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Abstract  
 

When the shear stress measured in Large Amplitude Oscillatory Shear (LAOS) 

deformation is represented as a two-dimensional Lissajous-Bowditch curve, the corresponding 

trajectory can appear to self-intersect and form secondary loops. This self-intersection is a 

general consequence of a strongly nonlinear material response to the imposed oscillatory forcing 

and can be observed for various material systems and constitutive models.  We derive the 

mathematical criteria for the formation of secondary loops, quantify the location of the apparent 

intersection, and furthermore suggest a qualitative physical understanding for the associated 

nonlinear material behavior.  We show that when secondary loops appear in the viscous 

projection of the stress response (the 2-D plot of stress vs. strain-rate) they are best interpreted by 

understanding the corresponding elastic response (the 2-D projection of stress vs. strain) The 

analysis shows clearly that sufficiently strong elastic nonlinearity is required to observe 

secondary loops on the conjugate viscous projection.  Such a strong elastic nonlinearity 

physically corresponds to a nonlinear viscoelastic shear stress overshoot in which existing stress 

is unloaded more quickly than new deformation is accumulated.  This general understanding of 

secondary loops in LAOS flows can be applied to various molecular configurations and 

microstructures such as polymer solutions, polymer melts, soft glassy materials and other 

structured fluids. 
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Introduction 
Large amplitude oscillatory shear (LAOS) is a class of flow that is commonly used to 

characterize nonlinear viscoelastic material responses (Giacomin and Dealy (1993)).  In strain-

controlled LAOS deformation, the imposed strain takes the form 0( ) sint tγ γ ω= , which 

consequently subjects the sample to a corresponding oscillatory strain-rate, 0 cos tγ γ ω ω= .  The 

steady state material stress response 0( ; , )tσ γ ω  oscillates with the same fundamental period as 

the imposed deformation, T=2π/ω, but with a viscoelastic phase shift, as well as higher harmonic 

contributions when the imposed strain is high enough to induce material nonlinearity (Wilhelm 

(2002)). 

LAOS responses can be visualized as parametric curves (properly termed Lissajous-

Bowditch curves) of the oscillating stress ( )tσ  vs. strain ( )tγ , or stress ( )tσ  vs. strain-rate ( )tγ .  

More generally this response can be represented in terms of closed space-curves within a 3-D 

coordinate system with strain ( )tγ , strain-rate ( )tγ , and stress ( )tσ  as the orthogonal coordinate 

axes (Fig. 1a).  The 2-D Lissajous-Bowditch curves commonly represented in papers are then 

readily understood as projections of the fully 3-D coordinate space that describes the material 

response to oscillatory shearing.  The 2-D projection onto the stress ( )tσ  vs. strain ( )tγ  plane 

views the material response from an elastic perspective (Fig. 1b), and a purely elastic material 

response would be a single-valued function of strain on this plane, ( )σ γ .  The viscous 

perspective is achieved by projecting the 3-D material trajectory onto the plane of stress ( )tσ  vs. 

strain-rate ( )tγ  as shown in Fig. 1c.  In this work we focus on the long-time steady-state 

oscillatory material response that is represented by a closed space-curve; however time-varying 

material responses associated with thixotropy, shear-induced migration or rheological aging etc. 

can also be represented in this material phase-space by trajectories that slowly decay towards the 

corresponding periodic attractor.  

We are interested here in the self-intersection of Lissajous-Bowditch curves which form 

“secondary loops” (Fig. 1c, points I1 and I2), a visually-prominent phenomenon that quickly 

draws questions from the rheological observer.  The interpretation of secondary loops has, to 

date, been limited to the study of specific material examples, being related to physical 

microstructural features such as non-affine deformation (Jeyaseelan and Giacomin (2008)) and 
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the absence of long-chain branching in polymer melts (Stadler et al. (2008)).  However, such 

secondary loops have been observed for many different material systems including micellar 

solutions (Ewoldt et al. (2008)), a polystyrene solution (Jeyaseelan and Giacomin (2008)), 

several molten polymers (Tee and Dealy (1975), Stadler et al. (2008)), star-polymer networks 

(Rogers and Vlassopoulos (2009)), as well as Xanthan gum solutions and an invert-emulsion 

drilling fluid (see Ewoldt et al., Rheol Acta, accompanying manuscript).  Nonlinear constitutive 

models can also show secondary loops, examples include a non-affine network model 

(Jeyaseelan and Giacomin (2008)), a tube-based model of entangled linear polymers (Leygue et 

al. (2006); Stadler et al. (2008)), and a single mode Giesekus model (demonstrated here).  Owing 

to the variety of systems which show secondary loops, we seek to provide a general 

interpretation of this nonlinear rheological phenomenon.   

