Pacific Journal of Mathematics

ON SEAWEED SUBALGEBRAS AND MEANDER GRAPHS IN TYPE C

Dmitri I. Panyushev and Oksana S. Yakimova

ON SEAWEED SUBALGEBRAS AND MEANDER GRAPHS IN TYPE C

Dmitri I. Panyushev and Oksana S. Yakimova

In 2000, Dergachev and Kirillov introduced subalgebras of "seaweed type" in $\mathfrak{g l}_{n}\left(\right.$ or $\left.\mathfrak{s l}_{n}\right)$ and computed their index using certain graphs. In this article, those graphs are called type-A meander graphs. Then the subalgebras of seaweed type, or just "seaweeds", were defined by Panyushev (2001) for arbitrary simple Lie algebras. Namely, if $\mathfrak{p}_{1}, \mathfrak{p}_{2} \subset \mathfrak{g}$ are parabolic subalgebras such that $\mathfrak{p}_{1}+\mathfrak{p}_{2}=\mathfrak{g}$, then $\mathfrak{q}=\mathfrak{p}_{1} \cap \mathfrak{p}_{2}$ is a seaweed in \mathfrak{g}. If \mathfrak{p}_{1} and \mathfrak{p}_{2} are "adapted" to a fixed triangular decomposition of \mathfrak{g}, then \mathfrak{q} is said to be standard. The number of standard seaweeds is finite. A general algebraic formula for the index of seaweeds was proposed by Tauvel and Yu (2004) and then proved by Joseph (2006).

In this paper, elaborating on the "graphical" approach of Dergachev and Kirillov, we introduce the type-C meander graphs, i.e., the graphs associated with the standard seaweed subalgebras of $\mathfrak{s p}_{2 n}$, and give a formula for the index in terms of these graphs. We also note that the very same graphs can be used in the case of the odd orthogonal Lie algebras.

Recall that \mathfrak{q} is called Frobenius if the index of \mathfrak{q} equals 0 . We provide several applications of our formula to Frobenius seaweeds in $\mathfrak{s p}_{2 n}$. In particular, using a natural partition of the set \mathcal{F}_{n} of standard Frobenius seaweeds, we prove that $\# \mathcal{F}_{n}$ strictly increases for the passage from n to $n+1$. The similar monotonicity question is open for the standard Frobenius seaweeds in $\mathfrak{s l}_{\boldsymbol{n}}$, even for the passage from \boldsymbol{n} to $\boldsymbol{n + 2}$.

1. Introduction

The index of an (algebraic) Lie algebra \mathfrak{q}, ind \mathfrak{q}, is the minimal dimension of the stabilisers for the coadjoint representation of \mathfrak{q}. It can be regarded as a generalisation of the notion of rank. That is, ind \mathfrak{q} equals the rank of \mathfrak{q} if \mathfrak{q} is reductive. In [Dergachev and Kirillov 2000], the index of the subalgebras of "seaweed type"

[^0]in $\mathfrak{g l}_{n}\left(\right.$ or $\left.\mathfrak{s l}_{n}\right)$ were computed using certain graphs. In this article, those graphs are called type-A meander graphs. Then the subalgebras of seaweed type, or just seaweeds, were defined and studied for an arbitrary simple Lie algebra \mathfrak{g} [Panyushev 2001]. Namely, if $\mathfrak{p}_{1}, \mathfrak{p}_{2} \subset \mathfrak{g}$ are parabolic subalgebras such that $\mathfrak{p}_{1}+\mathfrak{p}_{2}=\mathfrak{g}$, then $\mathfrak{q}=\mathfrak{p}_{1} \cap \mathfrak{p}_{2}$ is a seaweed in \mathfrak{g}. If \mathfrak{p}_{1} and \mathfrak{p}_{2} are "adapted" to a fixed triangular decomposition of \mathfrak{g}, then \mathfrak{q} is said to be standard; see Section 2 for details. A general algebraic formula for the index of seaweeds was proposed in [Tauvel and Yu 2004, Conjecture 4.7] and then proved in [Joseph 2006, Section 8].

In this paper, elaborating on the "graphical" approach of [Dergachev and Kirillov 2000], we introduce the type-C meander graphs, i.e., the graphs associated with the standard seaweed subalgebras of $\mathfrak{s p}_{2 n}$, and give a formula for the index in terms of these graphs. Although the seaweeds in $\mathfrak{s p}_{2 n}$ are our primary object in Sections 2-4, we note that the very same graphs can be used in the case of the odd orthogonal Lie algebras; see Section 5.

Recall that \mathfrak{q} is called Frobenius if ind $\mathfrak{q}=0$. Frobenius Lie algebras are very important in mathematics because of their connection with the Yang-Baxter equation. We provide some applications of our formula to Frobenius seaweeds in $\mathfrak{s p}_{2 n}$. Let \mathcal{F}_{n} denote the set of standard Frobenius seaweeds of $\mathfrak{s p}_{2 n}$. For a natural partition

$$
\mathcal{F}_{n}=\bigsqcup_{k=1}^{n} \mathcal{F}_{n, k}
$$

(see Section 4 for details), we construct the embeddings $\mathcal{F}_{n, k} \hookrightarrow \mathcal{F}_{n+1, k+1}$ for all $n, k \geqslant 1$. Since $\mathcal{F}_{n+1,1}$ does not meet the image of the induced embedding $\mathcal{F}_{n} \hookrightarrow \mathcal{F}_{n+1}$ and $\#\left(\mathcal{F}_{n+1,1}\right)>0$, this implies that $\#\left(\mathcal{F}_{n}\right)<\#\left(\mathcal{F}_{n+1}\right)$. The similar monotonicity question is open for the standard Frobenius seaweeds in $\mathfrak{s l}_{n}$, even for the passage from n to $n+2$. We also show that $\mathcal{F}_{n, 1}$ and $\mathcal{F}_{n, 2}$ are related to certain Frobenius seaweeds in $\mathfrak{s l}_{n}$.

The ground field is algebraically closed and of characteristic zero.

2. Generalities on seaweed subalgebras and meander graphs

Let \mathfrak{p}_{1} and \mathfrak{p}_{2} be two parabolic subalgebras of a simple Lie algebra \mathfrak{g}. If $\mathfrak{p}_{1}+\mathfrak{p}_{2}=\mathfrak{g}$, then $\mathfrak{p}_{1} \cap \mathfrak{p}_{2}$ is called a seaweed subalgebra or just a seaweed in \mathfrak{g} (see [Panyushev 2001]). The set of seaweeds includes all parabolics (if $\mathfrak{p}_{2}=\mathfrak{g}$), all Levi subalgebras (if \mathfrak{p}_{1} and \mathfrak{p}_{2} are opposite), and many interesting nonreductive subalgebras. We assume that \mathfrak{g} is equipped with a fixed triangular decomposition, so that there are two opposite Borel subalgebras \mathfrak{b} and \mathfrak{b}^{-}, and a Cartan subalgebra $\mathfrak{t}=\mathfrak{b} \cap \mathfrak{b}^{-}$. Without loss of generality, we may also assume that $\mathfrak{p}_{1} \supset \mathfrak{b}$ (i.e., \mathfrak{p}_{1} is standard) and $\mathfrak{p}_{2}=\mathfrak{p}_{2}^{-} \supset \mathfrak{b}^{-}$(i.e., \mathfrak{p}_{2} is opposite-standard). Then the seaweed $\mathfrak{q}=\mathfrak{p}_{1} \cap \mathfrak{p}_{2}^{-}$is said to be standard, too. Either of these parabolics is determined by a subset of Π, the set
of simple roots associated with $(\mathfrak{b}, \mathfrak{t})$. Therefore, a standard seaweed is determined by two arbitrary subsets of Π; see [Panyushev 2001, Section 2] for details.

