more natural
derivative from the job-shopping theorem [T98]. Nonperiodic problems are considered in
Section 4. After establishing problems solvable in polynomial time, we prove the NP-
hardness of cycle-shop problems with unit-time operations that were open before by using
the cycle-shopping theorem and known NP-hard problems on identical parallel machines
with equal-processing-time jobs. Section 5 is devoted to periodic problems. The main re-
sult in it is a polynomial-time algorithm for a general minimum-period cycle-shop problem
and the strong NP-hardness proof of the simplest minimum-flow problem with unit-time
operations in cycle shops with only one repetitive machine. We also consider performance
guarantee approximations for the latter problem. In conclusion we discuss open problems.

ON SCHEDULING CYCLE SHOPS 3

2. CLACCIFICATION AND PREVIOUS RESULTS

The main purpose of this section is to extend the commonly known classification of non-
periodic scheduling problems [LLRKS93, B95] to robotic and periodic scheduling problems
using only minor innovations. In our classification a robot is just an additional machine in
any machine environment that only requires a setup after processing operations. Herein,
the setup time is exactly the travel time of the empty robot move from one machine to
another. Besides, we consider periodic problems as special cases of nonperiodic problems.
As we can see, such an approach helps to discover the relationship between classic problems
and recently studied problems in robotic and periodic shops.

All denotations will follow the notation in [LLRKS93]: o, the empty symbol; n, the
number of jobs in a given finite job set J; m, the number of machines; Cj,m;,r;,d; and
wj, the completion time, the number of operations, the release date, the due date and
the weight of the job Jj, respectively; O;;, the ith operation in J;; p;;, the processing
time of Oy, where ¢ = 1,2,...,m; and j = 1,2,...,n. Parameters r;,d;, w; and p;; are
considered to be integer, herein min;r; = 0, w; > 0. If not stated otherwise we assume
that processing times p;; are positive. Set pmax = max;; pij, Pmin = min;; p;j. Parameters
pijs i € {1,2,...,m} will be used as indices of the machines My, Mo, ..., M,. To represent
scheduling problems we follow the three-field classification a|f3|y, where «, 8 and v specify
the machine environment, job characteristics and the minimization criterion, respectively.

2.1. Cycle shop and related machine environments. As we use a common terminol-
ogy in our classification, some of the machine environments will possibly have not the same
names under which they were considered earlier.

a = aoaigag, where ag, €, a2 and ¢ will be defined further in this section and Section 2.3.

a1 € {P, Pmod, o, J, Jper, RJ, C, Cper, RC, RF,V, L, F}.

a1 = P: identical parallel machines: J; consists of a single operation to be processed on any machine
during time p; = p1;.

a1 = Pmod: modulated identical parallel machines: identical parallel machines, where M; can start
only at times (¢ — 1) mod m.

a1 = o: a single machine: identical parallel machines, where m = 1.

a1 = J: a job shop: J; consists of a chain of operations O]_j,OQj,...,Omj ,j> where O;; has to
be processed by M, without interruption starting on or after the completion of O;_1,; and
Mi—1,j # pij for ¢ > 1.

a1 = Jper: a perfect job shop: a job shop, where p;; —1 = (i — 1) mod m.

a1 = RJ: a robotic job shop: a job shop, where m; are odd and m = p; # pi—1j # pi+1,5 # mif i
is even.

a1 = C: a cycle shop: a job shop, where m; = £ > m, u;j = ;.

a1 = Cper: a perfect cycle shop: a cycle shop which is a perfect job shop.

a1 = RC': a robotic cycle shop: a robotic job shop which is a cycle shop.

a1 = RF': a robotic flow shop: a robotic cycle shop, where p; = i-|2—1 if 7 is odd.

a1 = V: a V shop: a cycle shop, where £ =2m — 1, y; =i if i < m and y; =2m — i if + > m.

a1 = L: a loop shop: a cycle shop, where £ =m + 1, y; =¢if ¢ < £ and py = 1.

a1 = F: a flow shop: a cycle shop, where £ = m, u; = 1.

Jobs in a job shop are identical or of one type if m; = £, u;; = p; and p;; = p;. The number
different types of jobs in J will be denoted as h. So, jobs in a cycle shop are identical if
pij = p;- If jobs in a cycle shop are identical, O;,p; and S;, where i = 1,2,...,4, will

4 MIDDENDORF AND TIMKOVSKY

denote operations of a single job, their processing and start times, respectively. We have to
mention that originally perfect job shops were called periodic [T98]. The term “periodic”
in this case refers only to the way of distributing operations among the machines. Here we
change the term to avoid a confusion with the periodicity in time (¢f. [SU89, LP97]).

Let My, be the machine in a cycle shop that processes my operations in one job. Then
define my, to be the multiplicity of M. We call My, a unimachine or a multimachine if mg = 1
or my > 1, respectively. Define tr, the number of multimachines, and m = max;<x<m My to
be the (cyclic) rank and the (cyclic) multiplicity of the cycle shop, respectively.

agp € {o,t} will be used only for cycle shops.
ap = o: the rank of the cycle shop is not fixed.
ap = t: the rank the cycle shop is fixed and equal t.
€ € {o,m} fixes the multiplicity of cycle shops.
e = o: the multiplicity of the cycle shop is not fixed.
e = t: the multiplicity the cycle shop is fixed and equal m.
az € {o,m} fixes the number of machines.
ag = o: the number of machines is not fixed.
az = m: the number of machines is fixed and equal m + 1 if a; represents a robotic shop or m
otherwise. We assume that a; = o if and only if s = 1.

For example, a flow shop is of rank 0 and multiplicity 1, a loop shop is of rank 1 and
multiplicity 2, a robotic flow shop is of rank 1 and multiplicity m — 1, and a two-machine
cycle shop with four or more operations in jobs is of rank 2. Notice that a two-machine
robotic flow shop is a three-machine flow shop. A three-machine robotic flow shop is a
cycle shop of rank 1 and multiplicity 2, i.e., the simplest robotic flow shop which is not
a flow shop. Aslo, note that a V shop is of rank m — 1 and multiplicity 2. A loop shop,
or a robotic flow shop has only one multimachine. In a dual way, a V shop has only one
unimachine. Notwithstanding, a two-machine loop shop, a two-machine V shop and a two-
machine cycle shop with three operations in jobs represent the same cycle-shop machine
environment which minimally differs from a two-machine flow shop. Further we mean and
consider only cycle shops of positive rank, i.e., which are not flow shops.

Observe that a robotic job shop was constructed from a job shop by inserting an addi-
tional operation on an additional common machine between each two consecutive operations
in each job. Hence, not only a cycle or flow shop but any special case of a job shop has a
robotic counterpart (see Figure 1.2). However, we consider only robotic cycle or flow shops
because we are not aware of the results on other types of robotic shops. The multimachine
M, in the robotic shops we call a light robot. Operations on M,, can be considered as
transportations of parts between the other machines. We use the term “light” to emphasize
that the empty light robot can move instantly, and all related problems can be studied
without a consideration of robot moves. In the next subsection we also consider a heavy
robot which being empty cannot move instantly, and all related problems require a consid-
eration of robot moves. In robotic shops, P; will denote the part related to J;, p.; and
Do;j Will denote the processing times only of even operations Ogj, e = 2,4,...,m; — 1, on
M, and odd operations O,j, 0 = 1,3,...,m; on My, Ms,..., M,,_1. We assume that a
light or heavy robot loads and unloads parts instantly as well because nonzero loading and
unloading times can be included into processing times p,; or transportation times p;.

ON SCHEDULING CYCLE SHOPS 5

F3 L3 V3 Cper3

RF3 RL3 RV3 RC per 3

FiGure 1.2. Cyclograms for three-machine cycle shops: F'3, a flow shop; L3,
a loop shop; V3, a V shop; Cper 3, a perfect cycle shop; RF'3, a robotic flow
shop; RL3, a robotic loop shop; RV 3, a robotic V shop; and RCper 3, a robotic
perfect cycle shop.

2.2. Heavily robotic machine environments. Let us consider robotic job shops where
M, and M,,_, are an input hopper and an output hopper, respectively. Formally, it means
that py; = 1, fy,;; = m —1 and 1 # p;; # m —1 for all odd i € {3,5,...,m; — 2} and
all j. In this case, p1; and py,,; are the pick-up time and the drop-off time that the robot
needs to pick P; up from the input hopper and drop P; off onto the output hopper. In all
models we know these times are not dependant on j or m;. So, we assume that p;; = p
and pp,; = 0 for all j. Thus, any complications related to the robot presence reduce to
the consideration of robot moves. We also assume that robot moves are purposeful, i.e.,
the robot moves to and stops at the machines only with the purpose of loading, unloading
or transporting parts, and that no buffers between or at the machines, i.e., at any time
any part is being handled by the robot M,,, in the input hopper M, in the output hopper
M,,_1, or being processed on My, M3, ..., M,, 5. If the parts are not allowed to stay on
My, Ms, ..., M,,_» without processing, then the no-buffer environment means the no-wait
constraint for parts.

Let S;; and Cj; be the start time and the completion time of O;; in a nonpreemptive
schedule o for J in a robotic job shop. Then Cj; — S;; = p;;. Define the event E;; to be
Si;j or Cy;. Since an empty heavy robot cannot move instantly, and loading-unloading can
be executed only by the robot, any two events on My, My, ..., M,,_1 should differ in time.
That is, a heavy robot M, enforces the distinctness constraint:

(DC) (Oaj) 7é (Ol3jl) — on 7é Eo’j’-

If DC is satisfied, then we call o a distinct schedule. 1t is easy to see that any distinct
schedule o defines the increasing sequence of all events in it:

€= E01j1 < E02j2 <---< E0k71jk71 < Eijk <o < E0171j171 < Eoljl’

6 MIDDENDORF AND TIMKOVSKY

2
twice in the string (o1, j1)(02,j2) - - - (01, 1) — once for S,; and once for C,; because each

part should be loaded and unloaded only once at each machine. Besides, each part appears
from the input hopper M; and disappears in the output hopper M,,_1, so E, ; = Sij,,
Eosj, = Chjys Fogjy = S35, and Eo o5 , = ij,—Z,jl’ Eoi_ji_, = Smjljl’ Eoj = ij,jl'

Let 6, € {+,—}. Then the symbols M;* and M, will mean that the machine M, starts
or completes an operation, respectively. Since each event is a start time or a completion
time on a machine, the sequence ¢ defines a unique sequence of machines,

where | = 22?:1 mitl — 4 2?21 mj, op € {1,3,...,m;, } and each pair (o,j) appears

) . 5uo j —
w= MMM M, . M, "M, MI M-,

Fozja 373 01—3J1—3 Boj_sij_s m—1""m

m—1

that is called a robot-move sequence, where M{sl (as well as Mgl_l) appears exactly n

6”0 j g oL i
times. Define the pair M), *71"*7" M,.?*’ to be a basic activity of the robot. Since we

consider only purposeful robot moves and the no-buffer environment, only the following
basic activities are possible:

(1) M,,_,M; in the interval [ijj, Coj]: after dropping Pj off to the output hopper My,_1, empty
move out of My, 1 to M,, unload Pj, where 1 # 1 # m —1 and j # j';
(2) M,;L_IMI"' in the interval [C’mjj, S1jr]: after dropping P; off to the output hopper M,,_1, empty
move out of M,,_1 to the input hopper M1, where j # j';
) in the interval [Ce—1 j, Se+1,4]: unload P; from M,, transport P; to M,, load P; onto M,,
3M_Mj+'th't 1[Ce—1,j,Se+t1,; load Pj fi M, t t Pj to M,, load P;j onto M,
where 1 # j;
(4) M;tM; in the interval [Soj> Corjr]: load Pj onto M,, empty move to M,s, unload Pj from M,
where 1<i1<m-—1,1<j3<m-—1,1# jand j # j';
(5) M;t M, in the interval [Soj, Cojl: load Pj onto M,, wait until M, finishes P;, unload P; from M,;
N in the interva 0isO14]: loa i onto M,, empty move to the input hopper Mi, pic
6) M," M;" in the i 1 [Soj, S1;1]: load P; M, he i h M, pick
Pji up, where 1 <1 <m —1and j # j'.

