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Abstract We establish a Strichartz type estimate for the Schrödinger propagator eitL

for the special Hermite operator L on C
n. Our method relies on a regularization

technique. We show that no admissibility condition is required on (q,p) when 1 ≤
q ≤ 2.
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1 Introduction

The quantum harmonic oscillator Hamiltonian H = −� + |x|2 on R
n has the repre-

sentation

H = 1

2

n∑

j=1

(
AjA

∗
j + A∗

jAj

)

in terms of the creation operators Aj = − d
dxj

+ xj and the annihilation operators

A∗
j = d

dxj
+ xj , j = 1,2, . . . n. There is an interesting analogous operator L on C

n,
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given by

L = 1

2

n∑

j=1

(
ZjZj + ZjZj

)

where Zj = ∂
∂zj

+ 1
2 z̄j , Zj = − ∂

∂z̄j
+ 1

2zj , j = 1,2, . . . n. Here ∂
∂zj

and ∂
∂z̄j

denote

the complex derivatives ∂
∂xj

∓ i ∂
∂yj

, respectively. The operator L was introduced by

R. S. Strichartz [12], and is known as the special Hermite operator. In explicit terms
it has the form

L= −� + 1

4
|z|2 − i

n∑

1

(
xj

∂

∂yj

− yj

∂

∂xj

)
(1.1)

where � is the Laplacian on C
n.

What makes this operator interesting is that, it is associated to certain convolu-
tion structure on C

n (see, Section 2), by virtue of which, the solutions to the initial
value problems for basic linear differential equations like heat, wave and Schrödinger
equation for L can be expressed in terms of this convolution structure on C

n.
With any self adjoint differential operator L having the spectral decomposition

L = ∫
E

λdPλ, we can associate an oscillatory group {e−itL : t ∈ R} which is defined
by

e−itL =
∫

E

e−itλdPλ , (1.2)

where dPλ denotes the spectral projection for L; i.e., a projection valued measure on
the spectrum E of L. The spectrum may be continuous, discrete or a combination
of both, in general. If the spectrum is discrete, then the above integral reduces to an
infinite sum. Oscillatory groups of the above form arise as solution operators for the
initial value problem for the Schrödinger equation. Hence, we may call the group
{e−itL : t ∈ R} the Schrödinger propagator for L.

Consider the initial value problem for the Schrödinger equation for L:

i∂tu(z, t) −Lu(z, t) = 0, z ∈ C
n, t > 0 (1.3)

u(z,0) = f (z) . (1.4)

For f ∈ L2(Cn) the solution to this initial value problem is given by

u(z, t) = e−itLf (z) .

Using the representation for L given by (1.1), the Schrödinger equation for L takes
the form

i∂tu + i

n∑

1

(xj ∂yj
− yj ∂xj

)u + �u − 1

4
|z|2u = 0 .
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This equation may be thought of as a prototype for a generalized Schrödinger
equation of the form

i∂u = (−�x + V (x))u = 0

where ∂ denotes a first order linear differential operator on R
m × R of the form

a0(x)∂t +
m∑

j=1

aj (x)∂xj
+ b(x), x ∈ R

m, t ∈ R .

The study of such general Schrödinger equations is significant because they include
as special case, Schrödinger equation with a magnetic vector potential A and scalar

potential V :
m∑

j=1
(i∂j + Aj)

2u + V u = 0.

The present article is concerned with the study of the regularity property of the
Schrödinger propagator for the special Hermite operator L. The main reason for the
study of Schrödinger propagator for this operator is to indicate that, the analysis of
general Schrödinger equation of the above form could be done more effectively using
the harmonic analysis of the special functions associated to the differential operator
involved.

In the case of Schrödinger equation for the special Hermite operator L, we see
that the analysis is closely related to the harmonic analysis on the Heisenberg group.
This is not surprising because the special Hermite operator is closely related to the
Heisenberg Laplacian and naturally, the tools of the Harmonic analysis on Heisenberg
group come into play.

We begin with a brief discussion of the spectral theory of L. References for the
materials discussed in this section are the books by Folland [1] or Thangavelu [13].

