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1.  Introduction

This paper is concerned with the existence of solutions for the initial value problem for the

second order functional differential equations with impulsive effects as

� � ���� � � � � 	 � 
�� �  � � � � � ��� ��� �������
� �, , , 

�� � � � ���� �� � � ��� ��� �������� �
�
�� ,  

�� � � � ���� ��� � � ��� ��� �����
�� �

��� � ��   

���� � ���� � � 
 � �� � � ��� � � ������    , � �

where  is a given function, , �� 	 � ��
 � �� �� ��  � �� ! � ! "� � � � ! � ! �� �

! � ! � � � � � � � ������ �� � �� ��� ��� � � �
�

� �#� � � �,   are bounded, ,

� �� � � ��� � � ��� � � � � � �� � � � �� � ��� � � �� � � �� ���� ���
# # # #
� � � �

� � � � � � � �
� � �� �,  and ,  and 

represent the left and right limits of  and  respectively at , and  is a real���� � ��� � � � ��
�

Banach space with norm .� $ �
 For any continuous function  defined on the interval  and any , we denote by� 
 � �� �  � � 	
� ��
 � �� �� ��� the element of  defined by
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� � � � ��� # �� � 
 � �� ��� � � �  

Here  represents the history of the state from time , up to the present time .� � $ � � � � ��

 Impulsive differential equations have become more important in recent years in some

mathematical models of real world phenomena, especially in the biological or medical domain

(see the monographs of Bainov and Simeonov [2], Lakshmikantham, Bainov, and Simeonov

[9], and Samoilenko and Perestyuk [12], and the papers of Agur, Cojocaru, Mazur, Anderson

and Danon [1], Goldbeter, Li and Dupont [5]).

 Recently an extension to functional differential equations with impulsive effects has been

done by Yujun in [16] by using the coincidence degree theory.  For other results on functional

differential equations, we refer the interested reader to the monograph of Erbe, Qingai and

Zhang [4], Hale [6], Henderson [7], and the survey paper of Ntouyas [11].

 The fundamental tools used in the existence proofs of all the above mentioned works are

essentially fixed point arguments, nonlinear alternative, topological transversality [3], degree

theory [10] or the monotone method combined with upper and lower solutions [8].

 This paper will be divided into three sections.  In Section 2, we will recall briefly some

basic definitions and preliminary facts which will be used throughout Section 3.  In Section 3

we shall establish an existence theorem for (1.1)-(1.4).  Our approach is based on a fixed point

theorem due to Schaefer [13] (see also, Smart [14]).

2.  Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used

throughout this paper.

  is the Banach space of all continuous functions from  into  with��
 � �� �� �� 
 � �� � �
the norm

% % � & � � � � � � � ' ' �(�� � � �sup

By  we denote the Banach space of all continuous functions from  into  with the��	 ��� 	 �
norm

% � % � � & � ���� � � � � 	 (	 sup .

A measurable function  is Bochner integrable if and only if  is Lebesgue�� 	  � � � �
integrable.  (For properties of the Bochner integral, see for instance, Yosida [15]).

  denotes the Banach space of functions  which are Bochner integrable) �	 ��� �� 	  ��

normed by

% � % � � ���� � *� � � ) �	 ����)

�

�

�
� �      for all 

 In order to define the solution of (1.1)-(1.4), we shall consider the following space

�� ���
� �� &�� 
 � �� �   �� � � + �	 ��� � � ��� ��, 

and there exist

��� �� ��� �� � �� �� � �� � � � ��� �� ��� � � ��� ��� � � � �
� � �

# #
� � �,   with 

� �� � � � �� � ���� � ��� ,� � 
 � �� �(� � �
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which is a Banach space with the norm

% � % � & % � % � � ��� ��(��� ���
�

max ,  � + �	 �

where  are the restriction of  and  respectively on , , and� � � � � 	 � �� � �  � � ��� ��� � � �#�
� �
�

+ �	 � � � 	  � ���� �
� � � � denotes the Sobolev class of functions  such that  is absolutely

continuous and � � ) �	 ������ �
� �

 We shall also consider the set

� � &�� 
 � �� �   �� � � ��	 ���� � � ��� ��� �

and there exist

��� �� ��� �� � � ��� �� ��� � � ��� � ���� � ��� ,� � 
 � �� �(� �
� �

#
� � with  and ,   �

which is a Banach space with the norm

% � % � & % � % � � � ��� ��(�� max � 	

   A map  is said to be an -  ifDefinition 2.1: �� 	 � ��
 � �� �� ��  � )� Carathéodory

   is measurable for each ;�-� � . ���� /� / � ��
 � �� �� ��
   is continuous for almost all ;�--� / . ���� /� � � 	
  for each , there exists  such that�---� � 0 � 1 � ) �	 � �� #

� �

� ���� /� � ' 1 ��� % / % ' � � � 	 ��  for all  and for almost all 

 So let us start by defining what we mean by a solution of the problem (1.1)-(1.4).