For classical Lie algebras $\mathfrak{s l}_{n}$ and $\mathfrak{s p}_{2 n}$, we exploit the usual numbering of Π, which allows us to identify the standard and opposite-standard parabolic subalgebras with certain compositions related to n. It is also more convenient to deal with $\mathfrak{g l}_{n}$ in place of $\mathfrak{s l}_{n}$.
I. $\mathfrak{g}=\mathfrak{g l}_{n}$. We work with the obvious triangular decomposition of $\mathfrak{g l}_{n}$, where \mathfrak{b} consists of the upper-triangular matrices. If $\mathfrak{p}_{1} \supset \mathfrak{b}$ and the standard Levi subalgebra of \mathfrak{p}_{1} is $\mathfrak{g l}_{a_{1}} \oplus \cdots \oplus \mathfrak{g l}_{a_{s}}$, then we set $\mathfrak{p}_{1}=\mathfrak{p}(\underline{a})$, where $\underline{a}=\left(a_{1}, a_{2}, \ldots, a_{s}\right)$. Note that $a_{1}+\cdots+a_{s}=n$ and all $a_{i} \geqslant 1$. Likewise, if $\mathfrak{p}_{2}^{-} \supset \mathfrak{b}^{-}$is represented by a composition $\underline{b}=\left(b_{1}, \ldots, b_{t}\right)$ with $\sum b_{j}=n$, then the standard seaweed $\mathfrak{p}_{1} \cap \mathfrak{p}_{2}^{-} \subset \mathfrak{g l}_{n}$ is denoted by $\mathfrak{q}^{\mathrm{A}}(\underline{a} \mid \underline{b})$. The corresponding type-A meander graph $\Gamma=\Gamma^{\mathrm{A}}(\underline{a} \mid \underline{b})$ is defined by the following rules:

- Γ has n consecutive vertices on a horizontal line numbered from 1 to n.
- The parts of \underline{a} determine the set of pairwise disjoint arcs (edges) that are drawn above the horizontal line. Namely, part a_{1} determines $\left[\frac{1}{2} a_{1}\right.$] consecutively embedded arcs above the nodes $1, \ldots, a_{1}$, where the widest arc joins vertices 1 and a_{1}, the following joins 2 and $a_{1}-1$, etc. If a_{1} is odd, then the middle vertex $\frac{1}{2}\left(a_{1}+1\right)$ acquires no arc at all. Next, part a_{2} determines $\left[\frac{1}{2} a_{2}\right]$ embedded arcs above the nodes $a_{1}+1, \ldots, a_{1}+a_{2}$, etc.
- The arcs corresponding to \underline{b} are drawn following the same rules, but below the horizontal line.

It follows that the degree of each vertex in Γ is at most 2 and each connected component of Γ is homeomorphic to either a circle or a segment. (An isolated vertex is also a segment!) By [Dergachev and Kirillov 2000], the index of $\mathfrak{q}^{\mathrm{A}}(\underline{a} \mid \underline{b})$ can be computed via $\Gamma=\Gamma^{\mathrm{A}}(\underline{a} \mid \underline{b})$ as follows:
$(2-1) \quad$ ind $\mathfrak{q}^{\mathrm{A}}(\underline{a} \mid \underline{b})=2($ number of cycles in $\Gamma)+($ number of segments in $\Gamma)$.
Remark 2.1. Formula (2-1) gives the index of a seaweed in $\mathfrak{g l}_{n}$, not in $\mathfrak{s l}_{n}$. However, if $\mathfrak{q} \subset \mathfrak{g l}_{n}$ is a seaweed, then $\mathfrak{q} \cap \mathfrak{s l}_{n}$ is a seaweed in $\mathfrak{s l}_{n}$ and the respective mapping $\mathfrak{q} \mapsto \mathfrak{q} \cap \mathfrak{s l}_{n}$ is a bijection. Here $\mathfrak{q}=\left(\mathfrak{q} \cap \mathfrak{s l}_{n}\right) \oplus\left(1\right.$-dim centre of $\left.\mathfrak{g l}_{n}\right)$; hence ind $\left(\mathfrak{q} \cap \mathfrak{s l}_{n}\right)=$ ind $\mathfrak{q}-1$. Since ind $\mathfrak{q}^{\mathrm{A}}(\underline{a} \mid \underline{b}) \geqslant 1$ and the minimal value 1 is achieved if and only if Γ is a sole segment, we also obtain a characterisation of the Frobenius seaweeds in $\mathfrak{s l}_{n}$.

Example 2.2. We have

and the index of the corresponding seaweed in $\mathfrak{g l}_{9}$ (resp. $\mathfrak{s l}_{9}$) equals 3 (resp. 2).
II. $\mathfrak{g}=\mathfrak{s p}_{2 n}$. We use the embedding $\mathfrak{s p}_{2 n} \subset \mathfrak{g l}_{2 n}$ such that

$$
\mathfrak{s p}_{2 n}=\left\{\left.\left(\begin{array}{rr}
\mathcal{A} & \mathcal{B} \\
\mathcal{C} & -\hat{\mathcal{A}}
\end{array}\right) \right\rvert\, \mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathfrak{g l}_{n}, \mathcal{B}=\hat{\mathcal{B}}, \mathcal{C}=\hat{\mathcal{C}}\right\},
$$

where $\mathcal{A} \mapsto \hat{\mathcal{A}}$ is the transpose with respect to the antidiagonal. If $\tilde{\mathfrak{b}} \subset \mathfrak{g l}_{2 n}$ and $\tilde{\mathfrak{b}}^{-}$ are the sets of upper-triangular and lower-triangular matrices, respectively, then $\mathfrak{b}=\tilde{\mathfrak{b}} \cap \mathfrak{s p}_{2 n}$ and $\mathfrak{b}^{-}=\tilde{\mathfrak{b}}^{-} \cap \mathfrak{s p}_{2 n}$ are our fixed Borel subalgebras of $\mathfrak{g}=\mathfrak{s p}_{2 n}$. If $\mathfrak{p}_{1} \supset \mathfrak{b}$, then the standard Levi subalgebra of \mathfrak{p} is $\mathfrak{g l}_{a_{1}} \oplus \cdots \oplus \mathfrak{g l}_{a_{s}} \oplus \mathfrak{s p}_{2 d}$, where $a_{1}+\cdots+a_{s}+d=n$, all $a_{i} \geqslant 1$, and $d \geqslant 0$. Since d is determined by n and the ' $\mathfrak{g l}$ ' parts, \mathfrak{p}_{1} can be represented by n and the composition $\underline{a}=\left(a_{1}, \ldots, a_{s}\right)$. We write $\mathfrak{p}_{n}(\underline{a})$ for it. Likewise, if \mathfrak{p}_{2}^{-}is represented by another composition $\underline{b}=\left(b_{1}, \ldots, b_{t}\right)$ with $\sum b_{j} \leqslant n$, then $\mathfrak{p}_{1} \cap \mathfrak{p}_{2}^{-}$is denoted by $\mathfrak{q}_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b})$. To a standard parabolic $\mathfrak{p}_{1}=\mathfrak{p}_{n}(\underline{a}) \subset \mathfrak{s p}_{2 n}$, one can associate the parabolic subalgebra $\tilde{\mathfrak{p}}_{1} \subset \mathfrak{g l}_{2 n}$ that is represented by the symmetric composition $\underline{\tilde{a}}=\left(a_{1}, \ldots, a_{s}, 2 d, a_{s}, \ldots, a_{1}\right)$ of $2 n$. In the matrix form, the standard Levi subalgebra of $\tilde{\mathfrak{p}}_{1}$ has the consecutive diagonal blocks $\mathfrak{g l}_{a_{1}}, \ldots, \mathfrak{g l}_{a_{s}}, \mathfrak{g l}_{2 d}, \mathfrak{g l}_{a_{s}}, \ldots, \mathfrak{g l}_{a_{1}}$ and, for the above embedding $\mathfrak{s p}_{2 n} \subset \mathfrak{g l}_{2 n}$ and compatible triangular decompositions, one has $\mathfrak{p}_{1}=\tilde{\mathfrak{p}}_{1} \cap \mathfrak{s p}_{2 n}$ (and likewise for $\mathfrak{p}_{2}^{-} \subset \mathfrak{s p}_{2 n}$ and $\tilde{\mathfrak{p}}_{2}^{-} \subset \mathfrak{g l}_{2 n}$); see [Panyushev 2001, Section 5] for details. If $\underline{\tilde{a}}$ and $\underline{\tilde{b}}$ are symmetric compositions of $2 n$, then the seaweed $\mathfrak{q}^{\mathrm{A}}(\underline{\tilde{a}} \mid \underline{\tilde{b}}) \subset \mathfrak{g l}_{2 n}$ is said to be symmetric, too. The above construction provides a bijection between the standard seaweeds in $\mathfrak{s p}_{2 n}$ and the symmetric standard seaweeds in $\mathfrak{g l}_{2 n}$ (or $\mathfrak{s l}_{2 n}$).

