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Abstract: Methods to search for low-energy conformations, to generate a Boltzmann-weighted ensemble of configu-
rations, or to generate classical-dynamical trajectories for molecular systems in the condensed liquid phase are briefly
reviewed with an eye to application to biomolecular systems. After having chosen the degrees of freedom and method to
generate molecular configurations, the efficiency of the search or sampling can be enhanced in various ways: (i) efficient
calculation of the energy function and forces, (ii) application of a plethora of search enhancement techniques, (iii) use
of a biasing potential energy term, and (iv) guiding the sampling using a reaction or transition pathway. The overview of
the available methods should help the reader to choose the combination that is most suitable for the biomolecular system,
degrees of freedom, interaction function, and molecular or thermodynamic properties of interest.

© 2007 Wiley Periodicals, Inc. J Comput Chem 29: 157–166, 2008

Key words: molecular dynamics; Monte Carlo; ensembles; searching; sampling; trajectories

Introduction

Computer modeling of (bio)molecular systems has become a stan-
dard technique to study and describe the properties and behaviour
of such systems in terms of interactions between atoms or electrons
of atoms. Although quantum mechanics governs these interactions,
it can only be used to model a very limited number of degrees of
freedom of a biomolecular system because of the complexity of
the algorithms to solve the (time-dependent) Schrödinger equation.
Leaving processes such as electron or proton transfer or processes
that involve making or breaking of covalent bonds aside, classical
mechanics offers a good approximation of quantum mechanics, e.g.
for processes such as polypeptide folding, molecular complexation,
partitioning of molecules between different environments, and the
formation of molecular aggregates (e.g. membranes) out of mix-
tures. Here we only consider molecular systems that are described
in terms of a classical Hamiltonian

H(p, q) = K(p, q) + V(p, q), (1)

which depends on the q ≡ (q1, q2, . . . , qNdf ) generalized coor-
dinates and p ≡ (p1, p2, . . . , pNdf ) conjugate momenta of the
chosen Ndf degrees of freedom. The kinetic energy term is
denoted by K(p, q) and the potential energy one by V(p, q). The

classical-mechanical equations of motion are then

d

dt
qi = ∂H(p, q)

∂pi
i = 1, 2, . . . , Ndf ,

d

dt
pi = −∂H(p, q)

∂qi
i = 1, 2, . . . , Ndf . (2)

When using Cartesian coordinates, q ≡ x, and assuming that the
potential energy is independent of the momenta, one has

K(p, x) =
Ndf∑
i=1

p2
i

2mi
, (3)

and Eq. (2) reduce to Newton’s equations of motion

mi
d2xi

dt2
= ∂

∂xi
V(x1, x2, . . . , xNdf ), (4)
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where we have indicated the mass governing the motion of the i-th
degree of freedom by mi. The interaction function

V(x) ≡ V(x1, x2, . . . , xNdf ) (5)

is an effective interaction: it describes the interaction between
explicitly treated degrees of freedom averaged over the omitted
atomic or electronic degrees of freedom.

Because biomolecular modeling involves microscopic systems
at non-zero temperatures T , the basic theory to describe such a
system is quantum or classical statistical mechanics. Consequently,
the state of a biomolecular system is characterised by a statistical–
mechanical ensemble of configurations. At fixed particle number,
volume, and temperature this is a canonical ensemble, in which
the weight of a molecular or system configuration is given by the
Boltzmann factor

e−V(x)/kBT , (6)

where kB denotes Boltzmann’s constant. This implies that the equi-
librium properties of the system are determined by those parts of
configuration space, for which V(x) is minimal. Therefore, one of
the basic challenges to biomolecular modeling is to develop method-
ology to efficiently search the biomolecular energy surface V(x)

for regions of low energy. The statistical–mechanical nature of this
search problem implies that it cannot be reduced to the problem
of finding the global (energy) minimum of the multi-dimensional
function V(x). Statistical–mechanically the free energy

F = U − TS, (7)

composed of an energetic contribution U and an entropic contribu-
tion −TS, is minimal, not the energy U. The entropy is a measure
of the extent of configurational space (x) accessible to the molecu-
lar system at a given temperature T . Figure 1 illustrates that lowest
energy does not necessarily mean lowest free energy. Two parts of
configurational space x1 and x2 may have U(x1) � U(x2), whereas
F(x1) > F(x2) due to S(x1) � S(x2) at the given temperature T .
This means that searching for and finding the global energy min-
imum for a biomolecular system is meaningless when its entropy
accounts for a sizable fraction of its free energy.

When considering methods to generate molecular configura-
tions, we distinguish three types based on the characteristics of the
set of generated configurations:

1. Methods that generate a series of nonrelated low-energy config-
urations.

2. Methods that generate a properly (Boltzmann) weighted set of
configurations.

3. Methods that generate a (classical) dynamical trajectory of con-
figurations, which are moreover properly (Boltzmann) weighted.

