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Abstract

This paper presents an approach for thigtly federated database systems with several
federated schemas that consist of a schema architecture and a functional architecture. The
reference schema architecture has been extended to deal with security aspects not well
solved previously. The functional architecture includes the processors needed to build the
federation and the main modules of the execution architecture.

1  Introduction

The growing need of cooperation among independent entities implies accesses to several
heterogeneous, autonomous and distributed database systems. This cooperation requires interconnecting
the database systems by a communication network, and overlapping a software layer upon the database
management systems (DBMSs) to support their interoperation, sharing their data but preserving their
autonomy. We assume that the technical form of cooperation is interoperabilit y1, supporting integrated
access to the collection of databases. This means that a user is able to ask a single query and receives a
single, consolidated answer as if he2 was working against a single database. We assume the reader is
familiar with the concepts and problems involved in such systems, as explained in [SL90] and [BE96].

We are interested in tightly federated database systems (FDBSs) with several Federated Schemas,
that is, a degree of autonomy intermediate between loosely coupled and full tightly coupled FDBS. For
us, full tightly coupled FDBS means that we have only one federated schema and interdependencies. To
support integrated access, the FDBS must have an adequate architecture which depends on the building
and operation requirements of the federation.

Different schema architectures for FDBSs have been proposed, particularly the 5-level reference
architecture by Sheth and Larson where they discuss issues related to the building phase of a FDBS and
only outline some aspects related to the operation phase. Although this reference architecture is quite
general and separates the issues into different schema levels and specific processors, we believe there
are situations where it has shortcomings. In [SCRR96] we showed three particular issues that do not fill
well within the 5-level architecture by Sheth and Larson: component databases of several federations,
external schemas in user models different from the canonical model and multiple semantics at the
federated schema level.

In this paper we deal with problems related to User Schemas expressed in user models that differ
from the canonical data model (CDM) and access control and security issues. In addition we sketch an
architecture for a FDBS that satisfies the following characteristics:

• Supports both federated and preexisting users.
• The component databases (CDBs) could be relational and object-oriented database systems.

                                                       
1 We use italics for a word or expression for emphasis when it appears for the first time or for reserved words in our
   canonical data model.
2 We use he for “he or she”, his for “his or her”.



• The security model of all CDBs is based in a mandatory access control (MAC), in particular
is a multil evel security model. Multilevel security models of CDBs could be heterogeneous.
For further information see [DJ94], [P94].

• From a security point of view, CDBs can have two types of autonomy (only security control
at federated level or security control at federated and component levels).

• Each Federated Schema supports solely one semantics.
• The federated users could work with FDBS using the canonical data model (CDM) of the

federation or using their own native data models.
• The CDM is object-oriented, in our case is BLOOM ([CSG94]).
• At this stage our FDBS considers read-only queries.

Our architecture distinguishes between the schema architecture and the functional architecture of
the FDBS. The schema architecture includes a set of schemas organized in different levels in order to
solve syntactic and semantic heterogeneities and distribution problems. On the other hand, the functional
architecture is formed by several processors needed both in the construction and operation phases. To
explain our architecture we will focus in the process of building a federation from several CDBs and the
involved steps in the execution of a federated read-only query.
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class shipments [L]

   simple_aggreg_of

      wa_code: wa_codes

      wa_name: strings

      risk: integers [H]

      precaution: strings [H]

      producer: producers
      receiver: receivers

      sh_code: sh_codes

      . . .

      id sh_code

      oc: { L, H}

end_class

class producers [L]

   simple_aggreg_of

      company_name: strings

      pr_code: pr_codes

      . . .

      id pr_code

     oc: { L, H}
end_class

class receivers [L]

   simple_aggreg_of

      company_name: strings

      treatment_type: tr_codes

      rec_code: rec_codes

      . . .

      id rec_code

      oc: { L, H}

end_class

CDB2

Figure 1. Component Databases of the Running Example.