We define the type-C meander $\operatorname{graph} \Gamma_{n}^{C}(\underline{a} \mid \underline{b})$ for $\mathfrak{q}_{n}^{\mathcal{C}}(\underline{a} \mid \underline{b})$ to be the type-A meander graph of the corresponding symmetric seaweed $\tilde{\mathfrak{q}}=\tilde{\mathfrak{p}}_{1} \cap \tilde{\mathfrak{p}}_{2}^{-} \subset \mathfrak{g l}_{2 n}$. Formally,

$$
\Gamma_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b})=\Gamma^{\mathrm{A}}(\underline{\tilde{a}} \mid \underline{\tilde{b}})
$$

We indicate below new features of these graphs.

- $\Gamma_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b})$ has $2 n$ consecutive vertices on a horizontal line numbered from 1 to $2 n$.
- Part a_{1} determines $\left[\frac{1}{2} a_{1}\right]$ embedded arcs above the nodes $1, \ldots, a_{1}$. By symmetry, the same set of arcs appears above the vertices $2 n-a_{1}+1, \ldots, 2 n$. Next, part a_{2} determines $\left[\frac{1}{2} a_{2}\right]$ embedded arcs above the nodes $a_{1}+1, \ldots, a_{1}+a_{2}$ and also the symmetric set of arcs above the nodes $2 n-a_{1}-a_{2}+1, \ldots 2 n-a_{1}$, etc.
- If $d=n-\sum a_{i}>0$, then there are $2 d$ unused vertices in the middle, and we draw d embedded arcs above them. This corresponds to part $2 d$ that occurs in the middle of $\underline{\tilde{a}}$. The arcs corresponding to \underline{b} are depicted by the same rules, but below the horizontal line.
- A type-C meander graph is symmetric with respect to the vertical line between the n-th and $(n+1)$-th vertices, and the symmetry with respect to this line is

Figure 1. The meander graph for a parabolic subalgebra of $\mathfrak{s p}_{14}$.
denoted by σ. We also say that this line is the σ-mirror. The arcs crossing the σ-mirror are said to be central. These are exactly the arcs corresponding to $d=n-\sum a_{i}$ and $d^{\prime}=n-\sum b_{j}$.
Our main result is the following formula for the index in terms of the connected components of $\Gamma_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b})$:

$$
\begin{align*}
& \text { ind } \mathfrak{q}_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b}) \tag{2-2}\\
& \quad=(\text { number of cycles })+\frac{1}{2} \text { (number of segments that are not } \sigma \text {-stable). }
\end{align*}
$$

To illustrate this formula, we recall that, for the parabolic subalgebra \mathfrak{p} with Levi part $\mathfrak{g l}_{a_{1}} \oplus \cdots \oplus \mathfrak{g l}_{a_{s}} \oplus \mathfrak{s p}_{2 d}$, we have ind $\mathfrak{p}=\left[\frac{1}{2} a_{1}\right]+\cdots+\left[\frac{1}{2} a_{s}\right]+d$; see [Panyushev 2001, Theorem 5.5]. Here $\mathfrak{p}_{2}^{-}=\mathfrak{s p}_{2 n}$ and the composition \underline{b} is empty. On the other hand, the graph $\Gamma_{n}^{\mathrm{C}}(\underline{a} \mid \varnothing)$ has n central arcs below the horizontal line corresponding to $\underline{b}=\varnothing$. Hence each part a_{i} gives rise to $\left[\frac{1}{2} a_{i}\right]$ cycles and, if a_{i} is odd, to one additional segment, which is σ-invariant. The middle part corresponding to $\mathfrak{s p}_{2 d}$ gives rise to d cycles. This clearly yields the same answer; cf. Example 2.3. Hence we already know that (2-2) is correct if \mathfrak{q} is a parabolic subalgebra, i.e., if $\underline{a}=\varnothing$ or $\underline{b}=\varnothing$. Note also that ind $\mathfrak{p}=0$ if and only if $d=0$ and all $a_{i}=1$, i.e., if $\mathfrak{p}=\mathfrak{b}$.

Example 2.3. See Figure 1. Here $\underline{a}=(2,3)$ and $n=7$ (hence $d=2$), and the σ-mirror is represented by the vertical dotted line. It is easily seen that the only segment here is σ-stable and the total number of circles is 4 . (The circles are depicted by blue arcs). Hence ind $\mathfrak{p}=4$.
Remark 2.4. (1) For both $\mathfrak{g l}_{n}$ and $\mathfrak{s p}_{2 n}$, one has $\mathfrak{q}^{*}(\underline{a} \mid \underline{b}) \simeq \mathfrak{q}^{*}(\underline{b} \mid \underline{a})$. Hence one can freely choose what composition is going to appear first.
(2) Moreover, $\mathfrak{q}^{*}(\underline{a} \mid \underline{b})$ is reductive (i.e., a Levi subalgebra) if and only if $\underline{a}=\underline{b}$.

Convention. If \mathfrak{q} is a seaweed in either $\mathfrak{s p}_{2 n}$ or $\mathfrak{g l} l_{2 n}$, and the corresponding compositions are not specified, then the respective meander graph is denoted by $\Gamma^{C}(\mathfrak{q})$ or $\Gamma^{\mathrm{A}}(\mathfrak{q})$.
Remark 2.5. Let \mathfrak{q} be a seaweed in $\mathfrak{s p}_{2 n}$ or $\mathfrak{g l}_{n}$. Then there is a point $\gamma \in \mathfrak{q}^{*}$ such that the stabiliser $\mathfrak{q}_{\gamma} \subset \mathfrak{q}$ is a reductive subalgebra; see [Panyushev 2005]. A Lie algebra possessing such a point in the dual space is said to be (strongly) quasi-reductive [Duflo et al. 2012]; see also [Moreau and Yakimova 2012, Definition 2.1]. One
of the main results of [Duflo et al. 2012] states that if a Lie algebra $\mathfrak{q}=$ Lie Q is strongly quasi-reductive, then there is a reductive stabiliser Q_{γ} (with $\gamma \in \mathfrak{q}^{*}$) such that any other reductive stabiliser Q_{β} (with $\beta \in \mathfrak{q}^{*}$) is contained in Q_{γ} up to conjugation. In [Moreau and Yakimova 2012] this subgroup Q_{γ} is a called a maximal reductive stabiliser, MRS for short. For a seaweed $\mathfrak{q}=\mathfrak{q}^{A}(\underline{a} \mid \underline{b})$, an MRS of \mathfrak{q} can be described in terms of $\Gamma^{\mathrm{A}}(\underline{a} \mid \underline{b})$ [Moreau and Yakimova 2012, Theorem 5.3]. A similar description is possible in type C if we use $\Gamma_{n}^{C}(\underline{a} \mid \underline{b})$. It will appear elsewhere.

3. Symplectic meander graphs and the index of seaweed subalgebras

In this section, we prove formula (2-2) on the index of the seaweed subalgebras of type C.