Methods of type 1 should only be used for zero entropy systems,
whereas methods of types 2 and 3 yield proper ensembles, so can be
used to compute thermodynamic and other equilibrium properties.
Only methods of type 3 yield information on dynamical properties
of the system.

Figure 1. Energy (U)–entropy (S) compensation at finite temperature T.

Generally, modeling of a molecular system involves four
choices.

1. Which degrees of freedom are explicitly modeled, i.e. treated in
expressions (5) and (6).

2. Which interaction function or force field V(x) is used to calcu-
late the potential energy of the system and the forces along the
explicitly treated degrees of freedom.

3. Which algorithm is used to search for those parts of configura-
tional space for which V(x) is minimal (type 1), or to sample
(type 2) or simulate (type 3) the motion along the degrees of
freedom.

4. How are the spatial boundaries of the system modeled and which
thermodynamic boundary conditions are used.

Biomolecular systems have a density comparable to solids or liq-
uids, but lack the symmetry ordering of the former. They constitute a
many-particle system for which no simple reduction to a few degrees
of freedom is possible: one is faced with an essential many-particle
problem, the solution of which can only be adequately described
by numerical simulation. The four choices mentioned all have an
impact on the accuracy and efficiency of the modeling. It is the
purpose of this article to consider the choices to be made from the
view-point of accurately and efficiently generating low-energy con-
figurations or ensembles or trajectories for biomolecular systems.
Because of the great variety in methods and applications in the lit-
erature, we only classify and mention the available methods, with
references, and do not review their applications. The classification
given may help the reader to find his or her way in the jungle of
methods and to choose a combination of methods and techniques
that suits his or her purpose best.

Choice of Degrees of Freedom

Generally, biomolecular systems are composed of more atoms than
can be reasonably modeled on a computer. Depending on the prop-
erty of interest, the essential degrees of freedom are to be identified
and explicitly treated. The remaining ones are then omitted and
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their effect upon the interaction between or along the explicitly
treated ones is included in an averaged manner in the function V(x).
For example, in structure refinement of proteins, solvent degrees
of freedom are generally omitted,1, 2 although it is experimentally
known that protein structure is sensitive to solvent composition.
Polypeptide folding or protein–ligand complexation is sometimes
modeled without explicitly treating solvent degrees of freedom.3, 4

This enables fast simulation, because the number of solvent degrees
of freedom is generally much larger than that of the solutes, but limits
the accuracy5 and applicability of such implicit solvation mod-
els. For example, complex enthalpy–entropy compensation effects
cannot be captured.6

On the other hand, implicit treatment of aliphatic hydrogen
atoms by using united CHn (n = 1, 2) and CH3 atoms in
simulation of systems that contain many of such moieties, like
lipid mixtures and membranes, saves easily a factor of four to
nine in computing effort, which is dominated by the computa-
tion of non-bonded forces. Yet, no loss in accuracy is observed
when comparing properties calculated using all-atom versus united-
atom models.7, 8 The use of united atoms is an example of the
technique of coarse-graining: groups of atoms, molecules or frag-
ments of molecules are treated as single particles or beads, whose
motion is simulated using a single coarse-grained (CG) force field
describing inter-bead interactions. When the energy function V(x)

of such a CG model is chosen to be smooth and short-ranged, the
efficiency of CG simulations can be orders of magnitude higher
than the corresponding fine-grained (FG) simulations, be it at
the expense of the loss of atomic detail and some accuracy.9–13

Recently, it has been proposed to combine FG and CG models
in one simulation, while the contribution of the two grain lev-
els to the interaction between the atoms or beads is governed by
a grain level parameter λ. This allows for a continuous switch-
ing between grain levels, which can in turn be exploited in the
replica-exchange technique to enhance the sampling at the various
λ-values.14, 15

The performance of a CG model in practical applications
depends on the chosen coarse-graining procedure: (i) the model
resolution (how many FG particles are mapped onto one CG bead),
(ii) the mapping procedure (how the CG bead positions are defined
in terms of the FG atom positions), (iii) the form of the energy func-
tion V(x) of the CG Hamiltonian, and (iv) the experimental and/or
FG simulation properties against which the CG model parameters
were optimised.