   A function  is said to be a solution of (1.1)-(1.4) if  satisfiesDefinition 2.2: � � 2 �� ��

the equation  a.e. on  and the conditions� ��� � ���� � � 	 � &� �� � � (��
� � �

� �� � � � ���� �� � � � � ���� �� � � ��� �� � ��� � �
�

��� � ��� � �
� � � �
� �� � and ,  and .

 Our main result is based on the following.

   [13]  Lemma 2.3: � 
�� �3� 4See also , p. .  Let  be a convex subset of a normed linear

space  and assume .  Let  be a completely continuous operator, and let5 � � 4 6� 4  4

� � ��6� � &� � 4� � � 6��� � ! ! �(� for some 

Then either  is unbounded or  has a fixed point.��6� 6
 We need the following auxiliary result.

 Lemma 2.4:  If  then� � 2� ��

���� � ���� # �� ��� # �� � 7�� �7�*7� ��
�

�

�   
�����

# &
��� � � ��� � # �� � � �
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�!� !�

# #
� �� � �

� �

�

 for 

 Proof:  Recall that .  We first show that� � � ! � ! � ! � ! � � �� � � �#�
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Suppose .  Then� ! � ' �� �#�

��� � � ���� � � �7�*7�

�

�

��     �

��� � � ��� � � � �7�*7�
#
�

�

�

��      �
�

� �  

��� � � ��� � � � �7�*7�
#
���

�

�

��     
     

�

���

���� � ��� � � � �7�*7�#
�

�

�

��    
�

Adding these inequalities together, we get

���� � ���� � 
��� � � ��� � � � �7�*7�� ��

-��

#
- -

�

�

�
    

Hence

���� � ���� # � �7�*7 # 
��� � � ��� ��� �    �

�

�

�!� !�

#
� �

�

Similarly, we have

� ��� � � ��� # � �7� # 
� �� � � � �� �� ������ � �� � �
�

� �!� !�

#
� �� �    

�

Substituting (2.3) into (2.2), it is easy to get (2.1). �

3.  Main Result

We are now in a position to state and prove our existence result for the problem (1.1)-(1.4).

For the study of this problem, we first list the following hypotheses:

 (H1)  is an  Caratheodory map;´�� 	 � ��
 � �� �� ��  � )�

 (H2) there exist constants ,  such that , 8 * � � ��� � ' 8 � � ��� � ' *
�

� � � � � �

� � ��� �� � � � for each ;

� � ���� � � � ' 9��� � % � % � � � 	 � � ��
 � �� � � ��H3)  for almost all  and all ,� ��

where  and  is continuous and increasing with9 � ) �	 � � �  ���"��
# #� � �
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� �        � "

� 8

*
� ��� � 7�9�7�*7 ! :	

� 	

where 8 � % % # � � � � # 
8 # �� � � �* :� � � � �
�
���

�
(H4) for each bounded  and for each  the set; < ��
 � �� � � �� � � 	

� �� ����� # �� # �� � 7���7� � �*7 # � ���� �� # �� � � �� ���� ��� � � ;
�

� 7 � � � � �

�

� �!� !�

    

�

  is relatively compact in .�
 Theorem 3.1:  Assume that hypotheses -  hold.  Then the IVP -  has at�=�� �=�� ����� �����
least one solution on .
 � �� � 
 Proof:  Transform the problem into a fixed point problem.  Consider the operator

6�  � � defined by

�6����� �

���� � � 
 � �� �

��� # �� # �� � 7���7� � �*7

# 
� ���� �� # �� � � �� ���� ��� � � 	 �
�

�������
��
�

� � 7
�

�

�!� !�
� � � � �            

�

   Clearly from Lemma 2.4 the fixed points of  are solutions to (1.1)-(1.4).Remark 3.2: 6
 We shall show that  satisfies the assumptions of Lemma 2.3.  The proof will be given in6
several steps.

   maps bounded sets into bounded sets in .Step 1: 6 �

 Indeed, it is enough to show that there exists a positive constant  such that for each>
� � ; � &� � � % � % ' ?( % � % � � & � ���� � � � � ' � ' �(? " "� , sup  one has

% 6� % ' >" .

 Let , then for each  we have� � ; � � 	?

