
RAIRO
INFORMATIQUE THÉORIQUE

GEORG GATI

On schemata and L systems for parallel algorithms

RAIRO – Informatique théorique, tome 13, no 2 (1979), p. 155-184.

<http://www.numdam.org/item?id=ITA_1979__13_2_155_0>

© AFCET, 1979, tous droits réservés.

L’accès aux archives de la revue « RAIRO – Informatique théorique » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.

org/legal.php). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme

Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1979__13_2_155_0
http://www.numdam.org/legal.php
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/

R.A.I.R.O. Informatique théorique/Theoretical Informaties
(vol. 13, n° 2, 1979, p. 155 à 184)

ON S C H E M A T A

A N D L S Y S T E M S FOR PARALLEL A L G O R I T H M S (*) (
1
)

by Georg GATI (2)

Communiqué par J. BERSTEL

Abstract. — The parallel program schemata of Karp and Miller are considérée for unbounded
parallelism and their main decidability result is extended to this case. The complexity of these
schemata is investigated and a scheduling algorithm is presented whose sequential time complexity is
polynomial. The scheduling algorithm is applied to a schema representing the Strassen- Winograd
algorithm for multiplication of 2x2 matrices, where itfinds a f as ter computation than the "obvious"
one. Finally it is shown in two examples — matrix multiplication and the knapsack problem — that L
Systems can characterize essential features of the control and data structure of algorithms. This
observation gives rise to the concept of parallel program schema over a 0 L System. By réduction
to the membership problem for 0 L Systems, questions like "are certain opérations executed
simultaneously?" and "can certain data conjlicts avise?" can be decided for parallel algorithms
represented by this class of schemata.

Résumé. — On considère les schémas de programmes parallèles de Karp et Miller pour parallélisme
non borné et étend leur résultat principal sur la décidabilité en ce cas. La complexité des calculs
parallèles de ces schémas est examinée, et on présente un algorithme de « scheduling » de complexité
{séquentielle) du temps polynomiale. L'algorithme de « scheduling » est appliqué à un schéma
représentant l'algorithme de Strassen- Winograd pour la multiplication de matrices 2 x 2 où il trouve un
calcul plus rapide que le calcul « évident ». Enfin on démontre en deux exemples, la multiplication des
matrices et le problème de « knapsack », que les L-langages peuvent caractériser les propriétés
essentielles de la structure du contrôle et des données des algorithmes. Cette observation donne lieu à un
concept formel de schéma d'un programme parallèle sur un OL-langage. Par réduction au problème du
« membership » pour 0 L-langages on peut décider des questions telles que « est-ce que certaines
opérations sont exécutées simultanément ? » et « certains conflits de données peuvent-ils se
produire? » pour les algorithmes parallèles représentés par cette classe de schémas.

0. INTRODUCTION

The concept of parallelism is a central thème in the theory of algorithms and
the theory of programming. This work is an attempt to treat parallelism in a
formai apparatus that also permits the application of complexity considérations

(*) Reçu mai 1978 et dans sa version définitive février 1979.
(1) Part of the results of this work has been announced in [7].
(2) Institut für Informatik, Eidgenössische Technische Hochschule Zurich, CH-8092 Zurich,

Schweiz.

R.A.I.R.O. Informatique théorique /Theoretical Informaties, 0399-0540/1979/184/$ 4.00
© Bordas-Dunod

156 G. GATI

and of results of the theory of "parallel" formai languages, namely of the theory
of L Systems. Because of the large number of existing formai Systems, we do not
propose a new one but base our investigations on the parallel program schemata
of Karp and Miller (9]. The ad vances in hardware that have taken place in the
meantime make the design of computing machines of very high parallelism more
and more promising; therefore it is deemed reasonable to extend the parallel
program schemata to unbounded parallelism. From this the question arises how
the main decidability resuit for parallel program schemata concerning the
determinacy of an important class of schemata can be extended to the case of
unbounded parallelism. This is possible by adding two additional
restrictions — local finiteness and compactness — to the restrictions already to be
found in [9]. Nevertheless the result still remains a generalization of the one for
bounded schemata. Also for the time being it seems that these restrictions will be
satisfied in any highly parallel computing machine; another révolution in
computer architecture could, of course, obsolete these restricions, too. It should
be noted that we have not generalized the other decidability results for parallel
program schemata to unbounded parallelism.

As we feel that a gênerai formalism for unbounded parallelism is only
satisfactory if it also embraces the viewpoint of complexity, we define a
complexity measure for parallel computations (3). We present a simple
algorithm based on the critical path idea which finds a fastest computation of a
schema whose controi satisfies certain standard assumptions of scheduling
theory, e. g. no cycles are allowed in the precedence graph because this would
make scheduling input-dependent. The algorithm is executed on a schema
representing Winograd's version [1] of Strassen's algorithm for multiplying
2 x 2 matrices. Because the controi structure of this schema is not trivial, the
parallel exécution time of a "naively" found parallel computation is longer by
the exécution time of two parallel additions than the parallel exécution time of
the parallel computation found by the algorithm. The (sequential) complexity of
the algorithm itself can be considered to be cubic. The algorithm is able to
operate on an unbounded number of opérations.

Due to an idea of Prof. E. Engeler a possible connection between parallel
algorithms and "parallel formai languages", namely L Systems, is established in
two examples, matrix multiplication and the knapsack problem. DOL Systems

(3) Remark added after completion of manuscript: In R. A. DE MILLO, K. VAIRAVAN and
E. SYCARA-CYRANSKI, A Study of Schedules as Models of Synchronous Parallel Computation,
J. Assoc. Comput. Mach., Vol. 24, No. 4, 1977, pp. 544-565, a formai model of parallelism is
combined with timing considérations from scheduling theory in another way. The model used is
related to, but different from the schemata of Karp and Miller.

R.A.I.R.O. Informatique théorique/Theoretical Informaties

PARALLEL ALGORITHMS 157

are explicitly constructed which describe essential features of the parallel
algorithms; specifically these are the classes of simultaneously executed
opérations (which are a main part of the control structure of a parallel algorithm)
and the classes of memory locations into which intermediate results of
opérations are stored simultaneously (which are an essential part of the data and
conflict structure of a parallel algorithm).

Finally the above connection between parallel program schemata and L
systems is formalized. Results known for the membership problem for certain
classes of L systems can be applied to classes of schemata over L systems in
order to décide, whether there exists a computation of the schema in which
certain opérations are executed simultaneously or in which results are stored
into certain memory locations simultaneously.

1. SCHEMATA FOR UNBOUNDED PARALLELISM

In this section, we propose to extend the parallel program schemata of Karp
and Miller [9] to an unbounded number of (parallel) opérations. This would
présume a Computing facility with unlimited parallel computing resources. The
motivation for this assumption is the growing interest in high parallelism. Recent
work in this field includes Buchberger [3] and Buchberger and Fegerl [4].
A convincing theoretical model of a highly parallel computing machine is
proposed in [3] and the tradeoff in exécution performance between sequential
exécution on a large computer and highly parallel exécution on microprocessors
is determined for several algorithms of theoretical and practical importance.
Aspects of the hardware implementation of the model proposed in [3] are
discussed in [4]. Other inspiring research that provides motivation of this work
includes Albrecht [2], Schwenkel [14], Sullivan and Bashkow [15] and Sullivan,
Bashkow and Klappholz [16].

It is therefore of a certain interest whether the concept of unbounded
parallelism can be formulated in a mathematical framework and under which
restrictions one can extend results on bounded parallelism to unbounded
parallelism.

We choose the parallel program schemata of Karp and Miller because they are
very gênerai (4) and seem to be well suited for modelling algorithms with
unbounded parallelism. The adaptation of parallel program schemata to

(4) Note added by référée : This was proven in J. L. PETERSONandT. H. BREDT,^4 Comparison of
Models of Parallel Computation,in Information Processing, Vol. 74 (I.F.I.P. Congress, Stockholm,
1974), J. ROSENFELD, Ed., pp. 466-470, North-Holland, American Elsevier, Amsterdam, 1974.

vol. 13, n° 2, 1979

158 G. GATI

unbounded parallelism is simple : in a parallel program schema the number of
opérations is finite and bounded; in an unbounded schema we permit an
unbounded number of opérations to be executed by indexing the opérations over
the natural numbers. Thus in our schemata an unbounded number of different
opérations can be executed in parallel. We call such a schema an unbounded
Karp and Miller schema. We now give the formai définition:

DÉFINITION 1.1 : An unbounded Karp and Miller schema (short: UKMS) is a
quintuple S = (Op, T, D, R, H) where Op = {o(i) | ieN} is a set of opérations
indexed over the set of natural numbers N. To each opération o(i)we assign an
initiation symbolo{i) and H(i) termination symbols o1(i)i . . . , oH^(i) where
H : N -• N+ is a map. We write o(i) instead of Oj(i), l^j^H(i), whenever the
value oîj is irrelevant. Call F(N) c 2N the set of finite subsets of N. Then D, R:
N —*• F (N) are mappings with the following meanings : It is assumed that the z-th
opération o(i) takes its operands from the memory locations whose addresses
are in D(i) in the moment of its initiation, which is signalized by the initiation
symbol o(i), and stores its results into the memory locations of R(i) in the
moment of its termination, which is signalized by a termination symbol Oj(i).
Also a décision with H(i) possible outcomes is made in the moment of its
termination; while most programming languages have explicit décision
constructs, in UKMS the décisions are merged with the decision-free opérations.
We call O: = O u O the alphabet of the schema S where 0 : = {o(i)\ieN}is the
set of initiation symbols and Ö. - ~ { o{i) | i e N } is the set of termination symbols.
The control T—(Q, q0, t) consists of a (possibly infinité) set of states Q, an initial
state q0 e Q and a partial transition function t : Q x O -• Q which is total on
QxO. We also write t for the natural extension of t to Q x O*.