  The mathematical criteria for self-intersection of viscous Lissajous-Bowditch curves of 

stress ( )tσ  vs. strain-rate ( )tγ  have been considered previously by Stadler et al. (2008) and 

Burhin et al. (2008), who have identified multiple criteria which must be simultaneously 

satisfied by the higher harmonic components of the stress response.  Here we derive a criterion 

related to a single viscoelastic parameter which was recently proposed as a measure of nonlinear 

viscoelasticity, namely the minimum strain modulus ′G
M
≡

dσ
dγ

γ =0

< 0  (Ewoldt et al. (2008)).  

The criterion is understood through the connection between the 3-D Lissajous-Bowditch curves 

and the corresponding Chebyshev decomposition of the LAOS response.  Furthermore, we 

address the theoretical possibility (unobserved to date) of self-intersection of the elastic 

projection of stress ( )tσ  vs. strain ( )tγ  and show, by analogy, that a single criterion, 0Mη′ < , 

can be used to identify the conjugate phenomenon.   

These mathematical criteria are related to viscoelastic parameters and therefore offer a 

general physical interpretation of the nonlinear material response associated with secondary 

loops. 

Giesekus model example 
A single-mode Giesekus model is used here as a canonical example in which secondary loops 

arise within a certain range of the Pipkin parameter space represented by frequency and strain 
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amplitude ( 0,ω γ ).  The constitutive equation for the Giesekus model, as presented by Bird et al. 

(1987), is given by 

{ }1
1 (1) .

s p

s s

p p p p p

p

η
λλ α η
η

= +

=

+ + ⋅ =

σ σ σ
σ γ

σ σ σ σ γ

 
(1)

Here sσ  is the solvent stress tensor, 
pσ  is the polymer stress tensor, 

(1)pσ  is the upper convected 

time derivative of the polymer stress, sη  is the solvent viscosity, pη  is the polymer viscosity, 1λ  

is the relaxation time, and α  is the mobility factor which gives rise to a nonlinear viscoelastic 

response (for 0α ≠ ).  The LAOS simulation is performed as described by Ewoldt et al. (2008) 

using the following model parameters, 1 1 sλ = , 0.01 Pa.ssη = , 10Pa.spη = , and 0.3α = .  

These four independent parameters result in a retardation time scale 2 1 ( ) 0.001 ss s pλ λη η η= + =  

and a polymeric shear modulus 
1/ 10 PapG η λ= = .  A range of frequencies and strain 

amplitudes were simulated (Ewoldt et al. (2008)), 10.01 1000λω≤ ≤ , 00.001 100γ≤ ≤ .  Within 

this range, secondary loops were observed for a range of frequencies, 1 0.01 100λω = − , at 

sufficiently large strain amplitude 0γ .  Fig. 1 shows the steady state Lissajous-Bowditch curves 

associated with 1 1λω = , 0 5.62γ = , for the single-mode Gieskus model, Eq. (1).  Arrows are 

used to indicate the trajectory for each curve.  Note that, in the absence of secondary loops, 

elastic curves are traversed in a clockwise direction (Fig. 1b) whereas the corresponding viscous 

curves propagate counterclockwise  (Fig. 1c).  The viscous projection onto the 2-D plane of 

stress ( )tσ  and strain-rate ( )tγ  appears to intersect at points I1 and I2.   

Criteria and interpretation of self-intersection 
It is impossible for a fully 3-D Lissajous-Bowditch curve at steady state to intersect itself 

since the controlled input coordinates ( ( ), ( )t tγ γ ) are orthogonal and always occupy unique 

values throughout a single cycle, i.e. the 2-D projection onto the plane of ( ( ), ( )t tγ γ ) does not 

intersect.  However, a 2-D projection onto the other coordinate planes of ( ( ), ( )t tσ γ ) or 

( ( ), ( )t tσ γ ) has the opportunity to self-intersect because the individual inputs of strain ( )tγ  or 

strain-rate ( )tγ  take repeated values within a single period T=2π/ω.  A sufficiently nonlinear 
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response may thus result in a 2-D response curve projection that intersects itself and forms 

secondary loops, such as those which appear in the curve of Fig. 1c.   