The number of degrees of freedom to be simulated can also
be reduced by constraining those which are characterised by high-
frequency motions that are not influencing the properties of interest.
For molecular systems one may think of bond-length and bond-angle
degrees of freedom.16 Holonomic (time-independent) constraints
can be implemented in two ways: (i) by formulating Lagrange equa-
tions of motion in generalized (e.g. torsional angle coordinates),17, 18

or (ii) by formulating these equations in Cartesian coordinates
(e.g. using Newton’s eq. (4)) and then using Lagrange multipli-
ers to satisfy the constraints for each configuration generated.19, 20

When considering branched polymers, the choice of internal coor-
dinates (bond lengths, bond angles, and torsional angles) to serve
as generalized coordinates seems to be natural, because they
allow for constraining bond lengths and angles by simply omit-
ting them from the equations of motion. However, the equations of

classical dynamics (2) expressed in internal, generalised coordinates
q ≡ θ

Ndf∑
j=1

aij
d2θj

dt2
= − ∂

∂θi
V(θi, θ2, . . . , θNdf ) −

Ndf∑
j=1

bij

(
d

dt
θj

)2

−
Ndf∑
j=1

Ndf∑
k=1

cijk

(
d

dt
θj

) (
d

dt
θk

)
, i = 1, 2, . . . , Ndf (8)

are considerably more complex than when expressed in Cartesian
coordinates, Eq. (4). They contain two additional summations over
the number of degrees of freedom and two additional quadratic (i.e.
non-linear) terms in the generalised velocities. Eq. (8) has been
presented in different forms,1, 2, 17, 18, 21–25 and the coefficients aij ,
bij , and cijk depend on the atomic masses and the molecular topology
of the polymer considered. Simulation of a protein through Eq. (8)
requires a much larger computational effort than simulation through
Eq. (4), since at each time step a set of Ndf non-linear equations is to
be solved. One iteration to this end may take as much computational
effort as the calculation of all forces and energies, thereby doubling
the overall computational expense.2 Therefore, the use of Cartesian
coordinates, i.e. Newton’s equations of motion in combination with
Lagrange multipliers to impose constraints is recommended.26

An extension of the concept of a (hard) constraint is a flexible,
or soft or adiabatic constraint, in which the length of a constrained
distance is not a constant through the simulation, but varies per time
step without involving kinetic energy.27–29 This eliminates the high-
frequency motions in the system, while keeping the constrained
degrees of freedom flexible.

The number of degrees of freedom can also be kept low by choos-
ing appropriate periodic boundary conditions. When simulating a
spherical solute, use of a more spherically shaped configurational
periodic box instead of the standardly used cubic or rectangular peri-
odic box may considerably reduce the number of solvent molecules
needed to fill the space left after insertion of the solute in the box.
For a spherical solute the number of atomic degrees of freedom can
be reduced by at least one quarter in this way.30

Types of Methods to Search, Sample, or Dynamically
Move Through Configuration Space

A variety of search, sampling, or simulation methods is available,
each with its particular strengths and weaknesses, depending on
(i) the form of the function V(x) and (ii) the number and types of
degrees of freedom of the system. These methods are based on the
use of molecular coordinates q or x as variables. For methods that
use as variables other quantities than molecular coordinates we refer
to Section VIII. Two basic types of methods can be distinguished,
systematic search and heuristic search.

Systematic or exhaustive search methods scan the complete or a
significant fraction of the configuration space of the molecular sys-
tem. Particular subspaces can be excluded from the search without
loss in the quality of the solution found, thanks to rigorous argu-
ments that these subspaces cannot contain the desired solution.31

Such arguments are based on a priori knowledge, often of physical
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or chemical nature, about the structure of the space or energy func-
tion or hypersurface to be searched. Systematic search techniques
can only be applied to small molecules involving only a few degrees
of freedom,32–36 because of the exponential growth of the required
computing effort as function of the number of degrees of freedom
included in the search.

Heuristic search methods, although visiting a tiny fraction of the
configuration space, aim at generating a possibly representative (in
the Boltzmann weighted sense) set of system configurations. These
methods may generally be divided into two or three types.

1. Non-step methods, in which a series of system configurations is
generated, which are independent of each other. One example
is the so-called distance geometry metric matrix method,37, 38

which, for a search problem that can be cast into a distance based
form, generates, at least in principle, an uncorrelated series of
random configurations. Another example is based on the tech-
nique of threading,39, 40 in which linear combinations of parts of
protein structures as obtained from a protein structure data bank
are used to generate novel possible protein structures.41

2. Step methods that build a complete molecular or system con-
figuration from configurations of fragments of the molecule or
system in a stepwise manner. Examples are the build-up pro-
cedure of Scheraga,42, 43 combinatorial build-up methods that
make use of dynamic programming techniques44 and Monte
Carlo (MC) chain growing methods,45, 46 such as the so-called
configurational bias Monte Carlo (CBMC) technique.47