In a schema the opérations are uninterpreted. In order to be able to express
concrete computations we have to specify all the data on which the opérations
can operate, their effects on the data and the décisions. This is done by
interprétations; for the définition of this notion we need the following notation:
let U be any universe, i. e. the set of ail possible contents of the memory
locations; a value assignment to the entire memory is then an element of UN, the
countably infinité cartesian product of U with itself; now let M <= N be a subset
of N; then UM dénotes the | M|-fold cartesian product of U with itself "the
memory locations of M being born in mind". Thus UM dénotes the set of all
possible assignments to the memory locations of M.

DÉFINITION 1.2: An interprétation I = {U, u0, F, G)of a UKMS S consists of a
universe U, an initial contents of the memory u0 e ÜN and two families F and G of
maps; hère F = (F;)ieN,where Ft: UD®-> UR{Î) spécifies the change in memory

R.A.I.R.O. Informatique théorique/Theoretical Informaties

PARALLEL ALGORITHMS 159

contents caused by the ï-th opération o (i), and G = {Gi)ieN, where
Gt: UD®^>{1, ...,H(i)} spécifies the outcome of the décision associated

with o(f); it is clear that F(must not change the contents of memory locations
outside R{i). We write I(S) for the class of all interprétations of a schema S.

DÉFINITION 1.3 : Let US call Z (/) : = Q x UN x ((UDii)*)ieNthe s e t oïstates of the
UKMS S under the interprétation ƒ = ([ƒ, uö, F, G); let aio; = (qo, «o, Mfejv)-
where X dénotes the null string, be the start state under I. It is then clear how to
define a mapping: Z(I)xÖ^Z(ï) with the help of F, u0 and t, that is the
transition mapping for Z(I). We refrain from giving its spécification explicitly
here because it is analogous to the one in [9, def. 1.3, 1.4, 1.5].

The next définition describes the éléments of the set C(S, I)czO*, the set of
computations of a schema S under the interprétation I. A computation of a
schema S is a string of initiation and termination symbols of opérations which
satisfies certain natural conditions. The main feature of a parallel schema is that
each set C{S, I) consists of more than one computation, i.e. for a given input
there are several (more or less parallel) exécutions of the program.
One possibility is two exécute a program strictly sequentially, e.g.
o (1) o (1) o (2) o (2) o (3) o (3) o (1) o (1), . . . , i. e. two or more opérations are
never initiated simultaneously, but, before the next opération is initiated, all
opérations having been initiated beforehand must have been terminated. An

example for a parallel computation is o(1)o(2)o(3)o(l)o(2)o(3)o(l)o(1) . . .
where opérations o(l), o (2) and o (3) are executed simultaneously.

DÉFINITION 1.4: The set C{S, I) of computations of the schema S under the
interprétation / consists of ail strings xeÔ: = 0* u 0e0, where Oœ is the set of
infinité strings over 0, that satisfy the following conditions (we write(ocx) for
"oex is defined" and y^x for "there is a z in Ô with yz = x"):

(1)

(2)

(3) (V s e O) (V y ^ x) ((3 yz S x) (ao-yzs) => (3 tv e O*) {yws S x)).

The conditions below on computations xeC{S,I) are conséquences of
définitions 1.3 and 1.4:

(4) (VieN) (Vy^x) (| {o(i) ey} \ > \ {

(5) (VïeAT) (Vr, M, t>, tueO*). (Vteó)

) t ^ x A (Vz'eiV)

vol. 13, n° 2, 1979

160 G. GATI

(6) Let y', j / ' e O * , and let y = y'o(i) y"Oj(i) be a prefix ofx, where the
indicated occurrence of o(i) in y is the initiation symbol corresponding to the
indicated occurrence of the termination symbol Oj(i) in y. Dénote by
u(yf, i)e UD{i) the contents ofthememory locations in D(i)after exécution of y'.
Then Gi(u(y', i))=j.

Let us comment on the meanings of the conditions:
(1) In a computation, only those opérations o (i) may be initiated in the state q

for which t(q, o(i)) is defined. This permits one to relate schemata to spécifie
algorithms.

(2) A finite computation must halt in a state in which no opération can be
initiated.

(3) This condition is equivalent to the finite delay property [9, def. 1.6 (iii)]
for persistent UKMS, cf. définition 1.9, however, it is stronger than the finite
delay property for gênerai UKMS. It assures the following properties:

(a) Between the initiation and the termination of an opération, only a finite
number of other opérations can be initiated or terminated.

(b) Once an opération is ready to be initiated, it will be initiated after the
initiation or termination of at most a finite number of other opérations.

(4) No opération must be terminated before it is initiated.

(5) If the same opération is initiated twice on the same data, then the outcomes
of the décisions associated with the corresponding terminations must be equal.

(6) For different interprétations / and f of S it might be the case that
x - zoj{i) u e C {S, I) and x' = zor(i) u' e C {S, ƒ') while x$C(S, V) and
x'$C(S, I) wi th ;V/ , zeO* and u, u'eÔ. As the state t(qQ, zoj(i)) might be
different from the state t{q0, zoj! (i)) the prefix z might be continued differently
undér différent interprétations.

We introducé the sets
P{S, I):={y^x\xeC(S, ƒ)},

C(S):= [j C(S,I) and P(S):= [j P(S,l).
IeI(S) IeI{S)

The sets P(S, I) and P(S) consist of préfixes of computations.

lïxeP(S, I) and | x | ̂ k then we write xk for the /c-th symbol in x and ^x for
xx . . . xfc. We write Q(x) for the séquence of value assignments (u ^ , ^ |_v| where
ur. =pr2(uo-x), 1 ^ Î ^ | X | , and pr2: Q x UN x((C/D(I'))*)I-eN -• ̂ J V is the projection
on the second factor. We write Q(x,j),jeN,ïor the subsequence ofQ(x) which
contains only u0 and those ut where x̂ = o {k) with je R(k). This notation
permits us to formulate the notion precisely that the different parallel
computations of a UKMS compute the same results.

R.A.LR.O. Informatique théorique/Theoretical Informaties

PARALLEL ALGORITHMS 161

DÉFINITION 1.5: A UKMS S is determinate if

(Vx, yeC(S, /)) (V;eiV) (n(x (;)

The above condition for determinacy is a rather strong one because not only
the final but also all intermediate results of any two computations x, yeC(S, I)
must be equal and this for all IeI(S).

DÉFINITION 1.6: An interprétation ƒ e I (S) of a UKMS S is one-one if

(V;, keN) (Vu, we Umk)r"R{j))) (Fj{v) = Fk(w)) iïï{j = k and v = w).

We call I'(S)czI(S) the class of one-one interprétations of a UKMS S.

LEMMA 1.1: A UKMS S is determinate iff the condition in définition 1.5 is

satisfied by all one-one interprétations I of S.

The proof of this lemma is completely analogous to the proof of [9,
lemma 2.2]. The main advantage of the lemma is that the class of interprétations
which have to be investigated for equality of the intermediate and final results of
the computations is restricted. Now we define a class of UKMS which can be
considered as an extension of the parallel flowcharts of [9] to an unbounded
number of opérations.

DÉFINITION 1.7: An r-dimensional vector addition System (short: VAS) W is a
pair (d, W) e Nr x F (Zr) where F(Zr) dénotes the set of finite subsets of r-
dimensional integer vectors. The reachability set R(W) of W is the smallest
subset of Nr with:

(1) deR(W);

(2) if veR(W), weW and v + w^Q then v + weR(W); where
x = (x!, . . . , x r)^0 means x ^ O , l rgi^r .