To proceed with the quantitative criterion for self-intersection, we must introduce a 

mathematical representation of LAOS response curves.  For an oscillatory strain input, 

0( ) sint tγ γ ω= , the viscoelastic stress response can be written as a time-domain Fourier series of 

odd-harmonics (Giacomin and Dealy (1993)), 

  

σ t;ω ,γ
0( )= γ 0

′G
n
ω ,γ

0( )sin nωt + ′′G
n
ω ,γ

0( )cos nωt{ }
n:odd

∑ .  (2) 

For sufficiently small strain amplitude 0γ , a linear material response is observed such that only 

the fundamental harmonic appears, n = 1 with a temporal phase shift δ1 given by 1 1 1tan G Gδ ′′ ′= .  

For larger deformation amplitudes, higher harmonics appear and the response is nonlinear.  We 

argue that it is more meaningful to mathematically represent the measured material stress as a 

function of the time-varying kinematic inputs, strain ( )tγ  and strain-rate ( )tγ , rather than time 

itself.  This is consistent with the closed space-curve shown in Fig. 1c, ( ( ), ( ))t tσ γ γ .  The stress 

response can be decomposed into a superposition of instantaneous elastic and viscous 

components (Cho et al. (2005)), which are single-valued functions of normalized strain 

0( ) ( ) /x t tγ γ=  and normalized strain-rate 0( ) ( ) /y t tγ γ=  respectively.  We write the 

superposition as ( ) ( ( )) ( ( ))t x t y tσ σ σ′ ′′= + .  The decomposition into the elastic stress ( ( ))x tσ ′  

and viscous stress ( ( ))y tσ ′′  can then be written as a series of Chebyshev polynomials of the first 

kind (Ewoldt et al. (2008)), 

( ) ( )

( ) ( )

0 0 0

0 0 0

; , , ( )

; , , ( )

n n

n

n n

n

x e T x

y v T y

σ ω γ γ ω γ

σ ω γ γ ω γ

′ =

′′ =

∑

∑
 (2) 

in which the elastic and viscous coefficients, 0( , )ne ω γ and 0( , )nv ω γ ,  have a physical 

interpretation and are directly related to the time-domain Fourier coefficients of Eq. (2) via 

1

2( 1)
n

n ne G
−

′= −  and n nv G ω′′=  (n: odd).  

The (apparent) intersection locations, I1 and I2 (Fig. 1), are defined by the criteria that the  

shear stress in the material takes repeated values at the same shear rate, but at different values of 

strain, 1 2( , ) ( , )σ γ γ σ γ γ= .  This requires the total stress to be independent of the instantaneous 
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strain at I1 and I2, and therefore the elastic stress must be instantaneously zero at these points.  

Thus, self-intersection occurs when  

( ( )) 0x tσ ′ = ,   0x ≠  (3) 

where 0( ) ( ) /x t tγ γ= .  This can be visualized in Fig.1b which shows that the elastic stress is 

instantaneously zero, ( ( )) 0tσ γ′ = , at the apparent intersection points I1 and I2.  Correspondingly, 

Fig. 1c shows that the total stress is equal to the instantaneous viscous stress at points I1 and I2, 

( ) ( ( ))t tσ σ γ′′= .   

An intersection of the viscous projection therefore occurs when the instantaneous value of the 

decomposed elastic stress passes through zero at a non-zero value of 0( ) ( ) /x t tγ γ= .  This 

intersection point can be located by expanding the elastic stress in terms of the Chebyshev 

polynomials of the first kind (Eq. (2)), { }3

0 1 3( ) (4 3 ) ...x e x e x xσ γ′ = + − + .  The criteria that 

( ) 0Ixσ ′ =  at points I1 and I2 results in the leading order non-zero solution that I1 and I2 occur at 

real values of  

1

3

1
3

2
I

e
x

e

 
= −  

 
∓  

( )1cos sinI Iy x− =   . 

(4)

Real values of Ix  are achieved for 3 1/ 1/ 3e e >  (to leading order), i.e. the self-intersection of 

viscous curves results from sufficiently strong elastic non-linearity.  The visually-dominant 

feature of the material nonlinearity thus appears as secondary loops on the viscous Lissajous-

Bowditch curve, but it is best interpreted as a consequence of a nonlinear elastic phenomenon.   