We consider an empty robot move from M, to M, to be as a setup for M, with a setup
time sg,. The setup-time constraint is:

(5C) [Cem1,4; Set1,5] # [Eojy Borjt] # [Sojs Cojl = Eotjt = Eoj 2 Spgjpy -

Define a composite activity A, _, ; porjr 1O be the composition of the two consecutive basic
activities: a transportation in the interval [Ce_1 j, Se+1,;] and an empty move in the interval
[Set1,5, Eorjr]. Define the time of Aue_l,juo,j, to be ty, \ jpyy = Pet Speyrjuy - We say
that the composite activity times satisfy the triangle inequality if

(TT) toy <tgz+1t, for z,y,z€{1,2,...,m—1}

Let a sequence p on the alphabet {Mf',Ml_, .. -=M$_1aM7;_1} have exactly k£ entries of
M; and exactly k entries of M;, and let p' denote a repetition of p exactly I times. If
there exists integer | such that w = p!, then p is a k-unit robot-move cycle. We also say
that a k-unit robot-move cycle is of cycle capacity k. Obviously, n = kl.

ON SCHEDULING CYCLE SHOPS 7

Define a heavily robotic shop to be a robotic shop, where DC and SC are satisfied and
preemptions are not allowed. We call a heavily robotic shop Fuclidean if TI is satisfied.
Further we consider only heavily robotic problems with one-unit robot-move cycles because
we are not aware of complexity or approximation results obtained in the case k > 1.
Although any robotic shop has the heavily robotic counterpart, we will consider only heavily
robotic cycle or flow shops. However, all results we know in the Fuclidean case are devoted
only to heavily robotic flow shops. The heavily robotic machine environment will be denoted
by the bold letter R or R in the Euclidean case.

a1 € {RasasC, RagasF, RagasF}.

a1 = RazasC: a heavily robotic cycle shop.

a1 = RaszasF': a heavily robotic flow shop.

a1 = RaszFay: a Fuclidean heavily robotic flow shop.

az = m: the number of machines is fixed and equal m + 3, i.e., the robot, the input hopper and the
output hopper are implicit.

a3 € {o, k} fixes the cycle capacity.

a3 = o: the cycle capacity is not fixed.

a3 = k: the cycle capacity is fixed and equal k.

a4 € {o, p} fixes the robot-move sequence.

a4 = o: the robot-move sequence is not fixed.

a4 = p: the robot-move sequence is a repetition of a fixed robot-move cycle p.

As Sethi et al. [SSSBK92] show there are exactly m! different one-unit robot-move cycles in
a no-buffer periodic heavily robotic m-machine flow shop. In the two-machine case, where
M is the input hopper, and M, is the output hopper, the one-unit robot-move cycles are

p1 = M3 Mg MMy M{" M7 MMy,
p2 = M MMy M3 Mg MM My,

In the three-machine case, where M; is the input hopper, and M5 is the output hopper,
the one-unit robot-move cycles are:

01 = My Mg Mg MM My My M3™ Mg M,
02 = M M Mg M;" M M3 Mg M"M; M,
03 = My Mg Mg Mg MMM M3 My My,
04 = My Mg Mg My Mg Mz M M;"M; My,
05 = My Mg Mg My M3 M M My My M,

06 = My My Mg My My My My M;" My My,

Further we will use the denotation p; j . assuming that g; ;. . € {0, 05, ..., 0k}

2.3. Definition of periodic problems. Let ¢ be a schedule for a given finite job set
J with n jobs, and let unlimited breeding of o by an infinite number of shifts by P units
in time produce a feasible infinite schedule 7. Then we call the schedule 7 infinitely n-job
periodic with period P, the schedule o a generator and the job set J a generating job set
of 7. To stress that 7 is generated by o we will use the denotation 7,. New results in this

8 MIDDENDORF AND TIMKOVSKY

paper involve only infinitely periodic schedules. We obtain the definition of a finitely n-job
periodic schedule if we use limited breeding of o by a finite number of shifts by P units
in time. In what follows, if the number of jobs in J is immaterial, then the term “n-job”
will be omitted. Besides, if not stated otherwise, the term “periodic” will mean “infinitely
periodic”. Define a periodic problem to be a problem of finding a periodic schedule. Define
a flow time of the periodic schedule 7, to be the maximum completion time in . One of the
main points in our approach is to consider any periodic problem as a nonperiodic problem
with an additional constraint.

Let O;; have m;; nonpreemptive parts in o, and let O;;; be the kth nonpreemptive part
of O;; in 0. Then O;; can be considered as a chain ;1052 ... Ojjm,;, where m;; = 1
and O;; = O;j if O;; is nonpreemptive. Let S;jk, Cijr and p;jr be the start time, the
completion time and the length of O;;i in o, respectively. Thus, Cjr — Sijr = pijr and
Dij1 + Pijo + - -+ Pijm;; = Pij- Obviously, 7 is a feasible periodic schedule if and only if the
parts O;;i scheduled on M, do not overlap modulo P. So we have the following periodicity
constraint.

(PC) (4,4,k) # @, 5" k) & pi=pir = [Sijk, Cije] N [Sijir, Cirjrir] = 0 mod P

Any problem of finding a periodic schedule, therefore, is a problem of finding a nonperi-
odic schedule satisfying PC. Hence, any nonperiodic problem is a relaxation of its periodic
counterpart. Obviously, P > maxi<,<m Zz:uu pij- We call a problem nonperiodic if it is
free of PC.

Any periodic nonpreemptive cycle-shop schedule defines a sequence o, = 0;,0;, ... O;,
of operations on M, for each + = 1,2,...,m, where 0 < S;, < §;, <---<§; < P. The
set of sequences {01,09,...,0n} is a cyclic machine structure [MR94] of the cycle shop.

¢ € {o, T} fixes the cyclic machine structure.
¢ = o: the cyclic machine structure is not fixed.
¢ = t: the cyclic machine structure is fixed.

Let s, and ¢, be the earliest start time and the latest completion time on M, in o. Thus,
B, = ¢, — s, is the busy time of M, in 0. Define By,,x to be the maximum busy time in o,
i.€., Brax = maxi<,<m B,. We call a periodic schedule 7, with period P trivially periodic if
Bax < P. It is easy to see that this inequality implies PC, and a minimum-period trivially
periodic schedule 7, is a result of concatenation of copies of o, where By, = P. Hence,
finding a trivially periodic schedule of minimum period reduces to finding a nonperiodic
schedule of minimum maximum busy time. Note that the maximum busy time in heavily
robotic shops is always reached on M,,, i.e., on the robot, and called the robot cycle time.
Since all the events in the sequence € can be taken modulo P, we can get the anologous
sequence of events modulo P in the interval [0, P — 1]. Hence, any heavily robotic machine
environment has the periodic counterpart.

Periodic problems in this paper are based on the above periodicity concept. We avoid
considering periodic problems on identical parallel machines [HM95, M96] and in recur-
rent job shops [H94] with potential or conjunctive constraints [CC90, H94| originated from
pipeline computing [K81].

ON SCHEDULING CYCLE SHOPS 9

2.4. Job characteristics and minimization criteria. In comparision with the classi-
fication of Hall et al. [HKS97] for periodic robotic flow-shop problems, our classification
includes them as well but remains the job characteristics field the same as in the well-known
classification of classic nonperiodic problems, ¢f. [LLRKS93, B95].

B

B1
B2
B3
Ba
Bs
Be
Br

Ba
/Bx—y

C {B1,.-.
erations number, processing-time constraints, respectively.

= pmitn: any job can be interrupted at any time and resumed may be on another machine with a
possible delay.

= nowait: delays in processing jobs are not allowed. For robotic flow or cycle shops this means
that each part is being processed on a machine or held by the robot at any time during a schedule.
€ {prec,intree, outtree, chains} denotes the general, intree, outtree or chains precedence relation
on J. We use the denotation (33 + chains for a gomeomorph of B33, i.e., for a precedence relation
obtained from B3 by inserting chains.

= rj: Jj becomes available for processing at time r;.

€ {n=k,n < k,n>m—2}: the number of jobs is fixed and equal to constant k; the number of
jobs is bounded by constant k; the number of jobs is at least m — 2.

€ {mj; = mh;,{ = mh,{ =2h —1,£ = k}: the numbers of operations of jobs in a job or cycle shop
are positive and divisible by m, where h > 1, odd or fixed and equal to constant k.

€ {pij = PisPij = Qu;Pi = Qu;/q:Pij = MGij,Pij = P,Pij = 1,pij € {p,q},[pil}, where i’ €
{i,4 — 1}, will mean that: the processing times do not depend on jobs; depend only on machines;

, B8} introduces preemption, no-wait, precedence-relation, release-date, jobs-number, op-

are divisible by the processing time g on the machine with maximum multiplicity (only for periodic
cycle shops); are divisible by m; equal; unit-time; equal p or g; processing windows are specified,
i.e., l; < p; < wuy for fixed lower bound I; and upper bound u; (only for one-job periodic robotic
flow shops), respectively. In the case of identical jobs “p;;” will be replaced by “p;”.

= o: the constraint (3 is removed.

= Bz, Bz+1, .-, By, the constraint sequence, where 1 <z <y < 7.

In the following minimization criteria v we assume that C;; is the completion time of O;;,
Cma,x = maxlsjs,l Cj, Lmax = maxlSan Lj, where Lj = Cj —dj, fmax = maxlsjs,,, fj(Cj),

Y fi=

Z;‘:l [;(C;), where f; are nondecreasing cost functions with values computable in

constant time, T; = max{0, L;}, U; = 0if T; = 0 and U; = 1 otherwise. Thus, C;, L;,T};,U;
are special cases of f;(Cj).

Y = Bmax : the mazimum busy time.

¥ = Cmax : the mazimum completion time, i.e., the schedule length.
¥ = Lmax : the mazimum lateness.

Y = fmax : the mazimum cost.

7y=>Cj : the total completion time.

v=> Cij : the total operational completion time.
v=>Uj : the number of late jobs.

v=>T; : the total tardiness.

7= w;C; : the total weighted completion time.

v => w;U; : the weighted number of late jobs.

v = > w;Tj : the total weighted tardiness.
v=>f; : the total cost.

y=P : the period.

v = P % Chpax : the Pareto criterion on P and Cpax.

v = aP + bCmax

: the linear combination of P and Cpax.

10 MIDDENDORF AND TIMKOVSKY

2.5. Assumptions, relationship and terminology. We assume that v = P implies a
periodic problem. In periodic problems with By,,x # v # P the period P will be considered
to be given. Denotations of nonperiodic problems with v = By, will also denote the related
trivially periodic problems since they are equivalent. To distinguish periodic problems with
v # P from their nonperiodic counterparts the last letter in denotations of their machine
environments will be caligraphic.

a1 = RF : a periodic Tobotic flow shop with Bmax # v # P.

a1 = RazaaF : a periodic heavily robotic flow shop with Bmax # v # P.
ar =C : a periodic cycle shop with Bmax # v # P.

a; =C : a finitely periodic cycle shop.

For example, C||Cmax and RF|| Y C; denote periodic problems, meanwhile C||/Cmax and
RF||Y°C; denote their nonperiodic counterparts, respectively. C||P, C|/Bmax, RF||P,
RF||Biax and RF||P denote periodic problems. Note that RFas|8|y and RCas|f8|y are
special cases of 1Caz|3]y and Cas|f8|y, respectively, and that Cas|B1—4,n = 1, Be—7|y and
Jag|f1—4,m = 1,0s_7|y are identical. The same is true in the periodic case. Since the
maximum busy time and the maximum completion time are always reached on M; in loop
shops, Lasg|B|Bmax and Las|B|Chmax are also identical. The following relationship is already
not so evident. Define a flow component of a cycle shop to be any maximal subsequence
of adjacent unimachines in the sequence M, M, ... M,,. Define f, the flow size of a cycle
shop, to be the length of its longest flow component.

Lemma 2.1. Let A be RF|n = 1,p, = qy,,Pe = 1|Cmax, B be 1C|n = 1,p; = 1|Cmax, and
let Pp, fp be the given period and the flow size of the cycle shop in B, respectively. Then
Ax B, but B A only if Pg > {B.

