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1. 1Introduction

At the Eighth International Symposium on Mathematical Pro-
gramming {(August 1973 at Stanford), Hugo Scolnik.suggested a
line of reasoning leading to an algorithm which.he thought might
solve the linear programming problem in polyromial time.* The
algorithm which Scolnik contemplated would consiruct an optimal
basis one column at a time, in such a way that once a column is
selected to be in this basis, it need never bé thrown out later;
after t basic columns had been selected, the algorithm would
first use two rejection criteria (a)cand (b) to reduce the num-
ber of candidates for the (t'&-l)f-tE column and would then use a
selection criterion (c) to choose one of the rcmaining candi-
dates.

In $2 we state the linear programming problem precisely and
review some properties of its solutions which will be useful in
the sequel; we also review some facts about pseudoinverses and
introduce some terminology and notation. 1In §3 we summarize

Scolnik's suggestions, and in §4 we examine them in more detail.

* My knowledge of Scolnik's ideas on this subject comes from a
handout, which he distributed at the symposium, and from an
addendum that he wrote thereto, a copy of which was kindly sent
to me by Gordon Bradley.
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We conclude in §5 that Scolnik's suggestions have apparently
shed little new light on the linear programming problem.
2. Preliminaries
Ior--minaries

2.1 The Problem

The linear programming problem may be stated in the fol-
lowing form: given an m x n matrix A with m < n and vec-

tors b e R and c e Rn, let
(la) S = {x ¢ R X > 0 (componentwise) and Ax = b}

and find x* € S such that

(1b) z(x*) = T = 2* = ine(cTx| x e s} .
Of course, it may happen that z* = 4= (i.e., s is empty) or

z¥ = -w; but'if a has full rank (which we henceforth assume)

and 2z* is finite, then it is possible to reorder the colunns

of A (and correspondingly the components of ¢ and x) in
such a way that A = (B,R), where B is a nonsingular m x m

matrix, R is m x (n - m), x* = (x;,xa) (partitioned like Aa)

with xg = B-lb

in particular

and x; = 0 1is a solution to (1), so that,

(2a) 871b > o,
: T T T, . fas .
ard if ¢* = (cB,cR) 1S partitioned like A, then
T,-1 T
(2b) _ €gB "R - cp < 0.

Conditions (2) are sufficient to guarantee that x* = (0 )
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solves (1); B is called an "optimal basis™. The usual simplex
algorithms for solving (1) proceed by changing a trial basis
(i.e., subset of m 1linearly indepcrdent columns of A) one
column at a time until conditions (2) hold. Scolnik wants to
avoid exchanging one column for another by building up an opti-

mal basis from scratch, as briefly described in the introduction.

2.2 Pseucdoinverses

Below, we shall frequently refer to the pseudoinverse M+t

T

of a (real) matrix M. M* has the dimensions of M (the

transpose of M) and is the unique such real matrix satisfying:

(3) Mot = M; Mumt = Mt T =ty ooty T = mtu.

~ %

(MM*)

(The matrices M with which we shall deal will always have
full column rank; in this case MM*M‘f M=>MM=1, i.e.,

¥t is a left inverse of M.) Important for us are the facts
that (M%) (MM+) = MM+,‘so that MM* is a projection matrix,
and (MM*)T(I - Mxt) = b, so that, in fact, MM* projects
orthogonally (with respect to the standard inner product) onto

the column space of M, and (I - MM*)  projects orthogonally

onto the orthogonal complement of the column space of M. 1In

general, y* = M*b is the least-squares solution of smallest

2-norm (llyl]z = (yTy)*)T  to the possibly inconsistent system

My = b. (when M has full column rank, M*b is the only least-

t It is possible to compute a pseudoinverse §+ of M with
1
respect to arbitrary inner product norms }]y]]P = (v7py)? on

1
the domain and ]]w}IQ = (wTow)® on the range of M, where P and
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squares solution to My=b.) If, for example, M = v ¢ R" - {0},
i.e. M = v is a non-zero mxl matrix, then Mt = ()t = vT/vallg :
cf formula (7) below (in the proof of thecorem 2). The algorithm
which Scolnik suggests requires us to compute M*b for certain M;
for an e%ficient and stable way to do this, see [l]. For more on

pseudoinverses generally, see [2].