Let us recall the inductive procedure for computing the index of seaweeds in a symplectic Lie algebra introduced by the first author [Panyushev 2001]. Suppose that $\underline{a}=\left(a_{1}, \ldots, a_{s}\right)$ and $\underline{b}=\left(b_{1}, \ldots, b_{t}\right)$ are two compositions with $\sum a_{i} \leqslant n$ and $\sum b_{j} \leqslant n$. Then we consider the standard seaweed $\mathfrak{q}_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b}) \subset \mathfrak{s p}_{2 n}$.

Inductive procedure:

(1) If either \underline{a} or \underline{b} is empty, then $\mathfrak{q}_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b})$ is a parabolic subalgebra and the index is computed using [Panyushev 2001, Theorem 5.5] (see also the Introduction).
(2) Suppose that both \underline{a} and \underline{b} are nonempty. Without loss of generality, we can assume that $a_{1} \leqslant \bar{b}_{1}$. By [Panyushev 2001, Theorem 5.2], ind $\mathfrak{q}_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b})$ can inductively be computed as follows:
(i) If $a_{1}=b_{1}$, then $\mathfrak{q}_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b}) \simeq \mathfrak{g l}_{a_{1}} \oplus \mathfrak{q}_{n-a_{1}}^{\mathrm{C}}\left(a_{2}, \ldots, a_{s} \mid b_{2}, \ldots, b_{t}\right)$; hence

$$
\text { ind } \mathfrak{q}_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b})=a_{1}+\operatorname{ind} \mathfrak{q}_{n-a_{1}}^{\mathrm{C}}\left(a_{2}, \ldots, a_{s} \mid b_{2}, \ldots, b_{t}\right)
$$

(ii) If $a_{1}<b_{1}$, then
ind $\mathfrak{q}_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b})= \begin{cases}\text { ind } \mathfrak{q}_{n-a_{1}}^{\mathrm{C}}\left(a_{2}, \ldots, a_{s} \mid b_{1}-2 a_{1}, a_{1}, b_{2}, \ldots, b_{t}\right) & \text { if } a_{1} \leqslant \frac{1}{2} b_{1}, \\ \text { ind } \mathfrak{q}_{n-b_{1}+a_{1}}^{\mathrm{C}}\left(2 a_{1}-b_{1}, a_{2}, \ldots, a_{s} \mid a_{1}, b_{2}, \ldots, b_{t}\right) & \text { if } a_{1}>\frac{1}{2} b_{1} .\end{cases}$
(iii) Step 2 terminates when one of the compositions becomes empty, i.e., one obtains a parabolic subalgebra in a smaller symplectic Lie algebra, where Step 1 applies.
Remark 3.1. Iterating transformations of the form 2(ii) yields a formula that does not require considering cases; see [Panyushev 2001, Theorem 5.3]. Namely, if $a_{1}<b_{1}$, then ind $\mathfrak{q}_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b})=\operatorname{ind} \mathfrak{q}_{n-a_{1}}^{\mathrm{C}}\left(\underline{a}^{\prime} \mid \underline{b}^{\prime}\right)$, where $\underline{a}^{\prime}=\left(a_{2}, \ldots, a_{s}\right), \underline{b}^{\prime}=$ $\left(b_{1}^{\prime}, b_{1}^{\prime \prime}, b_{2}, \ldots, b_{t}\right)$, and b_{1}^{\prime} and $b_{1}^{\prime \prime}$ are defined as follows. Let p be the unique integer such that

$$
\frac{p}{p+1}<\frac{a_{1}}{b_{1}} \leqslant \frac{p+1}{p+2}
$$

Then $b_{1}^{\prime}=(p+1) b_{1}-(p+2) a_{1} \geqslant 0$ and $b_{2}^{\prime}=(p+1) a_{1}-p b_{1}>0$. (If $b_{1}^{\prime}=0$, then it has to be omitted.)
Theorem 3.2. Let $\mathfrak{q}=\mathfrak{q}_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b})$ be a seaweed in $\mathfrak{s p}_{2 n}$ and $\Gamma^{\mathrm{C}}(\mathfrak{q})=\Gamma_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b})$ the type- $-\mathfrak{m e a n d e r}$ graph associated with \mathfrak{q}. Then

$$
\begin{aligned}
& \text { ind } \mathfrak{q}_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b}) \\
& \qquad=\#\left\{\text { cycles of } \Gamma_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b})\right\}+\frac{1}{2} \#\left\{\text { segments of } \Gamma_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b}) \text { that are not } \sigma \text {-stable }\right\}
\end{aligned}
$$

Proof. Our argument exploits the above inductive procedure. Let us temporarily write $\mathcal{T}_{n}(\underline{a} \mid \underline{b})$ for the topological quantity in the right-hand side of the formula. Let us prove that for the pairs of seaweeds occurring in either 2(i) or 2(ii) of the inductive procedure, the required topological quantity behaves accordingly.

If $a_{1}=b_{1}$ and $\mathfrak{g l} a_{1}$ is a direct summand of \mathfrak{q}, then ind $\mathfrak{q}_{n-a_{1}}^{\mathrm{C}}\left(a_{2}, \ldots, a_{s} \mid b_{2}, \ldots, b_{t}\right)$ decreases by a_{1}; on the other hand, $\Gamma_{n-a_{1}}^{C}\left(a_{2}, \ldots, a_{s} \mid b_{2}, \ldots, b_{t}\right)$ is obtained from $\Gamma^{\mathrm{C}}(\mathfrak{q})$ by deleting $2\left[\frac{1}{2} a_{1}\right]$ cycles (and two segments, which are not σ-invariant in case a_{1} is odd). This is in perfect agreement with the formula.

If $a_{1}<b_{1}$, then one step of $\mathfrak{s p}$-reduction for \mathfrak{q} is equivalent to two steps of $\mathfrak{g l}$ reduction for the meander graph of $\Gamma^{\mathrm{A}}(\tilde{\mathfrak{q}})$, where $\tilde{\mathfrak{q}}$ is the corresponding symmetric seaweed in $\mathfrak{g l} 2_{2 n}$. These two "symmetric" steps are applied one after another to the left and right sides of $\Gamma^{\mathrm{A}}(\tilde{\mathfrak{q}})=\Gamma^{\mathrm{C}}(\mathfrak{q})$. According to [Moreau and Yakimova 2012, Lemma 5.4(i)], the $\mathfrak{g l}$-reduction does not change the topological structure of the graph. Hence $\mathcal{T}_{n}(\underline{a} \mid \underline{b})=\mathcal{T}_{n-a_{1}}\left(\underline{a}^{\prime} \mid \underline{b}^{\prime}\right)$.

Since we have already observed (in Section 2) that our formula holds for the parabolic subalgebras, the result follows.

Example 3.3. For the seaweed $\mathfrak{q}_{10}(3,3 \mid 4,5)$ in $\mathfrak{s p}_{20}$, the recursive formula of Remark 3.1 yields the following chain of reductions:

$$
\mathfrak{q}=\mathfrak{q}_{10}^{\mathrm{C}}(3,3 \mid 4,5) \rightsquigarrow \mathfrak{q}_{7}^{\mathrm{C}}(3 \mid 1,5) \rightsquigarrow \mathfrak{q}_{6}^{\mathrm{C}}(1,1 \mid 5) \rightsquigarrow \mathfrak{q}_{5}^{\mathrm{C}}(1 \mid 3,1) \rightsquigarrow \mathfrak{q}_{4}^{\mathrm{C}}(\varnothing \mid 1,1,1) .
$$

The last term represents the minimal parabolic subalgebra of $\mathfrak{s p}_{8}$ corresponding to the unique long simple root. The respective graphs are gathered in Figure 2. It is readily seen that both ends of the graphs undergo the symmetric transformations on each step; also all the segments are σ-stable and the total number of cycles equals 1 . Thus, ind $\mathfrak{q}=1$.

One can notice that each reduction step consists of contracting certain arcs starting from some end vertices of a meander graph. Clearly, such a procedure does not change the topological structure of the graph, and this is exactly how Lemma 5.4(i) in [Moreau and Yakimova 2012] was proved.

Example 3.4. In Figure 3, one finds the graph of a seaweed in $\mathfrak{s p}_{16}$ of index 1. The segments that are not σ-stable are depicted by red arcs.