Along this paper we will ill ustrate our schema and functional architectures through an example (see
figure 1) that includes two CDBs. Each CDB belongs to an enterprise that transports industrial wastes
from the industry that produces them (from now called producer1) to the industry/organization
responsible for their final treatment (called receiver). Figure 1 shows the conceptual schemas and
some data items of CDB1 (a relational database located at site 1) and CDB2 (an object-oriented database
placed at site 2). Both CDBs follow a multilevel security model: CDB1 contemplates three levels of data
classification (Confidential (C), Restricted (R) and Public (P)) whereas CDB2 classifies data in two

                                                       
1 In the text, we use the courier font for attributes, classes or relation names of the running example



levels (High (H) and Low (L)). For instance, in CDB1, if a user queries the information available about
the waste with waste_code 060105 the data items that he would obtain (depending on his clearance)
would be [Nitric Acid, 3, Explosive; Keep cool], [Acid, Explosive; Keep cool] or [Liquid]. Also note
that both CDB1 and CDB2 have a shipment with sh_code 0111. In spite of this, they denote different
real world objects and after the federation had been built they must be distinguished as different.

This paper is organized as follows: section 2 presents our 7-level schema architecture and the
processors needed to obtain it during the construction phase. In section 3 we explain the functional
architecture, that includes different modules, involved in the execution phase of a FDBS. Finally, in
section 4 we draw some conclusions and future work.

2  The construction architecture

Building a system that supports integrated access is not an easy task. Before a FDBS can be
operating, we have to overcome different problems related to syntactical and semantic heterogeneities
and distribution problems. For these reasons, the FDBS must have an adequate schema architecture and
a convenient data model as CDM. In this section we describe our schema architecture and the
processors involved to obtain it.

2.1 Schema architecture

Figure 2 shows our 7-level schema architecture and the processors used to obtain it:
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Figure 2. Construction Architecture

The different schemas are:

1. Native Schema: is the Conceptual Schema of a CDB expressed in its native data model.
2. Component Schema: is the conversion of a Native Schema into BLOOM (our CDM).
3. Export Schema: represents the part of a Component Schema that is available to a class of

federated users.
4. Federated Schema: is the integration of multiple Export Schemas, each Federated Schema

supports one semantics.



5. Authorization Schema: represents a subset of a Federated Schema which is classified at one
federated security level.

6. Translated Schema: defines a schema for a user and/or application or a class of
users/applications expressed in the CDM.

7. User Schema: is the conversion of a Translated Schema into the user native data model.

We have added two additional schema levels to the 5-level architecture by Sheth and Larson: the
Authorization and Translated Schema levels. The Authorization Schema level has been added to deal
with some security issues that have not explicitly been treated in the reference architecture and remain
hidden into the External and Export Schemas. Given we use multilevel security model, each
Authorization Schema determines the set of data that a user, according to his clearance,  can access.
From each Authorization Schema we derive several Translated Schemas and from them we derive User
Schemas. In this way we can refuse attempts of non authorized access before a query was submitted to
the involved CDBs.

On the other hand, the Translated Schema level (taken from [SCRR96]) has been included to
separate two issues related to the process of derivation of User Schemas from Federated Schemas in the
5-level architecture. This process consists in fact of two transformations: change in model and change in
the contents, corresponding to two processor types: Derivation Processor and Filtering Processor in
the terminology of Sheth and Larson. The separation of issues into schema levels and specific
processors is not complete in the reference architecture. We present a different architecture, in which the
External Schema level is divided into two. The upper level schema of the federated user expressed in his
own model is called User Schema; the translation of this User Schema to the CDM is called Translated
Schema. The Translated Schema is derived from an Authorization Schema by a Derivation Processor,
while the passage from the Translated Schema to the User Schema is done by a Transforming
Processor. In this way, the issues and the processors are clearly separated: only one change is made at
each step.

2.2 Processors

We obtain the different schema levels through a bottom-up process carried out by the following
processors: Conversion Processor, Negotiation Processor, Integration Processor, Security Processor,
Derivation Processor and Transforming Processor (see figure 2).

Firstly, when a federation is formed, it is necessary to use a Conversion Processor to convert Native
Schemas into Component Schemas expressed in the CDM of the federation. This conversion includes
the semantic enrichment of the Native Schemas and the translation of data structures. At this stage we
maintain the data classification which depends on native security levels. The objective of the Conversion
Processor is to resolve syntactic heterogeneities and corresponds to the Transforming Processor of
Sheth and Larson. In figure 2 we assume that the CDBs do not use the CDM as their native data model.
If this was the case, it would be unnecessary to define the Component Schema.