The eigenfunctions of the operator L are called the special Hermite functions,
which are defined in terms of the Fourier-Wigner transform. For a pair of functions
f,g ∈ L2(Rn), the Fourier-Wigner transform is defined to be

V (f,g)(z) = (2π)−
n
2

∫

Rn

eix·ξ f
(
ξ + y

2

)
g

(
ξ − y

2

)
dξ ,

where z = x + iy ∈ C
n. For any two multi-indices μ,ν the special Hermite functions

�μν are given by

�μν(z) = V (hμ,hν)(z)

where hμ and hν are Hermite functions on R
n. Recall that for each nonnegative

integer k, the one-dimensional Hermite functions hk are defined by

hk(x) = (−1)k√
2kk!√π

(
dk

dxk
e−x2

)
e

x2
2 .

Now for each multi index ν = (ν1, · · · , νn), the n-dimensional Hermite functions are
defined by the tensor product:

hν(x) = 	n
i=1hνi

(xi), x = (x1, · · · , xn) .
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A direct computation using the relations
(

− d

dx
+ x

)
hk(x) = (2k + 2)

1
2 hk+1(x) ,

(
d

dx
+ x

)
hk(x) = (2k)

1
2 hk−1(x)

satisfied by the Hermite functions hk show that L�μν = (2|ν| + n)�μν . Hence,
�μ,ν are eigenfunctions of L with eigenvalue 2|ν|+n and they also form a complete
orthonormal system in L2(Cn). Thus every f ∈ L2(Cn) has the expansion

f =
∑

μ,ν

〈f,�μν〉�μν (1.5)

in terms of the eigenfunctions of L.
The above expansion may be written as

f =
∞∑

k=0

Pkf (1.6)

where

Pkf =
∑

μ,|ν|=k

〈f,�μ,ν〉�μν (1.7)

is the spectral projection corresponding to the eigenvalue 2k + n. Now for any f ∈
L2(Cn) such that Lf ∈ L2(Cn), by self adjointness of L, we have Pk(Lf ) = (2k +
n)Pkf . It follows that for f ∈ L2(Cn) with Lf ∈ L2(Cn)

Lf =
∞∑

k=0

(2k + n)Pkf .

Thus in view of (1.2), we can define e−itL as

e−itLf =
∞∑

k=0

e−it (2k+n)Pkf . (1.8)

It is convenient to measure the regularity of e−itLf in terms of the Sobolev space
Ws

L(Cn), which for s ≥ 0 are defined by

Ws
L
(
C

n
) = {

f ∈ L2(
C

n
) : Lsf ∈ L2(

C
n
)}

where Ls is defined using the spectral theory; Lsf = ∑∞
k=0(2k + n)sPkf . Notice

that for s < 0, elements of Ws
L(Cn) are tempered distributions.

From (1.8) it is clear that {e−itL : t ∈ R} is a one parameter group of unitary
operators on L2(Cn). In particular, e−itL cannot map L2(Cn) into Ws

L(Cn) for s > 0,
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the later being a proper subspace of L2(Cn). This rules out the possibility of e−itL

having any regularity in terms of the Sobolev spaces Ws
L(Cn). This is in fact a general

feature of such oscillatory groups.
For the free Schrödinger equation on R

n, R. S. Strichartz showed that for L2 ini-
tial data, the solution does however lie in a higher order Lp space over space-time,
namely for p = 2(n+2)

n
. He proved the following theorem, known as the Strichartz’

estimate (see, [11]).

Theorem (Strichartz) Let u be the solution to the inhomogeneous problem

i∂tu(x, t) + �u(x, t) = g(x, t), x ∈ R
n, t ∈ R

u(x,0) = f (x) .

with f ∈ L2(Rn), g ∈ L
2(n+2)
n+4 (Rn × R). Then u ∈ L

2(n+2)
n (Rn × R) and moreover

satisfies the inequality

(∫ ∞

−∞

∫

Rn

|u(x, t)| 2(n+2)
n dx dt

) n
2(n+2) ≤ C

(
‖f ‖2 + ‖g‖ 2(n+2)

n+4

)
.

This result has been extended to Schrödinger equations with a wide class of
bounded potentials V by Journe, Soffer, and Sogge. In fact, in [5], they proved anal-
ogous estimates in the case of bounded potentials satisfying certain pointwise decay
condition at infinity. There has been a considerable interest, ever since, in establishing
Strichartz’ type estimate, as a global regularity result, for Schrödinger equations with
general bounded potentials. We refer to [3, 4] and the references there in for such
results. An interesting case of an unbounded potential can be seen in [8, 9], where the
authors consider the quadratic potential V (x) = |x|2.