2.3 Terminology and Notation

We shall say that an m X m mgtrix B 1is a basis for
(1) iff the columns bl""’bm of B are columns of A and
B is nonsingular; in this case we also say that {bl,...,bm}
is a basis for (1). (It will usually be clear that we are
talking about (1), so we will often omit the phrase "for (1)".)
if B 1is a basis for (1), then there exists an n X n permu-
tation matrix Hn such that~lAHn = (B,R); to B corresponds
the basic solution x = Hn(?.é?j. We say that B is feasible
iff (2a) holds and that B is optimal iff both (2a) and (2b)
hold. If B is a basis for (1) and Rm ‘is an m X m per-
mutation matrix, then Bﬂm is a basis which gives the same
basic solution and enjoys the same properties as B; when we

say, e.g., "{bl, cesy bm} is the only optimal basis," we

; +
Q are symmetric and positive definite. 1In this case y* = Mb
is the vector of least |[-|{P norm which minimizes ||My - blIQ.
ut is unique and is characterized by:
T, + +ay T ag+

MMtM = M; Mttt o= Mty (Mut) Qo= QMMT;  (MTM) TP = PMTM.

There cxist symmetric, positive definite matrices P t and
1
- - - - 2

of suen thae e heh = @ H2 =21 ana @H% =0, and

1
we have Mt = P_%(Q%MP'%)+QY, where the pseudoinverse on the
right is computed with respect to the 2-norm.
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mean that any optiral basis for (1) has the form BIL,.

Let a; denote the ith column of A, so that A = (al,
az,...,an). Fqllowing Scolnik, we let Ai'= (al,...,ai) denote
the submatrix consisting of the first i «columns of A, and we
let Az = (al’“"aj—l’aj+l""’ai) denote the matrix obtained
by removing the jth column from Ai' Let <.,.> denote the
standard inner product: <x,y> = yTx. Let I denote the iden-
tity matrix of dimension appropriate to the context; let Py =
I- A;AI denote the orthogonal projection onto the orthogonal
complement of the column space of Ai, and, similarly, let P% =

i1
I - AX(aA:)*.

AJ( J)

3. Scolrnik's Observations %nd the Algorithm They Seem to Suggest

3.1 Socne Theorems and the Suggested Algorithm

Scolnik made the following observations; we defer proofs and
detailed discussions until §4. (The cesignations "theorem 1" and
"theorem 2" are here reversed with respect to Scolnik's symposium
handout. The theorems and algorithm are also stated in slightly

different form.)

Theorem 1l: Assume that A;b > 0 for some 3 with 2 <Jj<m
1f
k = minf]|pt ) ; ;
IlebI!Z-man]ijHz. 1<i<il,
then

(A‘j‘)“b > 0.

Hence, if A,_l is a feasible basis, i.e., A;b = A;lb > 0,

then it is possible to reorder the first m columns of A so
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that A;bzo for 1< 3§ <m.
Theorem 2: Assume that Aj has full column rank. Then
A;fb >0 iff <pla;,b> 20 for 1<1<3.

In particular (since P§ is symmetric ‘and P: =P )

if A, is a feasible basis, then <aj’Pm-lb> >0 for Jj =m.
Theorem 3 gives a condition under which this holds for other

values of 3Jj.

. . . . -1
Theorem 3: If Am is a feasible basis (Am b > 0) and ays

span a facet of the cone K = {ax| x > 0} generated

ceerdpg >

by the columns of A, then
<aj,Pm_lb> >0 forl2<3j<n.