Once the Component Schemas have been obtained, a negotiation process is initiated in order to reach
an agreement about the portion of data that each CDB exports to the federation, and which part of these
data the CDB allows to be read. The negotiation is carried out by the federated and local administrators
with the aid of the Negotiation Processor which gives support to the association autonomy, giving as
final result a collection of Export Schemas. For example, in figure 2, two Export Schemas have been
derived from Component Schema K (belonging to CDBK), whereas just one Export Schema has been
derived from Component Schema 1.

From Export Schemas of different CDBs one or more Federated Schemas are constructed. This
process is performed by an Integration Processor that suggests how integrate the Export Schemas
helping to solve semantic heterogeneities and providing distribution transparency. The Integration
Processor is placed in the same level that the Constructing Processor in the reference architecture but,
whereas the Constructing Processor only gives support to the resolution of the problems related to
semantic heterogeneity of data, the Integration Processor also helps to solve semantic heterogeneities



among the set of classification levels (number of levels and their semantics) that each native multilevel
security model has.

Thus, taking the CDBs in figure 1 we obtain the Federated Schema shown in figure 3 in a graphical
form and in the BLOOM definition language. The class customers_db2 (drawn as a doted line oval)
has been created during the integration process since this process has detected that the classes
producers and receivers in CDB2 are subconcepts of the class customers_db1. In the same way,
the class shipments in CDB2 (remind it holds attributes related to the classes waste_db1 and
shipments_db1) has been transformed giving rise to the new class wastes_db2 and the modified
class shipments_db2 (drawn as a doted and dashed line oval respectively). We do not show classes
such producers_db2 or receivers_db2 because this is a minimal Federated Schema; for further
information about the process see [GCS96].
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class f_producers [U]

   alt_gen_of producers_db1,producers_db2 [by db_discr]

   alt_spec_of f_customers

   simple_aggreg_of

      db_discr: { db1, db2} [inherited]

      f_company_name: strings [inherited]

      f_address: strings [inherited]

      f_treatment_type: tr_codes [inherited]

      f_customer_type: strings [inherited]

      f_prod_code: pr_codes [inherited]

      . . .

      id f_prod_code, db_discr

      oc: { U, C, S}
end_class

class f_receivers [U]
   alt_gen_of receivers_db1,receivers_db2 [by db_discr]
   alt_spec_of f_customers

   simple_aggreg_of

      db_discr: { db1, db2} [inherited]

      f_company_name: strings [inherited]

      f_address: strings [inherited]

      f_treatment_type: tr_codes [inherited]

      f_customer_type: strings [inherited]

      f_rec_code: rec_codes [inherited]

     . . .

      id f_rec_code, db_discr

      oc: { U, C, S}

end_class

class f_customers [U]

   alt_gen_of customers_db1,customers_db2 [by db_discr]

   alt_gen_of f_producers,f_receivers [by f_customer_type]

   simple_aggreg_of

      db_discr: { db1, db2}

      f_company_name: strings

      f_address: strings

      f_customer_type: strings

      f_treatment_type: tr_codes

      f_cu_code: cu_codes

      . . .
      id f_cu_code, db_discr

     oc: { U, C, S}

end_class

class f_shipments [U]

  alt_gen_of f_shipments_db1,f_shipments_db2 [by db_discr]

  simple_aggreg_of

     db_discr:{ db1, db2}

     f_sh_code: sh_codes

     f_waste: f_wastes

     f_producer: f_producers

     f_receiver: f_receivers

     . . .

     id f_sh_code, db_discr

     oc: { U, C, S}

end_class

class f_wastes [U]

  alt_gen_of f_wastes_db1,f_wastes_db2 [by db_discr]

  simple_aggreg_of

     db_discr: {db1, db2}

     f_wa_code: wa_codes

     f_name: strings

     f_risk: integers [S]

     f_precautions: strings [C]

     . . .

     id f_wa_code, db_discr

     oc: { U, C, S}

end_class

Figure 3. Federated Schema



Given that each CDB has its own multilevel security model it will be necessary to analyze the
correspondences among the classification of a specific CDB and the classification in the rest of CDBs in
order to establish the degree of similarity among the distinct classification levels of the CDBs.  In this
manner, the set of security classification levels needed at the federation level is obtained ([P93]). In
addition, the equivalence between security levels of the federation and the security levels of each CDB is
also obtained and stored in the Dictionary.

