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pendent of the oscillatory parameter. Numerical examples are provided, motivated
by problems in electronic engineering.
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1. General setting

In this paper we are concerned with second order ordinary differential equations
with highly oscillatory forcing terms. More explicitly, we are considering equations
of the form

y′′(t) −R(y(t))y′(t) + S(y(t)) = fω(t), y(0) = y0, y′(0) = y′0, (1.1)

for t ≥ 0, where the forcing term fω(t) can be expressed as a modulated Fourier
expansion (MFE), that is

fω(t) =

∞
∑

m=−∞

αm(t)eimωt, (1.2)

We will further assume that R(y) and S(y) are analytic, which ensures the
existence and uniqueness of the solution y(t). This setting includes some differential
equations with important applications, in particular the Van der Pol oscillator:

y′′(t)−µ
[

1 − y2(t)
]

y′(t)+ y(t) = fω(t) t ≥ 0, y(0) = y0, y′(0) = y′0, (1.3)

where fω(t) is of the form (1.2) and µ > 0 is given. The standard forced Van der

Pol oscillator is given by

y′′(t) − µ
[

1 − y2(t)
]

y′(t) + y(t) = A sinωt, y(0) = y0, y′(0) = y′0,
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which is clearly a special case of (1.3), with α−1 = −α1 = iA/2.
Another important example belonging to this type of differential equation is the

Duffing oscillator :

y′′(t) + ky′(t) + ay(t) + by(t)3 = fω(t), y(0) = y0, y′(0) = y′0, (1.4)

where d > 0 is the damping constant, b > 0 corresponds to the so called hard spring
case and b < 0 to the soft spring case.

Two particular examples of forcing terms are of importance in electronic engi-
neering:

fω(t) = c1 sinω1t, fω(t) = c1 sinω1t+ c2 sinω2t sinω1t, (1.5)

where ω1 ≫ ω2 ≫ 1 and c1, c2 6= 0 are constants. The first example represents
a simple sinusoidal signal (possibly highly oscillatory), whereas the second one
corresponds to an AM modulated signal (if c1 = 0 we have a double-sideband
suppressed carrier AM Modulation). The presence of two different frequencies is
motivated by the fact that RF communications circuits are marked by the presence
of signals with widely varying time scales. In particular, for modulated signals low-
frequency information (in this case given by ω2) is superimposed on a high-frequency
carrier (given by ω1), so that aerials of practical dimensions can be employed. In
addition, different signals can be modulated onto carriers of different frequencies,
thereby enabling a large number of radio transmitters to transmit at the same time.

In both the Van der Pol and Duffing equations, if the forcing term fω(t) has
period T > 0, the existence of a non-constant T -periodic solution to the forced
equation is known, see for instance Farkas (1994). These two equations have been
extensively studied, notably in the context of singular perturbation theory, where
the damping parameter is supposed to be small, see for instance Jordan & Smith
(2007) or the classical reference Bogoliubov & Mitropolsky (1961). Both equations
have been widely used as well in the modelling of electronic circuits, for instance in
Hilborn (2000), Pulch (2005) and Volos et al. (2007).

In this paper, we investigate the properties and computation of solutions of
this type of equations when the forcing term is highly oscillatory, that is, when
ω ≫ 1. Similarly to what happens in the case of linear systems with nonlinear
highly oscillatory forcing terms (Condon et al. 2009a, 2009b; Condon et al. 2009),
the oscillatory nature of the solution imposes a very small stepsize on standard
numerical methods for ODEs, thereby rendering them exceedingly expensive.

Our approach is a combination of asymptotic and numerical techniques: asymp-
totic expansion in inverse powers of the oscillatory parameter ω provides a conve-
nient and fast-converging representation of the solution (especially for large values
of ω), while numerical discretization of nonoscillatory differential equations gener-
ates expansion coefficients in an efficient way.

In Sections 2 and 3 we present the construction of our asymptotic-numerical
solvers, and the explicit derivation of the first few terms. As we shall see, the first few
terms in our asymptotic expansion of the solution of the forced ODE preserve the
bandwidth of the original input, which is important for efficiency issues. However, as
we progress to higher order terms we will find that the bandwidth of the solution of
the ODE increases, a phenomenon that we call blossoming. This is an unavoidable
consequence of the nonlinearity of the differential equation, but we are able to
quantify the increase in the number of frequencies in Section 4.
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Figure 1. On the left, the limit cycles of the unforced (solid line) and forced (dashed
line) van der Pol oscillators. On the right, the trajectories of the unforced (solid line) and
forced (dashed line) van der Pol oscillator. Here y(0) = 1, y′(0) = 1, µ = 1

2
, ω = 10 and

α−1 = 5i/2, α1 = −5i/2, otherwise αm = 0.

Before we commence with the theory, we display in Fig.1 the limit cycle and the
trajectories of the unforced (solid line) and forced (dashed line) oscillators. Looking
at the limit cycle it is clear that forcing induces oscillations. However, a closer look
at the trajectories indicates that these oscillations follow a pattern. While they
are hardly visible in y(t), the variable y′(t) exhibits significant oscillations. This
observation is critical to our analysis.

2. An asymptotic-numerical solver

We seek to represent y(t) as an asymptotic series in inverse powers of the oscillatory
parameter ω:

y(t) ∼

∞
∑

r=0

ψr(t)

ωr
, (2.1)

where each term ψr(t) has the form of a modulated Fourier series,

ψr(t) =
∞
∑

m=−∞

pr,m(t)eimωt, r ≥ 0. (2.2)

As already explained in Condon et al. (2009b), modulated Fourier expansions
provide a natural framework for solving differential equations with highly oscillatory
forcing terms. This type of expansions have already been used in the context of
Hamiltonian systems, see Hairer et al. (2006, Ch. XIII) and Cohen et al. (2003),
and also as basic ingredient in the Heterogenous Multiscale Method, see Sanz-Serna
(2009).