Proof. Let P4 denote the period in A, and let m4 and mp denote multiplicities of the cycle
shops in A and B, respectively. Obviously, P4 > max{ma, ¢max}, Where ¢max = max, q,,
and Pp > mp. Without loss of generality we assume that M; is the multimachine in both
problems. For the reduction A o« B, replace each unimachine in an instance of A with
processing time ¢ by ¢ unimachines with unit processing time and put Pg = P4. This
produces an instance of B which obviously has the same minimum Ch,.x. If P > fpB,
the reduction B o< A can be obtained by replacing each flow component of length ¢ in an
instance of B by one unimachine with processing time ¢ and putting P4 = Pp. If y1 =1
or/and pp = 1 in B, add one artificial starting or/and finishing unit-time operation on
one or two artificial unimachines, respectively. Depending on zero, one or two artificial
unimachines is added, the minimum C\,,, for the constructed instance of A will equal,
exceed by one or two the minimum Ci,,, for the instance of B. Since fp = @max and
Pg > mp =myu, we have P4 > max{ma, ¢max}. O

In the literature devoted to heavily robotic flow shops the set of parts associated with J
is a so called MPS, i.e., a minimal part set, where the part types are presented in certain
proportions. Also, several authors use the term “cyclic scheduling” instead of “periodic
scheduling” and “cycle time” instead of “period”. The latter two terms, however, are not

ON SCHEDULING CYCLE SHOPS 11

synonyms in our classification because they mean B,,x and P, respectively. In several
papers the cycle time has been denoted as C;, but we do not use it to avoid an association
with the completion time. Besides, Bnax we found more informative.

Rapidly growing literature on the complexity of periodic scheduling problems is primar-
ily devoted to infinitely periodic problems, related exact or heuristic algorithms and NP-
hardness proofs. However, performance guarantee approximations for infinitely periodic
problems and finitely periodic problems have been barely attracted someone’s attention.

2.6. Complexity and approximation results. The following lists include only prob-
lems with positive cyclic rank: maximal solvable in polynomial or pseudopolynomial time,
minimal NP-hard and having performance guarantee approximations computable in poly-
nomial time. Two-machine robotic flow-shop problems [BK, K99] are not included since

their cyclic rank is zero.

Solvable in polynomial time

L2|prec,rj,pij = 1|Lmax O(n?) [Section 4.2]
RE3|poj = 1,Pej = dpo—y|Lmax O(n?) [K99]
RF3|7,p0j = 1,Pej = Qu, 1 |Cmax O(n?) [K99]
RF|n>m — 2,poj = PsPej = Que_1 [Cmax O(1) [HK98]
RF'2|no wait| Bmax O(hlogh) [A99]
RF2||Bmax O(nlogn) [AK99]
R1p2 F2||Cmax O(nlogn) [KSI91]
R1pF2||Bmax O(nlogn) [SSSBK92]
R101,3,4,5F3|| Bmax O(nlogn) [HKS97]
R1p1,4F3|nowait| Bmax O(nlogn) [AP9g]
R1F|nowait,n = 1|P O(m3 log m) [KL98]
R1C|nowait,n = 1|P o) [KL97]
R1F|n = 1|P O(m3) [CK97]
C2|pij = qu;|Cmax o(1) [T85]
C2lp;; =1|>°C; O(1) [Section 4.1]
C2lps; = 1| 3 U; O(n") [K99A]
C2|nowait,p;; = 1|3 f; O(n?) [Section 4.1]
C2|rj,pij = 1|Cmax O(n?) [T97]
Clpij = 1|Cmax o(¢) [T85]
Clpij = 1|P * Cmax o(¢) [T85]
Clprec, rj|P O(¢n) [Section 5.1]
C|nowait,n =1,p; = 1|P O(£? — me) [Section 5.2]
Solvable in pseudopolynomial time

RF3|rj,p05 = P,Pej = q|Cmax O((Z4n5) [M99]
RF3|rj,poj = p,pej = a| 32 C; O(¢*n®) [M99]
C2|rj,pij = 1|3 C; O(£*n®) [M99]
C2|nowait,rj,pij = 1| > C; O(£*n®) [M99]
C2|nowait, rj,p;; = 1|Cmax O(#*n) [M99]
C2|prec,rj,pij = 1|Lmax O(£2n?) [Section 4.2]
1Clnowait,n = 1,p; = qu;/q|P O(m2mgmax) [Section 5.2]

12 MIDDENDORF AND TIMKOVSKY

NP-hard
L2||Crnax [LA84,T85]
L2|r;|Cmax strongly [T85]
L2|chains|Cmax strongly [T85]
RF3|poj = 1|3 w;Uj [K99]
RF3|po; = 1|3 T [K99]
RF3|po; = 1| > w;Tj strongly [K99]
RF3|poj = p|Lmax strongly [HK98]
RF3|rj,p05 = P|Cmax strongly [HK98]
RF3|rj,poj = 1|Lmax strongly [K99]
RF3|rj,poj =1|>.Cj strongly [K99]
RF3||Bmax strongly [HKS98]
R1g2,6F3||Bmax strongly [HKS98]
R192 6 F3|no wait| Bmax strongly [AP98]
R1F|n=1|P strongly [LW89,BFK97]
R1F|n = 1,[po]|P strongly [CK9TA]
RF|n =1,po = qu,,Pe = 1|Cmax strongly [Section 5.3]
C2|pij € {1,2}|Cmax strongly [T81]
C2|no wait, chains,p;j = 1| > w;Cj strongly [Section 4.3]
C2|no wait, chains,p;; = 1| > T; strongly [Section 4.3]
C2|no wait, chains, p;j = 1| > Uj strongly [Section 4.3]
Clnowait, intree,rj,p;; = 1| > C; strongly [Section 4.3]
C|nowait, intree, rj,pij = 1|Cmax strongly [Section 4.3]
C|nowait, outtree, p;j = 1|Lmax strongly [Section 4.3]
C|nowait, prec, pij = 1|Cmax strongly [Section 4.3]
Clnowait, prec,p;; = 1| C; strongly [Section 4.3]
Clnowait,rj,pi; = 1| > Uj strongly [Section 4.3]
Clpi; = 1| > w;Uj [Section 4.3]
Clrj,pij = 1| Y- w;Cj strongly [Section 4.3]
1ICln=1,p; = 1|3 Cyj strongly [Section 5.3]
1Cn = 1,p; = 1|Cmax strongly [Section 5.3]
C$|n =1,p; € {1,q}|Cmax strongly [MR94]
Polynomial-time approximations
L2||Crnax O(nlogn) % <3 [DS99]
L2|pmtn|Crmax 0(n?) Cmax < 3 [HWZ98]
Clpij = gu; |Cmax o(¢?) Gpex <14 3L [T86]
C||Crmax o(£?) Opax < Pmax (7 4 3mtt) [T86]
1C|n = 1,p; = 1|Crmax O(m?) Cliax — Clhig < oz [Section 5.4]
O(m?) C2x —Ckor < %3/2/14 [Section 5.5]

As we show further, even J|prec,r;|P can be solved in polynomial time. An O(nlogn)
algorithm of Aneja and Kamoun [AK99] for RF2||Bpax is an improvement of an O(n*)
algorithm of Hall et al. [HKS97]. An O(m?logm) algorithm of Kats and Levner [KL98] for
R1F|nowait,n = 1|P is the best result in a series of improvements of an algorithm of Kats
and Mikhailetsky [KM80], which has been reviewed by Mikhalevich et al. [MBMS88], Kats
and Levner [KL97] and Levner et al. [LKL97]. A Nearest-Window-First (NWF) algorithm

ON SCHEDULING CYCLE SHOPS 13

proposed by Degtiarev and Timkovsky [DT76] for approximation of C|p;; = gy, |Cmax solves
Cln = 1,pi; = qu,|P exactly [T86, T92]. Pinedo [P95, p. 265] describes almost the same
algorithm for cycle shops of rank one. An absolute error bound of the NWF algorithm in
application to C|n = 1, p; = gy, |Cmax Will be derived in Section 5. An O(¥¢) algorithm from
[T85] solves both C|p;; = 1|Crmax and C|p;; = 1|P+*Cpax producing a finite periodic schedule
with period one. Note that an O(n) algorithm of Hall et al. [HLP97] for J|m; < 2|Bpax
gives nothing for cycle shops of positive rank because C|f = 2|Bpnax is actually F2||Bmyax-

As we show in Section 4.2, a polynomial-time algorithm of Bruno et al. [BJS80] for
F2|prec,rj,pij = 1|Lmax solves C2|prec,rj,pij = 1|Lmax in pseudopolynomial time. Ob-
serve that this result puts some light on the complexity of J2|r;, p;; = 1|Lmax, which remains
open, because C2|r;j,p;j = 1|Lmax turns to be its nontrivial pseudopolynomially-solvable
special case with different release dates.

L2||Cpax remains open for the ordinary or strong NP-hardness. The NP-hardness of
L2||Cmax, C2|pij € {1,2}|Cmax, 1C|n = 1,p; = 1|Ciax and R1F|n = 1, [p,]|P strengthens
earlier NP-hardness results of Lenstra et al. [LRKB77] for J2|m; < 3|Cpax, Lenstra and
Rinnooy Kan [LRK79] for J2|p;; € {1,2}|Cnax, Roundy [R92] for C|n = 1|Cpax, and
Livshits et al. [LMCT74] for R1F|n = 1, [p,]|P, respectively. Note that the NP-hardness
proof of Hall et al. [HLP97] for J2|m; = 3|Bmax fits for L2||Bmax in fact.

All the NP-hardness results for problems RF'3|8y, p;; = 1|y follow from the NP-hardness
of the one-machine counterparts 1|| > w;U;, 1| Y. T}, 1|7j|Lmax, 1|7 > C; and 1| > w;T}
[K99]. All the NP-hardness results in Section 4.3 are obtained by the cycle-shopping the-
orem. The strong NP-hardness proofs of McCormick and Rao [MR94] for F|nowait,p; €
{0,1}|Bimax and F3|nowait| Byax do not fit for the related cycle-shop couterparts with
positive cyclic rank. The complexity status of C2|nowait|Byax is also unknown.

The 3-approximation of Drobouchevitch and Strusevich [DS99] for L2||Cpnax is an im-
provement of the 3-approximation obtained earlier by Gupta [G93] and, independently,
Wang et al. [WSV97]. The 2-approximation for L2|pmin|Cumax is a straightforward corol-
lary from the same result obtained by Han et al. [HWZ98] for J2|pmin|Cpax. The approx-
imations from [T86] are obtained by the NWF algorithm which also provides performance
ratio % < Bmax (1 4 ™) for F||Crmax. Note that C2,,, is better than C,, only if m > 196.

max — Pmin max max

Serafini and Ukovich [SU89] describe a general model for periodic activities that covers
C|n = 1|P and show a reduction of the problem to finding a critical circuit in a network.
Roundy [R92] studies the structure of solutions of C|n = 1|P % Cpax. He also proposes an
algorithm searching for local Pareto optimums. Rao and Jackson [RJ93] consider mixed
integer linear programming models for C|n = 1|) w;C; and C|n = 1]|aP + bChax-

Note that C¢|n = 1|Cpax is a special case of C|n = 1|Cpax. So, the NP-hardness result
of McCormick and Rao [MR94] for C$|n = 1,p; € {1, q}|Cmax is another strengthening of
Roundy’s NP-hardness result [R92].

Timkovsky [T77] and McCormick et al. [MPSW91] consider the problem of scheduling
transient processes in cycle shops when switching from one periodic schedule, representing
a steady state of a manufacturing system, to another. A similar problem of obtaining the
first steady state in three-machine heavily robotic flow shops has been studyed by Hall el
al. [HKS98].

14 MIDDENDORF AND TIMKOVSKY

3. EXCERPTIONS AND EASY COROLLARIES FOR NONPERIODIC PROBLEMS

If processing times of jobs are divisible by m, then we refer to modulated or perfect schedules
and problems as schedules and problems for modulated identical parallel machines or a
perfect job shop, respectively. Our special attention will be paid to P mod oz |f1, 83-5,p; =
my;|y, J per as|B2—5,m; = mhy,p;; = 1|y and Cper az|Ba—5,m; = mh;,p;; = 1]y. The
following isomorphisms reveal a key connection between scheduling on identical parallel
machines and unit-time job-shop scheduling.

Lemma 3.1. [Job-shopping isomorphisms|[T98]

Pmod az|pmtn, f3-5,p; = mg;ly = Jperaz|Bs_s5,m; = mg;,pi; = 1|y,
Pmodaz|f3-5,pj = mgjly =~ Jperaz|nowait, B35, m; = mg;,pi; = 1|v.