In our example, CDB1 and CDB2 have three and two classification levels respectively. After
Negotiation and Integration Processors the set of classification levels of the federation is established as
Secret (S), Confidential (C) and Unclassified (U), with the equivalence between CDBs levels and
federation levels shown in table 1.

Classification levels

CDB1 C R P

CDB2 H L

Federation S C U

Table 1. Classification Levels Equivalence

It is important to note that the process of obtaining the Federated and Export Schemas is not a linear
process; it will be necessary that the Integration and Negotiation Processors collaborate in an iterative
process where the federated and local administrators participate [OS96]. In figure 2, we have M
Federated Schemas (for sake of simplicity we have only shown Federated Schema 1 and Federated
Schema M) and, for instance, Federated Schema M has been obtained through the integration of Export
Schema K2 and Export Schema N.

After obtaining the Federated Schemas, the Security Processor separates each Federated Schema
(where we have data structures classified in different levels) in several Authorization Schemas (one per
level of data classification). Therefore a specific Authorization Schema contains the portion of available
data to an authorized federated user (or group of federated users) to access data at this level. Figure 2
shows L security levels of data classification and the corresponding Authorization Schemas (for each
Federated Schema we will have L Authorization Schemas).

Going back to the running example, given we have data structures classified in three levels, we will
obtain three Authorization Schemas from the Federated Schema. Figure 4 only draws the federated class
f_wastes at levels Unclassified, Confidential and Secret respectively, since the remaining classes do
not differ from those that have appeared in the Federated Schema. Users authorized at level Secret could
query the attribute f_risk whereas users authorized at levels Confidential  and Unclassified could not
access it due to the fact that f_risk has been classified as Secret. Similarly, the attribute
f_precautions could not be consulted at Unclassified level because it has been tagged as
Confidential.

class a_U_f_wastes [U]

  alt_gen_of f_wastes_db1,f_wastes_db2 [by db_discr]

  simple_aggreg_of

     db_discr: { db1, db2}

     f_wa_code: wa_codes

     f_name: strings

     . . .

     id f_wa_code, db_discr

     oc: { U, C, S}

end_class

class a_C_f_wastes [U]

  alt_gen_of f_wastes_db1,f_wastes_db2 [by db_discr]

  simple_aggreg_of

     db_discr: { db1, db2}

     f_wa_code: wa_codes

     f_name: strings

     f_precautions: strings [C]

     . . .

     id f_wa_code, db_discr

     oc: { U, C, S}

end_class

class a_S_f_wastes [U]

  alt_gen_of f_wastes_db1,f_wastes_db2 [by db_discr]

  simple_aggreg_of

     db_discr: { db1, db2}

     f_wa_code: wa_codes

     f_name: strings

     f_risk: integers [S]

     f_precautions: strings [C]

     . . .

     id f_wa_code, db_discr

     oc: { U, C, S}

end_class

   Authorization Schema at level U      Authorization Schema at level C     Authorization Schema at level S

Figure 4. Authorization Schemas

The Derivation Processor derives from each Authorization Schema different Translated Schemas in
order to specify the part of information in an Authorization Schema that it is relevant to a group of



federated users and/or applications. The main reasons for the use of Translated Schemas are to provide
customization and access control. It also helps to pass from External Schemas (expressed in the user
data model) to Federated Schema. Figure 2 exhibits I potential user views which are derived from each
possible Authorization Schema.

Finally, each Translated Schema can be potentially translated from the CDM of the federation to the
native model of a determined federated user (or group of federated users) giving rise to several User
Schemas. If a federated user is trained in the CDM, then his User Schema would be directly his
corresponding Translated Schema. Figure 2 shows J different user data models and  points out the two
situations discussed above: users that work using their own data model and users that are famili ar with
the CDM chosen for the federation. For example, part of the users that finally work against Federated
Schema 1 use their respective data models (numerated from 1 to J-1) that differ from the CDM (denoted
by user data model J). On the other hand, federated users that work with Federated Schema M are
trained in the CDM and for this reason their User Schemas and Translated Schemas have been
collapsed into one schema. The responsible processor to carry out the passage between Translation and
User Schema is a Transforming Processor.