It is important to observe that we need to impose p0,m(t) ≡ 0 and p1,m(t) ≡ 0
for m 6= 0, since otherwise differentiation with respect to t would produce positive
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powers of ω, which are not present in the original equation (1.1). For this reason,
we make the following ansatz :

y(t) ∼ p0,0(t) +
1

ω
p1,0(t) +

∞
∑

r=2

1

ωr

∞
∑

m=−∞

pr,m(t)eimωt. (2.3)

Note also that in this setting the oscillations in y(t) have amplitude of order
1/ω2, whereas in y′(t) they are of order 1/ω, consistently with the behaviour that
can be observed in the previous example.

Following the theory presented in Condon et al. (2009), we proceed to expand
the different terms in the ODE and identify those multiplying equal powers of ω.
In order to do so, we first observe that term by term differentiation in (2.3) gives

y′(t) ∼ p′0,0(t) +
1

ω

[

p′1,0(t) + i

∞
∑

m=−∞

mp2,m(t)eimωt

]

(2.4)

+

∞
∑

r=2

1

ωr

∞
∑

m=−∞

[

p′r,m(t) + impr+1,m(t)
]

eimωt,

y′′(t) = p′′0,0(t) −

∞
∑

m=−∞

m2p2,m(t)eimωt (2.5)

+
1

ω

{

p′′1,0(t) +

∞
∑

m=−∞

[

2imp′2,m(t) −m2p3,m(t)
]

eimωt

}

+

∞
∑

r=2

1

ωr

∞
∑

m=−∞

[

p′′r,m(t) + 2imp′r+1,m(t) −m2pr+2,m(t)
]

eimωt.

Since we have assumed that R(y) and S(y) are analytic, we can expand in Taylor
series about the function p0,0(t):

R(y) ∼ R(p0,0) +

∞
∑

s=1

1

ωs

s
∑

n=1

R(n)(p0,0(t))

n!

∑

k∈In,s

χk1
· · ·χkn

,

where

χk(t) =

∞
∑

m=−∞

pk,m(t)eimωt (2.6)

and

In,s = {(l1, . . . , ln) ∈ N
n : |l| = s},

with the standard notation for multi-indices |l| = l1+ l2+ . . .+ ln. A similar formula
applies to S(y).

For simplicity of notation, in the sequel we suppress the dependence on t of the
different terms in the expansion.
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(a) Separation of orders of magnitude

We now attempt to separate the O(ω−r) term for r ≥ 0 in the differential
equation. Firstly, the contribution of y′′(t) is

∞
∑

m=−∞

(p′′r,m + 2imp′r+1,m −m2pr+2,m)eimωt, (2.7)

while the term S(y) yields

S(y) ∼ S(p0,0) +

r
∑

n=1

S(n)(p0,0)

n!

∑

k∈In,r

χk1
· · ·χkn

. (2.8)

The most complicated expression is given by −R(y)y′. Combining both expan-
sions, we need to extract the O(ω−r) term from the product

−



R(p0,0) +

∞
∑

s=1

1

ωs

s
∑

n=1

R(n)(p0,0)

n!

∑

k∈In,s

χk1
· · ·χkn





×

[

p′0,0 +
1

ω

(

p′1,0 + i

∞
∑

m=−∞

mp2,meimωt

)

+

∞
∑

q=2

1

ωq

∞
∑

m=−∞

(p′q,m + impq+1,m)eimωt

]

.

The outcome is

−R(p0,0)

∞
∑

m=−∞

(p′r,m + impr+1,m)eimωt

− p′0,0

r
∑

n=1

R(n)(p0,0)

n!

∑

k∈In,r

χk1
· · ·χkn

−

(

p′1,0 + i

∞
∑

m=−∞

mp2,meimωt

)

r−1
∑

n=1

R(n)(p0,0)

n!

∑

k∈In,r−1

χk1
· · ·χkn

−
r−2
∑

s=1

s
∑

n=1

R(n)(p0,0)

n!

∑

k∈In,s

χk1
· · ·χkn

∞
∑

m=−∞

(p′r−s,m + impr−s+1,m)eimωt. (2.9)

Note that the last term is nil for r = 2. Putting (2.7), (2.8) and (2.9) together,
we obtain the whole contribution of the O(ω−r) level.

(b) Separation of frequencies

Next we want to separate the different frequencies within each O(ω−r) term.
We first observe that

χk1
· · ·χkn

=

∞
∑

l1=−∞

· · ·

∞
∑

ln=−∞

pk1,l1 · · · pkn,lnei(l1+···+ln)ωt

=

∞
∑

m=−∞

∑

l∈Kn,m

pk1,l1 · · · pkn,lneimωt,
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6 M. Condon, A. Deaño and A. Iserles

where

Kn,m = {(l1, . . . , ln) ∈ Z
n : |l| = m}.

Observe that, unlike the multi-indices in In,s, in this case the components can
also be nonpositive integers.

Likewise,

χk1
· · ·χkn

∞
∑

j=−∞

(p′r−s,j + ijpr−s+1,j)e
ijωt

=

∞
∑

m=−∞

∞
∑

q=−∞

∑

l∈Kn,q

pk1,l1 · · · pkn,ln [p′r−s,m−q + i(m− q)pr−s+1,m−q]e
imωt

=
∞
∑

m=−∞

∑

l∈Kn+1,m

pk1,l1 · · · pkn,ln(p′r−s,ln+1
+ iln+1pr−s+1,ln+1

)eimωt

and

χk1
· · ·χkn

∞
∑

j=−∞

jp2,je
ijωt =

∞
∑

m=−∞

∑

l∈Kn+1,m

ln+1pk1,l1 · · · pkn,lnp2,ln+1
eimωt.

Combining everything, we obtain

∞
∑

m=−∞

(p′′r,m + 2imp′r+1,m −m2pr+2,m)eimωt

−R(p0,0)

∞
∑

m=−∞

(p′r,m + impr+1,m)eimωt

−

∞
∑

m=−∞

[

p′0,0Ar[R] + p′1,0Ar−1[R] + iBr[R] + Cr[R] +Dr[R] −Ar[S]
]

eimωt = 0,

where

Ar[f ] =

r
∑

n=1

f (n)(p0,0)

n!

∑

k∈In,r

∑

l∈Kn,m

pk1,l1 · · · pkn,ln ,

Br[f ] =

r−1
∑

n=1

f (n)(p0,0)

n!