In the following we assume that H is constant on each element Nt of the
partition Jfoî N used in the next définition; thus we can write H(l) instead
of H (i), ie Ni. This assumption contains no loss of generality if (| H (i) |) i e N is
bounded; the latter restriction is justified by the observation that at most 2r

outcomes of a décision can be distinguished from the viewpoint of the control.

DÉFINITION 1.8: A UKMS S over an r-dimensional VAS W = (d, W) with
finitely presented control (short: SVAS) is a UKMS S = (Op, T, D, Rf H)
together with the VAS W, a finite partition Jf^^i, . . ., Nr} of N and two
bijective mappings g± satisfying the following conditions:

(1) W consists of exactly two disjoint subsets W+ and W- with:

(a)\W+\=j^ H(l);\W.\=r;
i = i

vol. 13, n° 2, 1979

162 G. GATI

{b) each vector in W+ has only coordinates from {0, +1} ;
(c) each vector in W- has only coordinates from (0, —1};
(d) ifthef-thcoordinateofa vector in W- is — 1 then ail other vectors in W~

have as z-th coordinate 0;

(2) g + is a bijection from the set { (/ , ;) [/ e { l , . . . , r},je{l, . . ., H(/)}}
onto PF+.

g- is a bijection from {1, . . ., r) onto W-.

(3) the control T is specified by

T: = (Q,qo,t);

q0 : =• d.

Then we can specify the transition function t in the following way:

For each qeQ and ieNt we have <t(q, o(i))^ iff g + 0_(J)èO and then

f-(0; a n d *(«, 0;(O):
Example 1.1: We specify the control of an SVAS S: r = 2, H{i)= 1 for allie AT,

Jr = {NltN2},N1={l},N2 = {2,3,4t . . . } .

g+ (l,l) = (0,l), 0+ (2,l) = (l,0); g_ (1) = (- 1 , 0), g. (2) = (0(-1) . d = (l,l).
Hère C(S,I) consists of an infinité number of different éléments for all Iel {S).
As is well known SVAS permit the simulation of the following parallel control

structures:
fork: after the termination of an opération a set of opérations is initiated

simultaneously;
join: after the termination of ail of a set of simultaneously executing opérations

an opération is initiated;
quit: certain opérations are terminating but the rest of the simultaneously

executing opérations continues.
We now explain the background behind this finite présentation of the control.

It is rare that one designs an algorithm in which an unbounded number of totally
different opérations are executed simultaneously. Ho we ver, an algorithm might
produce an "exploding" amount of data items on each of which the same
opération has to be performed; e. g. one solves an JVP-complete scheduling
problem for n opérations by first producing all permutations of the n opérations
and then checking, simultaneously for each permutation, whether it is a valid
schedule, i. e. respects the precedence graph, etc. In this example, the opérations
that are initiated in a very big number are all the same from the viewpoint of the
control structure of the algorithm; in our case they are even literally the same,
but this need not be. It is this type of behaviour that frequently occurs in

R.A.I.R.O. Informatique théorique/Theoretical Informaties

PARALLEL ALGORITHMS 163

algorithms for which unbounded parallelism is desired. One would put all the
numbers of the opérations that are equal from the viewpoint of the control into
the same set JV, of the finite partition of JV. The vector #_ (/) corresponds to all
initiation symbolso(i), i'eiV,, and the vector g+ (/, j) to all termination
symbols Oj(i'), ieNl, One should bear in mind that the opérations
corresponding to a member JV, of the partition of N need not be equal or similar
with respect to the data or conflicts; in the above mentioned example each
permutation of the n opérations will be stored in different memory locations. So
in an SVAS only the control is finitely presented, but that is not necessary for the
conflicts.

We now recall several technical terms from [9].

DÉFINITION 1.9: A UKMS is lossless if (VieiV) (R{i)^0). A UKMS is
repetition-free if

xo{i)vo{i)weC{S,

A U K M S is persistent if

(V.s. s'eO)

' A <f(q, s)> A <t(qt s')*) => ('t(q, ss')* A <t(qt s's)*).

A UKMS is commutative if

(VqeQ) {\/s,s'eO)

((<t(q, ssfy A <t{qt s'sfi) => t(q, ssf)=t{q, s's)).

A UKMS is permutable if

(V ^ G Q) (V.S\ s'eO) {<t{q, ss'V) => <t(q, s')\

DÉFINITION 1.10: We call

if i=j

j)) otherwise

the domain of conflict of two opérations o(i) and o(j). We define a
conflict relation K : = {(z\ j)eN x JV|K(i, j)£0) and a "cross section"

. We call K : = \J K{i, j) the set of conflict
(iJ)sNxN

vol. 13, n°2, 1979

164 G. G ATI

locations of a UKMS S. We call the subset

K': = {(i,j)eK\(3IeI(S))(3xeC(S} I)){3u, veO*)

(3weÔ) (x = uo(i) vo(j)w v X = MOO')ÜO(Ï) W)}

of K the actual conflict relation and K: = {j K(i, j) the set of actual

conflict locations of a UKMS S and define the "cross section"

We remark that an SVAS S is not determinate if

(3 / e {1, . . ., r}) {3i)jeNl) (i ̂ j A (i, j) e K)

and there are computations of S in which opérations associated with Nt occur.
The first part of this condition is already decidable by inspection of the
spécification of S, the second part reduces to a decidable problem for vector
addition Systems [9, cor. 4.1] and we alway assume that the condition is not
satisfied.

One immediately sees that the following characterization of determinacy of [9]
holds for UKMS, too; we therefore state it without proof:

LEMMA 1.2: A persistent, commutative, permutable, lossless and repetition-free
UKMS is determinate iff

(3xeP(S,I)) (3(i,j)eK) (xo(i)eP(S, l) A xo(j) eP(S, /

COROLLARY 1.1 : A lossless and repetition-free SVAS is determinate iff

- i ((3 / e ƒ (S)) (3xeP (S, I)) (3 (i, j) s K) (xo (ï) e P (S, I) A XO (j) e P (S, ƒ))).

Sketch of proof: The proof is analogous to the proof of corollary 2.2 of [9], but
one has to observe that SVAS are not persistent "with respect to opérations
associated with the same element N, of the partition yK ofAP'. Using
définition 1.4, (3), and the assumption below définition 1.10 the "sliding"
argument works in this case, too. Details are presented in appendix 1.

We now describe the restrictions on the conflicts that permit us to décide the
determinacy of a UKMS.

DÉFINITION 1.11: A UKMS is locally finite if (\/ieN){\K'(ï)\ is finite). A
UKMS is compact if K' is fmite.

R.A.I.R.O. Informatique théorique/Theoretical Informaties

PARALLEL ALGORITHMS 165

Before we discuss the implications of local finiteness and compactness we
remark that a locally finite UKMS might not be compact, e.g. consider
the mappings D(0):= R(0):= {0}, D(i):=R{i):= {i-1, i, i + l } ,
i= 1, 2, 3, . . . On the other hand a compact UKMS might not be locally finite,
e.g. D(i) := R(i):= {0}, ï eN .

Définition 1.11 is a contribution to the theory of parallelism by presenting a
formai expression for ideas which could be informally described in the following
way: One wants to design Computing machines in which the number of parallel
processes may become arbitrarily large. But then the expenses for enabling and
controlling the communication between the single processes grow very fast, too.
One therefore tries to restrict this communication in a suitable manner. The
restriction caused by local finiteness means that every process can communicate
only with a finite number of other processes. As we have seen above one permits
an infinité number of conflict locations even when requiring local finiteness: the
schema is only locally finite. Infinity would then be introduced not only in the
number of opérations but also in the number of memory locations with potential
conflicts. The restriction caused by compactness implies that conflicts can only
arise at finitely many memory locations. In the following we also require
compactness because we believe that the problems of theoretical investigation
and practical administration of inûnitely many conflict locations are too difficult
for the time being. We also remark that every UKMS which uses only finitely
many memory locations is compact.