Figure 5 only shows one possible Translated Schema at level Secret and its corresponding User
Schema expressed in relational model for our example. Due to customization purposes, the class
t_a_S_f_shipments has been created by projecting the class a_S_f_shipments in the
Authorization Schema at level Secret, while the class t_a_S_f_wastes has not changed from those
described in figure 4.

class t_a_S_f_wastes [U]

alt_gen_of f_wastes_db1,f_wastes_db2 [bydb_discr]
simple_aggreg_of

     db_discr: { db1, db2}
     f_wa_code: wa_codes
     f_name: strings
     f_risk: integers [S]
     f_precautions: strings [C]
     . . .

id f_wa_code, db_discr
oc: { U, C, S}

end_class

class t_a_S_f_shipments [U]

alt_gen_of f_shipments_db1,f_shipments_db2 [by db_discr]
simple_aggreg_of

     db_discr:{ db1, db2}
     f_sh_code: sh_codes
     f_waste: f_wastes
     . . .

id f_sh_code, db_discr

oc: { U, C, S}
end_class

shipment [U] sh_code waste_code db_discr TC

waste [U] waste_code waste_name risk [S] precautions [C] db_discr TC

Figure 5. Translated and User Schemas at Level S

3  The execution architecture

When the federation has already been buil t, a different architecture, called the execution
architecture, is in place. Figure 6 depicts this architecture at a functional level, showing all functional
software modules and the flow of data from the original query through modules and DBMSs up to the
final result. This process may be thought of as a “compile and go” approach, or better as consisting of
three steps:

1. Preparation of the query (“compilation”) by the Query Manager (QM) and the Security Manager
(SM).

2. Execution of the subqueries (“go”) under control of the Transaction Manager (XM).
3. Production of the final result by the QM. The flow of control and the assignment of modules to

sites in the distributed system are not shown in the figure and will be discussed later.



3.1 Data flow

The flow of data starts with a query posed by a federal user, in his user site, called Federated Query
and shown in the upper left part of figure 6. We assume that the identification and authentication of the
user is handled separately by a different process not part of our architecture; issues related to this point
will be covered later. The query is first processed by a Security Controller, which makes sure that the
query is in accordance with the User Schema of the individual user (USmlij ), and therefore authorized at
his security level l.

If the security control is passed, the query, authorized at security level l, is processed by the Query
Transformer, producing an equivalent query expressed in terms of Federated Schema FSm and tagged
with security level l. Note that this process is a direct transformation from the User Schema level to the
Federated Schema level, skipping the levels of Translated Schemas and Authorization Schemas; this
direct transformation is possible because mappings between successive levels of the construction
architecture (US - TS, TS - AS and AS - FS) have been combined into direct mapping US - FS and
stored in the Directory for use by the Query Transformer. The process of the query is thus expedited.

The query, now in BLOOM, expressed in terms of the Federated Schema FSm and tagged with
security level l, passes to the Query Decomposer. This processor, making use of the Federated Schema
- Component Schemas mappings stored in the Directory, decomposes the query into a number of
subqueries, each subquery accessing just one of the CDBs, and expressed in terms of a single
Component Schema. We do not exclude that different subqueries of the same query access the same
database. Note again that one level, the level of Export Schemas, is skipped, by combining successive
mappings into direct mappings, for the sake of improved performance.
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Figure 6. Execution Architecture

The subqueries produced by the Query Decomposer are not isolated: they are connected by a tree.
Each node in this Query Execution Tree corresponds to one operation needed to execute the query:
leaves for accesses to component databases, the root for producing the final, consolidated result, and
intermediate nodes for other operations such as conversions between models and unions and joins of
different kinds. The root is generally a result transformation operation, to convert the result into the
model and schema of the user, and has a single child node, to perform the result consolidation from
partial (sub)results. The form of the intermediate nodes of the tree depends on the query and on the



CDBs, and on the extensional relationships among them, if any; the study of different forms of the tree
is out of the scope of this paper. In the simplest case -other than the trivial case accessing just one CDB-
there are no other intermediate nodes between the leaves and the result consolidation node.