That ayseeea span a facet of K means that there

m-1
exists a unit vector u orthogonal to ajs...,3._4 such that
<aj,u> >0 for m< j <n, and if <aj,u? = 0 for some j‘z m,
then A;_laj > 0.
Henceforth we assume that there exists an optimal basis B,
m-1 of whose columns span a facet of K = {ax| x > 0}. This is,
of course, a special éase, but Scolnik thoucht that an algorithm
like the one described below might become part of a unified al-
gorithm, for which he was working on a theorem (and which he did
not further describe). This assumption allows us to use theoren

3; Scolnik suggested that theorem 3 might in this case generalize

to:

Theorem 4: For 1 < k < m=-1, if al,...,ak span a facet of the



subcone {Ak+lx, x>0, x € ®K+1y generated by al;""ak+l' then
<aj,Pkb> 20 forl<j<n.

It now appears that the columns of A might be so orderable

that Am is an optimal basis,
(4a) A;b 20 forl <3 <m, and
(4b) <aj'Pkb> 20 forl<k<m-l and 1l <3 <n.

Thus we have two criteria (4a) and (4b) for reducing the number
of candidates for 2.,y once ayr...,a, are knowp. Neither
(42) nor (4b) takes into account the objective function z(x) =
<x,c>, so it seems reasonable to introduce a selection criterion
1

based on the the objective function to choose one of the remain-
t+1 might

« .
render a best least-squares solution to the linear programming

ing candidates. Scolnik suggested that perhaps a

problem in the sense that
+ + .
(4c) (cl""’ct+1)At+lb < (Cl""’ct’cj)(At’aj) b for t+2 <3 <n.

In case 2quality held for some j in (4¢), it might be necessary
to look ahead, i.e., to repeat subsequent computations with each
candicate in turn as Ay until some one of the candidates

.)A++kb than the others;

i i1 1
yielded a smaller value of (cl,...,ct+K M

of course, this might jeopardize the polyndpial running time.
Thus we arrive at
The Alcorithnm )

0. t + 0 (iteration counter).

1. Comment: At this point the first t columns of an



optimal basis have been selected, and the
columns of A have been reordered so that
these first t basic columns are Byrecesdy,
i.e., the columns of At.
(a) Determine Rl = (ajlt <3 <n, Ptaj # 0, and
‘ (aga™s 20 .
Comment: Because Ptaj #0, (At'aj) has full

rank for each a. € R,.

j 1
(b) Determine R, = {aj € Rl[<ai,Pt,jb> >0 for
t <i<n but i # j, where Pt j = I -
’

(At’aj)(At’aj)+}' If R2 is empty, then

terminate unsuccessfully.

(c)  Find the element aj* of R, such that

(cl,...,ct,cj*)(At,aj*)+b is minimized
(where c; = the iib component of «¢); if
i

there are two or more candidates for a.*,

J
then look ahead.

*
Interchange at+l and aj (as well as
*
Cee1” and cj ).
t + t+1.

If t =m then terminate successfully; other-
wise go to 1l.°
Notice that Ry = Ry in the last iteration (t = m-1).
Recall (2b); Scolnik proved:

Theorem 5: Assume that the algorithm has successfully run. If
(5a) : <aj,Pm_lb> > 0 and

(5b) (cl,...,cm_l,cj)(Am_l,aj)'lb LR PRI TN
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for some 3j > m, then (cl,...,cm)A—laj - cj <

0.
Corollarv: 1If the algorithm has successfully terminated and
(5) holds for all j with m< j < n, then Al is an optimal
basis. '

(In his symposium handout, Scolnik specified that, in the

. R * fs s +

£inal iteration, aj minimize (cl,...,cm_l,cj)(Am_l,aj) b.
As theorem 5 and (2b) show, this choice of ay renders Am an

optimal basis if (S5a) holds for all j > m.)