3. Step methods, such as energy minimisation (EM), Metropolis
Monte Carlo (MC), molecular dynamics (MD), and stochastic
dynamics (SD),48 that generate a new configuration of the com-
plete system from the previous configuration. These methods
can be classified according to the way in which the step direc-
tion and step size are chosen, see Figure 2: (a) according to the
energy V(x), (b) according to the gradient of V(x), (c) according
to the curvature of V(x), (d) at random, and (e) according to a
memory of the path followed so far. Energy minimization can be

Figure 2. Heuristic methods to search configuration space for configu-
rations x with low energy V(x). EM, energy minimisation; MC, Monte
Carlo; MD, molecular dynamics; SD, stochastic dynamics; PECT,
potential energy contour tracing; PEACS, potential energy annealing
conformational search.

based on only energy values and random steps (simplex meth-
ods), or on energy and energy gradient values (steepest-descent
and conjugate-gradient methods), or on second-order derivatives
of the energy (Hessean matrix methods). In MC methods the step
direction is taken at random, and the step size is limited by the
Boltzmann acceptance criterion: when the potential energy of the
system changes by �V < 0, the step in configuration space is
accepted while for �V > 0, the step is accepted with probability
exp (−�V/kBT). In force-biased MC49 the direction of the force,
the negative of the local gradient ∂V(x)/∂x, is also used. In MD
simulation the step is determined by the force and by the inertia
of the degrees of freedom, which serves as a short-time memory
of the path followed so far. In SD simulation a random compo-
nent is added to the force, the size of which is determined by
the temperature of the system and the atomic masses and friction
coefficients. In the potential-energy contour tracing (PECT) algo-
rithm50, 51 and in the potential-energy annealing conformational
search (PEACS) algorithm,52 the energy values are monitored
and kept constant (PECT) or annealed (PEACS) to locate saddle
points and pass over these. The catalytic tempering MC algo-
rithm53 is based on similar ideas. In MD and SD memory is built
into the trajectory through inertial effects. Information on the
history of the system can also be included in the force by aver-
aging previous forces.54–58 There exists a large variety of search
procedures based on stepping through configuration space using
a combination of the five mentioned basic elements energy, gra-
dient, Hessean, randomness, and memory, combined in one way
or the other.59

The efficiency of search methods for biomolecular systems is
severely restricted by the nature of the energy hypersurface V(x)

that is to be explored to find low energy regions. Because of the
occurrence of a multitude of high energy barriers between local
minima, the radius of convergence of the step methods is generally
very small. Therefore, a variety of techniques have been developed
to enhance the search and sampling power of searching methods.
These are reviewed in Section V.

Techniques to Speed Up a Simulation

For a system containing N atoms, the number of pairwise non-
bonded interactions equals N(N − 1)/2. The computing time for
the calculation of all these interactions is proportional to N2. How-
ever, generally not all these interactions need to be computed.
Different types of atomic interactions have different spatial ranges.
The electrostatic interaction between two charges is proportional
to r−1, where r is the distance between the charges. The dipolar
interaction is of shorter range, that is, proportional to r−3. The
van der Waals interaction is of still shorter range, proportional
to r−6, only the first and second neighbor shells contribute sig-
nificantly to the interaction. In this situation the application of a
cut-off radius beyond which no detailed atom–atom interactions
are taken into account, but only represented in a mean-field, e.g.
a reaction-field, sense, is appropriate. Once the nearest neighbors
are found, which is an operation proportional to N ,60–62 the compu-
tation of the nonbonded interaction becomes proportional to N as
well. Because electrostatic interactions are long-ranged, so-called
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particle-particle-particle-mesh techniques have been introduced62

to compute these efficiently.63 The computational effort scales with
NlogN due to the use of fast Fourier transform techniques.64 An
alternative is to approximate the medium beyond a given cut-off dis-
tance Rrf from a specific atom or molecule by a dielectric continuum
of permittivity εrf

65 and ionic strength Irf .66

The length of the integration time step �t is in MD or SD simu-
lation limited by the highest frequency (νmax) motions occurring in
the molecular system,

�t � ν−1
max = τmin, (9)

where ν−1 ≡ τ , an oscillation or relaxation time. For a precise
integration of the equations of motion, condition (9) must be satis-
fied. However, it may be that one is only interested in some average
properties of the system. If those are not essentially dependent on
ensemble fluctuations, the time step �t may be lengthened beyond
condition (9).

In biomolecular systems three frequency ranges can be distin-
guished:

1. High-frequency bond-stretching forces fhf with an approximate
oscillation or relaxation time τ hf of about 10 fs,

2. low-frequency long-range Coulomb forces f lf with τ lf ≈ 1000 fs
or larger, and

3. the remaining intermediate-frequency forces f if with τ if ≈ 40 fs.