Since there is no global regularity in terms of Sobolev spaces in our situation,
naturally we look for a Strichartz type estimate for e−itLf . A new feature of the
one parameter unitary group {e−itL : t ∈ R} given by (1.8) is the periodicity in the
t variable. It follows that the solution u(z, t) = e−itLf (z) to the initial value prob-
lem (1.3), (1.4) is periodic in t with period 2π , and hence may be regarded as a
function on C

n × S
1.

Let (
,dμ) be any σ -finite measure space. We consider the mixed Lp space on

 × S

1 given by

Lq
(
S

1;Lp(
)
) = {

u : u measurable on 
 × S
1, ‖u‖Lq(S1;Lp(
)) < ∞}

,

where ‖ · ‖L
q
(S1;Lp

(
)) denotes the norm in Lq(S1;Lp(
)):

‖u‖L
q
(S1;Lp

(
)) =
(∫ π

−π

[∫




|u(z, t)|p dμ(z)

] q
p

dt

) 1
q

(1.9)

for 1 ≤ p,q < ∞. Our result for the Schrödinger propagator is the following
Strichartz type estimate.
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Theorem A Let f ∈ L2(Cn) and let u(z, t) = e−itLf (z). Then u is periodic in t

and u ∈ Lq(S1;Lp(Cn)), for all pairs (q,p) such that 2 < q < ∞, 1
q

≥ n( 1
2 − 1

p
) or

1 ≤ q ≤ 2, 2 ≤ p < 2n
n−1 , n ≥ 1. Further u satisfies the inequality

‖u‖Lq(S1;Lp(Cn)) ≤ Cn‖f ‖2 (1.10)

for all f ∈ L2(Cn) for the above ranges of p and q .

Remark 1 It is interesting to note that the admissibility condition on the pairs (q,p),
i.e., 1

q
≥ n( 1

2 − 1
p
) is required only for q > 2.

Since ‖f ‖2 < ∞, from the definition of the mixed Lp norm given by (1.9), we
see that the validity of the above inequality implies that, for almost all t , the inner
integral in (1.9) is finite. So we conclude that for almost all t ∈ [−π,π) (and hence for
almost all t ∈ R), u(·, t) = e−itLf lies in a higher order Lp space, namely Lp(Cn)

for 2 ≤ p < 2n
n−1 . This may be regarded as a regularizing effect of the oscillatory

group {e−itL : t ∈ R}.
The famous article of M. Kiel and T. Tao (see, [6]), proves Strichartz estimates

for general one parameter family of operators U(t), satisfying certain growth/decay
conditions in t . However, the Schrödinger group {e−itL : t ∈ R} does not satisfy the
required decay condition for all t ∈ R. It is not clear a priori, if the required decay
condition holds even for small t .

Our approach involves basically, a regularization technique; We embed the one
parameter unitary group {e−itL : t ∈ R} into the complex semi group {e−zL : z =
r + it, r > 0, t ∈ R}, which is infinitely smoothing. We first establish the estimate for
the complex semi group and the estimate for the original semi group {e−itL : t ∈ R}
is then deduced by a suitable limiting argument.

2 Integral Representation of e−itL and the Kernel Estimate

We show that the Schrödinger group is given by a twisted convolution operator. Recall
that the twisted convolution of two functions f and g on C

n is defined by

f × g(z) =
∫

Cn

f (z − w)g(w)e
i
2 �(z·w̄) dw

where � denotes the imaginary part. We start with recalling the well known orthogo-
nality properties of the special Hermite functions.

�μ,ν × �α,β = (2π)n/2�μ,β δν,α (2.1)

where δν,α = 1, if ν = α and 0 otherwise. The reference for all the results we use
regarding the special Hermite functions is the monograph [13] or [12].

Let ϕk(z) = Ln−1
k ( 1

2 |z|2) e− 1
4 |z|2 be the Laguerre function of order n − 1. Here

Lα
k denote the Laguerre polynomial of degree k and order α > −1, defined by the
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generating function identity, [7]

∞∑

k=0

Lα
k (x)ωk = (1 − ω)−α−1e− ω

1−ω
x, |ω| < 1 . (2.2)

The special Hermite functions �μ,ν are related to the Laguerre functions ϕk by the
following relation

(2π)n/2
∑

|ν|=k

�νν = ϕk (2.3)

(see, [13], p. 22). The condition (2.1) leads to the orthogonality condition

ϕk × ϕj = (2π)nϕk δk,j (2.4)

for the Laguerre functions. It follows from (2.2), with α = n− 1 that the functions ϕk

satisfy the generating function identity

∞∑

k=0

ϕk(z)ω
k = (1 − ω)−ne− 1

2
1+ω
1−ω

|z|2 , |ω| < 1 (2.5)

which, by analytic continuation is valid for any complex number ω with |ω| < 1.
Taking twisted convolution on both sides of (1.5) with �αα and using the orthog-

onality property (2.1), we get

f × �αα = (2π)n/2
∑

μ

〈f,�μα〉�μα .