∑

k∈In,r−1

∑

l∈Kn+1,m

ln+1pk1,l1 · · · pkn,lnp2,ln+1
,

Cr[f ] =

r−2
∑

s=1

s
∑

n=1

f (n)(p0,0)

n!

∑

k∈In,s

∑

l∈Kn+1,m

pk1,l1 · · · pkn,lnp
′
r−s,ln+1

,

Dr[f ] = i

r−2
∑

s=1

s
∑

n=1

f (n)(p0,0)

n!

∑

k∈In,s

∑

l∈Kn+1,m

ln+1pk1,l1 · · · pkn,lnpr−s+1,ln+1
,
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This can be somewhat simplified, because

iBr[R] +Dr[R]

= i
r−1
∑

n=1

R(n)(p0,0)

n!

r−1
∑

s=n

∑

k∈In,s

∑

l∈Kn+1,m

ln+1pk1,l1 · · · pkn,lnpr−s+1,ln+1

= i

r
∑

n=1

R(n)(p0,0)

n!

r
∑

s=n

∑

k∈In,s

∑

l∈Kn+1,m

ln+1pk1,l1 · · · pkn,lnpr−s+1,ln+1
,

the last line being justified by the fact that ln+1p1,ln+1
= 0. Moreover, since, for

j ∈ {0, 1} we have p′j,ln+1
= 0 (unless ln+1 = 0), we obtain

p′0,0Ar[R] + p′1,0Ar−1[R] + Cr[R]

=

r
∑

n=1

R(n)(p0,0)

n!

r
∑

s=n

∑

k∈In,s

∑

l∈Kn+1,m

pk1,l1 · · · pkn,lnp
′
r−s,ln+1

.

Therefore, separating frequencies, we have for every m ∈ Z

p′′r,m + 2imp′r+1,m −m2pr+2,m −R(p0,0)(p
′
r,m + impr+1,m) (2.10)

=

r
∑

n=1

R(n)(p0,0)

n!

r
∑

s=n

∑

k∈In,s

∑

l∈Kn+1,m

pk1,l1 · · · pkn,lnp
′
r−s,ln+1

+i

r
∑

n=1

R(n)(p0,0)

n!

r
∑

s=n

∑

k∈In,s

∑

l∈Kn+1,m

ln+1pk1,l1 · · · pkn,lnpr−s+1,ln+1

−

r
∑

n=1

S(n)(p0,0)

n!

∑

k∈In,r

∑

l∈Kn,m

pk1,l1 · · · pkn,ln .

Further simplification is possible, using the following results:

Proposition 2.1. For every r ≥ 1 and m ∈ Z it is true that

R(p0,0)p
′
r,m +

r
∑

n=1

R(n)(p0,0)

n!

r
∑

s=n

∑

k∈In,s

∑

l∈Kn+1,m

pk1,l1 · · · pkn,lnp
′
r−s,ln+1

=
d

dt





r
∑

n=1

R(n−1)(p0,0)

n!

∑

k∈In,r

∑

l∈Kn,m

pk1,l1 · · · pkn,ln



 . (2.11)

Proposition 2.2. For every r ≥ 1 and m ∈ Z it is true that

R(p0,0)mpr+1,m +

r
∑

n=1

R(n)(p0,0)

n!

r
∑

s=n

∑

k∈In,s

∑

l∈Kn+1,m

ln+1pk1,l1 · · · pkn,lnpr−s+1,ln+1

= m

r+1
∑

n=1

R(n−1)(p0,0)

n!

∑

k∈In,r+1

∑

l∈Kn,m

pk1,l1 · · · pkn,ln . (2.12)
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The proofs of both propositions are relegated to the Appendix.
If we substitute (2.11) and (2.12) into (2.10), the outcome is

p′′r,m + 2imp′r+1,m −m2pr+2,m (2.13)

=
d

dt





r
∑

n=1

R(n−1)(p0,0)

n!

∑

k∈In,r

∑

l∈Kn,m

pk1,l1 · · · pkn,ln





+ im

r+1
∑

n=1

R(n−1)(p0,0)

n!

∑

k∈In,r+1

∑

l∈Kn,m

pk1,l1 · · · pkn,ln

−

r
∑

n=1

S(n)(p0,0)

n!

∑

k∈In,r

∑

l∈Kn,m

pk1,l1 · · · pkn,ln .

An important observation is that in each step we obtain from (2.13) both an
ODE for pr,0(t), which is nonoscillatory since there is no dependence on ω, and
a recursion for pr+2,m(t), m 6= 0. More precisely, since pr,0(t) terms on the right
feature only for n = 1, we have

L[pr,0] =
d

dt





r
∑

n=2

R(n−1)(p0,0)

n!

∑

k∈In,r

∑

l∈Kn,0

pk1,l1 · · · pkn,ln



 (2.14)

−

r
∑

n=2

S(n)(p0,0)

n!

∑

k∈In,r

∑

l∈Kn,0

pk1,l1 · · · pkn,ln ,

where

L[y] = y′′ −
d

dt
[R(p0,0)y] + S′(p0,0)y

is the linearisation of the original ODE y′′ −R(y)y′ + S(y) = 0 about y = p0,0.
Likewise, for m 6= 0, we have a recursion for the pr,m(t) terms,

m2pr+2,m = p′′r,m + 2imp′r+1,m −
d

dt





r
∑

n=1

R(n−1)(p0,0)

n!

∑

k∈In,r

∑

l∈Kn,m

pk1,l1 · · · pkn,ln





− im

r+1
∑

n=1

R(n−1)(p0,0)

n!

∑

k∈In,r+1

∑

l∈Kn,m

pk1,l1 · · · pkn,ln

+

r
∑

n=1

S(n)(p0,0)

n!