Figure 2. The reduction steps for a seaweed subalgebra of $\mathfrak{s p}_{20}$.
$\Gamma_{8}^{\mathrm{C}}(3,4 \mid 5,3)$

Figure 3. A seaweed subalgebra of $\mathfrak{s p}_{16}$ with index 1.

4. Applications of symplectic meander graphs

In this section, we present some applications of Theorem 3.2. We begin with a simple property of the index.
Lemma 4.1. If $\sum a_{i}<n$ and $\sum b_{j}<n$, then ind $\mathfrak{q}_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b})=\left(n-n^{\prime}\right)+\operatorname{ind}_{\mathfrak{q}_{n^{\prime}}^{\mathrm{C}}}(\underline{a} \mid \underline{b})$, where $n^{\prime}=\max \left\{\sum a_{i}, \sum b_{j}\right\}$.
Proof. Here $\Gamma_{n}^{C}(\underline{a} \mid \underline{b})$ contains $n-n^{\prime}$ arcs crossing the σ-mirror on both sides of the horizontal line. They form $n-n^{\prime}$ central circles, and removing these circles reduces the index by $n-n^{\prime}$ and yields the graph $\Gamma_{n^{\prime}}^{\mathcal{C}}(\underline{a} \mid \underline{b})$.

Recall that a Lie algebra \mathfrak{q} is Frobenius if ind $\mathfrak{q}=0$. In the rest of the section, we apply Theorem 3.2 to studying Frobenius seaweeds. Clearly, if $\mathfrak{q}_{n}^{\mathcal{C}}(\underline{a} \mid \underline{b})$ is Frobenius,

Figure 4. Frobenius seaweed subalgebras of $\mathfrak{s p}_{14}$.
then $\Gamma_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b})$ has only σ-stable segments and no cycles. Another consequence of Theorem 3.2 is the following necessary condition.

Lemma 4.2. If $\mathfrak{q}_{n}^{\mathcal{C}}(\underline{a} \mid \underline{b})$ is Frobenius, then either $\sum a_{i}<n$ and $\sum b_{j}=n$ or vice versa.

Proof. If $\sum a_{i}<n$ and $\sum b_{j}<n$, then the index is positive in view of Lemma 4.1. If $\sum a_{i}=\sum b_{j}=n$, then there are no arcs crossing the σ-mirror. Therefore $\Gamma_{n}^{C}(\underline{a} \mid \underline{b})$ consists of two disjoint σ-symmetric parts, and the topological quantity of Theorem 3.2 cannot be equal to 0 . (More precisely, in the second case $\mathfrak{q}_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b})$ is isomorphic to the seaweed $\mathfrak{q}^{\mathcal{A}}(\underline{a} \mid \underline{b})$ in $\mathfrak{g l}_{n}$, and ind $\mathfrak{q} \geqslant 1$ for all seaweeds $\mathfrak{q} \subset \mathfrak{g l}_{n}$; see Remark 2.1.)

Graphically, Lemma 4.2 means that, for a Frobenius seaweed, one must have some central arcs ($=$ arcs crossing the σ-mirror) on one side of the horizontal line in the meander graph, and then there must be no central arcs on the other side. The number of central arcs can vary from 1 to n (the last possibility represents the case in which one of the parabolics is the Borel subalgebra). Let $\mathcal{F}_{n, k}$ denote the set of standard Frobenius seaweeds whose meander graph contains k central arcs. Then $\mathcal{F}_{n}=\bigsqcup_{k=1}^{n} \mathcal{F}_{n, k}$ is the set of all standard Frobenius seaweeds in $\mathfrak{s p}_{2 n}$. If $\mathfrak{q}_{n}^{\mathcal{C}}(\underline{a} \mid \underline{b})$ lies in $\mathcal{F}_{n, k}$, then so does $\mathfrak{q}_{n}^{\mathrm{C}}(\underline{b} \mid \underline{a})$. As we are interested in essentially different meander graphs, we will not distinguish graphs and algebras corresponding to ($\underline{a} \mid \underline{b}$) and $(\underline{b} \mid \underline{a})$. Set $\boldsymbol{F}_{n, k}=\#\left(\mathcal{F}_{n, k} / \sim\right)$ and $\boldsymbol{F}_{n}=\#\left(\mathcal{F}_{n} / \sim\right)$, where \sim is the corresponding equivalence relation. Then

$$
\boldsymbol{F}_{n, n}=1 ; \quad \boldsymbol{F}_{n, n-1}=\left\{\begin{array}{ll}
1, & n=2 \\
2, & n \geqslant 3 ;
\end{array} \quad \boldsymbol{F}_{n, n-2}= \begin{cases}2, & n=3 \\
4, & n=4 \\
5, & n \geqslant 5\end{cases}\right.
$$

It follows from Lemma 4.2 that if $\mathfrak{q}_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b}) \in \mathcal{F}_{n}$ and $\sum b_{j}=n$, then the integer k such that $\mathfrak{q}_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b}) \in \mathcal{F}_{n, k}$ is determined as $k=n-\sum a_{i}$.

In Figure 4, one finds the meander graphs of Frobenius seaweeds in $\mathfrak{s p}_{14}$ with $k=1$ and 2 .

Lemma 4.3. If $\mathfrak{q} \in \mathcal{F}_{n, k}$, then $\Gamma^{C}(\mathfrak{q})$ has exactly k connected components (σ-stable segments) corresponding to the central arcs. Furthermore, the total number of arcs in $\Gamma^{C}(\mathfrak{q})$ equals $2 n-k$.
Proof. (1) Let \mathcal{A}_{i} be the i-th central arc and Γ_{i} the connected component of $\Gamma^{\mathrm{C}}(\mathfrak{q})$ that contains \mathcal{A}_{i}. Each Γ_{i} is a σ-stable segment.

- If $\Gamma_{i}=\Gamma_{j}$ for $i \neq j$, then continuations of \mathcal{A}_{i} and \mathcal{A}_{j} meet somewhere in the left half of $\Gamma^{\mathrm{C}}(\mathfrak{q})$. By symmetry, the same happens in the right half, which produces a cycle. Hence the connected components $\Gamma_{1}, \ldots, \Gamma_{k}$ must be different.
- Assume that there exists yet another connected component Γ_{k+1}. Then it belongs to only one half of $\Gamma^{C}(\mathfrak{q})$. By symmetry, there is also the "same" component Γ_{k+2} in the other half of $\Gamma^{\mathrm{C}}(\mathfrak{q})$. This would imply that ind $\mathfrak{q}>0$.
(2) Since the graph $\Gamma^{C}(\mathfrak{q})$ has $2 n$ vertices and is a disjoint union of k trees, the number of edges (arcs) must be $2 n-k$.
Lemma 4.4. For any $k \geqslant 1$, there is an injective map $\mathcal{F}_{n, k} \rightarrow \mathcal{F}_{n+1, k+1}$. Moreover, $\boldsymbol{F}_{n+1}>\boldsymbol{F}_{n}$; that is, the total number of Frobenius seaweeds strictly increases under the passage from n to $n+1$.
Proof. For any $\mathfrak{q} \in \mathcal{F}_{n, k}(k \geqslant 1)$, we can add two new vertices in the middle of $\Gamma^{C}(\mathfrak{q})$ and connect them by an arc (on the appropriate side!). This yields an injective mapping $\mathcal{F}_{n, k} \rightarrow \mathcal{F}_{n+1, k+1}$ for any $k \geqslant 1$ and thereby an injection $i_{n}: \mathcal{F}_{n} \hookrightarrow \mathcal{F}_{n+1}$.