The contribution of these different forces to the atomic trajectories
may be integrated using three different time steps, each satisfying
condition (9) with the appropriate relaxation time τ . When applied to
bond-stretching forces, such a multiple-time-step (MTS) integration
scheme30, 67 saves a factor two to three in computing effort.67–70

When applied to the long-range Coulomb forces, the so-called twin-
range method saves about a factor of 5–10 because of the fact that the
evaluation of these forces dominates the force calculation.30, 71, 72

The same kind of reasoning may also be applied to Monte Carlo
simulations.73, 74

A few other numerical and conceptual tricks that may be used to
speed-up a simulation are discussed elsewhere.75

Search and Sampling Enhancement Techniques

In Table 1, three general types of search and sampling enhancement
techniques are distinguished.

Deformation or Smoothening of the Potential Energy
Hypersurface to Reduce Barriers

a. Generally, a smoothening of the potential energy function V(x)

allows for a faster search for its minima. This technique has been
applied to different problems, such as structure determination
based on X-ray diffraction or NMR spectroscopic data, con-
formational search, and protein structure prediction. In method
Ia of Table 1 the electron density of a biomolecular crystal
is smoothened by the omission of high-resolution diffraction
intensities when backcalculating the electron density from these
through Fourier transforms. This smoothening enhances the
radius of convergence of the structure refinement.

b. When building protein structure from atom-atom distance data
obtained from NMR, the convergence of the configurational
search process is enhanced by gradually introducing distance
restraints that connect atoms at longer distance along the
polypeptide chain in the potential energy function. This is called
a variable-target function method.76

c. The hard core of atoms, i.e. the strong repulsive interaction
between atoms overlapping with each other, is responsible for
many barriers on the energy hypersurface of a molecular system.
These barriers can be removed by making the repulsive short-
range interactions between atoms soft.77–80 Soft-core atoms
smoothen the energy surface and lead to strongly enhanced
sampling.81

Table 1. Techniques to Enhance the Searching and Sampling Power of Simulation Methods.

I. Deformation or smoothening of the potential energy surface
a. Omission of high-resolution structure factor data in structure refinement based on X-ray diffraction data
b. Gradual introduction of longer-range distance restraints in variable-target structure refinement based on NMR NOE data
c. Softening of the hard core of atoms in the non-bonded interaction (soft-core atoms)
d. Reduction of the ruggedness of the energy surface through a diffusion-equation type of scaling
e. Avoiding the repeated sampling of an energy well through local potential energy elevation or conformational flooding
f. Softening of geometric restraints derived from experimental (NMR, X-ray) data through time-averaging of these
g. Circumvention of energy barriers through an extension of the dimensionality of the Cartesian space (4D-MD)
h. Freezing of high-frequency degrees of freedom through the use of contraints
i. Coarse-graining the model by reducation of the number of interaction sites

II. Scaling of system parameters
a. Temperature annealing
b. Tight coupling to heat bath
c. Mass scaling
d. Mean-field approaches

III. Multi-copy searching and sampling
a. Genetic algorithms
b. Replica-exchange and multi-canonical algorithms
c. Cooperative search: SWARM

For details see text of Section V.
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d. In the diffusion-equation based deformation methods,81, 82 the
deformation of the energy surface driving a simulation is made
proportional to the local curvature (second derivative) of the sur-
face, which leads to a preferential smoothening of the sharpest
peaks and valleys of the surface and very efficient search.
The potential energy surface can be deformed in a great vari-
ety of ways. The corresponding search or sampling algorithms
sail under an equally wide variety of names: potential-scaled
MD,83 stochastic tunneling,84, 85 q-jumping,86 and Nose-Hoover
deformation.87

e. Incorporation of information on the energy hypersurface
obtained during the search into the potential energy function is
another possibility to enhance sampling. Once a local energy
minimum is found, it is removed from the energy surface by a
suitable local deformation of the potential energy function. This
idea is the basis of “tabu” search,88, 89 the deflation method,90

and the local-elevation search method,91 which was recently also
called meta-dynamics.92 The method of conformational flood-
ing93 is based on the same idea. Other variations can be found as
well.94, 95

f. Another way to introduce a memory into the search is the use of a
potential energy term which is a running average over the atomic
trajectories or ensemble generated so far, rather than its instan-
taneous value.54 Application of this type of time-dependent or
ensemble-dependent restraints in protein structure determination
based on NMR or X-ray data leads to much enhanced sampling
of the molecular configuration space.96, 97

g. Barriers in the energy hypersurface can be circumvented by
an extension of the dimensionality of the configuration space
beyond the three Cartesian ones. The technique of energy embed-
ding98 locates a low-energy conformation in a high-dimensional
Cartesian space and gradually projects this conformation to three-
dimensional Cartesian space while perturbing its energy and
configuration as little as possible. Variations on the original
procedure have been proposed.99–102 Dynamic search meth-
ods can also be used in conjunction with an extension of the
dimensionality. By performing MD in four-dimensional Carte-
sian space, energy barriers in three-dimensional space can be
circumvented103 and free energy changes calculated.104