∑

k∈In,r

∑

l∈Kn,m

pk1,l1 · · · pkn,ln . (2.15)

The initial conditions for the ODE (2.14) are determined by imposing

y(0) = p0,0(0) = y0, y′(0) = p′0,0(0) = y′0, (2.16)
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consequently the rest of the pr,m(t) coefficients, together with their derivatives,
should be equal to 0 when t = 0, that is

p1,0(0) = 0, p′1,0(0) = −i

∞
∑

m=−∞

mp2,m(0), (2.17)

pr,0(0) = −
∑

m6=0

pr,m(0), r ≥ 2, (2.18)

p′r,0(0) = −
∑

m6=0

p′r,m(0) − i

∞
∑

m=−∞

mpr+1,m(0), r ≥ 2.

In the next section we present the first few terms of the expansion, computed
using the differential equation and the recursion presented above.

3. Construction of the asymptotic expansion

(a) The zeroth term

The zeroth term, corresponding to r = 0, is readily available from the differential
equation:

p′′0,0 −R(p0,0)p
′
0,0 + S(p0,0) = α0(t),

together with the initial conditions (2.16). It is also possible to show that

p2,m(t) = −
αm(t)

m2
, m 6= 0, (3.1)

directly in terms of the modulated Fourier coefficients of the forcing term. We thus
deduce that

p1,0(0) = 0, p′1,0(0) = i
∑

m6=0

αm(0)

m
, (3.2)

in accordance with (2.17). These initial conditions will be used to solve the ODE
for p1,0(t), which is given by the analysis of the O(ω−1) terms.

(b) The first term

We now look at the O
(

ω−1
)

terms and separate scales. We obtain a differential
equation for p1,0(t):

L[p1,0] = p′′1,0 −
d

dt
[R(p0,0)p1,0] + S′(p0,0)p1,0 = 0,

and a recursion for the next level:

p3,m =
i

m3
[R(p0,0)αm − 2α′

m], m 6= 0. (3.3)

Moreover, it follows from (2.18) that

p2,0(0) = −
∑

m6=0

αm(0)

m2
, p′2,m(0) = −

∑

m6=0

1

m2
[α′

m(0) −R(y0)αm(0)]. (3.4)
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10 M. Condon, A. Deaño and A. Iserles

(c) The second term

When r = 2 we need the sets

I1,2 = {(2)}, I2,2 = {(1, 1)},

I1,3 = {(3)}, I2,3 = {(1, 2), (2, 1)}, I3,3 = {(1, 1, 1)}.

The differential equation for p2,0(t) reads

p′′2,0 −
d

dt
[R(p0,0)p2,0] + S′(p0,0)p2,0

=
1

2

d

dt



R′(p0,0)
∑

k∈I2,2

∑

l∈K2,0

pk1,l1pk2,l2



−
1

2
S′′(p0,0)

∑

k∈I2,2

∑

l∈K2,0

pk1,l1pk2,l2 .

However, note that because p1,m(t) ≡ 0 when m 6= 0, we have the simplification
∑

k∈I2,2

∑

l∈K2,0

pk1,l1pk2,l2 = p2
1,0(t),

therefore

p′′2,0 −
d

dt
[R(p0,0)p2,0] + S′(p0,0)p2,0 =

1

2

d

dt

[

R′(p0,0)p
2
1,0

]

−
1

2
S′′(p0,0)p

2
1,0.

The recursion for p4,m(t), m 6= 0, reads

m2p4,m = p′′2,m + 2imp′3,m −
d

dt

[

R(p0,0)p2,m +
1

2
R′(p0,0)

∞
∑

l=−∞

p1,lp1,m−l

]

− im

{

R(p0,0)p3,m + 1
2R

′(p0,0)

[

∞
∑

l=−∞

p1,lp2,m−l +

∞
∑

l=−∞

p2,lp1,m−l

]

+
1

6
R′′(p0,0)

∞
∑

l1=−∞

∞
∑

l2=−∞

p1,l1p1,l2p1,m−l1−l2

}

+ S′(p0,0)p2,m +
1

2
S′′(p0,0)

∞
∑

l=−∞

p1,lp1,m−l.

Again, it is possible to simplify this expression, noting that

∞
∑

l=−∞

p1,lp1,m−l =
∞
∑

l1=−∞

∞
∑

l2=−∞

p1,l1p1,l2p1,m−l1−l2 = 0

and
∞
∑

l=−∞

p1,lp2,m−l =
∞
∑

l=−∞

p2,lp1,m−l = p1,0p2,m.

Therefore we obtain

p4,m =
1

m2

{

p′′2,m + 2imp′3,m −
d

dt
[R(p0,0)p2,m]

− im[R(p0,0)p3,m +R′(p0,0)p1,0p2,m] + S′(p0,0)p2,m

}

. (3.5)
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(d) The third term

There is an important reason to consider the case r = 3 in detail, and it is
related to the blossoming phenomenon that we consider in the next section. With
the same simplifications that we applied before, the ODE for p3,0(t) reads

p′′3,0 −
d

dt
[R(p0,0)p3,0] + S′(p0,0)p3,0

=
d

dt

[

R′(p0,0)p1,0p2,0 +
1

6
R′′(p0,0)p

3
1,0

]

−
1

2
S′′(p0,0)p1,0p2,0 −

1

6
S′′′(p0,0)p

3
1,0.

The recursion for p5,m(t), m 6= 0, can be deduced from (2.15), setting r = 3.
Again using the fact that p1,m(t) ≡ 0 except when m = 0, the expressions can be
considerably simplified to yield

p5,m =
1

m2

{

p′′3,m + 2imp′4,m −
d

dt
[R(p0,0)p3,m +R′(p0,0)p1,0p2,m]

− im

[

R(p0,0)p4,m +R′(p0,0)

(

p1,0p3,m +
1

2

∞
∑

l=−∞

p2,lp2,m−l

)

+
1

2
R′′(p0,0)p

2
1,0p2,m

]

+ S(p0,0)p3,m + S′(p0,0)p1,0p2,m

}

It is clear that the process can be continued, at the price of increasingly more
complicated algebra. However, it is easy to derive more expansion terms using a
symbolic algebra package, and it is worth noticing that in most important examples
the functions R(y) and S(y) are quite elementary, and hence some terms in the
previous expressions are identically 0.