As it was shown in [T98], for any perfect job-shop scheduling problem with a criterion ~,
which is a nondecreasing function of job completion times, it is sufficient to only consider
schedules where the length of every uninterrupted part of every job is divisible by m.
Hence, to determine a perfect job-shop schedule it is sufficient to indicate only start times
and lengths of uninterrupted parts of jobs because the unit-time operations inside the parts
are uniformly distributed among the machines. Besides, the first isomorphism in Lemma
3.1 implies that for any modulated scheduling problem on identical parellel machines, where
the criterion v has the same property, it is sufficient to only consider schedules where the
length of every nonpreemptive part of every job is also divisible by m. We will use the

following special case of Lemma 3.1, where g; = h for j =1,2,...,n.
M BEHEHEEH XX XX XXX XX
M RRX
M3 (3] e o e

My BREOH O HEIK X X
Mo BXOH O BHEOK X X
M3 BXEOBE O HEOK X X

FIGURE 3.1. A modulated three-identical-parallel-machines schedule
and the isomorphic perfect three-machine unit-time job-shop schedule.

Lemma 3.2. [Cycle-shopping isomorphisms|

Pmod az|pmin, Bs_s,p; = mhly ~ Cperas|Bs_s,f=mh,p;; =1y,
Pmod ay|fs—5,p; =mhly =~ Cperag|nowait, B3_5,¢ = mh,p;; = 1|7.

The job-shopping theorem that provides a general polynomial-time reduction of problems
on identical parallel machines to unit-time job-shop problems is based on Lemma 3.1. Here
we give it in an extended form which highlights additional properties of the reduction that
run out from the theorem proof.

ON SCHEDULING CYCLE SHOPS 15

Theorem 3.1. [Job-shopping theorem|[T98]
If’)/ S {Cmax, Lax, Z Cj, Z’ijj, ZTj’ ijTj, Z Uj, ijUj}, then

Poslpmin, B3_s|y o< Joaa|B3—s,pij = 1|7,
Pas|fB3_s5ly o Joaglnowait, B3_s, pi; = 1|y, where:

— the images of the reductions consist of perfect unit-time job-shop problems;

— the reductions conserve the number of jobs, translating the processing times p; of
jobs in problems on identical parallel machines into the numbers m; of operations
of jobs in perfect unit-time job-shop problems such that m; = cp; for a common
positive integer ¢ divisible by m with ¢ > m?.

Since the reductions in Theorem 3.1 do not change the relative length of jobs and a perfect
unit-time job-shop problem with jobs of equal length is obviously a unit-time cycle shop
problem, we have the following corollary for cycle shops.

Theorem 3.2. [Cycle-shopping theorem)]
If’)/ € {Cmax, Lax, E Cj, E’U)J'Cj, ZTj7 Z’IUjTj, Z Uj, Z’U)J'Uj}, then

Pas|pmtn, Bs_5,p; =ply < Caz|Bs—s5,pij = 1]v,
POZ2|,83_5,pj = ph/ X Ca2‘n0wait7 /83—57pij =]-|’Ya where:

— the images of the reductions consist of perfect unit-time cycle-shop problems in a
cycle shop of rank m and multiplicity more than m;

— the reductions conserve the number of jobs, translating processing time p of jobs in
equal-time problems on identical parallel machines into the number £ of operations of
jobs in perfect unit-time cycle-shop problems such that £ = cp for a positive integer
¢ divisible by m.

Note that the job-shopping involves the preemptive—no-no-wait correspondences and the
nonpreemptive-no-wait correspondences (i.e., the isomorphisms and the reductions). The
cycle-shopping is just a contraction of these correspondences. Meanwhile, the analogous
derivatives from job-shopping for flow shops [BK98, T98A] and open shops [T98A] are rather
slight modifications of only the preemptive no-no-wait correspondences that, besides, hold
for all the criteria except the total completion time.

4. NONPERIODIC CYCLE SHOPS

4.1. Two-machine problems solvable in polynomial time. The size of C2|r;,p;; =
1|Crmax and C2|p;; = 1| 3°U; is n+log£+3 7%, logrj[or d;]. The size of the job-shop coun-
terparts, J2|7, pij = 1|Cmax and J2|pi; = 1| YUy, is n+3_5_; logm; + 3%, logrj[or d;].
Since the job-shop problems can be solved in polynomial times O(n?) [T97] and O(n")
[K99A], respectively, which are polynomial in the size of the cycle-shop problems as well, the

16 MIDDENDORF AND TIMKOVSKY

latter can be solved in polynomial time by the same algorithms. The Farliest-Completion-
First (ECF) algorithm solves J2|p;; = 1|) _ C;, which size is TH‘Z?:l log m;, in polynomial
time O(nlogn) [K94, KT96]. In application to C2|p;; = 1| C; this time is pseudopoly-
nomial because the size of the cycle-shop problem is logn + log . To explain how to get a
polynomial-time solution let us consider the ECF algorithm.

ECF algorithm. Split each job into two uninterrupted parts, where the first part includes
only the first operation, the second part includes the remaining operations. And then fill the
processing time of the two machines by the parts following the ECF rule, i.e., at each step,
schedule the part of a job which, being scheduled without interruptions, has the earliest
completion time.

It is easy to check that no advantage to interruptions of jobs in application of the ECF
algorithm to C2|p;; = 1| Y C}j, and the jobs start in an ECF schedule without interruptions
at times k(£+ 1) and k({+1)+1,k=0,1,..., where Z(£+1)+1 or 251 (£+1) is the last
start time if n is even or odd, respectively. Since the jobs are identical, the ECF schedule
can be found with constant time and space requirements. Note that J2|r;,p;j = 1|Lmax
remains open even for pseudopolynomial-time solution. In the next subsection, however, we
show that the cycle-shop counterpart of this problem can be solved in pseudopolynomial-
time. In the case of equal-release-date no-wait jobs we can get, however, that two-machine

cycle-shop problems with more general criteria can be solved in polynomial time.
Lemma 4.1. Pmod [p; = mh|Y_ f; can be solved in polynomial time O(n?).

Proof. Since f; are nondecreasing functions, we can consider only compact optimal sched-
ules, where each machine has no idling. Hence, the start times of jobs in any compact
optimal schedule for Pmod|p; = mhl|y are 0,1,...,m — 1, mh,mh + 1,...,2mh — 1,
2mh,2mh +1,...,3mh — 1, ... which we denote as S1,S,...,S,, respectively. They are
all different, therefore, the problem is to find a minimum-total-cost assignment of n jobs
to n start times, where the assignment of J; to Sy costs f;(Sk + mh). But the assignment
problem can be solved in polynomial time O(n3) [GJ79]. O

Lemma 4.2. C per [nowait,{ = mh,p;; = 1|3 f; can be solved in polynomial time O(n?).
Proof. Follows from Lemmas 3.2 and 4.1. [J
Lemma 4.3. C2|3_5,£ =2h —1,p;; = 1|y «x C2|B2—5,L = 2h,p;j = 1]7.

Proof. Let I be an instance of C2|82_5,¢ = 2h — 1, p;; = 1}y. Construct the instance I’ of
C2|B2—5,¢ = 2h, p;; = 1|y from I by appending one operation to the beginning of each job
and increasing all due dates (if they are given) by one. It is easy to make sure that each
compact optimal schedule for I can be obtained from a compact optimal schedule for I’ by
deleting all appended operations and shifting time by one unit back. [

Theorem 4.1. C2|nowait,p;; = 1|y f; can be solved in polynomial time O(n3).

Proof. Follows from Lemma 4.2 for even £ because of the obvious isomorphism C2|8;_5,£ =
2h, Br|y ~ Cper2|Ba_s5,f = 2h, 37|y, and Lemma 4.3 for odd £. O

ON SCHEDULING CYCLE SHOPS 17

Corollary 4.1. C2|nowait,p;; = 1| w;U; and C2|nowait, p;j = 1| > w;T; can be solved
in polynomial time O(n3).

Note that the related job-shop counterparts are NP-hard [T85, SL86, T98| and that an
O(n®) algorithm of Kravchenko [K98] for J2|nowait, p;; = 1| C; solves C2|nowait, p;; =
1| >" C; only in pseudopolynomial time because the size of the latter problem is logn+log .

4.2. A two-machine problem solvable in pseudopolynomial time. Using Lemma
4.3 and a chaining technique introduced by Brucker and Knust [BK98] we can get the
following reduction.

Theorem 4.2. If v #)" Cj, then there is a reduction

Cper as|fBa_s, £ = mh,p;; = 1|y < Fas|Bs, B3 + chains, Ba_s,pij = 1|7,

which increases the number of jobs by £/m times.

Proof. Each instance of the former problem can be converted into an instance of the latter
by considering jobs with processing time mh as chains of h jobs with processing time m.
If J; is a job with release date r;, due date d; and weight w; of an instance of the former
problem, then the new A jobs in the related chain have common release date r;, due dates
D,D,...,D,d;, where D is a large number bounded by a polynomial in the problem size,
and weights 0,0,...,0,w;, respectively. It is easy to see that the reduction is a trivial
isomorphism for the criterion Cy,,x which does not involve due dates and weights, and that
the reduction does not hold for the criterion) C; due to the absence of weights. O

Corollary 4.2. C2|prec,rj,pij = 1|Lmax can be solved in pseudopolynomial time O(£?n?).

Proof. Follows from Lemmas 4.3 and Theorem 4.2 because F2|prec, r;,pij = 1|Lmax can be
solved in polynomial time O(n?) by an algorithm of Bruno et al. [BJS80]. O

Corollary 4.3. L2|prec,7;,pij = 1|Lmax can be solved in polynomial time O(n?).

Proof. By Corollary 4.2, C2|prec,r;,¢ = k,pij = 1|Lmax can be solved in polynomial time
O(n?), in particular, for k = 3. O

4.3. NP-hard problems. This section is devoted to NP-hardness proofs of nonperiodic
cycle-shop scheduling problems. In the following corollary from Theorem 3.2 we take into
account the trivial reduction 1|83_4,p; = 1|y & P2|fB3_4,p; = 1}y in the case 3 # o by
introducing a second machine and a separated long enough chain of unit-time jobs with
zero weights, zero release dates and an infinite due dates.

Corollary 4.4. The following reductions prove that the cycle-shop problems at the right-
hand side are NP-hard because the related problems on identical parallel machines at the
left-hand side are proved to be so. Strongly NP-hard problems are marked by *.

18 MIDDENDORF AND TIMKOVSKY

[BK99] Plpmin,p; = p| > w;U;
K99B]x Plpmtn,r;,p; = m|>. U;
[LY90]x Plpmin,r;, pj = p| > w;C;
[L]* Plintree,rj,p; = 1| C;
[BGJ77]x Plintree,rj,p; = 1|Cmax

Clpij = 1| 3 w;U;

Clrj,pi; =1 >°U;

C|Tj,pij = 1| ijCj

C|nowait, intree, rj,pi; = 1| Y C;
C|nowait, intree,rj,p;j = 1|Cmax

*

—

*

[BGJ77]x Plouttree,p; = 1|Lmax C|no wait, outtree, p;; = 1|Lmax
[UT5]%x Plprec,pj = 1|Cmax C|nowait, prec, p;; = 1|Cmax
[LRK78]* Plprec,p; = 1> Cj Clnowait, prec,p;; = 1| > C;
[T98A]* P2|chains,p; = 1| > w;C; C2|no wait, chains, p;; = 1| > w;C;

C2|no wait, chains, p;; = 1| > Tj
C2|no wait, chains, p;; = 1| Y U;

R 8RR KR KKK KKK

]

]
[LY90A]x 1 |chains,p; = 1| > T
[LRK80]* 1|chains,p; = 1|> Uj;

The list of similar reductions could be continued. However, they lead to either unit-time
cycle-shop problems which are open along with the related equal-time problems on iden-
tical parallel machines or NP-hard unit-time cycle-shop precedence-constrained problems
without the no-wait constraint. NP-hardness of the latter trivially follows from the NP-
hardness of their unit-time flow-shop counterparts (see the list in [BK]). For example, the
strong NP-hardness of C|prec, p;j = 1|Cmax and C2|chains,p;; = 1| U; follows from the
strong NP-hardness of F|prec,pi; = 1|Cmax [LVW84, T98A] and F2|chains,p;; = 1> U;
[BK98|, respectively. Notice that F|r;,p;; = 1| Y_ w;C; can be solved in polynomial time
because even F'|rj,p;; = 1|> w;U; and F|rj,p;; = 1| > w;T; are so [LLRKS93].