h. A long used standard technique to smoothen the energy surface is
to freeze the highest-frequency degrees of freedom of a system
through the application of constraints.19, 105 Bond-length con-
straints are standardly applied in biomolecular simulation and
allow for a four times longer time step size.16, 105, 106 High fre-
quency motion elimination can also be achieved through flexible
constraints.27

i. A coarse-graining of the molecular model,9–13 which involves a
reduction of the number of interaction sites, generally leads to
a smoothening of the energy surface. This may allow the use of
simulation time steps that are much (factor of 15) longer than the
ones used in fine-grained (atomic) simulations.107

Scaling of System Parameters can also be used
to Enhance Sampling

a. The technique of simulated temperature annealing108 involves
simulation or search at a high temperature T followed by gradual
cooling. By raising the temperature, the system may more easily

surmount energy barriers, so a larger part of configurational space
can be searched. The technique of simulated temperature anneal-
ing has been widely used in combination with MC, MD, and SD
simulation. An example of potential energy annealing can be
found in ref. 52. The so-called J-walking algorithm109 also uses
temperature variations to enhance the sampling.

b. One way of keeping a constant temperature in a simulation is
to use an additional equation that linearly couples the actual
temperature T(t) to a reference or heat-bath temperature Tref

110

d

dt
T(t) = τ−1

T (Tref − T(t)), (10)

the coupling strength being determined by the coupling time τT.
When choosing this parameter close to the time step (τT ≥ �t),
the kinetic energy or velocities are enhanced when the system’s
potential energy increases and the velocities are reduced in low
potential energy regions. This enhances the sampling.

c. Scaling of atomic masses can be used to enhance sampling. In the
classical partition function and in case no constraints are applied,
the integration over the atomic momenta can be carried out ana-
lytically, separately from the integration over the coordinates.
Thus, the atomic masses do not appear in the configurational
integral, which means that the equilibrium (excess) properties of
the system are independent of the atomic masses. This freedom
can be exploited in different ways to enhance the sampling. By
increasing the mass of specific parts of a molecule, their rela-
tive inertia is enhanced, which eases the surmounting of energy
barriers,111, 112 and may allow for longer time steps. A reduction
of the mass of the solvent molecules has been shown to lead
to enhanced sampling of the folding/unfolding equilibrium of a
polypeptide in explicit solvent simulation.113 The canonical adi-
abatically free energy sampling (CAFES) algorithm also exploits
inertia to speed up the occurrence of rare events.114

d. Enhanced sampling by a mean-field approximation is obtained
by separating the biomolecular system into two parts, A and B,
each of which moves in the average field of the other. The initial
configuration of the system consists of NA identical copies of
part A and NB identical copies of part B, where the positions of
corresponding atoms in the identical copies may be chosen to be
identical. The force on atoms in each copy of part A exerted by
the atoms in all copies of part B is scaled by a factor N−1

B , to
obtain the mean force exerted by part B on the individual atoms
of part A. The force on atoms in each copy of part B exerted by
the atoms in all copies of part A is scaled by a factor N−1

A , to
obtain the mean force exerted by part A on the individual atoms
of part B. The forces between the different copies of part A are
zero, and so are the forces between the different copies of part B.
The MD simulation involves the integration of Newton’s equation
of motion, f = ma, for all copies of parts A and B simultane-
ously. Thus one obtains NA individual trajectories of part A in
the mean field of part B and vice versa. This comes at the loss of
correct dynamics: Newton’s third law, fAB = −fBA is violated.
The technique only enhances efficiency when the system is par-
titioned into parts of very different sizes, e.g. size(A) � size(B)

and the bigger part is represented by one copy: NB = 1. Locally
enhanced searching and sampling (LES) procedures based on
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a mean-field approximation have been proposed in different
forms.115–120

Multi-copy Simulation with a Given Relation Between the Copies
can also be used to Enhance Searching and Sampling

In the mean-field approach sketched before multiple copies of a part
of the system were simulated. This idea has been used in different
ways to enhance searching and sampling, see Table 1.

a. In genetic algorithms121 a pool of copies of the biomolecular
system in different configurations is considered and new config-
urations are created and existing ones deleted by mutating and
combining (parts of) configurations according to a given set of
rules.