4. Band-limited input and blossoming

The stage r = 3 in the previous computations has special significance. We note that
the forcing terms in (1.5) share a common feature, namely that they are clearly band

limited, since the number of frequencies is finite. In the case of the AM modulated
signal, this follows from the elementary identities

sinω2t sinω1t =
1

2
cos(ω2 − ω1)t−

1

2
cos(ω2 + ω1)t

and

sinω2t cosω1t =
1

2
sin(ω2 + ω1)t+

1

2
sin(ω2 − ω1)t.

In this way, the spectrum of the forcing term will contain the carrier frequency
ω1 (unless we implement a suppressed carrier modulation) and the two sidebands
ω1 ± ω2, together with the negative frequencies −ω1 and −ω1 ± ω2.

If the original oscillator is band limited , i.e., there exists ̺ ∈ N such that αm = 0
for |m| ≥ ̺ + 1, then it is clear from our narrative that p2,m, p3,m, p4,m = 0 for
|m| ≥ ̺+ 1. In other words, the relevant modulated Fourier expansions stay band
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12 M. Condon, A. Deaño and A. Iserles

limited with the same original bandwidth ̺. However, things change with regard
to p5,m. The fact that p2,m is band limited implies that

∞
∑

l=−∞

p2,lp2,m−l =

̺+min{m,0}
∑

l=−̺+max{m,0}

p2,lp2,m−l.

This leads to non-empty range of summation when

max{m, 0} − min{m, 0} ≤ 2̺,

hence |m| ≤ 2̺. In other words, p5,m is band limited of bandwidth 2̺: we call this
phenomenon blossoming and note that it has obvious implications in the program-
ming of the method.

The bandwidth of linear systems is the same as of the highly oscillatory input
(i.e. there is no blossoming). It is known, however, that nonlinearity might interfere
with bandwidth, and our analysis quantifies this phenomenon for equations of type
(1.1). Of course, the bandwidth is likely to blossom further as r increases, indicating
that resonance shifts energy between frequencies. What is remarkable is that all this
occurs only once we hit p5,m. Consequently, as long as we do not go beyond r = 4,
disregarding error of O

(

ω−5
)

, we retain the original bandwidth of the forcing term.
If ω is large enough, this is likely to be sufficient for virtually all cases of interest.

(a) Blossoming

How fast does blossoming occur? Let us denote by θr the bandwidth of the
O(ω−r) term, therefore

θ0 = θ1 = 0, θ2 = θ3 = θ4 = ̺, θ5 = 2̺.

Before we state a general theorem, let us acquire basic intuition in manipulating
the relevant expressions. In order to compute the bandwidth θr+1, we need to
consider terms of the form

∑

k∈In,r−1

∑

l∈Kn,m

pk1,l1 · · · pkn,ln ,
∑

k∈In,r

∑

l∈Kn,m

pk1,l1 · · · pkn,ln ,

for n ∈ {1, . . . , r − 1} and n ∈ {1, . . . , r} respectively, but clearly it is enough to
consider only the terms in In,r, since we wish to maximise the bandwidth.

(i) r = 5

Now n ∈ {1, . . . , 5}. Because of symmetry, we might assume without loss of
generality that the entries of k ∈ In,r are ordered monotonically.

n = 1: The only possible term is p5,m, hence the maximal bandwidth that we can
attribute to this term is θ5 = 2̺;

n = 2: We have two monotone choices: k = (1, 4) results in p1,l1p4,l2 . But p1,l1 can
be nonzero only if |l1| ≤ θ1 = 0 and p4,l2 is nonzero only if |l2| ≤ θ4 = ̺.
Hence the bandwidth is at most ̺.

The second choice is k = (2, 3), whereby the term is p2,l1p3,l2 and the band-
width is maximised by θ2 + θ3 = 2̺;
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Highly oscillatory second order ODEs 13

n = 3: Now there are two monotone possibilities, (1, 1, 3) and (1, 2, 2), with maxi-
mal bandwidths of 2θ1 + θ3 = ̺ and θ1 + 2θ2 = 2̺ respectively;

n = 4: Just a single monotone choice, (1, 1, 1, 2), leading to 3θ1 + θ2 = ̺;

n = 5: Only one 5-tuple, (1, 1, 1, 1, 1), and the maximal bandwidth is 5θ1 = 0.

Therefore θ6 = 2̺, the maximum over all possible choices.

(ii) r = 6

We now move faster, considering only monotone sequences:

n = 1: k = (6), hence θ6 = 2̺;

n = 2: k = (1, 5) yields θ1+θ5 = 2̺, k = (2, 4) results in θ2+θ2 = 2̺ and k = (3, 3)
in 2θ3 = 2̺;

n = 3: k = (1, 1, 4) gives 2θ1 + θ4 = ̺, k = (1, 2, 3) results in θ1 + θ2 + θ3 = 2̺ and
k = (2, 2, 2) in 3θ2 = 3̺;

n = 4: k = (1, 1, 1, 3) yields 3θ1+θ3 = ̺ and k = (1, 1, 2, 2) results in 2θ1+2θ2 = 2̺;

n = 5: k = (1, 1, 1, 1, 2) and 4θ1 + θ2 = ̺;

n = 6: k = (1, 1, 1, 1, 1, 1) results in the bandwidth 6θ1 = 0.

Therefore, θ7 = 3̺. Note that the bandwidth is obtained from n = 3 and k =
(2, 2, 2): this observation is crucial in the proof of the theorem.

Now that we have see a number of examples, we can embark on the proof of the
general theorem underlying blossoming:

Theorem 4.1. It is true that

θr =

⌊

r − 1

2

⌋

̺, r ≥ 3. (4.1)

Proof. The theorem is certainly true for r ≤ 5. We continue by induction on r.
Thus, we assume that it is true up to r ≥ 2 and wish to prove it for r + 1.