Now summing both sides with respect to all α such that |α| = k, and using (2.3), we
see that the spectral projection Pk given by (1.7) has the simpler representation,

Pkf = (2π)−
n
2

∑

|α|=k

f × �αα(z) = (2π)−nf × ϕ
k
(z) . (2.6)

Hence, the special Hermite expansion takes the compact form

f (z) = (2π)−n
∑

k

f × ϕ
k
(z) . (2.7)

Moreover, we see that the Schrödinger group {e−itL : t ∈ R} given by (1.8), has
the representation

e−itLf (z) = (2π)−n
∞∑

k=0

e−it (2k+n)f × ϕk(z) (2.8)

for f ∈ L2(Cn). We also consider an auxiliary complex semi-group {e−ηL} for com-
plex parameters η = r + it with (η) = r > 0:

e−ηLf (z) = (2π)−n

∞∑

k=0

e−η(2k+n)f × ϕk(z) . (2.9)
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This can be expressed as a twisted convolution f × Kη(z), where

Kη(z) = (2π)−n
∞∑

k=0

e−η(2k+n)ϕk(z) .

The interchange of integral and the infinite sum involved is justified since the above
series defining Kη converges in L2(Cn).

In view of (2.5), we can write the above equation in the form

Kη(z) = (2π)−ne−nη(1 − ω)−ne− 1+ω
1−ω

|z|2
4 , (2.10)

with ω = e−2η, (η) > 0. Thus we see that the operators in the complex semi group
e−ηL are twisted convolution operators:

e−ηLf (z) =
∫

Cn

f (z − w)Kη(w)e
i
2 �(z·w̄) dw (2.11)

with kernel given by (2.10). The following kernel estimate is crucial in our analysis.

Lemma 1 Let Kη(z) be the kernel given by the Equation (2.10). Then for (η) > 0,

Kη satisfies the uniform estimate

|Kη(z)| ≤ 2

| sin t |n , η = r + it, z ∈ C
n . (2.12)

Proof Since ω = e−2(r+it), 1 − ω = 2e−(r+it) sinh(r + it) and hence

|1 − ω| ≥ 2e−r | sin t | cosh r .

Also a simple computation shows that


(

1 + ω

1 − ω

)
≥ 1 − e−2r

1 + e−2r
,

which is positive for r > 0. Hence, from (2.10) we see that

|Kη| ≤ 2(2π)−nre−(n+1)r

| sin t |n ≤ 2

| sin t |n
which proves the lemma. �

We end this section with the following result which is for the convolution on
the circle.

Lemma 2 Let T denote the convolution operator on the circle given by

Tf (t) =
∫

S1
K(t − s)f (s) ds .
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Assume that K belongs to the weak Lp space L
ρ
W(S1), for some ρ > 1. Then the

inequality

‖Tf ‖q ≤ CK‖f ‖q ′

is valid for q = 2ρ and also for 1 ≤ q ≤ 2, where CK is a constant depending only
on K .

Proof By the generalized Young’s inequality, we have (see, [2]):

‖Tf ‖r ≤ C[K]ρ‖f ‖q ′

where [K]ρ denoting the weak Lρ(S1) norm of K , and is valid for all r such that
1
q ′ + 1

ρ
= 1 + 1

r
, ρ > 1, q ′ > 1. Setting r = q , this reads

‖Tf ‖q ≤ C[K]ρ‖f ‖q ′ (2.13)

for q = 2ρ. Notice that these arguments are valid for 2 < q < ∞, since ρ > 1 and
q ′ > 1 by assumption.