Since $\mathcal{F}_{n+1,1}$ does not intersect the image of i_{n}, the second assertion follows from the fact that $\boldsymbol{F}_{n+1,1}>0$ for any $n \geqslant 0$; see the example below.
Example. We point out an explicit element $\mathfrak{q}_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b}) \in \mathcal{F}_{n, 1}$. For $n=2 k$, one takes $\underline{a}=\left(2^{k}\right)$ and $\underline{b}=\left(1,2^{k-1}\right)$. For $n=2 k+1$, one takes $\underline{a}=\left(2^{k}\right)$ and $\underline{b}=\left(1,2^{k}\right)$. For $n=4$, the meander graph is

Proposition 4.5. (i) For a fixed $m \in \mathbb{N}$, the numbers $\boldsymbol{F}_{n, n-m}$ stabilise for $n \geqslant 2 m+1$. In other words, $\boldsymbol{F}_{n, n-m}=\boldsymbol{F}_{2 m+1, m+1}$ for all $n \geqslant 2 m+1$.
(ii) Furthermore, $\boldsymbol{F}_{2 m+1, m+1}=\boldsymbol{F}_{2 m, m}+1$.

Proof. (i) Let $\mathfrak{q}=\mathfrak{q}_{n}^{\mathcal{C}}(\underline{a} \mid \underline{b}) \in \mathcal{F}_{n, n-m}$. Then $\sum_{i=1}^{s} a_{i}=m$ and $\sum_{j=1}^{t} b_{j}=n$. Consider the n-th vertex of the graph (the one that is closest to the σ-mirror). We are interested in b_{t}, the size of the last part of \underline{b}, i.e., the part that contains the n-th vertex. By the assumption, we have $n-m$ central arcs over the horizontal line. Therefore, if $n \geqslant 2 m+2$ and $b_{t} \geqslant 2$, then the smallest arc corresponding to b_{t} hits two vertices covered by central arcs above the line. And this produces
a cycle in the graph! This contradiction shows that the only possibility is $b_{t}=1$. Then one can safely remove two central vertices from the graph and conclude that $\boldsymbol{F}_{n, n-m}=\boldsymbol{F}_{n-1, n-1-m}$ as long as $n \geqslant 2 m+2$. (The last step is opposite to one that is used in the proof of Lemma 4.4.)
(ii) Again, for $\mathfrak{q}=\mathfrak{q}_{2 m+1}^{\mathrm{C}}(\underline{a} \mid \underline{b}) \in \mathcal{F}_{2 m+1, m+1}$, we consider b_{t}, the last coordinate of \underline{b}. If $b_{t}=1$, then the central pair of vertices in $\Gamma^{C}(\mathfrak{q})$ can be removed, which yields a seaweed in $\mathcal{F}_{2 m, m}$. Next, it is easily seen that if $b_{t} \in\{2,3, \ldots, 2 m\}$, then $\Gamma^{\mathrm{C}}(\mathfrak{q})$ contains a cycle. Hence this is impossible. While for $b_{t}=2 m+1$, one obtains a unique admissible possibility

$$
\underline{a}=(\underbrace{1,1, \ldots, 1}_{m})
$$

Remark. Using a similar analysis, one obtains $\boldsymbol{F}_{2 m, m}=\boldsymbol{F}_{2 m-1, m-1}+3$ if $m \geqslant 3$.
Remark 4.6. Our stabilisation result for $\boldsymbol{F}_{n, n-m}$ can be compared with [Duflo and Yu 2015], where Duflo and Yu consider a partition of the set of standard Frobenius seaweeds in $\mathfrak{s l}_{n}$ into classes and study the asymptotic behaviour of the cardinality of these classes as n tends to infinity. Let $p(\underline{a})$ be the number of nonzero parts of the composition \underline{a} and let $\tilde{F}_{n, p}$ be the number of the standard Frobenius seaweeds $\mathfrak{q}^{\mathrm{A}}(\underline{a} \mid \underline{b}) \cap \mathfrak{s l}_{n}$ such that $p(\underline{a})+p(\underline{b})=p$. By [Duflo and Yu 2015, Theorem 1.1(b)], if n is sufficiently large, then $\tilde{F}_{n, n+1-t}$ is a polynomial in n of degree $\left[\frac{1}{2} t\right]$, with positive rational coefficients.

It seems that $\mathcal{F}_{n, 1}$ is the most interesting part of the symplectic Frobenius seaweeds. Recall from Section 2 that to any standard seaweed $\mathfrak{q} \subset \mathfrak{s p}_{2 n}$ one can associate a "symmetric" seaweed $\tilde{\mathfrak{q}} \subset \mathfrak{g l}_{2 n}$ such that $\mathfrak{q}=\tilde{\mathfrak{q}} \cap \mathfrak{s p}_{2 n}$. In this context, we also set $\tilde{\mathfrak{q}}_{0}=\tilde{\mathfrak{q}} \cap \mathfrak{s l}{ }_{2 n}$.

Proposition 4.7.

(i) If $\mathfrak{q} \in \mathcal{F}_{n, 1}$, then ind $\tilde{\mathfrak{q}}=1$, hence $\tilde{\mathfrak{q}}_{0}$ is a Frobenius seaweed in $\mathfrak{s l}_{2 n}$.
(ii) There is an injective map $\mathcal{F}_{n, 1} \rightarrow \mathcal{F}_{n+1,1}$, which is not onto if $n \geqslant 2$.

Proof. (i) If $\mathfrak{q} \in \mathcal{F}_{n, 1}$, then $\Gamma^{C}(\mathfrak{q})$ and thereby $\Gamma^{A}(\tilde{\mathfrak{q}})$ consists of a sole segment (Lemma 4.3). By (2-1), we have ind $\tilde{\mathfrak{q}}=1$ and therefore ind $\tilde{\mathfrak{q}}_{0}=$ ind $\tilde{\mathfrak{q}}-1=0$.
(ii) If $\mathfrak{q}=\mathfrak{q}_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b}) \in \mathcal{F}_{n, 1}$, then $\sum_{i=1}^{s} a_{i}=n-1$ and $\sum_{j=1}^{t} b_{j}=n$. We associate to it a seaweed $\hat{\mathfrak{q}} \in \mathcal{F}_{n+1,1}$ as follows. Set $\hat{\mathfrak{q}}=\mathfrak{q}_{n+1}^{\mathrm{C}}(\underline{\hat{a}} \mid \underline{b})$, where $\underline{\hat{a}}=\left(a_{1}, \ldots, a_{s}, 2\right)$. Note that $\Gamma_{n}^{C}(\underline{a} \mid \underline{b})$ has one central arc above the horizontal line, while $\Gamma_{n+1}^{C}(\underline{\hat{a}} \mid \underline{b})$ has one central arc below. The following is a graphical illustration of the transform $\mathfrak{q} \mapsto \hat{\mathfrak{q}}$:

$n \downarrow k \rightarrow \boldsymbol{F}_{n}$								
1	1	2	3	4	5	6	7	$\Sigma=\boldsymbol{F}_{n}$
2	1	-	-	-	-	-	-	1
3	1	1	-	-	-	-	-	2
4	2	2	1	-	-	-	-	5
5	4	4	2	1	-	-	-	11
6	8	10	5	2	1	-	-	26
7	15	20	13	5	2	1	-	56
	28	44	28	14	5	2	1	122

Table 1. The numbers $\boldsymbol{F}_{n, k}$ for $n \leqslant 7$.