We now identify a single parameter which indicates the presence of self-intersection, rather 

than searching the decomposed stresses for zero-crossings.  Consider the general criterion for 

self-intersection, Eq. (3), ( ) 0xσ ′ = for 0x ≠ , combined with the fact that the elastic stress ( )xσ ′  

has odd-symmetry about 0x =  with a necessary zero-crossing at 0x =  (so that when 0γ =  we 

have an instantaneous elastic stress 0σ ′ = ).  Loops form when ( ) 0xσ ′ =  at locations other 

than 0x = , i.e. when multiple zero-crossings are present.  At the point of incipient loop 

formation, three real zero-crossings appear due to the odd symmetry of the elastic stress (Fig. 3).  

For multiple zero-crossings, the slope of the elastic stress ( )xσ ′  must change sign from positive, 

to negative, and back to positive. Therefore self-intersection is equivalent to development of a 



7/13 

region in the center of the elastic stress curve which has negative slope, and which must occur at 

0x =  to retain odd-symmetry.  Therefore, a sufficient quantitative criteria for self-intersection of 

viscous curves is a negative slope in the decomposed elastic stress at 0( ) 0x tγ γ= = , 

0

0
x

d

dx

σ

=

′
< . (5)

By analogy, it is possible for the elastic projection of stress ( )tσ  vs. strain ( )tγ  to form 

secondary loops when sufficient viscous nonlinearity is present.  The criteria for self-intersection 

of elastic projections is 

0

0
y

d

dy

σ

=

′′
< . (6)

In dimensional form, the tangent slopes of the stress at these locations (Eqs. (5) and (6)) 

correspond to viscoelastic material parameters introduced by Ewoldt et al. (2008).  The 

minimum-strain elastic modulus MG′ , and the minimum-rate dynamic viscosity Mη′ , are given 

respectively by 

1 3 5 7

0 0

1 3 5 7

0 0

3 5 7 ...

3 5 7 ...

M

M

d d
G e e e e

d d

d d
v v v v

d d

γ γ

γ γ

σ σ
γ γ

σ ση
γ γ

= =

= =

′
′ ≡ = = − + − +

′′
′ ≡ = = − + − +

 (7)

where MG G′ ′≡  and Mη η′ ′≡  for a linear viscoelastic response, but in general represent the 

instantaneous elastic modulus and dynamic viscosity in LAOS at the minimum strains and strain-

rates.  Note that these specific definitions in terms of the local slopes of the decomposed stresses 

are equivalent to the local slopes of the total stress, as shown in Eq.(7).  Thus, 0MG′ <  and 

0Mη′ <  are equivalent to Eqs. (5) and (6).   

The criterion 0MG′ <  can be described geometrically by the 3-D response curve of Fig. 1.  

Points α  and β  are labeled in Fig. 1 to identify points at small finite strains dγ∓ immediately 

before and after the strain is instantaneously zero, respectively (see Fig. 1b).  Since the strain and 

strain-rate inputs are related, points α  and β  also occur just before and just after the maximum 

positive strain-rate is achieved, 0( )tγ γ= + (c.f. Fig. 1c).  The geometrical criterion for apparent 

self-intersection of a 2-D viscous projection ( ( )tσ vs. ( )tγ ) is that the stress at pointβ , βσ , must 
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be smaller than the stress at pointα , ασ .  This is equivalent to the criteria that 
0

0M

d
G

d γ

σ
γ =

′≡ <  

(Fig. 1b).   

In terms of the higher harmonic coefficients, in order to meet the criterion  

1 3 53 5 ... 0MG e e e′ = − + − < , the third-harmonic elastic Chebyshev coefficient, 3e , must be 

sufficiently large and positive to induce apparent self-intersection of the viscous Lissajous-

Bowditch curves, 

3 5

1 1

1
1 5 ...

3

e e

e e

 
> + − 

 
. (8)

For completeness, we note that the corresponding criterion derived from eq. (7b) for self-

intersection of the elastic curves would be  

3 5

1 1

1
1 5 ...

3

v v

v e

 
> + − 

 
. (9)

Fig. 2 shows the normalized Chebyshev spectrums for the Giesekus simulation of Fig. 1.  