Now we observe that the weak Lp spaces L
ρ
W are in L1

loc for ρ > 1: In fact, for
any compact set �, set g = f χ�. The distribution function of g is given by λg(α) =
|{x : |g(x)| > α}| = |{x ∈ � : |f (x)| > α}| ≤ |�|. Hence, λg(α) is bounded for α >

0. Also λg(α) ≤ λf (α) ≤ C
αρ , since f ∈ L

ρ
W . These two inequalities yield λg(α) ≤

C
1+αρ . Thus

∫
�

|f | = ‖g‖1 = ∫ ∞
0 λg(α)dα ≤ ∫ ∞

0
dα

1+αρ . This integral is finite for ρ >

1, showing that f ∈ L1
loc.

By the above observation, we have K ∈ L1(S1). Hence, by Minkowski’s inequality
for integrals,

‖Tf ‖q ≤ ‖K‖1‖f ‖q for 1 ≤ q ≤ ∞ .

Integrating this inequality for q = ∞ over S
1 yields

‖Tf ‖1 ≤ 2π‖K‖1‖f ‖∞ .

Interpolating this with the above Lq estimate for q = 2, we get

‖Tf ‖q ≤ C‖K‖1‖f ‖q ′ for 1 ≤ q ≤ 2 . �

3 Estimates for the Complex Semi Group

In this section we establish the estimate for the auxiliary complex semi group and
deduce the proof of Theorem A. We follow the standard T ∗T method to prove the
estimate for the complex semi group. We start with the following.

Proposition 1 Let η = r + it, r > 0 and |t | > 0. Then the operators e−ηL in the
complex semi group satisfy the inequality

∥∥e−ηLf
∥∥

p
< 2| sin t |−2n( 1

p′ − 1
2 ) ‖f ‖p′ ,
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for 1 ≤ p′ ≤ 2, 1
p

+ 1
p′ = 1.

Proof In view of the integral representation (2.11) for e−ηL and the uniform estimate
for the kernel given by Lemma 1, we get the obvious L1 − L∞ estimate:

∥∥e−ηLf
∥∥∞ ≤ 2

| sin t |n ‖f ‖1

valid for all η = r + it such that r = (η) > 0, |t | > 0. Also since r > 0, it is clear
from (2.9), in view of (2.6), that e−ηL are contractions on L2(Cn):

∥∥e−ηLf
∥∥

2 < e−nr‖f ‖2 .

By Riesz-Thorin interpolation theorem, (see, [10]) these two inequalities yield

‖ur(·, t)‖p ≤ Cn(θ)‖f ‖p′ (3.1)

where 1
p′ = θ

1 + 1−θ
2 , 0 < θ < 1 and

Cn(θ) = 2θ e−nr(1−θ)

| sin t |nθ
<

2

| sin t |nθ
.

This completes the proof since θ
2 = 1

p′ − 1
2 . �

The next lemma is a technical result.

Lemma 3 Let h(·, ·) ∈ Lq ′
([−π,π];L2(Cn)), 1 ≤ q ′ ≤ ∞. Then for r > 0,

e−(r+it)Lh(z, t) e−(r+is)Lh(z, s) considered as a function of z ∈ C
n, t, s ∈ [−π,π]

belongs to L1(Cn × [−π,π] × [−π,π]).

Proof Since h(·, ·) ∈ Lq ′
([−π,π];L2(Cn)), except for t in a set of measure zero,

h(·, t) ∈ L2(Cn). Hence, except for those t , e−(r+it)Lh(·, t) ∈ L2(Cn) for r > 0. It
follows that e−ηLh(·, t) e−λLh(·, s) ∈ L1(Cn) for a.e., s, t ∈ [−π,π], where we set
η = r + it, λ = r + is for r > 0.

By Cauchy-Schwarz inequality and the fact that e−ηL is bounded on L2 for any η

with (η) > 0, we see that for almost all s, t

∫

Cn

∣∣e−ηLh(·, t) e−λLh(·, s)∣∣dz ≤ ‖h(·, t)‖2‖h(·, s)‖2 .

It follows that
∫ π

−π

∫ π

−π

∫

Cn

∣∣e−ηLh(·, t) e−λLh(·, s)∣∣dzds dt

≤
(∫ π

−π

‖h(·, t)‖2 dt

)2

≤ (2π)2/q‖h‖2
Lq′

([−π,π] ;L2(Cn))
< ∞
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by holder’s inequality and the fact that h(·, ·) ∈ Lq ′
([−π,π];L2(Cn)). This proves

the lemma. �

Proposition 2 The estimate
∥∥∥∥
∫

S1
e−(r+it)Lh(·, t) dt

∥∥∥∥
2
≤ C‖h‖

Lq′
(S1;Lp′

(Cn))

for r > 0, holds for all h(·, ·) ∈ Lq ′
(S1; Lp′ ∩ L2 (Cn)) for pairs (q,p) such that

1 ≤ q ≤ 2, 2 ≤ p < 2n
n−1 or 2 < q ≤ ∞, 1

q
≥ n( 1

2 − 1
p
).