Let S be a locally finite SVAS such that the partition JT={N1, . . . , Nr} of N
associated with S has only one element of infinité cardinality, say Nr; se ver al
enumerative parallel algorithms fall under this class of schemata. We then
require the schema S to be presented in the following way: with each opération
o (i) the finite list K' (i) must be specified. We dénote by 0r the r-dimensional zero
vector, by 6y the Kronecker delta and by rN the set {1, . . ., r } of the first r
natural numbers. As by the assumption below définition 1.10 (i,j)$K if
(i +) A {i, j} ci Nr) and if opérations associated with Nr occur in computations
of S, it follows that K' is finite; thus if K' can be effectively constructed and if

then we can effectively construct p. Consider the 2 r-dimensional
VAS W' = (d', W') with d ' := (d, 0,) and

w''= U (U {{gAlJ)A-hh^r)}^{{9-(l
l ë , N j e \ \ / / (/ i j

vol. 13, n° 2, 1979

166 G. GATI

Then, if S is lossless and repetition-free, the determinacy of S can be decided by
testing whether there are vectors in R(W') with (r+/)-th and (r + /')-th
coordinate ^ 1 and (/, / ') 6P-

Now assume that in the partition Jf of N there is more than one element of
infinité cardinality and that S is lossless, repetition-free, locally finite and also
compact. Let exactly Nm, . . . , Nr be infinité and let fc : = | K' |. If there is an /,
m^l Ukr, such that there are more than k opérations o(ï)sOp with ieNl and
R(i) n K ' # 0 then there are ilt i2eNl with ix ^i2 and R(ix) nR{i2)^0 and S is
not determinate. We thus can assume that for each Nl J e rN, there are at most k
opérations o(ï)eOp with ieNt and R (i) n K V 0 ; let KR(l) dénote the set of
these i. By local finiteness there can be at most finitely many opérations
0 (V) e Op with i" G Nr such that there is an i GKR (/), (i, i') e K' and
D (V) nR(i)^0. Assume that there are infinitely many opérations o (i) e Op with
1 e Nt and D (i)nK'^Ç); let KD(l) dénote the set of those z. Then there exists at
least one / ' , mfLl'^r, with KR(lf) infinité contrary to our assumption. Thus
also XD(Z) is finite for ail /e rN. Thus { o (O e O p | (D (i) U ^ (O) ^ K ' / 0 } i s finite
and also K' is finite. If K' can be effectively constructed and if we have a décision
algorithm for each Nt , m^'i^r, then we can effectively construct the above
defined relation p and décide the determinacy of 5. We first present a définition
and then state these considérations as a theorem.

DÉFINITION 1.12 : An SVAS S is suitably presented if:
(1) each infinité element Nt of the partition JV of N is decidable and
(2) if K' is finite then K' can be effectively construçted.

THEOREM 1.1: Let S be a lossless, repetition-free locally finite and suitably
presented SVAS and let Jf be the partition of N associated with S:

(a) If there is only one element of infinité cardinality in Jf then it is decidable
whether S is determinate,

(b) If there is more than one element of infinité cardinality in Jf and S is
compact, too, then it is decidable whether S is determinate.

Thus our extension of the main theorem of Karp and Miller [9] essentially
results out of the fact, that conditions, which one would impose on unbounded
schemata out of motivations external to schemata theory, permit one to reduce
some aspects of the decidability of their determinacy to those of bounded
schemata.

2. THE PARALLEL TIME COMPLEXITY OF PARALLEL COMPUTATIONS

The main reason for considering parallel algorithms is the hope that a parallel
exécution of a parallel algorithm will take significantly less time than a sequential
exécution. Therefore one is interested, given a parallel computation, to devise a

R.A.I.R.O. Informatique théorique/Theoretical Informaties

PARALLEL ALGORITHMS 167

more parallel computation which computes the same results in less parallel time.
It is this line of investigation which Keiler has folio wed in [11, 12]. We have
looked at things differently by trying to answer questions like: What is a
reasonable complexity measure for parallel computations of a UKMS ? What is
the (minimal) parallel exécution time for an algorithm represented by an SVAS ?
Are there kinds of sequential algorithms which are good starting points for
designing parallel algorithms? Most of our answers are different from the ones
Keiler has given in [11, 12] because we are looking at these questions more from
the viewpoint of the algorithms than from the viewpoint of the schemata.

We commence by proposing a complexity measure for parallel computations
of a UKMS. lts définition is so simple that we hope to have got hold of salient
features of the natural complexity measure which is intuitively used for parallel
computations. Before we give the définition we explain the idea behind it and
introducé some notation.

A complexity measure for the exécution time of a parallel computation must
take into account that several opérations might be executed simultaneously and
that the duration of an opération must no more be measured from the moment of
the termination of the opération terminated at last. Because UKMS provide for
initiation and termination symbols and because of their generality permit the
représentation of a vèry big number of algorithms we define our complexity
measure on all finite computations of a UKMS and their préfixes. To this aim a
strictly positive map v : N -• N+, the exécution time, must be given; v (i) spécifies
the exécution time of the z-th opération o(i). We measure the moment of
termination of an opération from the moment of its initiation. We consider a
séquence consisting of initiation symbols only as contemporaneous, and we
assign the latest of the moments of termination to a séquence consisting of
termination symbols only. The latter prescription is the main différence between
the complexity measure of [11, 12] and our's; for another approach see Keiler's
thesis [10]; also Keiler's complexity measure is deûned in a more genera! setting
that we do not deem necessary for our investigations.

For the formai définition of our complexity measure we need the following
notation. Let xq(i[eP(S) be a prefix of a computation of a UKMS S. Then we
write i (x) for the substring y o (i) of x in which the indicated occurence of o (i) is
the initiation symbol corresponding to the indicated occurrence of the
termination symbol o (ï) in xo(Q.

DÉFINITION 2.1: Let S be a UKMS and v : Op -• N+ be a strictly positive
map, the exécution time. Then a parallel complexity measure m : P(S) -» N is
recursively defined by

m(X) : = 0 where X is the null string;

vol. 13, n°2, 1979

168 G. GATI

m(xo(i)) : = m(x);
m (xo (Q) : = max{m(x), m (i (x)) -h v (i)}.

Example 2.1; Consider the computation x : = o(1)o(3)o(1)o(2)o(3)o(2).
We have m (x) = max {v (1) + v (2), r (3)}. Now consider the computation
xf: = o(l)o(3)o(l)(ï(2)o(2)o(3). Again w
thus m(x) = m (x'). If S is an SVAS then xeC(S) iff x' e C (5); thus our complexity
measure characterizes a class of computations and not only a single
computation.

After having defined a parallel complexity measure on the préfixes of the
computations of a UKMS we now present an itérative algorithm which finds a
fastest computation of a schema for this complexity measure. This algorithm will
answer our second question — what is the parallel exécution time for an
algorithm given by an SVAS? —because in our view the parallel exécution time
of an algorithm given by a schema is the exécution time of the fastest
computation of this schema. This seems to be a reasonable viewpoint if one
observes that in gênerai in every parallel exécution of an algorithm one has to
choose between different parallel computations of the algorithm and one often
chooses the one which is fastest.

In order to simplify the otherwise quite difficult problem we make two
additional assumptions:

(1) that the control of the schema can be specified in the form of a precedence
graph, cf [5], and

(2) that the precedence graph is a dag (directed acyclic graph).
The first assumption makes it necessary to construct a precedence graph from

the control specified in the manner of définition 1.1. Of course the precedence
graph embodies only part of the properties of the control, namely those that are
relevant to constructing the fastest computation, which is exactly what we want.
For certain determinate UKMS the construction of- the precedence graph
G = (V, E) goes as follows. The (possibly infinité) set of vertices V consists of
exactly those opérations o{i)eOp which are terminated in the computations of
the schema. The roots of G are those vertices o{i)e F for which (t(q0, o(i))\
Furthermore {o(i)t o(j))eE iff

(3 y e O*) (3veO*) (3w;eÖ*) (3ze<5) (yq(^ vwö(j)z e P (S))

A(V/eO*) (Vu'e O*) (Vu/eO*) (Vz'eÖ) (y'o(j) wf v'o(ï)z')£P{S).

R.A.I.R.O. Informatique théorique/Theoretical Informaties

PARALLEL ALGORITHMS 169

It might be necessary to modify the above construction for certain UKMS.
The second assumption is necessary to reduce the problem to a scheduling

problem (in the sense of [5]).

From now on we base our considérations only on the precedence graph G and
no more on the control specified in the manner of définition 1.1. Before we
present our itérative algorithm we informally described the idea behind it. The
input to the algorithm are the precedence graph G and the exécution times v (i) of
the opérations o(i)e V; the output is a fastest computation x of the schema
underlying G.

In a procedure called "NEXT" those opérations, which are going to be treated
in the current itération, are read into the set C. Like in critical path algorithms
the earliest possible initiation times e(i) of all o(i)eC are computed. Then the
set T of opérations which have not yet been terminated and the set ƒ of
opérations which have not yet been initiated are augmented by the éléments
of C. We assume that the precedence graph has been completed by a START and
a HALT opération in the usual way. After the obvious initialization of the sets Y,
T and I the procedure NEXT is called for the first time to input the first
opérations.

The main part of the algorithm consists of a repeat loop. First the set T' of all
opérations which have to be terminated in this itération is constructed as
T'\ = {o(i)eT\o(i) has already been initiated and

m(xq(i)) = min {e(i')\ o(ï)el}}.

After the termination of the opérations in T' the procedure NEXT is called
again because new opérations might be enabled. Then the set ƒ' of all opérations
which have to be initiated in this itération is constructed as

ƒ': ={o(i)el\e(i) = mm{e(i')\o{ï)el}}.