�6����� � ��� # �� # �� � 7���7� � �*7 # 
� ���� �� # �� � � �� ���� ���
�

� � 7 � � � � �

�

� �!� !�

� �    

�

By (H1) we have for each ,� � 	

� �6����� � ' % % # � � � � # �� � 7� � ��7� � � � *7� � 7

�

�

�    

# � � ���� �� � # � �� � � � � � � ���� �� �
��

�!� !�
� � � � �

�

' % % # � � � � # �� � 7� � 1 �7� � *7 # 
 & � � � � � � � � � % � % ' ?(� � ? � "

�

�

�

���

� �    

sup

# �� � � � & � � � � � � � � � % � % ' ?(�
�

� � "sup

Then for each  we have@ � 6�; �?

% @ % ' % % # � % � � # �� � 7� � 1 �7� � *7" � ?

�

�

� �    
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# 
 & � � � � � � � � � % � % ' ?( # �� � � � & � � � � � � � � � % � % ' ?( � >�
���

���
� " � � "su sup

    maps bounded sets into equicontinuous sets of .Step 2: 6 �

 Let ,  and  be a bounded set of .  Let	 	 	 � �� � � � ? "� � 	 ! � ; � &� � � % � % ' ?(
� � ;?.  Then

� �6��� � � �6��� � � ' � � � � � � # � 1 �7� � *7	 	 	 	� � � � � ?�    
 

	

	

�

�

# � � � � 1 �7� � *7 # � � 7 � � 1 �7� � *7� �         	 	

	

� �

��
� � ? � ?	 	 	

# � � ���� �� � # � � � � � � ���� �� �
�

             � �
�'� ' � �!� ! �

� � � � � �
� � � � � �	 	 	 	

	

# � � � � � ���� �� � �
��

�!� !
� � � �

� �	

	 	

 As  the right-hand side of the above inequality tends to zero.	 	� � 
 The equicontinuity for the case  and  is obvious.	 	 	 	� � � �! ' � ' � '
    is continuous.Step 3: 6�  � �

 Let  be a sequence such that  in .  Then there is an integer  such that&� ( �  � ?A A �

% � % ' ? A � % � % ' ? � � ; � � ;A " " A � ? for all  and , so  and .


 We have then by the dominated convergence theorem

% 6� � 6� % ' �� � 7� � ��7� � � � ��7� � � � *7
� � 	

A " A7 7

�

�

sup  	�    

# & � � �� �� �� � � ���� �� ��
�!� !�

� A � � �
�


# � � � � � � � �� �� �� � � ���� �� �   ��
� �

� � A � � �

Thus  is continuous.6
 As a consequence of Step 1, Step 2, Step 3 and (H4) together with the Ascoli-Arzela

theorem we can conclude that  is completely continuous.6�  � �

   Now it remains to show that the setStep 4:

� � � ��6�� � &� � � � � 6��� � ! ! �(, for some 

is bounded.

 Let .  Then  for some .  Thus for each � � �6� � � 6��� � ! ! � � � 	� � �

���� � ��� # �� # �� � 7���7� � �*7 # 
� ���� �� # �� � � �� ���� ���
�

�� � � �� 7 � � � � �

�

� �!� !�

� �    
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This implies by (H2)-(H3) that for each  we have� � 	

� ���� � ' % % # � � � � # �� � 7�9�7� � % � % �*7 # 
8 # �� � � �* �� �� 7 � � �

�

�

�

���

� �    

We consider the function  defined by�

���� � & � ��7� � � � � ' 7 ' �( � ' � ' � �sup ,  

Let  be such that .  If , by the previous inequality, we� � 
 � �� � ��� � � ��� � � � � 
�� � B B B�

have for � � 
�� � 

� � � ���� ' % % # � � � � # �� � 7�9�7� � �7��*7 # 
8 # �� � � �* �� � � �

�

�

�

���

� �    

If  then  and the previous inequality holds.� � 
 � �� � ��� � % %B � �

 Let us take the right-hand side of the above inequality as , then we haveC���

8 � C��� � % % # � � � � # 
8 # �� � � �*  ��� ' C��� � � 
�� � �� �� � � �

�

���

� ,  ,  

and

C ��� � �� � ��9��� � ���� � � 
�� � �� � � ,  

Using the nondecreasing character of  we get�

C ��� ' �� � ��9��� �C����� � � 
�� � �� �    

This implies for each  that� � 	

� � �      

      

       C���

C��� C���

*/ */
�/� �/�

� "

�
� �
' �� � 7�9�7�*7 ! �

This inequality implies that there exists a constant  such that , ,D � D�� � 9� � C��� ' D � � 	�

and hence , .  Since for every , , we have� ���� ' D � � 	 � � 
�� �  % � % ' ����

% � % � � & � ���� � � � � ' � ' �( ' D�" sup

where  depends only on  and on the functions  and .  This shows that  is bounded.D � 9 �6�� �

 Set .  As a consequence of Lemma 2.3 we deduce that  has a fixed point which is5� � 6�

a solution of (1.1)-(1.4). �
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