Given r ≥ 2, the recurrence relation for pr+1,m is a linear combination of terms
of the form

∑

k∈In,r

∑

l∈Kn,m

pk1,l1 · · · pkn,ln

and their derivatives – as the derivative does not change the bandwidth, we can
disregard differentiation in this context. The bandwidth is provided by the largest
m ∈ N such that

̟k,l = pk1,l1 · · · pkn,ln 6= 0,

where k1, . . . , kn ∈ N, |k| = r, l1, . . . , ln ∈ Z and |l| = m. Each kj can contribute
at most the bandwidth θj , hence altogether the bandwidth of ̟k,l is at most

n
∑

j=1

θkj
,
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14 M. Condon, A. Deaño and A. Iserles

therefore

θr+1 ≤ max
k∈In,r

1≤n≤r

n
∑

j=1

θkj
. (4.2)

First we observe that
θr+1 ≥ θr, r ≥ 2.

We deduce this at once by considering n = 1, whence ̟r,m = pr,m. Next, we prove
that

θr+1 ≥
⌊r

2

⌋

̺.

If r = 2r̃ then let us choose n = r̃ and k = (2, 2, . . . , 2) ∈ N
r̃. Since θ2 = ̺,

we deduce that the bandwidth of ̟k,l is maximised by r̺̃, therefore θ2r̃+1 ≥ r̺̃.
Likewise, if r = 2r̃ + 1 then we choose n = r̃ + 1 and k = (1, 2, 2, . . . , 2). Since
θ1 = 0 and θ2 = ̺, it follows again that θ2r̃+2 ≥ r̺̃.

In order to prove the reverse inequality

θr+1 ≤
⌊r

2

⌋

̺,

let k ∈ In,r, n ∈ {1, 2, . . . , r}. We may assume without loss of generality that none
of the kjs equals one. The reason is as follows. Suppose that s of the kjs are one and

denote by k̃ ∈ N
n−s the vector which we obtain after excising these terms. Since

θ1 = 0, the maximal bandwidths of ̟k,l is the same as the maximal bandwidth

of ̟
k̃,̃l for some l̃ ∈ Z

n−s. But, since k̃1 + · · · + k̃n−s + s = r, the term ̟
k̃,̃l has

already featured while forming pr−s+1,m for some m ∈ Z. Now, we already know
that θr+1 ≥ θr ≥ · · · ≥ θr−s, hence this term can be disregarded and we can assume
without loss of generality that kj 6= 1, j = 1, 2, . . . , n.

We write

{k1, . . . , kn} = {β1, . . . , βn1
} ∪ {γ1, . . . , γn2

} ∪ {δ1, . . . , δn3
},

where β1 = . . . = βn1
= 2, γ1, . . . , γn2

are even, γj = 2γ̃j , and δ1, . . . , δn3
are odd,

δj = 2δ̃j + 1, with γ̃j ≥ 2, δ̃j > 1. We thus have

n = n1 + n2 + n3,

r =

n
∑

j=1

kj = 2n1 + 2

n2
∑

j=1

γ̃j + 2

n3
∑

j=1

δ̃j + n3.

(Thus, n3 is necessarily of the same parity as r.) Moreover, by induction,

1

̺

n
∑

j=1

θkj
= n1

θ2
̺

+

n2
∑

j=1

θ2γ̃j

̺
+

n3
∑

j=1

θ2δ̃j+1

̺
= n1 +

n2
∑

j=1

(γ̃j − 1) +

n3
∑

j=1

δ̃j

Now,
n2
∑

j=1

γ̃j +

n3
∑

j=1

δ̃j =
r − n3

2
− n1

and we deduce that
1

̺

n
∑

j=1

θkj
=
r − n3

2
− n2.
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Highly oscillatory second order ODEs 15

Now we need to maximise the quantity on the right hand side for k ∈ In,r

because of (4.2). Recalling that r and n3 must have the same parity, we distinguish
between even and odd r. If r = 2r̃ then n3 = 2ñ3, therefore

1

̺

n
∑

j=1

θkj
= r̃ − ñ3 − n2 ≤ r̃ =

⌊r

2

⌋

.

Likewise, for r = 2r̃ + 1 we have n3 = 2ñ3 + 1 and again

1

̺

n
∑

j=1

θkj
= r̃ − ñ3 − n2 ≤ r̃ =

⌊r

2

⌋

.

Taking all this together completes the proof of the theorem.

The implications for programming the method are clear, since it is possible to
determine in advance how many terms pr,m(t) we need to compute for any given
r ≥ 2.

5. Examples

We consider first the Van der Pol oscillator. In this case we have R(y) = µ(1 − y2)
and S(y) = y, and it is not difficult to work out the ODEs for the first few pr,0(t)
terms. The base equation is

p′′0,0 − µ(1 − p2
0,0)p

′
0,0 + p0,0 = α0, p0,0(0) = y0, p′0,0(0) = y′0.

Using the same notation as before, we have for r ≥ 1

L[pr,0] = p′′r,0 −
d

dt
[R(p0,0)pr,0] + S′(p0,0)pr,0

= p′′r,0 + 2µp0,0p
′
0,0pr,0 + µ(1 − p2

0,0)p
′
r,0 + pr,0,

and

L[p1,0] = 0,

L[p2,0] = −µ
[

p′0,0p
2
1,0 + 2p0,0p1,0p

′
1,0

]

,

L[p3,0] = −2µ
[

p′0,0p1,0p2,0 + p0,0p
′
1,0p2,0 + p0,0p1,0p

′
2,0

]

− µp2
1,0p

′
1,0.

We take the initial values y(0) = 0 and y′(0) = 1, and the forcing term fω(t) =
2 cos t sinωt. Thus we have α1 = −i cos t, α−1 = i cos t and αm ≡ 0 for m 6= ±1,
and the initial values for the system of ODEs can be obtained from (3.2), (3.4) and
(2.18),

p1,0(0) = 0, p′1,0(0) = 2,

p2,0(0) = 0, p′2,0(0) = 0,

p3,0(0) = 0, p′3,0(0) = 4.

Moreover, from (3.1) we have

p2,1(t) = −α1(t) = i cos t, p2,−1(t) = −α−1(t) = −i cos t,
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Figure 2. Errors in the approximation of the solution y(t) of the forced Van der Pol
oscillator with forcing term fω(t) = 2 cos t sin ωt and ω = 100.

consequently

ψ2(t) = p2,0(t) + p2,1(t)e
iωt + p2,−1(t)e

−iωt = p2,0(t) − 2 cos t sinωt

Also, from (3.3),

p3,1(t) = µ(1 − p2
0,0(t)) cos t+ 2 sin t = p3,−1(t),

so
ψ3(t) = p3,0(t) + 2

[

µ(1 − p2
0,0(t)) cos t+ 2 sin t

]

cosωt.