Proof We have

∥∥∥∥
∫

S1
e−ηLh(·, t) dt

∥∥∥∥
2

2
=

∫

Cn

(∫

S1
e−ηLh(·, t) dt

∫

S1
e−λLh(·, s) ds

)
dz

=
∫

Cn

(∫

S1

∫

S1
e−ηLh(·, t) e−λLh(·, s) ds dt

)
dz .

Next we interchange the integrals over Cn and over S1 × S1 which is justified
by Fubini’s theorem in view of Lemma 3. Writing down the series expansion for
e−ηLh(·, t) and e−λLh(·, s), in terms of the spectral projections and using the or-
thogonality of the spectral projections, we see that the above integral is same as

∫

S1

∫

S1

∫

Cn

e−(η+λ̄)L h(·, s) dz h(·, t) ds dt

=
∫

S1

∫

Cn

(∫

S1
e−(η+λ̄)L h(·, s) ds

)
h(·, t) dz dt .

Now applying the Hölder’s inequality for the mixed Lp spaces on the RHS of the
above equation, we see that

∥∥∥∥
∫

S1
e−ηLh(·, t) dt

∥∥∥∥
2

2
≤

∥∥∥∥
∫

S1
e−(η+λ̄)Lh(·, s) ds

∥∥∥∥
Lq(S1;Lp(Cn))

×‖h(·, ·)‖
Lq′

(S1;Lp′
(Cn))

.

Thus to complete the proof, it is enough to establish the inequality
∥∥∥∥
∫

S1
e−(η+λ̄)Lh(·, s) ds

∥∥∥∥
Lq(S1;Lp(Cn))

≤ C‖h(·, ·)‖
Lq′

(S1;Lp′
(Cn))

.

By Minkowski’s inequality for integrals and Proposition 1, we see that
∥∥∥∥
∫

S1
e−(η+λ̄)Lh(·, s) ds

∥∥∥∥
p

≤
∫

S1
‖e−(η+λ̄)Lh(·, s)‖p ds (3.2)

≤
∫

S1

‖h(·, s)‖p′

| sin([t − s])|2n( 1
p′ − 1

2 )
ds
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for 1 ≤ p′ ≤ 2. The last expression defines a convolution operator on the circle with

kernel K(s) = | sin s|−2n( 1
p′ − 1

2 ) = | sin s|−2n( 1
2 − 1

p
). Observe that K belongs to the

weak Lp space L
ρ
W(S1) for all ρ ≤ 1

2n( 1
2 − 1

p
)
. Thus taking Lq(S1) norm on both sides

of (3.2), and using Lemma 2 on RHS, we get,
∥∥∥∥
∫

S1
e−(η+λ̄)Lh(·, s) ds

∥∥∥∥
Lq(S1;Lp(Cn))

≤ CK‖h(·, ·)‖
Lq′

(S1;Lp′
(Cn))

valid for q = 2ρ and also for 1 ≤ q ≤ 2. Note that ρ > 1 for q > 2 and hence 1 <

ρ ≤ 1
2n( 1

2 − 1
p

)
. Thus the above inequality is valid for all pairs (p, q) such that 1

q
≥

n( 1
2 − 1

p
), 2 < q ≤ ∞ and also for all pairs (q,p) such that 1 ≤ q ≤ 2, 2 ≤ p < 2n

n−1 .
This gives the required estimates and completes the proof. �

The next proposition establishes the mixed norm estimate for the complex semi
group e−ηL.

Proposition 3 Let η = r + it with r > 0 and 0 < |t | ≤ π . If f ∈ L2(Cn), then
e−ηLf ∈ Lq(S1;Lp(Cn)) for all pairs (q,p) such that 1 ≤ q ≤ 2, 2 ≤ p < 2n

n−1

or 2 < q < ∞, 1
q

≥ n( 1
2 − 1

p
). Moreover, e−ηL satisfies the inequality

∥∥e−ηLf
∥∥

Lq(S1;Lp(Cn))
≤ Cn‖f ‖2 (3.3)

for some constant Cn independent of f and r , for the above ranges of p and q .