3.2 Example
Scolnik offered the following example of how -this algorithm
works (on a problem constructed by Gass):
1 3 -1 ¢ 2 0 7
a={o -2 4 1 0 of, b=12), c=¢(,1, -3, 0,2 0.

\o -4 3 0 8 1 10.

*
The optimal basis is {az,az,a6), which gives x = (0, 4, 5, O,

T *
0, 11) and z({x ) = -11.
teration 1: (t = 0)
+ A 2 " . - + s . + = .
(ap* = 7: (a))"b = -1.48; (ap7b = 2,73 (ay)7b = 12;
(ag)™d =+ 1.38; (a6)+b = 10; thus Ry = (a;,33,3,,35,35)-

J
4,5,6; thus R, = (a3} and a, is selected as the first

<ai,P0'3b> >0 for i # 3 and <a2,PO'-b> <0 for j=1,
basic column. To avoid confusion, we will not interchange
a and aj.

Iteration 2: (t = 1)

We find (a3,aj)*b >0 for j =1,2,4,56, so Ry = {aj,ay,
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a4,a5,a6}. <aippl'jb> <0 for (irj) = (211)1 (412)1

(6,5), and we find R, = {a4,a6}. Since (c3,c6)(a3,a6)+b &
-7.23 € =6.9 = (c3,c4)(a3,a4)+b, ag is selected as the se-

cond basic column.

Iteration 3: (t.= 2)

We find:

. . -1 )T -1
_J_ ((a3.a6,aj) b (c3,c6,cj)(a3,a6,aj) b
1 3 1 10 -9

2 5 11 4 -11

4 -7 31 40 21

5 3 -39 5 1

Thus Ry = R, = {al,az} and a, is selected as the third

basic column.

4. Proofs and Discussion

Theorems 1, 2, 3, and 5 are valid. We prove them in §4.1,

but the proofs are not relevant to the discussion which follows
{54.2). The proofs of thcorems 3 and 5 are essentially those

which Scolnik gave.

4.1 Proofs

Proof of Theorem 1: Let b = AjA;b: then b =b + b,

where b =b - b = ij.. The following proves the geometrically

obvious facts that

(6) l1%l1, = min{]1Pipl 1, 124 < 5)



-11~-

ard if (A§)+b = (A?)*g had a negative component} then there
3
would be a point b" on the line segment between b’ and

k. ky+ * . k'
A-(nj) b such that b were in the column space of Aj

for
scme k' # k, k' < 3, and hence 9% bl]2 }p?g[lz.
Since b 1lies in the orthogonal complement of the column

space of A, and, hence, of A§ (1 <ix< 9, i = B and
3 .

J
<6,b> = <S,A§(A§)*b> =0, so P;b =5 + P;g and <5,p;p> =
J
<E,p - A%(A;my = 0-0=0; nence |leio]|Z = []B]]] +
Ip* bllz, which implies (6). Because the columns of A; are
linearly independent and A§ (A§)+5 =b - P;S =0, (A;)+5 =0
and so (A;)+b = (A%)+b-. similarly Afb = A;E- Let
. w4 _ .
(dl,..., 1'“k+1""'“') = (n]) b and k-O, so that
A*(A§)+b = 2 a3y Now if (A')+ = (A k)+b had:.a negative component
T oi=1
Ay < 0 for some k' < j, k' # k, then we would have P? b # 0,
since r? b = 0 would imply A; b = Af b= (al,...,aj) 3 0. Sctting
‘ 3

8., = (Afb). = 1EE cormponent of 94 > 0, we have b = A.(Afb) = I %Z.a.

1 31 . J 173 i=1”1 i*
Let ) = &::7: e [0,1): then A, + (1-3)8, =0, so p* = N\ (A ¥
+ (1-2)b 1lies in the column space of A; But A?(A.) b is the
closest point in the column space of A? to b, so [p ? 2‘!2 =

f K' WK g 1 * k k

b - A b - = - = .
| iR Aj (“j)éllzilné E_’Hz A!lb F j)bH XHPJDHZ

< Iipggllz, which contradicts (6). g3

Proof of Theorem 2: Since Aj has full rank, aj is not in

the column space of Aj-l' so j a3 # 0 and (since zj = Pij =
T L . s T _ N
Pj is idempotent and symmetric) a]PJ laj lle_lajllz 0.