It is important to observe that the reductions in Corollary 4.5 prove the NP-hardness of
no-wait unit-time problems in cycle shops of rank m and multiplicity at least m. NP-hard
no-wait unit-time flow-shop counterparts could also give NP-hardness proofs but only in the
case of rank 0 and multiplicity 1, i.e., only for flow shops. All the no-wait unit-time flow-
shop counterparts are equivalent to their relaxations without the no-wait constraint [T98A]
and are strongly NP-hard except Flintree,r;,p;; = 1|>_C; and Fprec,p;; = 1|Y.C;
which remain open as well as Clintree,r;,pi; = 1| > C; and C|prec,p;; = 1| C;.

5. PERIODIC CYCLE SHOPS

In this section we show that C|prec,r;|P and Clnowait,n = 1,p; = 1|P can be solved in
polynomial time and that 1C|nowait,n = 1,p; = q,,/q|P can be solved in pseudopoly-
nomial time. Then we strengthen the NP-hardness result of Roundy for C|n = 1|Chax
[R92] showing that even RF|n = 1,p, = qu,,Pe = 1|Cmax and, hence by Lemma 2.1,
1C|n = 1,p; = 1|Cmax are strongly NP-hard. We also consider absolute error bound ap-
proximations for the latter problem.

5.1. Minimum-period cycle shops and even job shops are easy. There is a simple
polynomial time algorithm for J|prec, r;| P with time requirement proportional to the total
number of operations in jobs. Remind that the flow time is not restricted in this problem,
and the algorithm freely spends it. The first three steps solve the problem disregarding the
release dates. The fourth step turns the schedule into one that satisfies given release dates.

ON SCHEDULING CYCLE SHOPS 19

e Construct the precedence relation R for the total set of operations in the jobs and
find a linear order including R, i.e., a list L of operations consistent with R.

e Set P = maxlSlSm{ZZ:“U Dij}, i-€., P is the maximum total processing time on
the machines, and divide a time interval of length PT, where T = Zyzl m;, i.e.,
T is the total number of operations in jobs, into T' subintervals of length P. Each
subinterval will include only one operation.

e Let the first j — 1 operations of the list L are already included in the schedule, and
let they occupy the total processing times 7, on the machines M,, » = 1,2,...,m.
Let the jth operation in L require the machine M. Then assign its start time on
M, to be Ty as a local time inside the jth subinterval.

e Assuming that the local start times of operations in the subintervals are fixed, move
the subintervals apart so that the release dates of the jobs are satisfied and the
distance between any two adjacent subintervals are divisible by P.

The algorithm obviously finds a minimum-period schedule because P is the maximum total
processing time on the machines, a lower bound for periods. Special cases of the problem
that cannot be solved in polynomial time by this algorithm is J2|prec,r;,pi; = 1|P and
even J2|p;; = 1|P because the size of these problems includes the number of operations in
jobs under logarithms, i.e., the algorithm runs only in pseudopolymonial time. We suggest
that these special cases are also well solvable but they require a special consideration like
J2|pij = 1|Crax and J2|7rj,p;j = 1|Cpax do [TI7].

5.2. Trivially solvable minimum-period no-wait cycle shops. The no-wait con-
straint in periodic cycle shops often makes the related problems easy. Here we con-
sider 1C|nowait,n = 1,p; = q,,/q|P and C|nowait,n = 1,p; = 1|P. Their sizes are
mlogm + > ;- ; log g, and £logm, respectively. Let us take the former problem. Since all
processing times are divisible by ¢ we will consider an equivalent form of the problem, where
g = 1, dividing all processing times by ¢q. Without loss of generality we assume that the
multimachine in this problem is M;. Thus, all operations on M; are of unit processing time,
and the condition that start times on M; should be different modulo P becomes necessary
for any feasible schedule. Let x; be the the start time of ith operation on M1, and let a; —1
be the total processing time of all operations between sth and ¢ + 1st operations on M; if
¢ > 0 or all operations before the first operation on M; if : = 0 or all operations after the
last operation on M, if + = m. Therefore, if ;1 = 0, then z; = 22;11 aj for e =2,3,...,m.
Thus, the problem is to find minimum P such that z1,x9,...,zy, are all different modulo
P. 1t is clear that for a fixed P this condition can be checked in time O(m). Remind that
P > @) = maxi<g<m Migr and note that, due to the no-wait requirement, the flow time
is fixed and equal Cphax = —1 + Z?:o a; = Z;”:l mgqr- Thus, to solve the problem we
need to check whether 1, xs, ..., Ty are different modulo P for each period in the interval
[Q, Crmax—1]. This takes time O (m [>_jr; Mpgr — Maxi<p<m Mqk]) which is O (m%mgmax).

Similar considerations lead to a polynomial-time algorithm for Clnowait,n = 1,p; =
1|P. Let 1 < 22 < - -- < x¢ be start times of all operations Oy, , Os,, - .., O, in one job on
all multimachines. Thus, t is the total multiplicity of multimachines. Let a; — 1 be the total

processing time of all operations between O,; and Os, , if 7 > 0 or all operations before O,

20 MIDDENDORF AND TIMKOVSKY

if ¢ = 0 or all operations after O, if 2 = t. Define I, to be the set of indices of operations
on the kth multimachine, k =1,2,...,t. So, Iy, I, ..., I is a partition of {1,2,...,t}. Set
21 =0. Then z; = Z;;ll aj for 1 = 2,3,...,t and the problem is to find minimum P such
that start times z;, ¢« € I, are different modulo P for each £k = 1,2,...,t. For a fixed P
this can be checked in time O(t). Since we consider the case with unit processing times,

Cmax = £ and Q@ = m. Hence, the total time complexity is O(t{£ — m]) = O(£? — m/).

5.3. NP-hardness of minimum-flow cycle shops of rank one. In this subsection we
consider RF|n = 1,po = gy, Pe = 1|Cmax in an equivalent form as the one-machine problem
of finding a minimum-length one-machine schedule for a chain J=J; < Jo <--- < Js_1 <

Js of nonpreemptive jobs with processing times a1, as,...,as_1, 1, respectively, such that
the start times of the jobs are different modulo P for a given P. It is clear that s = K_Tl
and a; = 1+ pajy1, where t =1,2,...,5s — 1.

We use the denotation J; < Jo for any two subsets J; and Jo of J such that J; € J; &
Jo € Jo implies J1 < Ja.

Theorem 5.1. RF|n=1,p, = qu,,Pe = 1|/Cmax is strongly NP-hard.

Proof. We reduce 3-SAT [GJ79] to our problem. Let {Cy,...,Cn} be a set of three-literal
clauses with variables {vy,... ,v,}. We construct the chain J as the union of four subchains
A < B < C < D and show that a truth assignment for the variables exists if and only if
there exists a schedule of length <7 =1+ Zf;ll a; + 4m + 2n.

Let s(J) denote the start time of the job J in a feasible schedule for J, and let r(J)
denote the corresponding residue modulo P. Note, that we will not define P and the job
processing times explicitly since we only need some specific relations between the residues
of the jobs processing times. Any large enough P > a; for all 7 will fit. And it will be
easy though tedious to define the jobs processing times accordingly. Let e(J) denote the
earliest possible start time of the job J = J; € J, i.e., e(J) = Z;;ll a;. Every time unit in
a schedule between the start time of the first job and the completion time of the last job
we call a shift if it is not used for processing a job. Thus, if s(J;y+1) — s(J;) = a; + b then
there are b shifts between J; and J;1. For our construction we need the property that the
jobs in A have to be scheduled at their earliest possible starting time in every schedule of
length < T'. Therefore we define sets B and D such that at least 4m + 2n shifts occur after
the first job of B in every feasible schedule. Let B and D be chains containing 4m + 2n jobs
each such that for each r € [1,4m + 2n] there exists a job J € B (respectively J € D) with
r = e(J) mod P.

Claim 5.1. A schedule of length < T implies that jobs J € A are scheduled at times e(J).

Proof of Claim 5.1. The claim easily follows from the definition of the sets B and D.
Clearly, there must be at least 4m + 2n shifts between the first job in B and the last job in
D. Otherwise there are jobs in BU D with equal residues. Since the required total number
of shifts is at most 4n + 2m, there can be no shift before the first job in B. [

Claim 5.1 shows that J € A implies r(J) = e(J) mod P in any schedule of length < T
Hence jobs in J € A can be used to “occupy” some residues so that they can not be used

ON SCHEDULING CYCLE SHOPS 21

by other jobs. Besides, Claim 5.1 allows to fix desired start times s € [e(J), e(J) + 4n + 2m
of jobs J in C in any schedule of length < 7. This can be done by occupying all residues
r € [e(J) mod P, e(J) +4n+2m mod P] with r # s mod P. The number of jobs and the job
processing times in the chain A will easily follow from these properties. Now define jobs
Jo1 < ... < Jc2ntm+1 in the chain C such that

(x) for each ¢ € [1,2n + m] there are exactly 2 shifts between start times of J¢; and
Jo,it1-

For each job J (which has to be defined) with Jo; < J < Jg,it1, ¢ € [1,2n+m], let ¢(J) be
the start time in a schedule of length < T when there is no shift between the start times of
Jc,i and J (and there are 23 shifts before Jc ;). To obtain a truth assignment define for each
variable v;, j € [1,n] two subchains V; and V; of jobs in C with Jg2;—1 < V; < Jg 25 <
\7]- < Jc,2j+1 such that the following claim holds.

Claim 5.2. A schedule of length < T and j € [1,n] imply that either every job J € V;
is scheduled at time t(J) and every job J' € V; is scheduled at time t(J) + 2 or every job
J €V, is scheduled at time t(J) + 2 and every job J' € V; is scheduled at time t(J).

Proof of Claim 5.2. The jobs J will be defined such that for an optimal schedule one of the
following two cases holds.

(1) The two shifts between Jc,2j—1 and J¢ 25 are between the start times of Jg 21 and
the first jobs in V;, or the two shifts between Jg o; and Jc 2541 are between the
start times of the last job in _/'j and Jg 2j41.

(2) The two shifts between Jc 2;—1 and J¢ 2, are between the start times of the last job
in V; and Jg 25, or the two shifts between J¢ 2; and Jc 2541 are between the start
times of Jc 2; and the first job in _/'j.

These conditions will be used to define a truth assignment for variables: (1) to make v;
truth and (2) to make v; false.

Define jobs J¢ ; and J; ; to be the first and the last job in Vj, respectively. The other
jobs in V; will be defined later. Analogously, define J 7,j and J 1,; to be the first and the
last job in V;. The jobs in A will be defined such that r = ¢(J; ;) mod P = t(J;,;) mod P
and such that r + 1 is occupied by a job from A (and all the other jobs should be defined
such that they do not use the residues r,r + 1, r + 2). This property and (x) imply that
J.; has to be scheduled at time ¢(Jy;), and Jy ; has to be scheduled at time t(J¢ ;) + 2,
or vice versa (see Figure 5.1 for the first case). Analogously, define jobs in A such that
r =t(J;;) mod P =t(J; ;) mod P and t + 1 is occupied by a job from A (and all the other
jobs should be defined such they do not use the residues r,r+ 1, r + 2). This property and
(*) imply that J; ; has to be scheduled at time ¢(J; ;), and J; ; has to be scheduled at time
t(Ji ;) + 2, or vice versa (see Figure 5.1 for the first case). [

Now consider a clause C; = {un, ux, w1}, h < k < I, where up, = vy, if vj occurs positive in
C; and up, = vy, if vy, occurs negated. Define uy and u; analogously. Define jobs J; n,Jj k. J;j,

22 MIDDENDORF AND TIMKOVSKY

tlme4—Ff”f””””””f”f4—F~7T 77777777777777
—— noshift
—> twoshifts .
< occupied " i B 5

residues =< o<y
r r+2 r r+2

FIGURE 5.1. Shifts between the jobs

and J; . as follows. If up, = vy, then J;, € Vy, otherwise J;, € V1. Analogously for uy.
But the third literal u; in the clause should be handled differently.

Define J;; € V, if u; = vy, or Jjn € Vi otherwise. Define J; , such that Jo 2n4; < Jj« <
Jc,2ntj+1 and Jj, is the only job between Jc ont; and Jc 2n4j41. Property (x) implies
that there are three possible starting times for J; .. Now define processing times of the jobs
in J such that the following property holds (see Figure 5.2).