We will use all this information to assemble the numerical solver up to order 3.
In Figures 2 and 3 we illustrate the errors in the approximation of the solution y(t)
and its derivative y′(t), using different number of terms in the asymptotic expansion
with ω = 100. We compare the results with the solution of the original differential
equation in Matlab, using relative and absolute tolerance equal to 10−12. The
notation that has been used for the errors is

es(t) =

∣

∣

∣

∣

∣

y(t) −

s
∑

r=0

ψr(t)

ωr

∣

∣

∣

∣

∣

, s ≥ 0.

The next example illustrates the method applied to the Duffing equation with
damping

y′′(t) + ky′(t) + ay(t) + by(t)3 = fω(t), y(0) = 1, y′(0) = 0.

We take k = 1/2, a = 1, b = −1/3, and a forcing term which is an AM modulated
signal:

fω(t) = c1 sinω1t+ c2 sinω1t sinω2t,
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Figure 3. Errors in the approximation of the derivative of the solution y′(t) of the forced
Van der Pol oscillator with forcing term fω(t) = 2 cos t sin ωt and ω = 100.

with c1 = 40, c2 = 20 and frequencies ω1 = 1000 and ω2 = 100. In order to construct
the asymptotic expansion in a modulated Fourier series, we define ω := gcd(ω1, ω2),
that is the greatest common divisor of the two frequencies. Additionally, let m1 =
ω1/ω and m2 = ω2/ω.

In this case the base equation is

p′′0,0 + kp′0,0 + ap0,0 + bp3
0,0 = α0,

and for r ≥ 1:

L[pr,0] = p′′r,0 −
d

dt
[R(p0,0)pr,0] + S′(p0,0)pr,0 = p′′r,0 + kp′r,0 + (a+ 3bp2

0,0)pr,0.

Moreover

L[p1,0] = 0

L[p2,0] = −3bp0,0p
2
1,0

L[p3,0] = −6bp0,0p1,0p2,0 − bp3
1,0.

We can easily work out the initial values

p1,0(0) = 0, p′1,0(0) =
c1
m1

,

p2,0(0) =
c2
2

[

1

(m1 −m2)2
−

1

(m1 +m2)2

]

, p′2,0(0) = −kp2,0(0),
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as well as the other nonzero terms

p2,m1
=

ic1
2m2

1

= −p2,−m1
,

p2,m1+m2
=

c2
4(m1 +m2)2

= p2,−m1−m2
,

p2,m1−m2
= −

c2
4(m1 −m2)2

= p2,−m1+m2
,

so

ψ2(t) = p2,0(t) −
c1
m2

1

sinm1ωt

+
c2

2(m1 +m2)2
cos(m1 +m2)ωt−

c2
2(m1 −m2)2

cos(m1 −m2)ωt.

Similarly,

p3,0(0) =
kc1
m3

1

, p′3,0(0) =
c1
m3

1

[

−k2 + a+ 3by2
0

]

,

and

p3,m1
=

−kc1
2m3

1

= p3,−m1
,

p3,m1+m2
=

ikc2
4(m1 +m2)3

= −p3,−m1−m2
,

p3,m1−m2
= −

ikc2
4(m1 −m2)3

= −p3,−m1+m2
,

therefore

ψ3(t) = p3,0(t) −
kc1
m3

1

cosm1ωt

−
kc2

2(m1 +m2)3
sin(m1 +m2)ωt+

kc2
2(m1 −m2)3

sin(m1 −m2)ωt.

Figures 4 and 5 display the errors in the approximation of the solution y(t) and
its derivative y′(t), using different number of terms in the asymptotic expansion in
this example.

6. Conclusions and further research

We have presented a combined asymptotic-numerical method to solve efficiently
second order differential equations with highly oscillatory forcing terms. The ap-
proach is based on using asymptotic expansions in inverse powers of the oscillatory
parameter ω together with modulated Fourier expansions. With the aid of a com-
puter algebra package such as Maple, it is possible to compute all the terms in
this type of expansions to high accuracy.

A key feature of this approach is that, unlike classical numerical algorithms for
ODEs, the performance of this method improves in the presence of high oscillation,
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Figure 4. Errors in the approximation of the solution y(t) of the forced Duffing oscillator
with forcing term fω(t) = c1 sin ω1t + c2 sin ω1t sin ω2t.
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Figure 5. Errors in the approximation of the derivative of the solution y′(t) of the forced
Duffing oscillator with forcing term fω(t) = c1 sin ω1t + c2 sin ω1t sin ω2t.

that is, when ω is large. This is a consequence of the asymptotic methodology that
we have used, instead of the classical algorithms based on Taylor expansion of the
solution.

We have presented numerical examples based on two equations which are very
relevant in applications, the forced Van der Pol and Duffing oscillators. This is
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nothing but one possible application of this type of asymptotic-numerical solvers.
See Condon et al. (2009b) for its use in solving systems of ODEs with a nonoscil-
latory linear part plus a highly oscillatory forcing term. Other scenarios that are
currently being analysed are ODEs where the coefficients depend on ω (a situation
which includes important examples such as the inverted pendulum) and differential-
algebraic equations (DAEs), which are highly relevant in the modelling of electronic
circuits.
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Appendix A. Two propositions in subsection 2.2

In this appendix we present the proofs of the two propositions that we used before.

Proposition 2.1. For every r ≥ 1 and m ∈ Z it is true that

R(p0,0)p
′
r,m +

r
∑

n=1

R(n)(p0,0)

n!

r
∑

s=n

∑

k∈In,s

∑

l∈Kn+1,m

pk1,l1 · · · pkn,lnp
′
r−s,ln+1

=
d

dt





r
∑

n=1

R(n−1)(p0,0)

n!

∑

k∈In,r

∑

l∈Kn,m

pk1,l1 · · · pkn,ln



 .