Dashed lines are shown at 3 1/ 1/ 3e e =  and 3 1/ 1/ 3v v =  which indicate the leading order criteria 

for secondary loops to appear in either the viscous or elastic projection, respectively (however 

we re-emphasize that when expressed in terms of the material parameters MG′  and Mη′  the 

criteria are general and not limited to leading order expressions such as Eqs. (8-9)).  The third-

harmonic elastic Chebyshev coefficient is sufficiently large and positive, 3 1/ 1/ 3e e > , such that 

0MG′ <  and secondary loops appear in the viscous Lissajous-Bowditch curves. 

The fundamental interpretation is to recognize that secondary loops appearing in viscous 

projections of the material response correspond to 0MG′ < .  A negative slope indicates that the 

material is unloading elastic contributions to the instantaneous stress faster than new deformation 

is being accumulated (Ewoldt et al. (2008)).  If we consider the direction in which the space 

curve in Fig 1 is traversed, then it is clear that from 0γ γ= −  to 0γ =  the strain-rate ( )tγ  

monotonically increases from zero to its maximum value.  The existence of a local maximum in 

stress (e.g. Fig. 1b) within this quadrant of the deformation cycle can be interpreted as a 

viscoelastic stress overshoot.  This overshoot is similar to the overshoot in the shear stress which 

may occur during start-up of steady shear flow.  Many systems can show stress overshoot in the 
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start-up of steady shear (for example the shear-enhanced disentanglement of polymer melts and 

solutions or the rupture of network structures can show strong stress overshoots), and this 

behavior is characteristic of significant microstructural change which requires sufficiently large 

rates of deformation in concert with sufficient amplitude of deformation (Bird et al. (1987)).  

The Giesekus model exhibits stress overshoots during the inception of steady shear flow 

(Bird et al. (1987)), and also in LAOS as indicated by 0MG′ <  and secondary loops (Fig. 1, 3).  

In LAOS, we observe that a critical strain amplitude is required, e.g. for 1 1λω =  we first observe 

0MG′ <  (and secondary loops) at 0 5.62γ =  (Fig. 3).  Additionally, we observe that a critical 

shear-rate is required.  For lower frequencies, progressively larger strain amplitudes are needed 

such that 1 0 10λωγ >  (for instance at 1 0.01λω =  the range of strain amplitude was extended to 

0 1000γ =  in order to observe 0MG′ <  and the formation of secondary loops).  The combined 

criteria of large strain amplitude and large strain-rate amplitude are consistent with the typical 

criteria for stress overshoot in start-up of steady shear (Bird et al. (1987)). 

An important distinction between LAOS and start-up of steady shear is the periodic reversal 

of the flow field in LAOS.  As we have noted, the oscillatory responses shown here are the 

steady periodic waveforms, thus any stress overshoot ( 0MG′ < ) must be reversibly achieved.  

Microstructures which breakdown irreversibly and cannot reform on the time scale of oscillation 

would not be expected to show stress overshoot and the corresponding secondary loops in 

steady-state LAOS deformations (although related features may be observed in the transient 

response).  For example, some polypropylene/organoclay nanocomposites show stress overshoot 

in reverse start-up experiments only for sufficient rest times before reversal (Letwimolnun et al. 

(2007)).  Stress overshoots in LAOS would only be expected if the thixotropic restructuring 

timescale is smaller than the oscillatory deformation timescale. When this is the case, stress 

overshoot in steady-state LAOS tests may be anticipated.  For example, disentangled polymer 

chains may have sufficient time to re-entangle, or soft glassy systems may find time to re-

structure, during flow reversal and display reversible stress overshoot behavior. 

To summarize, we have shown that the apparent self-intersection of 2-D Lissajous-Bowditch 

curves corresponds to sufficiently large and positive values of the third-harmonic components 