Each node is assigned to a site, and such an assignment is the result of a federal (“global”)
optimization performed by this Query Decomposer using data stored in the Dictionary. Some nodes will
be allowed to proceed in parallel, while others may have to wait for the result of other operations, but
this topic corresponds to control flow, covered in 3.2. In the simplest case no optimization is possible,
and all leaves proceed in parallel.

Each subquery, in BLOOM, expressed in terms of a Component Schema and always tagged with
security level l, is processed by a Query Translator, to yield an equivalent subquery, now in the native
data model of the CDB, expressed in terms of the corresponding Native Schema and tagged with
(federal) security level l. The Query Execution Tree is updated to have these new subqueries as leaves
and to incorporate operations to translate between BLOOM and the native models.

The last processor of this first or “compilation” step is the Level Security Translator. A subquery
enters this processor tagged with a federal security level l, and must leave with the tag in the component
security level of its CDB that corresponds to that federal level, in accordance with what was agreed
during the negotiation and integration phases, as stored in the Dictionary in the form of mappings
between federal security levels and component security levels. The leaves of the Query Execution Tree
become tagged with these component security levels.

In the case of the example, assume a user at site 1 with security level Secret poses the following
query in terms of the User Schema of figure 5:

SELECT *
FROM shipments, wastes
WHERE shipments.waste_code = wastes.waste_code

The resulting Query Execution Tree (data flow goes bottom-up) is shown in figure 7:

           Result

     Transformation

          Result  Consolidation

   (discriminated generalization)

    Conversion from

 relational to BLOOM

  Relational Query    BLOOM  Query

   Subresult  shipping

   from site 2 to site 1

BLOOM/Federated Schema

BLOOM/Component Schema

Component Schema=Native Schema
     of CDB2

Relational/Native Schema
                           of CDB1

Relational Model/User Schema

at site 1

at site 1

at site 1

at site 1 at site 2

Security Level C Security Level H

CDB2CDB1

DBMS1 DBMS2

Figure 7. Query Execution Tree

The Query Execution Tree is now ready for execution, under control of the XM. This functional
module (as well as the QM and the SM) is physically replicated. The previous step has been managed
by the QM and  SM of the user site where the original Federated Query was posed. The Query



Execution Tree flows from the QM to the XM at that site, where it is decomposed into subtrees, and
each subtree is sent to the replica of the XM at the site assigned to its root.

The order in which the operations in the tree are executed by the XM is covered in 3.2, when
discussing the control flow. Each leave becomes eventually ready to start, i.e. the subquery is to be
passed to the DBMS for execution, and two possibili ties may exist, from the security point of view. If
the DBMS trusts not only the identification and authentication mechanism, but the whole federal system
(software modules, directory, communications), then no further security control is needed and the
subquery passes to the DBMS for processing. On the contrary, if the DBMS wants to perform its own
security control of the individual user, it looks up at its security tables to ensure that the (sub)query is
authorized for the user, before processing it. This is done by a Control Security, shown in figure 6 for
CDBK. This means that in the first case the DBMS does not know the identity of the federal user, and
the (sub)query appears to it as from a generic “ federal user” of the corresponding Federated Schema
FSm (at a specific level), while in the second case the identity of the federal user has been preserved
during the whole preparation step to be passed to the DBMS at this point.

The DBMS processes the subquery, which it considers as an ordinary query, and produces a result.
This result, from the federal system point of view, is a subresult to be combined with others to produce
the final result. Let us now briefly explain this third step of the process of the query.

Each subresult proceeds up the Query Execution Tree from the leave to its parent node, that is, is
sent from the site assigned to the leave to the site assigned to its parent, unless both are the same site. In
the simplest case, (sub)results are directly sent from the XM -at the site of the DBMS accessed- to the
XM at the user site, and then to the QM, specifically to the Subresult Translator module (see figure 6)
for conversion to BLOOM using the mappings between native and component schemas. In complex
cases, the flow of data, flow of (sub)results in this third step, proceeds up the tree through intermediate
nodes: each operation receives its operand(s) from its child node(s) and sends its result from its site to
the site assigned to its parent node, as needed, until eventually they leave the XM and reach the
Subresult Translator.