This provides a bijection between $\mathcal{F}_{n, 1}$ and the seaweeds in $\mathcal{F}_{n+1,1}$ whose last part of the composition that sums to $n+1$ equals 2 . If $n+1 \geqslant 3$, then there are seaweeds in $\mathcal{F}_{n+1,1}$ such that the above-mentioned last part is bigger than 2. Hence $\boldsymbol{F}_{n, 1}<\boldsymbol{F}_{n+1,1}$.
Remark 4.8. Another curious observation is that $\mathcal{F}_{n, 1}$ and $\mathcal{F}_{n, 2}$ are related to certain Frobenius seaweeds in $\mathfrak{s l}_{n}$:
(i) Suppose that $\mathfrak{q} \in \mathcal{F}_{n, 1}$. Let us remove the only central arc in $\Gamma^{C}(\mathfrak{q})$ and take the remaining left half of the graph as it is. It is a connected type-A meander graph with n vertices. Therefore, it represents a seaweed of index 1 in $\mathfrak{g l}_{n}$ ($=$ Frobenius seaweed in $\left.\mathfrak{s l}_{n}\right)$. Formally, if $\mathfrak{q}=\mathfrak{q}_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b})$, with $\sum a_{i}=n-1$ and $\sum b_{j}=n$, then we set $\mathfrak{q}^{\prime}=\mathfrak{q}^{\mathrm{A}}\left(\underline{a^{\prime}} \mid \underline{b}\right) \subset \mathfrak{s l}_{n}$, where $\underline{a}^{\prime}=(\underline{a}, 1)$. This yields a bijection between $\mathcal{F}_{n, 1}$ and the Frobenius seaweeds of $\mathfrak{s l}_{n}$ such that the last part of \underline{a}^{\prime} equals 1.
(ii) Suppose that $\mathfrak{q} \in \mathcal{F}_{n, 2}$. Let us remove the two central arcs and take the remaining left half. We obtain a graph with n vertices and two connected components (segments). Joining the last two "lonely" vertices by an arc, we get a connected type-A meander graph. Formally, if $\mathfrak{q}=\mathfrak{q}_{n}^{\mathrm{C}}(\underline{a} \mid \underline{b})$, with $\sum a_{i}=n-2$ and $\sum b_{j}=n$, then we set $\mathfrak{q}^{\prime}=\mathfrak{q}^{\mathrm{A}}\left(\underline{a}^{\prime} \mid \underline{b}\right) \subset \mathfrak{s l}_{n}$, where $\underline{a}^{\prime}=(\underline{a}, 2)$. Again, this yields a bijection between $\mathcal{F}_{n, 2}$ and the Frobenius seaweeds of $\mathfrak{s l}_{n}$ such that the last part of \underline{a}^{\prime} equals 2 .

Unfortunately, such a nice relationship does not extend to $\mathcal{F}_{n, 3}$.
In Table 1 we present the numbers $\boldsymbol{F}_{n, k}$ for $n \leqslant 7$. Note that the values $14,5,2,1$ in the seventh row are stable in the sense of Proposition 4.5(i). Using the preceding information, we can also compute the next stable value:

$$
\boldsymbol{F}_{9,5}=\boldsymbol{F}_{8,4}+1=\left(\boldsymbol{F}_{7,3}+3\right)+1=32 .
$$

5. On meander graphs for the odd orthogonal Lie algebras

As in the case of $\mathfrak{s p}_{2 n}$, the standard parabolic subalgebras of $\mathfrak{s o}_{2 n+1}$ are parametrised by the compositions $\underline{a}=\left(a_{1}, \ldots, a_{s}\right)$ such that $\sum a_{i} \leqslant n$. For instance, if $\mathfrak{p}_{n}^{\mathrm{B}}(\underline{a})$ is
the standard parabolic subalgebra corresponding to \underline{a}, then a Levi subalgebra of it is of the form $\mathfrak{g l}_{a_{1}} \oplus \cdots \oplus \mathfrak{g l}_{a_{s}} \oplus \mathfrak{s o}_{2\left(n-\sum a_{i}\right)+1}$. Therefore, the standard seaweed subalgebras of $\mathfrak{s o}_{2 n+1}$ are also parametrised by the pairs of compositions $\underline{a}, \underline{b}$ such that $\sum a_{i} \leqslant n$ and $\sum b_{j} \leqslant n$; see [Panyushev 2001, Section 5]. Furthermore, the inductive procedure for computing the index of standard seaweeds (see Section 3, Step 2), which reduces the case of arbitrary seaweeds to parabolic subalgebras, also remains the same [Panyushev 2001, Theorem 5.2].

This means that if the formula for the index of parabolic subalgebras of $\mathfrak{s o}_{2 n+1}$ in terms of \underline{a} also remains the "same" as in the symplectic case, then one can use our type-C meander graphs in type B_{n} as well. Although there are only partial results on the index of parabolic subalgebras of $\mathfrak{s o}_{2 n+1}$ in [Panyushev 2001, Section 6], one can use the general Tauvel-Yu-Joseph formula; see [Tauvel and Yu 2004, Conjecture 4.7; Joseph 2006, Section 8]. Namely, if $\mathfrak{q}=\mathfrak{q}(S, T)$ is the seaweed corresponding to the subsets $S, T \subset \Pi$, then

$$
\begin{equation*}
\text { ind } \mathfrak{q}=\mathrm{rk} \mathfrak{g}+\operatorname{dim} E_{S}+\operatorname{dim} E_{T}-2 \operatorname{dim}\left(E_{S}+E_{T}\right) \tag{5-1}
\end{equation*}
$$

Here $\operatorname{dim} E_{T}=\# \mathcal{K}(T)$ is the cardinality of the cascade of strongly orthogonal roots in the Levi subalgebra of \mathfrak{g} corresponding to T; see [Tauvel and Yu 2004] for the details. Our observation is that it easily implies that, for any composition \underline{a}, one has

$$
\begin{equation*}
\text { ind } \mathfrak{p}_{n}^{\mathrm{B}}(\underline{a})=\left[\frac{1}{2} a_{1}\right]+\cdots+\left[\frac{1}{2} a_{s}\right]+\left(n-\sum_{i=1}^{s} a_{i}\right)=\operatorname{ind} \mathfrak{p}_{n}^{\mathrm{C}}(\underline{a}) \tag{5-2}
\end{equation*}
$$

Indeed, for the parabolic subalgebras, we may assume that $S=\Pi$, and since ind $\mathfrak{b}=0$ for the series B_{n}, we have $\operatorname{dim} E_{\Pi}=\mathrm{rk} \mathfrak{g}$. Therefore, ind $\mathfrak{p}_{n}^{\mathrm{B}}(\underline{a})=\operatorname{dim} E_{T}=\# \mathcal{K}(T)$. As we noticed before, for $\mathfrak{p}_{n}^{\mathrm{B}}(\underline{a})$, we have $\mathfrak{l}=\mathfrak{g l}_{a_{1}} \oplus \cdots \oplus \mathfrak{g l}_{a_{s}} \oplus \mathfrak{s o}_{2\left(n-\sum a_{i}\right)+1}$. As is well known, the cardinality of the cascade of strongly orthogonal roots in $\mathfrak{g l}_{a}$ (resp. $\mathfrak{s o}_{2 n+1}$) equals $\left[\frac{1}{2} a\right]$ (resp. n); see [Joseph 1977, Section 2]. Therefore, the cardinality of the cascade in the above \mathfrak{l} is given by the middle term in (5-2).

There is another interesting formula for the index of a parabolic subalgebra, which generalises the above observation.

Theorem 5.1. Let \mathfrak{g} be a simple Lie algebra such that ind $\mathfrak{b}=0$. Let $\mathfrak{p} \subset \mathfrak{g}$ be a parabolic subalgebra, with a Levi subalgebra \mathfrak{l}. If $\mathfrak{b}(\mathfrak{l})$ is a Borel subalgebra of \mathfrak{l} and $\mathfrak{u}(\mathfrak{l})=[\mathfrak{b}(\mathfrak{l}), \mathfrak{b}(\mathfrak{l})]$, then

$$
\begin{equation*}
\text { ind } \mathfrak{p}=\operatorname{ind} \mathfrak{u}(\mathfrak{l})=\operatorname{rk} \mathfrak{l}-\operatorname{ind} \mathfrak{b}(\mathfrak{l})=\mathrm{rk} \mathfrak{g}-\operatorname{ind} \mathfrak{b}(\mathfrak{l}) \tag{5-3}
\end{equation*}
$$

In particular, ind $\mathfrak{p}=0$ if and only if $\mathfrak{u}(\mathfrak{l})=0$, i.e., $\mathfrak{p}=\mathfrak{b}$.
Outline of the proof. Again, under the assumption that ind $\mathfrak{b}=0$, we have $S=\Pi$, $\operatorname{dim} E_{\Pi}=\mathrm{rk} \mathfrak{g}$, and \mathfrak{l} is determined by T. Hence (5-1) implies that ind $\mathfrak{p}=\operatorname{dim} E_{T}=$ $\# \mathcal{K}(T)$. It is implicit in [Joseph 1977, Section 2.6] that $\# \mathcal{K}(T)=\operatorname{ind} \mathfrak{u}(\mathfrak{l})$, and the
second equality in (5-3) is a consequence of the fact that $\mathfrak{r k l}=\operatorname{ind} \mathfrak{b}(\mathfrak{l})+\operatorname{ind} \mathfrak{u}(\mathfrak{l})$ for any reductive Lie algebra \mathfrak{l}. A more detailed explanation and some applications of the theorem will appear elsewhere.