Thus
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T.
+ a.a.bP. -1
R A | 1:2’
mt A;.‘ = a3t 20,
: T 2
. aij_l/lle_lajllz

as can be verified by substitution into (3). If we apply this
reasoning to (Ajn)+ = nTA;, where I is a permutation matrix,

we find that

(8) the lﬁh row of AJ is just a; Pl/]lP ay llz,

from which the theorem follows. f§

Proof of Theorem 3: Let u be as in the remark which

immediately follows theorem 3: then u spans the (one dimen-
sional) orthogonal complement of the column space of Am-l’ so

Pm-lb = <b,u>n and <a.,P

3 m—lb> = <aj,U><b,u>; since b = Ahp b

is a nonnegative linear combination of Ayseeerdp, <b,u> >0 and
a

the theorem follows. £

Pfoof of Theorem 5: i <a.
Since aj’Pm—l

1,aj), like Am' has full rank. Thus

b> = <p .,b> > 0,

m—laj

P # 0 and so (A

m-12 j m=

(7) implies that hypothesis (5b) is equivalent to

N b - <am’ m- lb cl\ <am'Pm-1b> c
m-1 [P l'z m-l 2’ [1p a |]2 m
. m=1%m m—l n=-1m’
b> c ' <a,,P__.b>c;
< <t __J__IA A EEE N IR Rk .1 Sl BN
= Pne® T TERE e _ja.li2
m-12 j m- m=1"3'"'2

tScolnik calls {7), or something similar to it, "Greville's formula.
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<a_,P b> c
m’ ‘n-1 _ + 1,
(9) [1p ![2 m <Am—lam' c:
m=-12m n-1

<a.,P b> c

+dlml (<A+ as, ( b - cj) < o.

l ]Pn_la [ (o]

Because A is a feasible basis, theorem 2 (or étep (b) of the
penultimate iteration of the algorithm) implies '<am,Pm_lb> >0,

i X < > 3 ¢ i

and, since Pm-lb # 0, we must have am,Pm_lb 0. Also, if
u 1is a unit vector orthogonal to al"'i’am-l' then Pm_ly =

<y,u>u, so

<a /P _1D>< m-laj> = (<b,u><aj,u>)(<am,u><aj,u>)
= (<b,u><a ,u>) (<a] u>)2
‘ = <a_,P »>||p a llz
. m’ Fm-1 m-123'12
1 2
e an P2y [ ‘Pm—lajl 1S .
<am’Pm lb > <aj,Pm_lo>

Multiplying both sides of (9) by this positive number, we obtain:

<a_,P a.> c c

m’ m-1 + .1\ Sl -

I» |2 Cm (Am-lam’ : ;> + <Am laj’ . > cj
c Crim1

m-1%m’ m-1
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which, by formula (7) with J =m, is the desired conclusion. B
4.2 Discussion-

Aside from possibly motivating theorem 3, theorem.z appears
to have little bearing on Scolrnik's other observations and sug-
gestions.

Following theorem 3 we assumed that the columns of A could
be so ordered that A, would be an optimal basis and Ayree-ray g
would span a facet of the cone K generated by all the columns of
A. Following tﬁeorem 1 we noted, in essence, that we could re-
label the columﬂs of Am, say éj = ap(j)
P, solthat (Ql,...,gj)+b >0 for 1 <3j <m. In motivating the

for some permutation

algorithm we tacitly assumed that p could be the identity per-
mutation, i.e., §j = ay (j =1,...,m). However, this may not
be possible; for example, let

1 -1 -2 -1 1
A= , b= , ¢c = 0 |;:
o 1 1 2

then {al,az} is the only optimal basis, 2, spans a facet of
k but a, does not, and (a)¥b = (-1) £ 0. This example is
illustrated in figure 1. We thus see that steps (a) and (b) may
conspire to prevent the algorithm from choosing an optimal basis.
In gho present example, for instance, it selects the non-optimal
basis {a3,al}. It is always possible to choose éj = aj in the
examples ‘given below, which demonstrate other shortcomings in

the proposed algorithm.