Output from the Subresult Translator is passed to the Result Consolidator, to produce the final
result in BLOOM, and Component-Federated Schemas mappings are used. The discriminated union
operator [GCS96] may be used to consolidate subresults without lose of information. Finally, the Result
Transformer module, using Federated - User Schema mappings, performs the operation at the root of
the tree and yields the final result in the user model, expressed in terms of his User Schema, and sends it
to him.

sh_code waste_code db_discr waste_name risk precautions TC
0111 060101 DB2 Sulphuric Acid 3 Neutralize

with a base
S

0111 060105 DB1 Nitric Acid 3 Explosive;
keep cool

S

Figure 8. Query Result at Security Level S

sh_code waste_code db_discr waste_name
0111 060101 DB2 Liquid
0111 060105 DB1 Liquid

Figure 9. Query Result at Security Level U

Figure 8 shows the result of the query above whereas figure 9 shows the result of the same query
posed by a user with security level U.



3.2 Control flow and site assignments

The QM is the main module in charge of managing any query, apart from the XM. Before being
controlled by the QM, a query is handled by a User Interface module, which interacts with users and in
case what the user entered is a federal query, passes it to the QM. It is this QM which manages the first
and third steps of the flow of the query explained in 3.1. Particularly, the QM calls the
identification/authentication module (not shown in figure 6), the SM -specifically its submodules
Security Controller and Level Security Translator-, and its own submodules Query Transformer, Query
Decomposer, Query Translator, Subresult Translator, Result Consolidator and Result Transformer. It
also calls the XM to execute the Query Execution Tree. These calls are not shown in figure 6, in order
to keep it not too complex.

According to the terminology of [S78], in a distributed system supporting accesses to databases, a
site may or may not be an access point, and may or may not be a storage point. In our case, a site
accepting federal queries is an access point, while component databases are located in storage points.
The QM must be distributed, with a replica of it in every access point, since federal queries are
managed at the user site, as explained above.

The XM is responsible for executing the Query Execution Tree prepared by the QM, and for
returning (sub)results to the QM. It must be distributed, with a replica of it at least in every access
point, since it is called locally from the QM at the user site. In addition, every storage point should have
a replica of the XM to manage leaves of the Query Execution Tree and their (sub)results, but it is
possible that some sites retain such a degree of autonomy that they do not allow the placement of
modules of the federal system. In such a case, a replica of the XM at another site will be in charge of
managing operations and results of the site, and what we will call “ the XM at the CDB site” will not
physically be at the site of the CDB.

For a given query, the XM at the user site prepares subtrees of the Query Execution Tree and calls
the XM of the site assigned to the root of each subtree, sending it a copy of the subtree. These XMs
receive their subtrees and manage their execution, according to the form of the each subtree. For a given
subtree, and at some specific point in time, some of its subtrees may be already completed, some
executing in parallel, and some waiting for intermediate results as input; the XM receives partial results
and dispatches waiting subtrees as needed, until all i ts subtrees have finished and passes control to the
XM of the site of its parent node, sending its (sub)result to it. The overall result may not correspond to
an ACID transaction (because of a possible Non repeatable Read interference), but this topic is outside
the scope of this paper.

If the form of the Query Execution Tree is the simplest one, then the replicas of the XM manage only
leaves, corresponding to accesses to the CDBs. All these operations proceed in parallel, and their
(sub)results are sent to the QM at the user site, specifically to the Subresult Translator.

4  Conclusions and future work

We have shown a 7-level schema architecture and a functional architecture for tightly federated
database systems. With respect to our schema architecture, we have presented the Authorization
Schema level and have pointed out how this level could contribute to develop a solution to deal with
multilevel security aspects. Our work is only the beginning of more research that needs to be done in
order to treat security and access control in the context of federated database systems. We are currently
working on how the analysis and resolution of conflicts among different classification levels in several
CDBs could be incorporated into the integration process and how the Integration Processor must
collaborate with the Negotiation Processor to obtain both the Export and Federated Schemas. On the
other hand, we have sketched the main modules of the execution architecture. Our immediate work
along this line includes the study of different forms of the query execution tree and a decomposition
strategy of federated queries into several subqueries.
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