This fmishes the contents of the repeat loop. This loop is executed until 1=0.

We now present the algorithm that constructs a fastest computation of
a UKMS whose control is speciûed in the form of a directed acyclic precedence
graph; several obvious improvements are not applied to the algorithm for the
sake of simplicity.

ALGORTTHM 2.1:

procedure NEXT;
begin L:= C;

C:= {o(i)eV-Y\$ï{o(r)EV\ (o{V), o(i))eE}<=Y};

for o(i)eCdoe{i):=max{e{i') + v{ï)\ (o{ï), o

vol. 13, n° 2, 1979

170 G. GATI

Y\=YKJC\

;
end;
begin comment initialization; Y: = C: = { START };

x: =X;
T: =I:=0;
e (START): = 0;
NEXT;

comment main part; ___
repeat T': ={o{i)e T\o{i) ex and

m{xo{i))^mïn{e(ï)\o(ï)el}};
T: = T- f7"
while T'^0 do begin t ake o(i) out of 7";

x : =xo(i);
end;

NEXT;
{ | { |

repeat take o(i) out of ƒ';
x: =XO(Ï);

until r=0;
until 1=0;

end.

We now prove the correctness of algorithm 2.1 and calculate its time
complexity.

The following lemma is necessary because the output of our algorithm is not
the input to a list schedule but a computation of the schema underlying the
precedence graph.

LEMMA 2 . 1 : Algorithm 2.1 does not permit the initiation of an opération before
all of its predecessors in the precedence graph have been terminated, i.e. every
prefix of the computation constructed by the algorithm respects the precedence
graph.

Proof: Let o{i), o(k)e Fwith (o(fc), o{i))eE and o(fc)^ START. Because we
have assumed that v(i)>0 for all o(i)eOp we certainly have e{k)<e{i), and,
according to the construction of NEXT and /', the opération o(k) has been
initiated before the opération o(i). We still have to show that m(xo(k))^e(i)
where x is the prefix constructed by algorithm 2.1 after which o (k) is
terminated. But this follows from the structure of the outer repeat loop, which
causes o(k) to be terminated before o(i) is initiated.

LEMMA 2.2: At each call of the procedure NEXT the set C is augmented by at
least one element.

R.A.I.R.O. Informatique théorique/Theoretical Informaties

PARALLEL ALGORITHMS 171

Proof: Because of the construction of G each element of V-{ START} can be
reached from START. The assertion now foliows immediately from the
structure of Y,

LEMMA 2.3: At each exécution of the outer repeat loop at least one initiation
symbol is added to the already constructed prefix of the computation.

Proof: This follows immediately from the construction of I' and the finiteness
of/.

COROLLARY 2.1: The outer repeat loop is executed at most | V\ times.

COROLLARY 2.2: Algorithm 2.1 finds a computation x for the UKMS
underlying the precedence graph G after at most | V\ passes through the outer
repeat Joop.

Proof: Immédiate from lemma 2.1 and the définition of the HALT
opération.

THEOREM 2 . 1 : For the computation x of corollary 2.2 we have: if x' is another

computation ,for the schema underlying the precedence graph G then

Proof: According to the construction of T' we have m (x)^ e (HALT).
Actually we even have m (X)^ e (HALT) from the définition of e. Therefore
m(x')§:m(x), because m(x')<m(x) would contradict the définition of e.

COROLLARY 2.3: Algorithm 2.1 constructs afastest computation of the schema
underlying the precedence graph G.

LEMMA 2.4: In each pass through the outer repeat loop, with the exception of
thefirst one, algorithm 2.1 adds at least one termination symbol to the already
constructed prefix of the computation x of corollary 2.2.

Proof: It follows from the construction of Tf that only opérations from T— I
are terminated. Because T=I in the first pass no opérations are terminated.

Consider a pass which is not the first one and in which no opérations are
terminated. Because of lemma 2.3 at least one opération is initiated in that pass,
say o{i). Let o(j) be the termination symbol for which a string y o (j) yields the
maximum in the computation of e (i). Because of lemma 2. i the opération o {j)
then has already been terminated in an earlier pass, in which among others the
opération o (k) has been initiated. Thus m (xo (j))^e(k)<e(i) which contradicts

Because of corollary 2.2, algorithm 2.1 can be considered n3, where n = | V |
for finite V. This is interesting because the analogous scheduling problem for a

vol. 13, n°2, 1979

172 G. GATI

bounded number of parallel processors has been proven JVP-complete in [18]. It
is furthermore immédiate that algorithm 2.1 is really suited for precedence
graphs with an unbounded number of opérations, because it can be executed
simultaneously with the exécution of the opérations.

We now consider the exécution of algorithm 2.1 on the precedence graph of a
celebrated algorithm of complexity theory, namely the algorithm of Strassen for
multiplication of 2x2-matrices in the version of Winograd, cf. [1]. In
appendix II we present the precedence graph of the Strassen-Winograd
algorithm and a "dump" of the exécution of algorithm 2.1 on this precedence
graph containing the contents of C, T, I, T' and V each time they are assigned
some value and also denoting each call of the procedure NEXT.

THEOREM 2.2: Algorithm 2.1 finds a parallel computation of the schema
underlying the Strassen-Winograd algorithmfor multiplication of 2 x2-matrices
which is f as ter by the exécution time of two parallel additions than the parallel
computation suggested by the sequential exécution of the Strassen-Winograd
algorithm.

In practice it is intractable to find the fastest parallel computation by
enumeration of all parallel computations because even a small algorithm like the
Strassen-Winograd algorithm, which consists only of 21 different opérations,
might have an enormous number of parallel computations, e.g. the Strassen-
Winograd algorithm has more than 1.4 x 1010 different parallel computations,
as can be easily seen. In this fact we see the justification for the development of
algorithm 2.1.

3. L SYSTEMS AS MODELS FOR PARALLELISM IN ALGORITHMS

In this section we interpret L Systems as models for parallel algorithms and try
to obtain decidability results for the theory of parallel algorithms from the
known decidability results of the theory of L Systems. It should be noted that our
approach is just a continuation of a philosophy already expressed in [8] where,
with the simulation of the firing squad synchronization problem as a PD2IL
scheme, [cf. 8, p. 278], it was proven that L Systems are able to model the
essential features of a parallel algorithm. In what follows we propose to
systematically consider L Systems as models of the control and data structure of
parallel algorithms and first demonstrate our approach in two examples.

Example 3.1: Consider multiplication of square matrices of size 2", n e N. Let
(atj)t (b^) be the input matrices; then the obvious algorithm forms cy =]T aikbkj

where (cy) is the output matrix. This algorithm can be parallelized by

R.A.I.R.O. Informatique théorique/Theoretical Informaties

PARALLEL ALGORITHMS 173

simultaneously executing the 23n multiplications aikbkj and then executing the
22"(2"— 1) additions by the divide and conquer method; this takes n steps of
parallel additions. The following DOL system can be regarded as a
représentation of the obvious parallel algorithm for multiplication of matrices of
size 2":

u U
„ = {<co,

where O,, resp. E£) dénotes the set of odd, resp. even, integers between 1
and 2 3 n " I + 1 . The éléments of Lm(Gn) represent the opérations executed by the
algorithm in the m-th parallel time unit. In the first time unit, the 23n

multiplications are executed, which are represented by the symbols Aljt

1^;^23". In the next time unit, 22"(2""1) additions are executed, which are
represented by the symbols A2j, l ^ ; ^ 2 3 n ~ 1 . In the i-th time unit, 2<^i^rc+l ,
23"~ r + 1 additions are executed which are represented by the symbols Aijf

1 ^ jg2 3 r t ~ l + 1. In the (n + 2)th time unit, no opération is executed because the
result is already computed, consequently Ln + 2{G) = {X}.

Example 3.2: Consider the knapsack problem in the form £ atX^b;

usually only the fini te version £ at xt S b is considered. A trivial enumeration

algorithm enumerates all éléments of {O, 1 }*, where an element of {O, 1 }*
represents a possible value of an initial subsequence of (Xi)lûiûoot and checks,
which values satisfy the above inequality. The following D OL-system represents
that part of the algorithm that constructs the éléments of {0, l } * :

G = <£ ,P ,co>;

x = <co, o, i , o ' , i ' > ;

P - { < œ , 01 >, < 0 , 0 ' 0 1 > (< 1 , l ' 0 1 > , < 0 ' , O'>, < 1 ' , r > } .