b. In the so-called replica-exchange algorithm multiple copies of
the system are simulated by MC, MD, or SD, each at a distinct
temperature. From time to time copies at adjacent tempera-
tures are exchanged using an exchange probability based on
the Boltzmann factor in eq. (6). This leads in the limit of infi-
nite sampling to Boltzmann-distributed (canonical) ensembles
for each temperature.122 So-called multi-canonical algorithms
are a generalisation of this procedure.123 This type of algorithm
has been used to simulate proteins in vacuo.122 The inclusion
of solvent degrees of freedom may impair the efficiency of the
algorithm.124 Dynamical information is lost in the exchanges.
A variety of schemes of this type has been recently proposed:
generalised-ensemble algorithms,123, 125 local and partial replica-
exchange,126 parallel replica method,127 combinations of parallel
tempering, multi-canonical and multiple histogram methods,128

and broad-histogram MC.129, 130

c. The so-called SWARM type of MD131 is based on the idea of
combining a collection or swarm of copies of the system each
with its own trajectory into a cooperative multi-copy system that
searches configurational space. To build such a cooperative multi-
copy system, each copy is, in addition to physical forces due to
V(x), subject to (artificial) forces that drive the trajectory of each
copy toward an average of the trajectories of the swarm of copies,
in analogy to the fact that intelligent and efficient behaviour of
a whole swarm of insects can be achieved even in the absence
of any particular intelligence or forethought of the individuals.
SWARM-MD is less attracted by local minima and is more likely
to follow an overall energy gradient toward the global energy
minimum. Other multi-copy methods can be found.132–134

The overviews of Figure 2 and Table 1 are meant to offer a hand
when choosing a combination of search or sampling methods with
various enhancement techniques that will be appropriate to model
the particular system and energy function of interest, leading to an
efficient calculation of the requested properties.

Biasing the Search, Sampling or Simulation

The search or sampling enhancement methods discussed in the pre-
vious section did so without a particular bias being imposed on the
molecular system. However, if the particular barriers of the poten-
tial energy function or hypersurface that block access to low-energy
parts of the surface can be identified, this knowledge can be put

into the form of a biasing potential energy term to be added to the
Hamiltonian, which will guide the trajectory in a required direction.
A variety of such biased searching or sampling methods exists.

Since high-frequency motions are generally not of great interest,
one may bias an MD simulation in the direction of slower modes
by filtering out the high frequencies from the spectrum during a
simulation.135–137

Another possibility is to bias the motion in an MD simulation
in the direction of the principal components as obtained from the
trajectory so far.93, 138–140 This bias should enhance the exploration
of larger amplitude modes of the molecular system. Yet another
method couples the collective modes of a system to a bath of higher
temperature than the other modes.141 This enhances the sampling
along the collective modes.

Recently, a method to enhance sampling of rare events was pro-
posed, which makes use of distance or torsional-angle restraints to
overcome an energy barrier separating two metastable states, or to
stabilise a transition state between the two metastable states.142 The
latter states are not subject to restraints, which allows one to deter-
mine the free energy difference between the two metastable states
without the need to choose a physically realistic pathway connecting
them.

Sampling or Simulation Along Pathways

Dynamical processes in biomolecular systems may occur on time
scales far beyond the ones that are accessible through standard MD
simulations. If these processes are intrinsically slow, i.e. require an
extensive sampling of configuration space, not much can be done
to speed up their simulation without destroying the dynamics of
the system. If, however, these processes are rare, i.e. they do not
occur often, but when occurring they are fast, there are possibilities
to enhance the sampling of these rare processes. Generally they
are characterised by the need to pass over a high-energy barrier
separating two meta-stable states.

The oldest approach to sample transitions is to define a reac-
tion coordinate or transition pathway and to sample along this path
using a biasing potential energy term and umbrella sampling.143

A variation using MD is so-called targeted MD.144–146 A more
sophisticated methodology is transition path sampling, which finds
transition pathways for infrequent events and requires no knowl-
edge of the transition mechanism or transition state, only the end
states need be defined.147, 148 Although this method is more power-
ful than traditional reaction-coordinate sampling, the requirement
of a proper definition of the two end states restricts its applicability.
The method and its applications have been recently reviewed.148, 149

A novel extension is called transition interface sampling.150

Other methods to determine and sample transition pathways are
the finite temperature string method, which generates a tube in con-
figuration space between the end states, inside which conformational
changes occur with high probability. This leads to an increased rate
of occurrence of the rare transitions.151, 152 A minimum-energy path
of a transition can be obtained through the nudged elastic band
method.153–156

An alternative way to speed up rare events was called “hyper-
MD”.157, 158 It uses a biasing potential to guide the dynamics away
from the end states. Yet another scheme is called coarse MD.159
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Use of Other Than Spatial Molecular Coordinates
When Searching or Sampling