Proof. Direct differentiation yields

d

dt





r
∑

n=1

R(n−1)(p0,0)

n!

∑

k∈In,r

∑

l∈Kn,m

pk1,l1 · · · pkn,ln





=

r
∑

k=1

R(n)(p0,0)

n!

∑

k∈In,r

∑

l∈Kn,m

pk1,l1 · · · pkn,lnp
′
0,0

+

r
∑

n=1

R(n−1)(p0,0)

n!

∑

k∈In,r

∑

l∈Kn,m

[p′k1,l1
pk2,l2 · · · pkn,ln + pk1,l1p

′
k2,l2

pk3,l3 · · · pkn,ln

+ · · · + pk1,l1 · · · pkn−1,ln−1
p′kn,ln

].

However, because of symmetry,

∑

k∈In,r

∑

l∈Kn,m

pk1,l1 · · · pkq−1,lq−1
p′kq,lq

pkq+1,lq+1
· · · pkn,ln

=
∑

k∈In,r

∑

l∈Kn,m

pk1,l1 · · · pkn−1,ln−1
p′kn,ln

,
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therefore

d

dt





r
∑

n=1

R(n−1)(p0,0)

n!

∑

k∈In,r

∑

l∈Kn,m

pk1,l1 · · · pkn,ln





=

r
∑

n=1

R(n)(p0,0)

n!

∑

k∈In,r

∑

l∈Kn,m

pk1,l1 · · · pkn,lnp
′
0,0

+

r
∑

n=1

R(n−1)(p0,0)

(n− 1)!

∑

k∈In,r

∑

l∈Kn,m

pk1,l1 · · · pkn−1,ln−1
p′kn,ln

=

r
∑

n=1

R(n)(p0,0)

n!

∑

k∈In,r

∑

l∈Kn,m

pk1,l1 · · · pkn,lnp
′
0,0

+ R(p0,0)p
′
r,m +

r−1
∑

n=1

R(n)(p0,0)

n!

∑

k∈In+1,r

∑

l∈Kn+1,m

pk1,l1 · · · pkn,lnp
′
kn+1,ln+1

.

In the last summation we let s = k1 + · · · + kn. Since s+ kn+1 = r and kj ≥ 1, we
deduce that s ∈ {n, n+ 1, . . . , r − 1}. Moreover, kn+1 = r − s and

d

dt





r
∑

n=1

R(n−1)(p0,0)

n!

∑

k∈In,r

∑

l∈Kn,m

pk1,l1 · · · pkn,ln





=

r
∑

n=1

R(n)(p0,0)

n!

∑

k∈In,r

∑

l∈Kn,m

pk1,l1 · · · pkn,lnp
′
0,0

+R(p0,0)p
′
r,m +

r−1
∑

n=1

R(n)(p0,0)

n!

r−1
∑

s=n

∑

k∈In,s

∑

l∈Kn+1,m

pk1,l1 · · · pkn,lnp
′
r−s,ln+1

= R(p0,0)p
′
r,m +

r
∑

n=1

R(n)(p0,0)

n!

r
∑

s=n

∑

k∈In,s

∑

l∈Kn+1,m

pk1,l1 · · · pkn,lnp
′
r−s,ln+1

.

The last step follows because, letting n ∈ {1, 2, . . . , r} and s = r and noting that
p0,ln+1

6= 0 only for ln+1 = 0, we recover the first sum.
The proposition follows.

Proposition 2.2. For every r ≥ 1 and m ∈ Z it is true that

R(p0,0)mpr+1,m +
r
∑

n=1

R(n)(p0,0)

n!

r
∑

s=n

∑

k∈In,s

∑

l∈Kn+1,m

ln+1pk1,l1 · · · pkn,lnpr−s+1,ln+1

= m

r+1
∑

n=1

R(n−1)(p0,0)

n!

∑

k∈In,r+1

∑

l∈Kn,m

pk1,l1 · · · pkn,ln .
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Proof. Similar to the proof of the previous proposition. We let k ∈ In,r+1 and
|k| = s, hence kn+1 = r − s+ 1, while s ∈ {n, n+ 1, . . . , r}. In other words,

r
∑

s=n

∑

k∈In,s

∑

l∈Kn+1,m

ln+1pk1,l1 · · · pkn,lnpr−s+1,ln+1

=
∑

k∈In+1,r+1

∑

l∈Kn+1,m

ln+1pk1,l1 · · · pkn+1,ln+1
.

Therefore, shifting the index n,

R(p0,0)mpr+1,m +

r
∑

n=1

R(n)(p0,0)

n!

r
∑

s=n

∑

k∈In,s

∑

l∈Kn+1,m

ln+1pk1,l1 · · · pkn,lnpr−s+1,ln+1

= R(p0,0)mpr+1,m +

r+1
∑

n=2

R(n−1)(p0,0)

(n− 1)!

∑

k∈In,r+1

∑

l∈Kn,m

lnpk1,l1 · · · pkn,ln .

Finally, for n = 1 we have I1,r+1 = {(r + 1)}, K1,m = {(m)}, therefore

R(p0,0)mpr+1,m +

r
∑

n=1

R(n)(p0,0)

n!

r
∑

s=n

∑

k∈In,s

∑

l∈Kn+1,m

ln+1pk1,l1 · · · pkn,lnpr−s+1,ln+1

=

r+1
∑

n=1

R(n−1)(p0,0)

(n− 1)!

∑

k∈In,r+1

∑

l∈Kn,m

lnpk1,l1 · · · pkn,ln .

Using the underlying symmetry, it is true for any q ∈ {1, 2, . . . , n} that

∑

k∈In,r+1

∑

l∈Kn,m

lqpk1,l1 · · · pkn,ln =
∑

k∈In,r+1

∑

l∈Kn,m

lnpk1,l1 · · · pkn,ln

=
1

n

∑

k∈In,r+1

∑

l∈Kn,m

(l1 + · · · + ln)pk1,l1 · · · pkn,ln =
m

n

∑

k∈In,r+1

∑

l∈Kn,m

pk1,l1 · · · pkn,ln .

The lemma follows by straightforward substitution.
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