Jpt St K
e o o oK
E S

> =true >t =fase

FIGURE 5.2. Residues of possible start times

(*%) For each clause C; = {up,ur, wi}, h < k <1, j € [1,m] there exists r; € [0, P — 1]
such that r(J;) =r;Vr;+2,v(Jj %) =r;+1Vr;+3,1(J;;) =r;+4Vr;+6,r(J;.) =
rj+2Vr;+3Vr;+4 and no other job uses one of the residues r;,r; +1,...,r;+6
in any schedule of length < 7.

Observe that for each clause C; = {up,ux,wi}, h < k < I, j € [1,m] the variable vp,vy
or vy is false if r(J;5) = r; + 2, r(J;%) = r; + 3 or r(J;;) = r; + 4, respectively. Since
r(Jj«) =15 +2Vr; +3Vr; +4 at least one variable has to be true. Thus, a schedule of
length < T exists only if there exists a truth assignment for {C4,...,Cyn}. The inverse
statement is obvious. [

Corollary 5.1. 1C|n = 1,p; = 1|Cax is strongly NP-hard.
Proof. Follows from Theorem 5.1 and Lemma 2.1. [

ON SCHEDULING CYCLE SHOPS 23

Corollary 5.2. 1C|n = 1,p; = 1| > Cj; is strongly NP-hard.

Proof. The proof is a slight extension the proof of Theorem 5.1. Let us add one job Jgi1
with ag > T? at the end of the chain J, where T was defined in the proof of Theorem 5.1. It
is not a problem to enforce starting this job at time T4+ 1. So, if J1,Jo, ..., Js start at times
< T and J,41 start at time T'+1, then Y C;; < T?+) ¢, (T +4%). On the other hand, if J414
starts at time > T+2 then Y Ci; > D72 (T+1+4) > as+> 32 (T+i) > T*+> 72 (T +1).
Thus, a schedule with >~ Ci; < T? 4+ Y% (T + i) for J1,Ja,... ,Js, Js41 exists if and only
if a schedule with C,4, < T for Jq,Jo,...,Js exists. [

5.4. Simplest approximation for minimum-flow-time cycle shops. In this subsec-
tion we consider a polynomial-time approximation for 1C|n = 1, p; = 1|Cpax and show how
it can be extended to C|n = 1,p; = 1|Cpax. We first consider an O (m?) algorithm for the
former problem obtaining the flow time CL . with

2

1 _
Cmax - Crtlax < = 2 m’
where C}.. denotes the minimum flow time. Let z; be the start time of ith operation on

M, and let a; — 1 be the total processing time of all operations between ith and 7 + 1st
operations on M; if # > 0 or all operations before the first operation on M; if + = 0 or
all operations after the last operation on M; if ¢+ = m. Therefore, z; > z;_1 + a;—1 for
1=2,3,...,m, where we set x; = 0. Thus, the problem is to find integers s, ...,z with
minimum z, such that z{,2zs,...,Zy are all different modulo P.

The algorithm deals with the current set R of residuals modulo P engaged by the start
times. At the first step set ;1 = 0, R = {0}. After assigning all the start times, R will
contain m residuals modulo P. At the ith step, ¢ > 1, set z; to be the smallest integer
such that z; mod P is not in R and z; > x;_1 + a;_1, and put z; mod P in R. In the
worst case, R is an integer interval with ¢ — 1 integers, so the difference x; — ;1 — a;_1
is at most ¢ — 1. Summing up from 7 = 2 to ¢+ = m we get that the total loss is at most
1424+ .o+t m—1= ‘“2_‘“, and z, is going to be at most MT_m + Z;“:_llai. On the

2
. . m—1
other hand, an evident lower bound of z, is > ,_;" a;. So, we lose

m2—m

3 in the worst case.

Obviously, the time comlexity is O (m2).
Introducing the set of residuals for each multimachine, analogous reasonings lead to two
2
a similar approximation algorithm for C|n = 1, p; = 1|Cax with loss at most >, _; “E*
and time complexity O (2221 mz), where my, is the multiplicity of the kth multimachine.

Such an extension is exactly the NWF algorithm.

5.5. Advanced approximation. Below we describe an O(m?) algorithm for 1C|n =
1,p; = 1|Crax that obtains a flow time C2_ with

max

02 —C* < m2—m%/2/14

max max — 2

The algorithm schedules the operations Oy, ... ,Oy, in this order. Let x; denote the sched-
uled time for O;, i € [1 : m]. The algorithm begins with scheduling O; at time z; = 0.

24 MIDDENDORF AND TIMKOVSKY

After O, ..., O;—1 have been scheduled, i € [2, m] the earliest possible starting time for O;
is ;_1 + a;_1. The number of time steps operation O; is scheduled later than its earliest
possible starting time is called the number of shifts made by the algorithm when schedul-
ing O;. Let rp, = zp, mod P, h € [1,h — 1]. A residue ¢ mod P is occupied by operation
Oy, if £, mod P = t mod P. In the following an interval is a set of residues of the form
r,r+1,...,r+k modulo P which are all occupied and where r—1 mod P and r+k+1 mod P
are not occupied. Let X, be the number of intervals minus one after scheduling O,.. In order
to prevent that too many shifts are necessary when schduling operation O; the algorithm
will possibly reschedule a subset S of the operations Oy,...,0;_1. § will always be of the
form & = {0,41,...,0;_1} for a z € [1,i — 1] satisfying the following property.

(x) There exists a (possibly empty) proper suffix of length < z of every interval such
that these suffixes contain exactly the residues r,41,7,42, ... ,Ti—1.

Observe that if O; is shifted by at least one time step then it is possible to reschedule all
operations in S by one time step later.

Example illustrating the property (). Assume operations Oq,...,0O1; have been
scheduled and z = 7 as depicted in the upper part of Figure 5.3. Observe that the residues
of operations O; with j > z = 7 form suffixes of length < 7 = z of the intervals (i.e. (x)
holds). Assume r;9 is occupied and consider the following two cases.

1) Residue 715 is occupied by an operation O; with 7 > 7 = z (see upper part of Figure
J
5.3). Then O, is shifted to the first free residue behind the interval containing 712

(see lower part of Figure 5.3). Since the suffixes containing operations O; with j > z
have length < z at most z = 7 shifts are made.

12

z=7
1 3[1[ehof8] [2[s[a[ufa] .

0 I’l2 P-1
2 shifts

7} [2][ep2pols] | [2[s]4] o]

0 P-1

FI1GURE 5.3. Residue occupied by operation O; with j < z

(2) Residue r12 is occupied by an operation O; with j < 7 = z (see upper part of
Figure 5.4). Then O;2 is shifted until the corresponding residue r is free or is
occupied by an operation Op with h > z. In the last case every operation Oy with
z =T < h <12 =i is rescheduled one time step later. Observe that O15 was shifted
by at most z time steps and the rescheduling is possible since operation 012 was
shifted by at least one time step.

ON SCHEDULING CYCLE SHOPS 25

12

z=7
o7 3‘1‘6‘10‘8‘ u 2‘5‘4‘11‘9‘ L

0 Mo P-1
2 shifts

17l [3[1]eholep2| | [2]s[a[se]

0 P-1

FIGURE 5.4. Residue occupied by operation O; with j > z

The algorithm starts on scheduling O; at time 0 and setting z = 1 (Then & =) and (%)
holds). Let O1,...,0;_1 be already scheduled. Then the algorithm proceedes scheduling
O; in accordance with the following steps.

Step 1. Let t be the earliest possible start time of O;_q, t.e.,t = z;_1+a;_1. Then we have
the following situations.

(a) If t mod P is not occupied, then schedule O; at time z; = t.

(b) if t mod P is occupied by some O; with j < z, then let b > 1 be the smallest integer
such that ¢ + b mod P is not occupied or is occupied by some operation O; with
Il >z If t+ bmod P is occupied by an operation O; with [> z, then reschedule
each of the operations O,41,...,0;_1 one time step later, i.e., xp, = x + 1 for
h € [z+1,i—1]. If t+b mod P is not occupied, then schedule O; at time z; = t+b.

(¢) If t mod P is occupied by some operation O; with j > z, then schedule O; at time
x; =t+0b, where b > 1 is the smallest integer such that ¢+ b mod P is not occupied.

Step 2. If the condition (x) does not hold, i.e., there exists an operation O; with j > z
such that z; + 1 mod P is occupied by an operation Oy with h < z or there exists a suffix
of an interval of length > 2 containing only operations O; with j > z or a new interval
was created, i.e., there exists an operation O; with j > z such that z; — 1 mod P is not
occupied) then set z = i.

To see that the algorithm works correctly assume Oy, ... ,O;_; have been scheduled and
() holds for S defined by z € [1,7 — 1]. Now, it is not hard to show that in Step (1) of the
algorithm O; is scheduled correctly and Step 2 guaranties that (x) holds for S defined by
the (new) value of z. To determine the flow time we make an amortized analysis. For this a
counting scheme for the number of shifts made by the algorithm and a potential function ®
will be defined such that the total number of counts for the operations O4, ..., Oy does not
underestimate the total number of shifts made by the algorithm plus the increase of ®.
will be defined such that it becomes not negative (in fact after scheduling an operation O;,
i € [1, m] the value of ® is at least %ZNZ After the definition of ® and the counting scheme
we show that the desired properties hold. To define ® and the counting scheme consider a
run of the algorithm and assume a new value z = s was set when scheduling operation O
and the former value z = r has been set when scheduling operation O,, r < s. Consider
the following three cases.

26 MIDDENDORF AND TIMKOVSKY

Case 1. z = s was defined because a new interval was created when scheduling operation
Os, i.e., there exists an operation O; with r < j < s such that z; — 1 mod P is not
occupied. There are two possibilites: a new interval is created because O; is not shifted
and xs; — 1 mod P is not occupied or a new interval is created during the rescheduling of
operation in Step 1(b). In the following we consider only the second possibility because the
first one can be handled similarly. Hence, assume there are operations O;,,...,0;, with
r <ip <...< i < s such that each z;,, j € [1,k] is the start of a new interval that was
created in Step 1(b) when scheduling operation Og. Then & = & + %NT for every operation
O, he[r+1,s],h#i;,j€[l,k],and & = <I>+%NT+ %s for every operation Oy, j € [1, k].
We count Si; shifts for operation O;,, j € [1,k], S5 shifts for operation Oy, 7+ 1(h —7)
shifts for every operation Op, with h € [r+1,2r — %r], h # i; for j € [1,k], and 7+ %h shifts
for every operation Oy with h € [2r — r + 1,5 — 1], h # i; for j € [1, k].

Case 2. z = s was defined because there exists an operation O; with j > r such that
z; + 1 mod P is occupied by an operation Oy with h < r and Case 1 does not hold. Then
P = (I)-F%NT—%S when scheduling O, and ® = @—I—%NT when scheduling Oy, h € [r+1, s—1].
We count %s for scheduling operation Oy, r shifts for scheduling Oy, h € [r + 1, min{2r —

Ir,s —1}], and r + 1r shifts for scheduling Oy, h € [min{2r — Ir +1,s — 1}, s — 1].

Case 3. z = s was set because there exists a suffix of an interval of length > r containing
only operations O; with r < j and none of Cases 1 and 2 holds. Then ® = ® + %NT for
every operation Oy, h € [r 4+ 1,s]. We count r for every operation Op, h € [r +1,2r — %{r],
and count 7 + %NT for every operation Oy, h € [2r — %r +1,s].

Lemma 5.1. The counting scheme as defined above does not underestimate the total num-
ber of shifts plus the increase of ®.

Proof. Let us consider the same cases as above.

Case 1. Observe that in this case, before the rescheduling in Step 1(b) is done, 7;,,... 7,
and r, are elements of pairwise different intervals. Hence, altogether at most r shifts were
used for scheduling the operations O;,,...,0;, and Os. Of the at most r many shifts made
when scheduling operations O;,,...,0;, and Oy we count %r shifts for O and 3—2 shifts for
Oi;, j € [1,k]. For every other operation Oy, , h € [r+1,s—1], h # i; for j € [1, k] at most
r—min{1r, N, } shifts are made if h < 2r — Ir and at most r shifts if b > 2r — Ir. We show
that the remaining counts are more than the increase of ®. First we add %NT to @ for each
operation Op, h € [r + 1, s]. After this we have the following remaining counts: For every
operation Oy, , h € [r+1,s — 1], h # i; for j € [1,k] a remaining count of %(h — r) and
for every operation O;;, j € [1, k| a remaining count of 24;. it is not hard to show that the
remaing counts are enough for the increase of ® by %s for every O;; 1, j € [1,k].