The methodology discussed in the previous sections is based on the
use of molecular spatial coordinates as variables which are sampled.
This approach is widely used, but may not lead to effective solutions
when the energy hypersurface is characterized by extremely high
potential energy barriers separating different tightly packed, low
energy conformations. Problems of this type are the docking of
inhibitor or substrate molecules into an active site of an enzyme
or the prediction of dominant side-chain conformations of amino
acid residues in mutated proteins. For such cases one may use a
rather different search and sampling technique, in which not only the
molecular coordinates x serve as variables, but also the Boltzmann
probability Pα of occurrence of a molecular conformation xα ,

Pα = e−V(xα)/kBT∑
α′ e−V(xα′ )/kBT . (11)

The computational problem is now to minimize the average potential
energy

〈E〉 =
∑

α

PαV(xα) (12)

subject to condition (11). That is, one wishes to find a Boltzmann
distributed ensemble of configurations for a very high-dimensional
and complex interaction function V(x). Since the average energy
< E > in eq. (12) depends on both, conformational coordinates xα

and conformational probabilities Pα , four types of search or opti-
mization algorithms to obtain a set of (xα , Pα) values that represent
a Boltzmann ensemble may be distinguished.59

1. Conformational coordinates xα are treated as variables, prob-
abilities Pα implicitly satisfy eq. (11). This is the classical
conformational search problem as discussed in the previous
sections, in which the molecular coordinates xα are changed
according to classical (constant T ) mechanics (MD) or using
a Markov probability chain (MC) such that the probabilities Pα

automatically satisfy eq. (11).
2. Multiple conformations xα are used simultaneously, but kept

fixed (α1, α2, α3, . . .), probabilities Pα are treated as variables,
which follow from eq. (11). This approach works when the
relevant conformations xα1 , xα2 , . . . can be easily identified
a priori.160, 161

3. Multiple conformations xα are used simultaneously as variables
that change according to classical equations of motion, proba-
bilities Pα are treated as parameters that adiabatically follow the
variation of xα according to eq. (11). This approach59 has been
demonstrated using a cyclic peptide.161

4. Multiple conformations xα and probabilities Pα are used simulta-
neously as variables that change according to classical equations
of motion. This is a generalization of the previous approach.161

The Boltzmann relation (11) can be imposed on the variables
(xα , Pα) either in the form of a penalty function for Pα which is
added to the standard interaction function V(xα), or in the form
of a constraint to Pα , which is to be satisfied when the equations
of motion for (xα , Pα) are integrated.

Discussion

An overview of the types of methods that are currently used in
biomolecular modeling to search or sample or dynamically move
through the configurational space of a molecular system was given.
Since in general the configurational space is too large to be com-
pletely searched or sampled, the various methods (Section III) and
techniques aim at reducing the size of the problem (Section II), or
at using particular algorithms to enhance efficiency (Section IV),
or at transforming the problem into a more tractable one for which
solutions can be found that are good approximations to solutions
of the original problem (Section V). Generally, saving computa-
tional effort by the techniques presented has its price: the accuracy
of the generated ensemble or trajectory is decreased depending on
the search or sampling enhancement technique used or depend-
ing on the type of degrees of freedom that are omitted from the
calculation. Whether such a loss in accuracy of particular prop-
erties is acceptable depends on the goals of a modeling study. In
this respect one may distinguish four different degrees of distortion
of the correct result induced by search or sampling (enhancement)
techniques.

1. Techniques that preserve the correct dynamics of the system (no
distortion).

2. Techniques that distort the dynamics, but generate a correct
Boltzmann ensemble.

3. Techniques that distort dynamics and ensemble; they only
generate an arbitrary collection of molecular configurations.

4. Techniques that yield neither dynamics nor an ensemble or arbi-
trary set of molecular configurations, but only one molecular
configuration.

For example, when relative free energies of binding or complexation
are to be obtained, correct dynamics is not required, only a proper
ensemble.162

If the biomolecular modeling problem can be formulated in
terms of particular conformational states, the search and sam-
pling problem is reduced to pathways connecting such (end) states
(Section VII) and efficiency may be enhanced using biasing tech-
niques (Section VI). For example, in free energy calculations
unphysical pathways may be used to obtain the relative free energies
of two end states.162

The bulk of the methods and techniques that were discussed are
based upon variation of spatial molecular coordinates. Yet methods
that use other molecular coordinates have been proposed and found
some use (Section VIII).

Of the many search and sampling methods and enhancement
techniques reviewed a few are very effective: use of soft-core atoms,
local-elevation simulation and its derivatives, replica-exchange
simulation and generalized-ensemble methods. When end states
are known, transition path sampling is a powerful method. For
other reviews of search and sampling methodology we refer to
refs. 26, 59, 75, 148, and 163–165. The present one is meant to
support the practical biomolecular modeler when choosing a com-
bination of methods and tricks that will be particularly suited to
the specific problem, i.e. molecular system and properties to be
computed, of interest.
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