Proof We use the duality argument to estimate the mixed Lp norm. Observe
that the dual of Lq(S1; Lp(Cn)) is Lq ′

(S1; Lp′
(Cn) for 1 ≤ p,q < ∞ and that

Lq ′
(S1; Lp′

(Cn) ∩ L2(Cn)) is dense in Lq ′
(S1; Lp′

(Cn)) for 1 ≤ q ′,p′ < ∞.
Let h ∈ Lq ′

(S1; Lp′
(Cn) ∩ L2(Cn)). Notice that the adjoint of the operator e−ηL

in L2(Cn) is e−η̄L, hence,
∫

S1

∫

Cn

[
e−ηLf

]
(z)h(z, t) dz dt =

∫

S1

∫

Cn

f (z)e−η̄Lh(z, t) dz dt .

An interchange of integrals on the RHS, followed by Cauchy-Schwarz inequality
yields

∣∣∣∣
∫

S1

∫

Cn

[
e−ηLf

]
(z)h(z, t) dz dt

∣∣∣∣ ≤ ‖f ‖2

∥∥∥∥
∫

S1
e−η̄Lh(·, t) dt

∥∥∥∥
2

.

In view of Proposition 2, this gives the inequality
∣∣∣∣
∫

S1

∫

Cn

e−ηLf (z)h(z, t) dz dt

∣∣∣∣ ≤ C‖f ‖2‖h‖
Lq′

(S1;Lp′
(Cn))

.

The required estimate follows, by density of Lq ′
(S1; Lp′

(Cn) ∩ L2(Cn)) in
Lq ′

(S1; Lp′
(Cn)). �



298 J Fourier Anal Appl (2008) 14: 286–300

Now we prove the regularity result for the original problem as stated in Theo-
rem A.

Proof of Theorem A We deduce this result from the inequality (3.3) by finding a
sequence ηn = rn + it such that e−ηnLf → e−itLf in Lq(S1;Lp(Cn)) as rn → 0.

First we observe that for each fixed t , e−ηLf → e−itLf in L2(Cn) as (η) =
r → 0. In fact, for any sequence ηj = rj + it with rj → 0, by (2.9), (2.6) we have

∥∥e−ηjLf − e−itLf
∥∥2

2 =
∑

k

∣∣∣e−(rj +it)(2k+n) − e−it (2k+n)
∣∣∣
2 ‖Pkf ‖2

2 . (3.4)

Clearly for each k ≥ 0,
∣∣e−(rj +it)(2k+n) − e−it (2k+n)

∣∣ tends to zero as rj → 0. Now a
dominated convergence argument applied to the sum on the RHS of (3.4) shows that
the RHS tends to zero as rj → 0.

Integrating (3.4) with respect to t , the above argument shows that
∫

S1

∫

Cn

∣∣∣e−(rj +it)Lf (z) − e−itLf (z)

∣∣∣
2

dzdt → 0

as rj → 0. In other words e−ηjLf converges to e−itLf in L2(Cn ×S
1). Thus we can

extract a subsequence of this sequence, denoted by e−ηnLf (z), for which

lim(ηn)→0
e−ηnLf (z) = e−itLf (z) (3.5)

for a.e. (z, t) ∈ C
n × [−π,π).

Now we show that the sequence e−ηnLf (z) is Cauchy in Lq(S1;Lp(Cn)). For 0 <

rm < rn, let ηm = rm+it , and set ρ = ρn,m = ηn−ηm. Since e−(r+it)L = e−rL e−itL,
which follows from the definition, we see that

∥∥e−ηnLf − e−ηmLf
∥∥

Lq(S1;Lp(Cn))

= ∥∥e−ηmL(
e−ρL − I

)
f

∥∥
Lq(S1;Lp(Cn))

≤ C
∥∥(

e−ρL − I
)
f

∥∥
2

where I is the identity operator. The last inequality follows from Proposition 3 ap-
plied to the L2 function

(
e−ρL − I

)
f . Notice that e−ρL is bounded on L2 since

ρ > 0 and hence
(
e−ρL − I

)
f ∈ L2(Cn). Since ρ → 0 as rn → 0, by a dominated

convergence argument as before shows that ‖(e−ρL − I )f ‖2 → 0 as rn → 0. This
proves that the sequence e−ηnLf is Cauchy in Lq(S1;Lp(Cn)) and hence has a limit
in Lq(S1;Lp(Cn)). By (3.5), this limit has to be e−itLf (z). �

Remark 2 The proof also follows directly from (3.5) by application of Fatou’s lemma
twice; with respect to t and z variable separately. This proves that
‖e−ηnL f (z)‖Lq(S1;Lp(Cn)) → ‖e−itLf (z)‖Lq(S1;Lp(Cn)) as n → ∞. However, the

arguments in the above proof shows that e−ηnLf (z) actually converges to e−itLf (z)

in the Banach space Lq(S1;Lp(Cn)).
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4 Applications to Schrödinger Equation

Now we consider the initial value problem for the Schrödinger equation for L:

i∂tu(z, t) −Lu(z, t) = 0, z ∈ C
n, t ∈ R (4.1)

u(z,0) = f (z) . (4.2)

It is easy to see that for f ∈ L2(Cn) the function u given by

u(z, t) = e−itLf (z)

satisfies the above Schrödinger equation in the distribution sense. Moreover, by the
dominated convergence argument discussed above, we can also see that the solution
u(·, t) → f in the L2 sense as t → 0. Thus the above initial value problem is well
posed in L2(Cn) and the oscillatory group {e−itL : t ∈ R} gives the solution at any
time t �= 0, for any given initial data f ∈ L2(Cn).

Theorem A is a regularity theorem for the solution to the above initial value prob-
lem. It says that for L2 initial data, the solution u(·, ·) is actually a function that
is periodic in t with period 2π and for almost all t , the function u(t, ·) belongs to
Lp(Cn) for 2 ≤ p < 2n

n−1 .
Now let us consider the inhomogeneous problem:

i∂tu(z, t) −Lu(z, t) = g(z, t), z ∈ C
n, t ∈ R (4.3)

u(z,0) = f (z) . (4.4)

In this case, the solution is given by the Duhamel’s formula:

u(z, t) = e−itLf (z) − i

∫ t

0
e−i(t−s)Lg(z, s) ds . (4.5)

For the inhomogeneous problem we prove the following.

Theorem 2 Let f ∈ L2(Cn) and g(z, t) ∈ Lq ′
(S1; Lp′

(Cn)) then the solution u(z, t)

to the problem (4.3), (4.4) lies in Lq(S1; Lp(Cn)), for all pairs (q,p) such that
1 ≤ q ≤ 2, 2 ≤ p < 2n

2n−1 or 2 < q < ∞, 1
q

≥ n( 1
2 − 1

p
). Further u(z, t) satisfies

the inequality

‖u(z, t)‖Lq(S1;Lp(Cn)) ≤ Cn

(‖f ‖2 + ‖g‖
Lq′

(S1;Lp′
(Cn))

)

for the above pairs (p, q) with some constant Cn independent of f and g.

Proof By Theorem A, the Lq(S1; Lp(Cn)) norm of the first term in (4.5) is bounded
by Cn‖f ‖2 for 1 ≤ q ≤ 2, 2 ≤ p < 2n

2n−1 or 2 < q < ∞, 1
q

≥ n( 1
2 − 1

p
).

Also the second term is bounded by

∫ 2π

0

∣∣e−i(t−s)Lg(x, s)
∣∣ds .
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Thus an application of Minkowski’s inequality for integrals followed by Proposi-
tion 1, we see that

∥∥∥∥
∫ t

0
e−i(t−s)Lg(·, s) ds

∥∥∥∥
p

≤ Cn

∫ 2π

0

‖g(·, s)‖p′

| sin(t − s)|2n( 1
p′ − 1

2 )
ds . (4.6)

Notice that RHS of the above equation is a convolution on the circle and
‖g(·, s)‖p′ ∈ Lq ′

(S1, ds) as a function of s, by hypothesis. Hence, by arguments us-
ing Lemma 2 as in Proposition 2, we get

∥∥∥∥∥

∫ 2π

0

‖g(·, s)‖p′

| sin(t − s)|2n( 1
p′ − 1

2 )
ds

∥∥∥∥∥
Lq(S1,ds)

≤ C‖g‖
Lq′

(S1;Lp′
(Cn))

.

In view of (4.6), this shows that the second term of (4.5) satisfies
∥∥∥∥i

∫ t

0
e−i(t−s)Lg(x, s) ds

∥∥∥∥
Lq(S1;Lp(Cn))

≤ C‖g‖
Lq′

(S1;Lp′
(Cn))

.

This completes the proof. �
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