Theorem 4 is false. For example, let
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A \
\ N
a, / N .
af\ \\\\\\
\\
S NS AN .
Figure 1 Figure 2
1 0 1 -1 2
A={0 11 -1) b={2], andc = (0,0,0,1)7T:
0 0 1 1 1 :

then {al,az,a3} is an optimal basis such that a; and a,

span a facet of K (take u = (O,O,l)T in the remark following
theorem 3), a; spans the facet ‘(alxlx © 0, x¢€ R} of the sub-
ccne {Azx]x >0, x¢ R2}, but Pib = (0,2,1)T has <a,,P;b> =
<('1,-1.1)T,(0,2,1)T> = -1 < 0. Moreover, it is not possible to
relabel ajraysay,a, SO thét theorem 4 holds for this example:
'{al,az,a3} is the on}y optimal basis for this problem; neither
{al,a3} nor {az,a3} spans a facet of K;.and if we interchange
2y and a,, then we still have <a4,P1b> = -1 < 0.

Theorem 4 was the basis for step (b) of the proposed algorithm;
if the conclusion of theorem 4 does not hold for the particular
problem at hand, then step (b) will prevent the choicc of a vector
in an optimal basis and will thereby cause the algorithm either to
unsuccessfully terminate or to find a nonoptimal feasible basis.

Even when theorem 4 holds for the problem at hand, step (c¢)
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of the algorithm may cause selection of the wrong column. For

instance, let

1 0 1 1 T
A = + b= » e =(1,1,0)": -
0 1 1 2

during the firét iteration, step (c) causes ;he algorithm to
choose a; rather than a, as the first basic column; in the
second iteration, only a, yields‘a feasible basis (see figure
2), so the algorithm selects the basis {al,az}, which gives

x = (1,2,007 and z(x) = 3; but {a,,a;} is the optimal basis
with x* = (O,l,I)T and z(x*) = 1. For another instance, con-
sider the example of §3.2 with 4 changed from 0 to -%:
during iteration 2, step (c) causes column 4 to be chosen as

the second basis vector, but there is no way to complete columas

3 and 4 to a feasible basis, so the algorithm terminates unsuc-
cessfully in the third iteration; despite the fact that columns
3,6, and 2 still comprise an optimal basis.

As some of the above examples have shown, when the algoéithm
has successfully terminated, it may have found a non-optimal
feasible basis. The corollary to theorem 5 gives a computation=-
ally checkable sufficient condition for optimality of the seclected
basis (but, depending on the circumstances, it might be slightly
faster to check condition (2b) directly). If the algorithm has
run successfully and (5b) holds for all j > m such that (5a)

holds but <ak,Pm_lb> = 0 for some k > n, thgn theorem 5 does

not assure optimality of the selected basis; for example, let

1 0 1 2 3
A={0o 11 1), b=(3]), ¢=(-2,0,1,-5T:
00 1 ¢ 1
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the algorithm selects the feasible basis A3, which gives x =
(2,2,1,07 ara z(x) = -3; but <a,,Pyb> = <(2,1,00T,(0,0,1)T> =
0, and it happens that {az,a3,a4} is the §ptima1 basis, giving
x‘ = (0,1,1,1)T and z(x*) = =4. On the other hand, if the al-~
gorithm has successfully run and (5a) holds for all j >m but
there is a k > m for which (5b) fails, i.e.,
(cl,...,cm_l,ck)(Am_l,ak)-lb < (cl,...,cm)A;l, then we may con-
sider two cases: if A;lb > 0 (strict inequality in all com-
ponents), then the basic solution corresponding to. Am is not
optimal; but if degene;acy occurs, i.e., at least one component
-1