In the following we explain why Lt (G) can be identified with the set of all subsets
of {0, 1 }\ The gênerai rule is: Lt (G) represents those strings in {0, 1 }* which
are produced by the algorithm in the z-th parallel time unit. The algorithm starts
on the empty string À-, which can be considered as being produced in the zeroth
time unit and which is represented by the axiom GO. lu the first time unit, the
strings 0 and 1 are produced, and in the i-th time unit ail éléments of {0, 1 }l are

vol. 13, n° 2, 1979

174 G. GATI

produced. Consequently Lt(G) should represent all éléments of {0, l } 1 and it
does so in the following way: an element of {0, l} f is represented by a certain
substring of the only string in L, (G), which we also dénote by ce>;, where it should
be noted that co;e{O, 1, 0', 1'}* for f ^ l . Now there is a map/which bijectively
maps those initial sections v of some c^ that end with an element of {0, 1}, onto
the éléments of {0,1}*. In order to define ƒ we introducé the map u:
{ 0 ' , r } * - > { 0 , 1}* which is the unique extension to a monoid morphism of the
map{0' , l ' } -+{0 , 1} given by 0'-> 0, 1' -> 1; then the mentioned map /canbe
defined recursively as follows:

(a) let v = oc'S, where a 'e{0' , 1'}* and 8e{0, 1}; then/(v) = «(a')5;
(b) le tv-ay /o,whereae{0 / , l ' ,0, 1}* {0, 1 } 2 , Y ' E { 0 ' , l '}mand8e{0, 1};

let/(a) = p1p2 , where | p 2 | = m + l ; then/(v) = p1ïi(y')8;
(c) letv = a8182 ,whereae{0', l \ 0 , l}* and81,526{0, l};let/(a81) = P§i,

then/(v) = p82.

We now illustrate this map in some examples. Consider co2 = 0'0H'01.
According to (a)f (0'0) = 00; from (c) ƒ (0'01) = 01; from (b)f (0'011'0)= 10; from
(c)/(0 '0ir01)-11. Consider Q)3=0'0'0ir011/0/011/01.From(«)/(0'0/0) =
from(c)/(0/0/01) = 001;from(è)/(0/0/011'0) = 010;from(c)/(0/0/011/01) =
from (b) /(0'0'011'011'0'0) = 100; from (c) ƒ (0/0/011'011'0'01) = 101; from (6)
/(0/0/011/011'0'011'0)=110; from (c)/(©3)=111. As is easily seen the last
equality generalizes: ƒ (o>i) = l i.

In the following we define two classes of UKMS each containing respectively
one of the two examples above. They have the property, that either their
opérations or their intermediate results can be characterized by an L system in
such a way that certain decidability results for L Systems can be directly applied
to the UKMS. This is of course only a very first step in trying to establish a
connection between the theory of L Systems and the theory of parallel
algorithms but the fact that a connection can be established so easily bolsters the
hope that a deeper connection can be found in further work.

DÉFINITION 3.1: Let S = (Op, T, D, R, H) be a UKMS, v : N-+N+ the
exécution time of the opérations of S and G= < Z, P, co > a 0L system. For all
computations x in C (S) let m'x be that subset of F (N) x N [where F (N) dénotes
the set of finite subsets of N] with the property that ({jlt . . .,jk}, i)em'x iff
{ o (ji)> • • • * o (jk)} is exactly the set of opérations executed in the computation x
during the i-th time unit. Then we say that 5 is a G control UKMS (short:
GCUKMS) iff there is a map fc : E*->F(N) whose restriction to L(G) is
injective and which has the properties that for any neF(N) we can effectively

R.A.I.R.O. Informatique théorique/Theoretical Informaties

PARALLEL ALGORITHMS 175

construct f~1 (n) and

(3xeC(S)) ((/c(a), i)emf
x) ^

Similarly defineJR;cJF(iV)xiVsuchthat({;1, . . .,jk}, i)€Rf
x iff {jlt .. .,7fc}is

exactly the set of memory locations into which results are stored by the
opérations of x terminating in the i-th time unit. Then we say that S is a G data
UKMS (short: GDUKMS) iff there is a mapping fd : Z*-*F(JV) whose
restriction to L (G) is injective and which has the properties that for any ne F (N)
we can effectively construct f^1 (n) and

(3xeC(S)) ((/d(a),0ei?i) «> aeZ,(G).

We now informally describe what is behind the above définition. In both cases,
when S is a GCUKMS or a GDUKMS, important aspects of computations of S
can be characterized by properties of the OL System G. When S is a GCUKMS
then the parallel exécution of opérations in computations of S is mirrored by the
éléments ofL(G); when S is a GDUKMS then the storage of results of
opérations in computations of S is mirrored by the éléments of L(G).
Example 3.1 is an example for a GCUKMS and example 3.2 is an example for a
GDUKMS. In both cases the algorithm has not been explicitly given in schema
form because this would not have given any further insight. Also in both cases the
OL-system G is a DOL-system which is tantamount to a considérable
simplification in specifying the maps fc and fd> respectively, but which is paid for
by restricting the number of computations of the GCUKMS or GDUKMS; this
is a disadvantage more from the viewpoint of decidability than from the
viewpoint of parallelism.

THEOREM 3 . 1 : Let S be a GCUKMS and j l t ...,jneN such that
o (/' i), . . •, o 0„) e Op. Then it is decidable whether there is a commutation xeC(S)
and a natural number ieN such that ({jlt .. .,jn}, ïjem^^.e. given any finite set
of opérations of S it is decidable, whether exactly these opérations are executed
simultaneously during some time unit in any computation of S.

Proof: Let G = < 2, P, <o > be the underlying OL-system such that
fc :I*^F(AT)makesSaGCUKMS.If | /r1({;i jH})\ ^ 1 thencertainly
there is no computation xeC(S) such that {oOi), o(jn)} is the set of
opérations executed simultaneously in any time unit of the exécution of x. If
\fc-

l{(h,...,jn})\=lthtn

(3xeC(5)) (3i6JV) \({jlt . . . , ; „ } , ï)em'x) *> frH{h. •• • J*})eL(G).

But as the membership problem for OL-systems is decidable according to [8,
p. 76] the above problem is decidable, too.

vol. 13, n° 2, 1979

176 G. GATI

In the same easy way one obtains the following analogous resuit for
GDUKMS.

COROLLARY 3 . 1 : Let S be a GDUKMS and j y , . . . , j B e N . Then it is decidable

whether

(3xeC(S)) (3ieN). { }

i.e. given any finite set of memory locations, it is decidable, whether there is a
commutation xinC(S)such that, for some time unit in the exécution of x, the set of
memory locations into which results are stored during this time unit is exactly the
given set.

We consider theorem 3.1 as a strong hint that the theory of L Systems is not
only applicable to biological and related phenomena but also to the theory of
parallel programs.

We conclude with a bibliographical remark. The ûrst paper known to us, in
which a formai connection between a model for parallel processes and
grammars, which are very similar to L Systems with interaction, is established,
is [13]; however, it is not mentioned there that the grammars investigated are
similar to L Systems with interaction. Also in [17] the theory of parallel
algorithms and the theory of L-systems are presented in one common volume
though apparently no formai connection had been established.

ACKNOWLEDGEMENT

I gratefully acknowledge the constant and untiring support of Prof. Dr. Erwin Engeler during ail
of this work. It is based on several ideas presented to me by him. I am, however, the only one to be
blamed for any shortcomings or errors in their carrying-out.

I also warmly thank the anonymous référée. He has not only eliminated severaî mistakes and
proposed (among many other things) a profound modification of the first section that has resulted in a
considérable improvement but has done ail this in a very coopérative and extraordinarily
competent way.

Further thanks are due to Prof. A. C. Shaw, Dr. H.-H. Nàgeli and P. Horâk for linguistic help.

REFERENCES

1. A. V. AHO, J. E. HOPCROFT and J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Exercise 6.5, p. 247, Addison-Wesley, Reading, Mass., 1974.

2. R. ALBRECHT, Zur Struktur von Informationssysternen, in Automatentheorie und
formale Sprachen, Oberwolfach, 1969, J. DÔRR and G. HOTZ Eds., Berichte aus dem
mathematischen Forschungsinstitut Oberwolfach, Vol. 3, 1970, pp. 493-505,
Bibliographisches Institut, Mannheim.

R.A.I.R.O. Informatique théorique/Theoretical Informaties

PARALLEL ALGORITHMS 177

3. B. BUCHBERGER, Computer-Trees and Their Programming, Troisième Colloque de Lille
sur les Arbres en Algèbre et en Programmation, 1978.

4. B. BUCHBERGER and J. FEGERL, Ein universeîler Modul zur Hardware-Implementierung
von Rekursionen, Laboratory Note, Universitât Linz, 1977.

5. E. G. COFFMAN (éd.), Computer and Job Shop Scheduling Theory, Wiley-Interscience,
New York, 1976.

6. R. W. CONWAY, W. L. MAXWELL and L. W. MILLER, Theory of Scheduling, Addison-
Wesley, Reading, Mass., 1967.

7. G. GATI, Aspects ofUnbounded Parallelism, in Theoretical Computer Science, 3rd G.I.
Conference, Darmstadt, 1977, H. TZSCHACH, H. WALDSCHMIDT and H. K.-G. WALTER,
Eds., Lecture Notes in Computer Science, Vol. 48, pp. 292-305, Springer, Berlin,
1977.