Recall that, for a simple Lie algebra \mathfrak{g}, ind $\mathfrak{b}=0$ if and only if $\mathfrak{g} \neq \mathrm{A}_{n}, D_{2 n+1}, \mathrm{E}_{6}$. Conclusion. (1) Given a standard seaweed $\mathfrak{q}=\mathfrak{q}_{n}^{\mathrm{B}}(\underline{a} \mid \underline{b}) \subset \mathfrak{s o}_{2 n+1}$, we can draw exactly the same meander graph as in type C (with $2 n$ vertices) and use exactly the same topological formula (Theorem 3.2) to compute the index of \mathfrak{q}.
(2) Using our type-C meander graphs, we can establish a bijection between the standard Frobenius seaweeds for the symplectic and odd orthogonal Lie algebras of the same rank. It would be very interesting to realise whether there is a deeper reason for such a bijection.
(3) For the even-dimensional orthogonal Lie algebras (type D_{n}), there is a similar inductive procedure that reduces the problem of computing the index of arbitrary seaweeds to parabolic subalgebras. However, ind $\mathfrak{b}=1$ for $D_{2 n+1}$ and Theorem 5.1 does not apply. Furthermore, although ind $\mathfrak{b}=0$ for $D_{2 n}$, the general formula for the index of parabolic subalgebras cannot be expressed nicely in terms of compositions. Of course, the reason is that the Dynkin diagram has a branching node!

References

[Dergachev and Kirillov 2000] V. Dergachev and A. Kirillov, "Index of Lie algebras of seaweed type", J. Lie Theory 10:2 (2000), 331-343. MR 1774864 Zbl 0980.17001
[Duflo and Yu 2015] M. Duflo and R. W. T. Yu, "On compositions associated to Frobenius parabolic and seaweed subalgebras of $\mathrm{sl}_{n}(\mathbb{k}) "$, J. Lie Theory 25:4 (2015), 1191-1213. MR 3350093 Zbl 06556746
[Duflo et al. 2012] M. Duflo, M. S. Khalgui, and P. Torasso, "Algèbres de Lie quasi-réductives", Transform. Groups 17:2 (2012), 417-470. MR 2921072 Zbl 1307.17012
[Joseph 1977] A. Joseph, "A preparation theorem for the prime spectrum of a semisimple Lie algebra", J. Algebra 48:2 (1977), 241-289. MR 0453829 Zbl 0405.17007
[Joseph 2006] A. Joseph, "On semi-invariants and index for biparabolic (seaweed) algebras, I", J. Algebra 305:1 (2006), 487-515. MR 2264140 Zbl 1183.17009
[Moreau and Yakimova 2012] A. Moreau and O. Yakimova, "Coadjoint orbits of reductive type of parabolic and seaweed Lie subalgebras", Int. Math. Res. Not. 2012:19 (2012), 4475-4519. MR 2981717 Zbl 1315.17006
[Panyushev 2001] D. I. Panyushev, "Inductive formulas for the index of seaweed Lie algebras", Mosc. Math. J. 1:2 (2001), 221-241, 303. MR 1878277 Zbl 0998.17008
[Panyushev 2005] D. I. Panyushev, "An extension of Raïs' theorem and seaweed subalgebras of simple Lie algebras", Ann. Inst. Fourier (Grenoble) 55:3 (2005), 693-715. MR 2149399 Zbl 1151.17305
[Tauvel and Yu 2004] P. Tauvel and R. W. T. Yu, "Sur l'indice de certaines algèbres de Lie", Ann. Inst. Fourier (Grenoble) 54:6 (2004), 1793-1810. MR 2134224 Zbl 1137.17300

Dmitri I. Panyushev
Dobrushin Mathematics Laboratory
Institute for Information Transmission Problems
Russian Academy of Sciences
Bolshoi Karetnyi per. 19
Moscow
127051
RUSSIA
panyushev@iitp.ru
Oksana S. Yakimova
Institut FÜr Mathematik
Friedrich-Schiller-Universität Jena
D-07737 JENA
Germany
oksana.yakimova@uni-jena.de

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)
msp.org/pjm
EDITORS
Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius@math.ucla.edu
Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@ math.ucla.edu
Robert Finn
Department of Mathematics
Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu
Sorin Popa
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
popa@ math.ucla.edu

Vyjayanthi Chari
Department of Mathematics University of California
Riverside, CA 92521-0135 chari@math.ucr.edu

Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555 liu@math.ucla.edu

Igor Pak
Department of Mathematics University of California
Los Angeles, CA 90095-1555
pak.pjm@gmail.com
Paul Yang
Department of Mathematics Princeton University Princeton NJ 08544-1000 yang@math.princeton.edu

Daryl Cooper
Department of Mathematics University of California Santa Barbara, CA 93106-3080 cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong jhlu@maths.hku.hk

Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV. OREGON STATE UNIV.

STANFORD UNIVERSITY
UNIV. OF BRITISH COLUMBIA UNIV. OF CALIFORNIA, BERKELEY UNIV. OF CALIFORNIA, DAVIS UNIV. OF CALIFORNIA, LOS ANGELES UNIV. OF CALIFORNIA, RIVERSIDE UNIV. OF CALIFORNIA, SAN DIEGO UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA
UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

[^1]The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY

E. mathematical sciences publishers

nonprofit scientific publishing
http://msp.org/
© 2016 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 285 No. $2 \quad$ December 2016
The $\operatorname{SU}(N)$ Casson-Lin invariants for links 257
Hans U. Boden and Eric Harper
The $\mathrm{SU}(2)$ Casson-Lin invariant of the Hopf link 283
Hans U. Boden and Christopher M. Herald
Commensurations and metric properties of Houghton's groups 289
José Burillo, Sean Cleary, Armando Martino and ClaAs E. RÖVER
Conformal holonomy equals ambient holonomy 303
Andreas Čap, A. Rod Gover, C. Robin Graham and Matthias Hammerl
Nonorientable Lagrangian cobordisms between Legendrian knots 319
Orsola Capovilla-Searle and Lisa Traynor
A strong multiplicity one theorem for SL_{2} 345
Jingsong Chai and Qing Zhang
The Yamabe problem on noncompact CR manifolds 375
Pak Tung Ho and Seongtag Kim
Isometry types of frame bundles 393
Wouter van Limbeek
Bundles of spectra and algebraic K-theory 427
John A. Lind
Hidden symmetries and commensurability of 2-bridge link complements 453
Christian Millichap and William Worden
On seaweed subalgebras and meander graphs in type C 485
Dmitri I. Panyushev and Oksana S. Yakimova
The genus filtration in the smooth concordance group 501
Shida Wang

[^0]: Panyushev gratefully acknowledges the hospitality of MPIM (Bonn) during the preparation of this article. Yakimova is partially supported by the DFG priority programme SPP 1388 (Darstellungstheorie) and by the Graduiertenkolleg GRK 1523 (Quanten- und Gravitationsfelder).
 MSC2010: primary 17B08; secondary 17B20.
 Keywords: index of Lie algebra, Frobenius Lie algebra.

[^1]: See inside back cover or msp.org/pjm for submission instructions.
 The subscription price for 2016 is US $\$ 440 /$ year for the electronic version, and $\$ 600 /$ year for print and electronic.
 Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