of A__1 b equals zero, then it is possible that the basic solu-

tion corresponding to A »s optimal; for instance, let

m

1 1 2 1 T

A= , b= a, = , ¢ = (-1,0,~-2)":
0 1 1 1
L

then S = {(0,1,0)0} (see (la)) and the algorithm selects the
tasis Az, which, of coufse, gives x = x* = (O,l,O)T; but
(y,e3) (A, ™lb = -1 < 0 = (c),cp)a50.

Note that the only hyvpotheses used in the proof of theorem
5 are that Am is a feasible basis and (5) bélds. VSuccessful
termination of the algorithm guarantees that A is.a feasible
basis; aside from this, theorem 5 does not depend on the internal
workirgs of the algorithm.

One interpretation of theorem 5 is that if the algorithm
has successfully terminated, then it has found the solution of
a certain subproblem, namely the one in which we require Xj =0

for all j such that (5) Goes not hold. If we further restrict
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the problem so that x5 = 0 if j >m and (Am_l,aj) is not
a feasible basis,‘then the algorithm has found an optimal basis
bgcause it has essentially inspected all feasible bases. Specif-
ically, assume that the columns of A have been so ordered that
(al,...,am_l,aj} is a feasible basis for m < j < m+k (this is
the only hypothesis we use in the following argument, so we may
permute ay,...0@p 9 at will): then any basic feasible solu-
tion x corresponding to a feasibie basis B chosen from
ayreeer@piy corresponds, in fact, to a basis of the form

{al,...,am_l,aj}f To see this, assume without loss of generality

+r

a.a.,

m-
s 33

.,
(WLOG) that B =‘{ajlr < j <m+r} and that b= I
=r

where a. > 0, so that the basic solution x corresponding to

3J
a: if r < j < r+m
B has x, = J

j . If r>2 and a_ =0 for

0 otherwise s

some s withm < s < m+r, say s = m-1l+r, then because Byreeer
a, are linearly independent, there is a maximum j =3 < ¢
1 . %

such that Rank {aj,...,as_ll = m, so, assuming WLOG that J =
r-1, 3, 9r++1@ 0 1y4p-1 3TC linearly independent and hence

. s . . . e o
{ar-l""'a(r-l)+m-l} is a feasible basis, to which corresgonds
the same basic feasible solution x as to B. Therefore we
may assume WLOG that o; > 0 for m < j < mtr. Now let a_ = b.

s i : T

Since P _;b #0, (ao,...,am_l) is non-singular; let Yy be the

T
u
.th -1 .0 :
j== row of (ao,...,am_l) =<::T \>, so that <ai’“i> =1>0
' u
m=1

while <ai,uj> =0 for i# 3 (i, j <m). For each Jj with
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B m=1 ,. .
m < j <m+r we have by assumption: b = I uij)a + agj)aj
i=1 ’
uT
where aij) >0 and (éince Pm_lb # 0) a{]) > 0; thus :© a. =
T J \;T J
m=-1

,/* 3)
_1 l .
(ao,...,am_l) ay ¢ SO <@gsug> > 0 and
\ (3)
@jrug> < 0 for 1 <i<m and m <J <m+r. Now recall the
) m-1+r ’
equation b = a_ = I a:a.: since q. > 0, we must have
o 4o 373 3
@s;/u;>=0 for m <j <mtr and 1 <i < r; but this also holds

J

for r < j <mn, and so, since a s...4a are linearly inde-

m-1+r
pencent and hence form a basis for Rm, we must have r =1
(because 6therwise uy would be a non-zero vector orthogonal
to every element of this assumed basig).