8. G. T. HERMAN and G. ROZENBERG, Developmentaî Systems and Languages, North-
Holland-American Elsevier, Amsterdam, 1975.

9. R. M. KARP and R. E. MILLER, Parallel Program Schemata, J. Comput. System Se ,
Vol. 3, 1969, pp. 147-195.

10. R. M. KELLER, Closures of Parallel Program Schemata, Unpublished thesis,
University of California, 1970.

11. R. M. KELLER, On Maximal Parallel Schemata, in Conference Record ofllth Annual
Symposium on Switching and Automata Theory, LE.E.E., New York, 1970, pp. 32-50.

12. R, M. KELLER, Parallel Program Schemata and Maximal Parallelism, J. Assoc.
Comput. Mach., Vol. 20, 1973, pp. 514-537 (part I) and Vol. 20, 1973, pp. 696-710
(part II).

13. H. KOPP, Bemerkungen zum Deadlockproblem in parallelen Prozessen, Unpublished
report, Tagung über Automatentheorie und formale Sprachen, Mathematisches
Forschungsinstitut Oberwolfach, 1975.

14. F. SCHWENKEL, Zur Theorie unendlicher Parallelprozessoren, in G.I.-4. Jahrestagung,
Berlin, 1974, D. SIEFKES, éd., (im Auftrag der G.I.), Lecture Notes in Computer
Science, Vol. 26, pp. 355-364, Springer, Berlin, 1975.

15. H. SULLIVAN and T. R, BASHKOW, A Large Scale, Homogeneous, Fully Distributed
Parallel Machine, I. Comp. Arch. News, Vol. 5, 1977, pp. 105-117.

16. H. SULLIVAN, T. R. BASHKOW and D. KLAPPHOLZ, A Large Scale, Homogenous, Fully
Distributed Parallel Machine, IL Comp. Arch. News, Vol. 5, 1977, pp. 118-124.

17. J. T. Tou (éd.), Advances in Information Systems Science, Vol. 6, 1976, Plenum Press,
New York.

18. J. D. ULLMAN, NP-Complete Scheduling Problems, J. Comput. System Se, Vol. 10,
1975, pp. 384-393.

APPENDIX I

We hère prove corollary 1.1 in the following way: corollary 1.1 is part of
corollary A.2 below which is deduced from a séquence of other results in a
manner similar to the proof of corollary 2.2 of [9].

THEOREM A. 1: Let Sbea losslessSVAS; then S is determinate if and only if the
following condition holdsfor every interprétation I:
(*) If u is in O* and a, ne O such that (ao-u<jTi\ and (ao-u<j7t\ then

vol. 13, n° 2, 1979

178 G. GATI

This theorem will be proved with the help of a series of lemmas.

LEMMA A. 1: Condition (*) of theorem AA holdsfor every interprétation iffit
hoîds for every one~one interprétation.

Proof: Follows from lemma 1.1.

LEMMA A. 2: Let Sbea lossless S VAS, îeî' {S) andaeZ (/). Thenjor each pair
(o(i). o(j))eOpxOp, with i^j:

(a) if(oi'o(i)o(jy and a*o(j)o(î)) then

(b) if(g.'o(i)o(j)^ and <a'o(j)o(i)^ then

iff:
(i)

(ii) o(j) is a répétition, i. e. does not change the contents of any element
ofRUY,

(c) if(&-o(i)o(j)) and (a-o(j)o{i)) then

Proof: Same as proof of lemma 2.3 of [9].

LEMMA A. 3: Let S be a lossless S VAS and Iel (S). Let ueO*, a, ne O such
that a0»von = a0*VKO. Then, for any weÔ:

(a) vonw€C{S, I) iffvnaweC(S, I);
(b) (VieiV) (Q(vonw, i) = Q(vnow, i)).

Proof: Same as proof of lemma 2.4 of [9],

LEMMA A. 4: Let S beanSVAS,IeI(S), ueO*, we Ôand a e O.Ifa0'UG^and
uweC {S, I) then aew,

Proof: Follows from définition 1.4, condition (3).

Proof of theorem A. 1 : Let Iel'(S) such that condition (*) is satisfied. Suppose
that x, y are in C(S, I) with Q(x, i)¥^£l(y, i) for some i. We shall show that for
ail n^ \x\ (for ail n if xeO00) there is a z(n)eC(S, I) such that:

(i) (VieAT) (£l(z(n)t i) = Cl(y, i)) and
(ii) „z(n) = nx.

R.A.I.R.O. Informatique théorique/Theoretical Informaties

PARALLEL ALGORITHMS 179

It will then follow that Q(x, i) = Q(y,i) for all i, giving a contradiction. The
proof is by induction. Setting z (0) = y we have the resuit for n = 0. Let us assume
that the result holds for n = k and that | x | ̂ k +1 . Then (ot0 • (kx)) • xk +1 is defined,
or, equivalently, (ot0 • (fcz (k))) -xk + 1 is defined. For brevity, let p dénote kz(k). By
lemma A.4, z(k) can be written as z(/c) — pvxk+1s where ueO*, seÔ and
xk+1 $v. Assume that xfe + 1 is o(j) or o(j) withje N, . We shall show that z(k)
can be chosen in such a way that in addition v contains no o (j') and nooQ'Qwith
feNl. Suppose that v is of the form v — v'vn with

v' = w'o(f)n'u'oW),

j'eNl , K', n"eO, w', w", u'eO*.

the indicated occurrences oio (f) and o (f) in v' are corresponding initiation and

termination symbols and v" contains no o (f ') and no o (ƒ ') with/' e N7. As 7t" is
not associated with JV,, we have ({(ao*pvf w'^-Xk+^-n"^; this is trivial if

and follows from définition 1.8, (ld), if x k + i=o(j) . By
condition (*) we have

a 0 • pv' w" xk + 1n" = 0L0- pv' w" n" xk+1.

By induction based on this argument we have

oto -pv' xk+ ! Ü" = a0.p// Ü" xk +1.

We now show that (aio-pw''n' u'o(j')^ and that

a0 • pu;'je'M'o (/)= «o-pw'o (/) 7i'M'.

This follows if we can show that (ao*pwfTif o(f) u^; because then condition (*)
implies (xo*pw''n'o(j')iï=<xo

mpw'o(j')n'u' and, as n' is arbitrary, we can
proceed by induction and "slide" o (f) past each element of uf. In order to show
that (ao-pwfn'o(j')u'^ we have to consider three cases, namely (i) n' is not
associated with Nl f(n)n' = o(jtt)müijtteNl and(iiï)7t' = o(/ ') with/'eiV, .In

each case it follows from définition 1.8 that foc0. pw' n' o (/) w'ï and we can
conclude by the remark above that

oto • pw' o (f) n' u' o (f) = OLO . pw' K' u' o (/) o (f).

If xk+1==o(j) suppose furthermore that z(k)=pvxk+1w1o(j)w2 where the
indicated occurrence of o (j) is the termination symbol corresponding to xk +1.

voi. 13, n° 2, 1979

180 G. GATI

Then, for any w[, w[f with wx =w[w'{ we have (a0-pvxk+1 w[o{j)wï^ and by

repeated application of condition (*) it follows that

We have convinced ourselves that we can replace our computation z(fc) by a
computation z1(k) of the form pvf o(j') o(jf)o(j) v"w, if xk+1=o(j), and by a

computation z2(k) of the form pv' o(j') o(jf) o(j)o(j)v" w, if xk+1 =0(7).

Then also
zl M = Pv' °U) O (/) O (f) V" W,

resp. zf
2(k) = p

are in C(S, I) and because of the assumption below définition 1.10 we have
ot0 * zx (k) = a0 • z[(k), resp. a0 * z2 (/c) = a0 • z

r
2 (k), Thus we can replace z (k) by zi (/c),

resp, zf
2(k). By an induction based on the validity of this argument we can

construct a computation, that we call z{k) henceforth, such that z(k) = pvxk+lu
and, if xk+1=o{j) or xk+1 =o(j) with j e Nt then v contains no o(f) and no
°U') with f e Ni. If v is null then we may take z(/c+ l) = z(/c). Otherwise similar
interchanges as above can be used to "slide" xk+1 past each element of v yielding
eventually the required computation z(k+l) = (k+1x)vu.

We now show how our assumption Q(x, i)#Q(y, i) is contradicted by the
resuit just proven. For, if Q(x, i)^Q(y, i), then for some keN one of the
following holds :

(i) [Q(x, i)]k and [Q(y, i)]k are both defined, but unequal;
(ii) [Q(y, i)]k is defined, but [O(x, i)]k not;

(iii) [Q(x, i)]k is defined, but [Q(y, z)]k not.