Case 2. In this case xp (h defined as in Case 2 in the definition of the counting scheme)
was the beginning of an interval before scheduling O;. There are two possible cases when
scheduling Og. If 57 +as_1 + 1 mod P is not occupied, then r; = z5_1 +as_1 + 1 and
no shifts are made when scheduling Os. If z5,_1 + as—1 + 1 mod P is occupied, then at
most r — N,. shifts are made when scheduling Os;. We count r shifts for every operation

ON SCHEDULING CYCLE SHOPS 27

O, h € [r+ 1,min{2r — 1r,s — 1}]. Since the number of shifts is < r — min{r — 3r,R,}
we can increase ® by 7N for each of these operations. Since for each operatlon Op,
h € [min{2r — r+1, 3 1},5— 1] we count 7+ 2r. Since at most r shifts are made we can
increase ® by 7N <1 =7 for each of these operations. When scheduling O, at most 7 — X,
shifts are made Smce the number of intervals in decreased by at least one we can decrease
® by 1(s —R,). Hence counting £s would not underestimate the number of shifts plus the
increase of .

Case 3. For every operation Oy, h € [r + 1, s] at most r — min{1r, R, } shifts are made if
h <2r— %7" and at most r otherwise. Clearly, we do not underestimate the number of shifts
plus the increase of ® when counting as above. [

Lemma 5.2. The algorithm never makes ® negative.

Proof. We show that the following invariant is valid during a run of the algorithm: After
scheduling operation O; ¢ > %tNt. Clearly the invariant holds after scheduling operation
0. In Case 1, ® is increased by %Nr for every operation Oy, with h € [r 4+ 1,s] h # i; for
j € [1,k]. When scheduling Oy at most k£ new intervals are created. Since ® is increased by
%NT + %3 for every operation O;;, j € [1, k] the invariant remains valid in this case. In Case
2, ® is increased by %N for every operation Oy, with h € [r+1, s —1]. For operation Oy the
value of ® is changed by 1N — —s Since the number of intervals decreased by at least one
when scheduling operatlon Os the invariant remains valid. In Case 3, ® is increased by 7N

for every operation Oy, with h € [r + 1, s]. Since the number of intervals is not changed in
this case when scheduling operations O,41,...,0O; the invariant is valid for this case. [

2__3/2
Theorem 5.2. The algorithm makes at most % shifts.

Proof. By Lemmas 5.1 and 5.2 it is enough to show that the total count is at most

. - 3/2
Z?:z(z_%\/i)ém2;m__zz 2\/‘<m m /14

where m exceeds some small constant. Let 1 = z; < ... < 27 < m be the different values
of z during the run of the algorithm. We assume z; = m (The case z; < m can be proved
similarly). Let r = z; and s = z;41, © € [1,] — 1] and consider again the three cases as
above.

Case 1. Let O, = {0;;, | j € [1,k]} and O3 = {Op | h € [r+1,s—1],h #ij,5 € [1,k]}. The
count for each operation O;; € O is ?.z'] and the count for Oy is gs. For each operation
O, € Oy with h > 2r—77'+1 we have r + = h< 13h+ 1h< h—l\/_ Let O, C O, be the

set of operations in Dy with h € [r + 1, 27" 7] Flrst assume that there are g/r, ¢ > 1
operations in 95. Let O = {Os,,...,Op_ .} Then the total count for these operations
is at most

ST+ L (hi 1)) = S by~ S (hy) < ST hi — §0Y
=S hi =5 (@r+avD) < T (b= 3avr) < T (hi = §VR).

28 MIDDENDORF AND TIMKOVSKY

The last equation holds since h; < 2r for 7 € [1,¢/r]. Now assume that there are < /r
operations in 5. Let us consider the following two cases.

(i) If s —r > 5y/r then k > 4./7, i.e., there are at least 4./7 operations O;. Let
9 be the set of these operations. Thus for at least 3./r of these operations it is
i; > r+ +/r. Now we can assign to each operation O € 9} a subset D1 C O}
of size three such that for O;; € D14 i; > max{h—+/r — 2,7+ /r} holds and
D1, N O =0 for b # ' (This is not hard to show) Now we change the count
for each operation O;; in a set 91, and count i; — 17 f (instead of only 4, — J)
This allows to count for each operation Oy, in O} only

r+2(h—r)— Zmax{h—r—2,7r+r}
<r—Lmax{h—r—2,r+r} <h-1ivh,

where the last inequalities hold for » > 9 and since h < 2r.
(ii) If s — r < 54/r then the count for operation O, and the operations in 9% is at most

Soneo; (r+%<h—r>> + 85 =Yooy (b= §(h—1) +5—}s
< Sopeoy (b= S(h—1) = 3y7) +5- 15 < Yo, cop (A= 3VR) +5— 15

Case 2. In this case the count for scheduling O, is &5 < s — 2./s. The count for scheduling
an operation Oy, with h € [min{Qr — %r +1,s — 1} s — 1] is r+ =T < h-l—7h < h—:zVh.
The count for each operation Oy with h € [r + 1, m1n{2r — —r, s — 1}] is at most r. Let
p=min{2r — Ir,s —1}. If p—r > /s then the total count for scheduling operations Oy,
with h € [r 4+ 1, p] is at most

T(p_,,.): 1,7'—}—17’ Z] 1j_Zz r—|—17’ ;[(p_,,,)iz_'_()]<Zz r+1(%\/IZ)

If, on the other hand, p —r < /s, then the total count for scheduling operations O, ; with
h € [r+1,p] and Oy is at most

rp—r)+ 3<Z —rp1lts— %3

<Zz r+1('_%\/§) 3__\f< f:rTJrl (i_%\ﬁ)'l's_%\/g'

Case 3. In this case s > 2r. The count for operation O with h € [7‘ +1,2r — %r} isr
and the count is r + %NT for h € [27" + 7‘ +1 s} Altogether the count for operations Oy,
h € [r+1,s]is at most

(s =)+ e (s = Fr) < Xl (= 7)),

where the last equation holds for s > 49. [

ON SCHEDULING CYCLE SHOPS 29

6. CONCLUDING REMARK

Studying performance guarantee approximations for cycle-shop scheduling problems are
barely begun because this paper represents probably all known results on that topic. The
approximation results in Subsections 5.4 and 5.5 can be easily extended to the case p; =
qu;/q- However, the absolute error bounds in this case will be increased by multiplier g.

The most interesting generalizing open question is whether the class agCas|B1_4, pij =
qu, |y contains NP-hard problems. Among not unit-time problems solvable in polynomial
time in it we can call only C2|p;; = qu,|Cmax and RF|n > m—2,po; = P, Pej = qu._, |Cmax-
A comprehensive list of open nonperiodic robotic flow-shop problems can be found in [BK].
The following list includes some minimal open cycle-shop problems.

Open
L2|pmtn|Cmax, L2|pmitn| " Cj,
L2|rj,pij = 1| 32Uy, L2|no wait, rj,pij = 1|Lmax,
RF3|rj,po = p,pe = q|Cmax, RF3|rj,po = p,pe = q|>_Cj,
RF3|pO = DP,Pe = q|Lmax, RF3|T_]7pO =]-7p6 = qleaX7
Rlepo =1,pe = Q|Lmax; RF3|po =1,pe = Q| ZUj7
RF2|nowait| Bmax, R1p3,5F3|nowait| Bmax,
R1F|nowait,n = 2|P, R2F|nowait,n = 1|P,
R1F|n = 2|P, R2F|n = 1|P,
C2|p;; = p;|Cmax, C2|nowait, pij = p;|Cmax
C2|chains, p;j = 1|Cmax, C2|no wait, chains,p;; = 1|Cmax,
C2|chains,p;; = 1| Cj, C2|nowait, chains,p;; = 1| Cj,
C2|r;,pij; = 1|Lmax, C2|nowait, rj,p;; = 1|Cmax,
C2|’I"j,pij = 1|ZCJ’, C2|nowait,7’j,p¢j = 1|20j,
C3|p;; = qu; |Cmax, C2|nowait, p;; = qu; |Cmax,
1C|n = 2, p; = 1|Cmax, 1C|nowait,n = 1,p; = qu, /q|P.

Remind that J2|7;,p;; = 1|Lmax is also open and J2|nowait,rj,p;j = 1|Cmax is NP-hard
[T85]. The latter problem remains open for ordinary or strong NP-hardness [T98], and
J2|nowait,r;,p;; = 1| Y C; is strongly NP-hard [T98].

If ¢ is even, C2|chains,pij = 1|Cmax and C2|chains,p;; = 1|Y_C; can be solved in
polynomial time by job-shop algorithms for J2|p;; = 1|Cmax [T97] and J2|p;; = 1|>_C;
(K94, KT96]. So, the obstacle is the case of odd £. By Corollary 4.3, C2|chains, p;j = 1|Cmax
can be solved in pseudopolynomial time.

It is important to say that the size of each of the four chain-like precedence-constrained
equal-release-date cycle-shop problems in the above list is n+logZ+ 2;21 log l;, where n is
the number of chains, and [; is the length of the ¢th chain. Hence, algorithms polynomial
in n, ¢.e. in the number of jobs, are of exponential time for the problems. Note that
the reduction C2|pmitn|Crax x C2|chains,p;j = 1|Cpax follows from the preemption-
chaining theorem [T98A]. But the reduction C2|pmtn|)_C; o« C2|chains,p;; = 1| C;
is unknown. The subproblem of 1C|n = 1,p; = 1|Cax, where the period is less than the
flow size of the cycle shop, remains open. In conclusion we conjecture that all problems
established here to be solvable in pseudopolynomial time can be solved indeed in polynomial
time.

30

[BFK97]

[BY5]
[BGJ77]

[BK98]
[BK]

[BK99]
[BJS80]

[CC90]

[CKKL99)
[CK97]

[CK97A]

[DT76]

[DS99]
[GJ79]
[GMSZ83]
[G93]
[HKS97]
[HKS98]
[HLP97]

[HWZ98]

MIDDENDORF AND TIMKOVSKY

REFERENCES

A. Agnetis and D. Pacciarelli, Part sequencing in three machine no-wait robotic cells, Technical
Report 10-98, Dipartmento di Informatica e Sistemistica, Universitda di Roma “La Sapienza”,
Roma, 1998.

A. Agnetis, Scheduling no-wait robotic cells with two and three machines, EJOR (to appear).
C. R. Asfahl, Robots and Manufacturing automation, John Wiley and Sons, New York, 1985.
Y. P. Aneja and H. Kamoun, Scheduling of parts and robot activities in a two-machine robotic
cell, Computers Ops. Res. 26 (1999), no. 4, 297-312.

N. Brauner, G. Finke and W. Kubiak, A proof of the Lei and Wang claim, Technical Note,
Laboratoire Leibniz, Institut Imag, Grenoble, 1997.

P. Brucker, Scheduling algorithms, Springer, 1995.

P. Brucker, M. R. Garey, and D. S. Johnson, Scheduling equal-length tasks under tree-like
precedence constraints to minimize mazimum lateness, Math. Oper. Res. 2 (1977), 275—-284.
P. Brucker and S. Knust, Complexity results for single-machine problems with positive finish-
start time lags, Osnabriicker Schiften zur Mathematik, Reihe P (1998).

P. Brucker and S. Knust, Operations research: complexity results of scheduling problems,
http://www.mathematik.uni-osnabrueck.de/research/OR /class/.

P. Brucker and S. Kravchenko, Preemption can make parallel machine scheduling problems
hard, Osnabriicker Schiften zur Mathematik, Reihe P, Nr. 211, 1999.

J. Bruno, J. W. Jones, and K. So, Deterministic scheduling with pipelined processors, IEEE
Trans. on Comput. C-29 (1980), 308-316.

J. Carlier and Chrétienne, On the dominance of K-periodic schedules in cyclic scheduling, in
Proc. 2nd International Workshop on Project Management and Scheduling, Compiégne, France,
1990, pp. 181-187.

Y. Crama, V. Kats, J. van de Klundert and E. Levner, Cyclic scheduling in robotic flowshops,
Annals of Operations Research: Mathematics of Industrial Systems (1999) (to appear).