Theorem 4 is valid for m = 2, since in this case it reduces
to theorem 3. Thus it might appear that Scolnik's proposed algo-

rithm might somehow be modified so that it would solve special

*
cases of (1) with m = 2. The special cases are those in which

* In the addendum to his symposium handout, Scolnik asserts that:
if m =2 andé there is an 1 such that c; < 0 and <ay o> >0

(which condition can be realized by adding a multiple of an appro-
priate recw of A to c¢), then the algorithm finds an optimal basis.
His prcof uses (among others) the assumptions that after the al-

gorithm has run: cl(al)+b < ci(ai)+b for all i such that
<a; ,b> > 0 (which, because of step (b) of the algorithm, will

often be invalid) and cl(a1)+b > (cl,cz)A;lb. For example, let

11 2 0 6
(O > 1 l) , b= (6) , ¢ = (-1,2,-3,2)T:  then ¢; <0 and
<a;j,b> >0 for i =1, 3, yet the algorithm finds the basis Ay

which gives x = (3,3,0,0)T and z(x) = 3, instead of the optimal
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(1) has an optimal basis, one column of which spans a facet of

K = {Ax]x > 0}. If we somehow know a priori that this is the
~case, then we can permute the columns of A so that, say, 2y

and a, span the facets of K (see figure 3); we then know

that there is an optimal basis of the form '{al,aj} or {an,aj},

so we necd inspect at most 2n-1 candidate bases. 1If step

(c) of the algorithm could be modified so that it told us with

certainty which of @ or a, would appear in an optimal basis,

then we might save ourselves a small amount of work; as it stands,

however,” the present algorithm makes no contribution in even this

special case.

Figure
5. Conclusion

As mentioned in the introduction, Scolnik envisioned an al-
gorithm which'would construct an optimal basis for the linear pro-
gramming problem (1) one column at a time: after selecting the

first t columns of this basis, the algorithm would apply two

. * *
basis {a3,a4}, which gives x = (0,0,3,3)T and z(x ) = =-3;
. : o + - _ -1, _
in this examp;e c3(a3) b = -10.8 < cl(al) b=-6<3-= (cl,cz)A2 b
z(x).
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rejection criteria (a) and (b) to reduce the number of candidates
for the (t+l)§£ column and would then use a selection criterion
(c) to choose one of the remaining candidates. Unfortunately,
the proposed algorithm has some shortcomings. Criteria (a) and
(b) tcgether assume the existence of a sometimes impossible or-
dering of the columns of an optimal basis. Worse, criteria (b)
and (c) are based on conjectures (theorem 4 and inequality (4c))
which we have here shown to be false; even when criterion (b)
does not cause failure by preventing the right column from being
chosen, criterion (c)lmay select the wrong column and thus force
the algorithm to terminate unsuccessfully or to find a non-optimal
basis. I see no obvious wdy to modify criteria (b) or (c) so
that they perform properly.

All three criteria involve pseudoinverses computed with re-
spect to the 2-norm. If the algorithm'were correct, we might
reasonably expect it to .perform just the same if the pseudoin-

verses were computed with respect to an arbitrary inner product

¥

(where Q is positive definite) on R™;

norm | lylly = (yToy)
*

this it does not. If an algorithm for the lincar programming

problem is to use pseudoinverses, perhaps they should be com-

puted with respect to an inner product norm which somchow depends

on the given data (A, b, and c¢).

* If Q is a diagonal matrix, then computing the pseudoinverses
with resgect to [!.le is eguivalent to replacing A and b by
h

Q‘A and Q‘b, i.e., performing row scaling, and then computing

the pceudoinverses with respect to the 2-norm. W.W. White mentioned
in a letter to me that Gordon Bracdley of the Naval Postgraduate
School hLad noted that Scolnik's algorithm is sensitive to row
scaling.
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Except possibly for Scolnik's observation that if An is
a feasible basis; then its columns may be so ordered that
A;b >0 for 1 <3j <m I see among his observations nothing
which might lead to a better algorithm for solving the'linear

programming problem.
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