In cases (i) and (ii) there is a suitably large n' such that
[Q(z(n'), OL^IPCy* Olfc» contradicting our assumption; case (iii) is disposed of
similarly; thus condition (*) implies determinacy.

Now assume that there are computations xf = uanwf and x" = unowtf in
C (S, I) such that ot0- u an # a0 • u no. Then it follows from lemma A. 2 that there
is an i such that Q(uan, i) and Q(uKG, i) are of equal length, and differ in their
last element; thus 5 is not determinate.

COROLLARY A. 1 : A lossless S VAS S is determinate iff,for each IeI(S):

(i) if(aLo-uo(i)o(j)\ and {OJ0'Uo(j)o(i)^ then R(j)nD{i) = 0 or o(j)_ is a

répétition and,

(ii) if {a0• uo{i)o(jy and <OL0• uo(j)o(i^ then R(i)nR(j) = 0.

R.A.I.R.O. Informatique théorique/Theoretical Informaties

PARALLEL ALGORITHMS 181

Proof: Follows directly from theorem A . l and lemma A . 2 .

COROLLARY A. 2 : Let S be a repetition-free, lossless SVAS. Then the following

statements are equivalent:

(1) S is nol de terminât e;

(2) for some I eI(S) there are we O*, o{i), o (;) e O p with either:

(i) R(j)nD(i)^0 and (<x0-uo(i) o(j)^ and (a0>uo(j) o(i)} or

(ii) R(i)nR(j)^0 and (oL0-uo(i)o(j)^ and (cL0.uo(j)o(i)\;

(3) for some IeI(S) there are weO*, o{i), o (j) e O p with (i,j)eK and

o> wo(i)} and (OL0-W

(4) for some IeI{S) there are x, yeC(S, I) and o(i), o(j) such that (iJ)eK

and the subsequence E0^0^(x) obtained by extracting all occurrences of o (i) and

°(j) from x differsfrom the subsequence Eo{i)o{j)(y) similarly obtained from y.

Proof: Analogous to the proof of corollary 2 .2 of [9].

APPENDIX II

In this appendix we exécute algorithm2.1 on the Strassen-Winograd
algorithm for multiplication of 2 x2 matrices. In order to conform with the
notation in [1] we use indexed capital letters for the opérations and indexed
lower case letters for the domains and ranges of the opérations.

The Strassen-Winograd algorithm multiplies two 2 x 2 matrices {atj) and (&£j.)
into the product 2 x 2 matrix (cu) using seven scalar multiplications
Mlf . . . , M7 and 15 scalar additions Su . . . , S 8 l Tlr T2, Clf C2, C3, C4. Wecall
M the exécution time of one scalar multiplication and A the exécution time of one
scalar addition. The memory locations calledsi, . . . , s 8 , mlt . . ., m7, tlf t2 store
intermediate results. The domains and ranges as well as the exécution times of
the opérations can be found in table 1. The precedence graph of the Strassen-
Winograd algorithm is shown in figure 1 ; under each opération the
corresponding value of e is displayed. Figure 2 shows a "dump" of the exécution
of algorithm 2.1 on the Strassen-Winograd algorithm under the (natural)
assumption of M > 3 A. All assignments of values to C, T,Tf ,1 and J ; are shown
as well as all calls of the procedure NEXT; also the value of min { e (V) | i' e I} is
exhibited under "min". Figure 3 shows the computation x that algorithm 2.1
finds after the exécution dumped in figure 2 as well as the values of m on each
prefix ofx. We have m(x) = M + 5A. One can similarly see that also for
A^M^3A algorithm 2.1 finds a computation x' with m(x') = M + 5A.

vol. 13, n° 2, 1979

T
A

B
L

E
 1

o
p
é
r
a
t
i
o
n

s
i

S
2

S
3

S
4

S
5

S
6

S
7

S
8

M
l

M
2

M
3

M
4

M
5

M
6

M
7

T
l

T
2

C
l

C
2

C
3

C
4

d
o
m
a
i
n

a
2
1

a
2
2

S
l

a
l
l

a
l
l

a
2
1

a
1
2

S
2

b
1
2

b
l
l

b
2
2

S
5

b
2
2

b
1
2

S
6

b
2
1

S
2

S
6

a
l
l

b
l
l

a
1
2

b
2
1

s
3

s
7

s
l

S
5

S
4

b
2
2

a
2
2

S
8

m
l

m
2

t
x

m
4

m
~

m
-
.

t
l

m
5

m
6

t
2

m
?

t
2

m
5

r
a
n
g
e

s
l

S
2

S
3

S
4

S
5

S
6

S
7

S
8

m
l

m
2

m
3

m
4

m
5

m
6

m
7

f
c
2

c
l
l

C
1
2

C
2
1

C
2
2

e
x
é
c
u
t
i
o
n

t
i
m
e

A A A A A A A A M M M M M M M A A A 2
A

A A

F
ig

ur
e

1

PARALLEL ALGORITHMS 183

T = 0

1 - 0

NEXT

C =

T = { S l , S 5 , M 2 , M 3 , S 3 , S 7 }

NEXT

C = {S2,S6,M5/C1/M4}

T = {SlfS5,M2,M3,S3fS7fS2,S6lM5,ClfM4}

I

I'

I

T1

T

= (s,

= (s2

= {S,

'S5

'S6

,s5

,M2

'M5

,s3

,M3,S3,S7,S2,S6,M5,C1

,C1(M4) min = A

,s7)

,M.} min - 0

T = { M 2 # M 3 , S 2 , S 6 , M S , C 1 , M 4 , M 1 , S 8 , S 4 }

I = { S 2 # S 6 , M 5 f C 1 / M 4 / M 1 , S g , S 4 } min = A

I' = {S2/S6,M5,M4}

I = {C1,M1,Sg,S4} min = 2A

T' = (S2,S6}

NEXT

C = { T l ,M 6 ,M 7 >

T « { M 1 , M 2 / M 3 , M 4 , M 5 / M 6 , M 7 , S 4 , S Q / C 1 , T 1

I = { M 1 , M 6 , M 7 / S 4 , S Q / C 1 , T 1 } min - 2A

I1

I

T'

T

= (Mx

- <M6

= <s4

= {M,

'S4

'M7

'S8

'M2

'S8

'Cl

}

'M3

}

'M4

} min -

ls,M6,M.

3A

,,Cl,Tl>

NEXT

T = {M1,M2,M3,M4,Ms,M6fM7,C1,C2,TlfT2>

I = {MC/M^,C,,C,,T,,T.} min - 3A

I'

I

T1

T

= <M6

= {c.

= (M2

= <Ml

'M7

,c2

,M3

'M4

)

'T1'T2

}

,M5,M6

} min

'M7'C1

= M

'C2'T1'T2}

NEXT

c = (c3 /c4)

T = {M1 ,M4 #M5 fM6 ,M7 #C l fC2 ,C3 /C4 ,T1 ,T2}

I = {C 1 /C 2 ,C 3 /C 4 ,T J L ,T 2} min = M

I •

I

T'

T

= {c1

" {T1

= (Mx

- {M6

}

'T2

'M4

,M7

'C2

'M5

'C2

'C3

'C3

'C4

>

'C4

}

,T

min =

l'T2>

2A+M

NEXT

C - {HALT}

T = {M6,M7,

I =

I' -

I =

T' =

T =

NEXT

C =

I =

T' =

T =

NEXT

C =

I -

T' =

T =

NEXT

C =

I' =

I =

{T1'T2

{T2'C2

(c2/c3

0

{C2,T2

{T,}

0

{c3,c4

{HALT}

{C2'C3

{HALT}

0

{HALT}

0

<C2

,c3

'C4

,C3/C4,HALT} min = 2A+M

,C4,HALT} min = 3A+M

7T2/HALT}

,HALT} min = 4A+M

'C4
,HALT}

}

min = 5A+M

'C4
}

Figure 2

184 G. GATI

m 0 0 A

m . . A 2A 2A 3A . . . • 3A M

M M+2A M+2A M+3A M+3A

m M+4A . . M+4A M+5A . . M+5A

m (x) = M+5A.

Figure 3

y = S 1 S 3 S 5

m 0 0 A A 2A

m . . 2A 3A 3A M+3A

m . . Mf5A M+6A M+7A . . M4-7A

m (y) = M+7A.

Figure 4

.M+3A M+4A

Finally figure 4 exhibits a parallel computation y that one would get from the
sequential exécution of the Strassen-Winograd algorithm using only the
"obvious" possibilities of parallelization effecting a minimization of m; we have

R.A.I.R.O. Informatique théorique/Theoretical Informaties