Y. Crama and J. van de Klundert, Cyclic scheduling of identical parts in a robotic cell, Oper.
Res. 45 (1997), 952-965.

Y. Crama and J. van de Klundert, Robotic flowshop scheduling is strongly NP-complete, in Ten
Years LNMB (W. K. Klein Haneveld, O. J. Vrieze and L. C. M. Kallenberg, eds.), CWI Tract
122, Amsterdam, The Netherlands, 1997, pp. 277-286.

Yu. I. Degtiarev and V. G. Timkovsky, On a model of optimal planning systems of flow type,
Technics of Communication Means, Ser. Automation Control Systems (1976), no. 1, 69-77. (in
Russian)

I.G. Drobouchevitch and V.A. Strusevich, A heuristic algorithm for two-machine re-entrant
shop scheduling, Annals of Operations Research 86 (1999), 417-439.

M. R. Garey and D. S. Johnson, Computers and intractability: a guide to the theory of NP-
completeness, Freeman, San Francisco, 1979.

S. C. Graves, H. C. Meal, D. Stefek, and A. H. Zeghmi, Scheduling of re-entrant flow shops, J.
Operations Management 3 (1983), no. 4, 197-207.

J. N. D. Gupta, Two-stage reentrant flowshop problem with repeated processing at the first
stage, Dept. of Management, Ball State Univ., Muncie, IN, 1993.

N. G. Hall, H. Kamoun and C. Sriskandarajah, Scheduling in robotic cells: classification, two
and three machine cells, Oper. Res. 45 (1997), 421-439.

N. G. Hall, H. Kamoun and C. Sriskandarajah, Scheduling in robotic cells: complexity and
steady state analysis, EJOR 109 (1998), no. 1, 43-65.

N. G. Hall, T.-E. Lee and M. E. Posner, Periodic shop scheduling problems, Tech. Report,
Ohio State University (1997).

J. Han, J. Wen and G. Zhang, A new approzimation algorithm for UET-scheduling with chain-
type precedence constraints, Computers Ops. Res. 25 (1998), no. 9, 767-771.

[H94]
[HM95]

[HM96]

[HK98]
[KL97]
[KL98]
[KMS80]
[KSIO1]
[K99]
[K81]
[K94]
[K98]
[K99A]
[K99B]
[KT96]

[LLRKS93)]

[LP97]
[LW89]

[L]
[LRKB77]

[LRK78]
[LRK79]
[LRKS80]
[LVW84]

[LY90]

ON SCHEDULING CYCLE SHOPS 31

C. Hannen, Study of an NP-hard cyclic scheduling problem: the periodic recurrent job shop,
EJOR 72 (1994), 82-101.

C. Hannen and A. Munier, A study of the cyclic scheduling problem on parallel processors,
Discrete Appl. Math. 57 (1995), 167-192.

C. Hannen and A. Munier, Cyclic scheduling problems: an overview, in Scheduling theory and
applications (P. Chrétienne, E. G. Coffman, J. K. Lenstra and Z. Liu, eds.), John Wiley, New
York, 1996.

J. Hurink and S. Knust, Flow-shop problems with transportation times and a single robot,
Osnabricker Schriften zur Mathematik, Reihe P, Nr. 201, 1998.

V. Kats and E. Levner, A strongly polynomial algorithm for no-wait cyclic robotic flowshop
scheduling, Oper. Res. Let. 21 (1997), 159-164.

V. Kats and E. Levner, Cyclic scheduling of operations for a part type in an FMS handled by
a single robot: a parametric critical path approach, Inter. J. FMS 10, 129-138.

V. B. Kats and Z. N. Mikhailetsky, Ezact solution of a cyclic scheduling problem, Automation
and Remote Control 4 (1980), 187-190.

H. Kise, T. Shioyama and T. Ibaraki, Automated two-machine flowshop scheduling: a solvable
case, IIE Transactions 23, no. 1, 10-16.

S. Knust, Shop-scheduling problems with transportation, Ph. D. thesis, Fachbereich Mathe-
matik/Informatik, Universitdt Osnabriick, 1999.

P. M. Kogge, The architecture of pipelined computers, McGraw Hill, New York, 1981.

S. A. Kravchenko, Minimizing total completion time in two-machine job shops with unit pro-
cessing times, Preprint N4, Institute of Technical Cybernetics, Minsk, Belorussia, 1994. (in
Russian)

S. A. Kravchenko, A polynomial time algorithm for a two-machine no-wait job-shop scheduling
problem, EJOR, 106 (1998), 101-107.

S. A. Kravchenko, Minimizing the number of late jobs for the two-machine unit-time job-shop
scheduling problem, Discrete Appl. Math. 98 (1999), no. 3, 209-217.

S. A. Kravchenko, On the complexity of minimizing the number of late jobs in unit time open
shops, Discrete Appl. Math. (to appear).

W. Kubiak and V. G. Timkovsky, A polynomial-time algorithm for total completion time
minimization in two-machine job-shop with unit-time operations, EJOR, 94 (1996), 310-320.
E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, Sequencing and
scheduling: algorithms and complezity, in Handbook on Operations Research and Management
Science, Volume 4: Logistics of Production and Inventory (S. C. Graves, A. H. G. Rinnooy
Kan, and P. Zipkin, eds.), Elsevier Science Publishers B. V., Amsterdam, 1993, pp. 445-552.
T. E. Lee and M. E. Posner, Performance measures and schedule patterns in periodic job shops,
Oper. Res. 45 (1997), 72-91.

L. Lei and T.—J. Wang, A proof on the NP-completeness of the hoist scheduling problems, GSM
working paper, Rutgers university (1989).

J. K. Lenstra, Private communication.

J. K. Lenstra, A. H. G. Rinnooy Kan and P. Brucker, Complexity of machine scheduling
problems, Annals of Discrete Math. 1 (1977), 363-362.

J. K. Lenstra, A. H. G. Rinnooy Kan, Complezity of scheduling under precedence constraints,
Oper. Res. 26 (1978), 22-35.

J. K. Lenstra, A. H. G. Rinnooy Kan, Computational complexity of discrete optimizration
problems, Annals of Discrete Math. 4 (1979), 121-140.

J. K. Lenstra, A. H. G. Rinnooy Kan, Complexity results for scheduling chains on a single
machine, EJOR 4 (1980), 270-275.

J.Y.-T. Leung, O. Vornberger, and J. D. Witthoff, On some variants of the bandwidth mini-
mization problem, SIAM J. Comput. 13 (1984), 650—667.

J.Y.-T. Leung and G.H. Young, Preemptive scheduling to minimize mean weighted flow time,
IPL 34 (1990), 47-50.

32

[LY90A]

[LA84]
[LKL97]

[LMC74]

[MPSW91]
[MR94]
[MBMSS8]
[M99]

[MP93]
[M96]

[P95]
[RY93]

[RJ93]

[R92]
[SU8Y]
[SUSYA]
[SSSBK92]
[SL86]
[T77]

[T81]

[T85]
[T86]

[T92]

[T97]

MIDDENDORF AND TIMKOVSKY

J.Y.-T. Leung and G.H. Young, Minimizing Total Tardiness on a Single Machine with Prece-
dence Constraints, ORSA Journal on Computing 2 (1990), 346-352.

V. Lev and 1. Adiri, V-shop scheduling, EJOR 18 (1984), no. 1, 51-56.

E. Levner, V. Kats, and V. Levit, An improved algorithm for cyclic flowshop scheduling in a
robotic cell, EJOR 97 (1997), 500-508.

E. M. Livshits, Z. N. Mikhailetsky and E. V. Chervyakov, A scheduling problem in automated
flow line with an automated operator, Computational Mathematics and Computerized Systems
5 (1974), 151-155. (in Russian)

S. T. McCormick, M. L. Pinedo, S. Shenker and B. Wolf, Transient behavior in a flerible
assembly system, International Journal of FMS 3 (1991), 27-44.

S. T. McCormick and U.S. Rao, Some complexity results in cyclic scheduling, Mathematical
and Computer Modelling 20 (1994), 107-122.

V. S. Mikhalevich, S. A. Beletsky, and A. P. Monastyrev, Optimization of multi-stage cyclic
service of a production line by a transmanipulator, Cybernetics 24 (1988), no. 4, 500-511.

M. Middendorf, Cycle-shop scheduling problems solvable in pseudopolynomial time, Unpub-
lished manuscript, 1999.

T. E. Morton and D. W. Pentico, Heuristic scheduling systems, John Wiley, New York, 1993.
A. Munier, The complezity of a cyclic scheduling problem with identical machines and prece-
dence constraints, EJOR 91 (1996), 471-480.

M. Pinedo, Scheduling: Theory, Algorithms and Systems, Prentice-Hall, Englwood Cliffs, NJ,
1995.

R. Ramazini and N. Younis, Repetitive pure flowshop problem: a permutation approarch, Com-
puters and Indusrtial Eng. 24 (1993), no. 1, 125-129.

U. S. Rao and P. L. Jackson, Subproblems in identical jobs cyclic scheduling: properties, com-
plexity and solution approaches, School of Research and Industrial Engineering, Cornell Uni-
versity, Ithaca, NY, 1993.

R. Roundy, Cyclic schedules for job shops with identical jobs, Math. Oper. Res. 17 (1992),
842-865.

P. Serafini and W. Ukovich, A methematical model for periodic scheduling problems, SIAM J.
Disc. Math. 2 (1989), 550-581.

P. Serafini and W. Ukovich, A mathematical model for the fired-time traffic control problem,
EJOR 41 (1989), 1-14.

S. P. Sethi, C. Sriskandarajah, G. Sorger, J. Blazewicz and W. Kubiak, Sequencing of parts
and robot mowves in a robotic cell, International Journal of FMS 4 (1992), 331-358.

C. Sriskandarajah and P. Ladet, Some no-wait jobs scheduling problems: complexity results,
EJOR 24 (1986), 424-438.

V. G. Timkovsky, On transition processes in systems of flow type, Technics of Communication
Means, Ser. Automation Control Systems (1977), no. 1(3), 46-49. (in Russian)

V. G. Timkovsky, Computational complexity and approximation of the cycle shop schedul-
ing problem, in The 1st All-Union Consultation on Statistical and Discrete Analysis of Non-
Numerical Information, on Expert Estimates and Discrete Optimization (Yu. N. Turin, ed.),
Kazakh State University, Moscow—Alma-Ata, 1981, pp. 220-221. (in Russian)

V. G. Timkovsky, On the complexity of scheduling an arbitrary system, Soviet Journal of
Computer and System Sciences (1885), no. 5, 46-52.

V. G. Timkovsky, An approzimation for the cycle-shop scheduling problem, Economics and
Mathematical Methods 22 (1986), no. 1, 171-174. (in Russian)

V. G. Timkovsky, Discrete mathematics in the world of machines and parts: introduction
to mathematical modelling for discrete manufacturing problems, Nauka, Moscow, 1992. (in
Russian)

V. G. Timkovsky, A polynomial-time algorithm for the two-machine unit-time release-date
job-shop schedule-length problem, Discrete Appl. Math. 77 (1997), 185-200.

ON SCHEDULING CYCLE SHOPS 33

[T98] V. G. Timkovsky, Is a unit-time job shop not easier than identical parallel machines?, Discr.
Appl. Math. 85 (1998), 149-162.
[T98A] V. G. Timkovsky, Identical parallel machines vs. unit-time shops, preemptions vs. chains and

other offsets in scheduling complezity, Dept. of Computing and Software, McMaster University,
Hamilton, Ontario, 1998.
[U75] J. D. Ullman, NP-complete scheduling problems, J. Comput. System Sci. 10 (1975), 384-393.
[WSV97] M. Y. Wang, S. P. Sethi and S. L. van de Velde, Minimizing makespan in a class of re-entrant
shops, Oper. Res. 45 (1997), 702-712.

tINSTITUTE OF APPLIED COMPUTER SCIENCE AND FORMAL DESCRIPTION METHODS, UNIVERSITY OF
KARLSRUHE, D-76128 KARLSRUHE, GERMANY
FE-mail address: mmi@aifb.uni-karlsruhe.de

*STAR DATA SYSTEMS INC., COMMERCE COURT SoUTH, 30 WELLINGTON ST.W., SuiTE 300, P.O.
Box 283, ToroNTO, ONTARIO M5L 1G1 CANADA
E-mail address: vtimkovs@stardata.ca