(Eq. 8), or more generally to the criteria 0MG′ <  or 0Mη′ <  (Eqs. (5) and (6)).  We find that self-

intersection of 2-D Lissajous-Bowditch curve projections is most readily interpreted in terms of 
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the complementary curve, i.e. the self-intersection of viscous projections is caused by a strong 

elastic nonlinearity.  This corresponds to overshoot in the shear stress in the material and is 

similar to the stress overshoot which occurs during the start-up of steady shear flow.  The 

distinction for LAOS is that the structural change associated with the overshoot must be at least 

partially reversible on the timescale of the oscillatory deformation.  The signature of secondary 

loops may therefore act as a means of distinguishing various molecular and microstructural 

systems which show such reversible stress overshoot behavior.  Finally, we note that apparent 

self-intersections and appearance of secondary loops in the elastic Lissajous-Bowditch 

projections would correspond to pronounced overshoots in the instantaneous dissipative nature 

of a material (see eq. 7b); for example a rate-dependent transient shear-thickening response. We 

are unaware of any experimental observations of such phenomena to date but they do not appear 

to be prohibited in principle.  
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Fig. 1.  LAOS simulation of the single-mode Giesekus model, ( 1 1λω = , 0 5.62γ = ).  Only the 

time-periodic steady state response is shown, with arrows indicating the path trajectory.  (a) 3-D 

Lissajous-Bowditch curve showing the stress response as a function of the orthogonal inputs, 

( ( ), ( ))t tσ γ γ , (b) 2-D projection onto the plane of stress ( )tσ  and strain ( )tγ , including the 

instantaneous elastic stress ( ( ))tσ γ′  (dashed line), and (c) 2-D projection onto the plane of stress 

( )tσ  and strain-rate ( )tγ , including the instantaneous viscous stress ( ( ))tσ γ′′  (dotted line).  The 

viscous Lissajous-Bowditch curve in (c) shows apparent self-intersection at points I1 and I2, 

although the full space-curve represented in (a) does not intersect at these points. 
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Fig. 2.  Single-mode Giesekus model simulation, 1 1λω = , 0 5.62γ =  (a) The elastic Chebyshev 

spectrum shows that 3 1/e e  is sufficiently large and positive to create the secondary loops which 

appear in the viscous Lissajous-Bowditch curve (Fig. 1c).  (b) The viscous Chebyshev spectrum. 

The horizontal dashed lines show the leading-order dimensionless criteria developed in Eqs. (8) 

and (9) for appearance of secondary loops. 

 

 

 

 

 

 

 

 
Fig. 3.  Incipient secondary loop formation for the single-mode Giesekus model LAOS 

simulation, 1 1λω = . (a) The elastic Lissajous-Bowditch projection, in which the criteria 0MG′ <  

corresponds to the self-intersection and secondary loop formation in (b), the viscous Lissajous-

Bowditch projection. 

 



13/13 

 

REFERENCES 
 

Bird, R., R. Armstrong and O. Hassager, Dynamics of polymeric liquids: volume 1 fluid 

mechanics (John Wiley & Sons, Inc, New York, 1987)  

Burhin, H. G., C. Bailly, R. Keunings, N. Rossion, A. Leygue and H. Pawlowski,"A study of 

polymer architecture with FT-rheology and large amplitude oscillatory shear (LAOS)," 

XV International Congress on Rheology: The Society of Rheology 80th Annual Meeting, 

Monterey (California),The Society of Rheology, Abstract Booklet, EM18 (2008) 

Cho, K. S., K. H. Ahn and S. J. Lee, "A geometrical interpretation of large amplitude oscillatory 

shear response," Journal of Rheology 49(3), 747-758 (2005) 

Ewoldt, R. H., A. E. Hosoi and G. H. McKinley, "New measures for characterizing nonlinear 

viscoelasticity in large amplitude oscillatory shear," Journal of Rheology 52(6), 1427-

1458 (2008) 

Giacomin, A. J. and J. M. Dealy (1993). Large-Amplitude Oscillatory Shear, in Techniques in 

rheological measurement. A. A. Collyer. London, Elsevier Applied Science, Ch. 4 

Jeyaseelan, R. S. and A. J. Giacomin, "Network theory for polymer solutions in large amplitude 

oscillatory shear," Journal of Non-Newtonian Fluid Mechanics 148(1-3), 24-32 (2008) 

Letwimolnun, W., B. Vergnes, G. Ausias and P. J. Carreau, "Stress overshoots of organoclay 

nanocomposites in transient shear flow," Journal of Non-Newtonian Fluid Mechanics 

141(2-3), 167-179 (2007) 

Leygue, A., C. Bailly and R. Keunings, "A tube-based constitutive equation for polydisperse 

entangled linear polymers," Journal of Non-Newtonian Fluid Mechanics 136(1), 1-16 

(2006) 

Rogers, S. A. and D. Vlassopoulos (2009). personal communication. 

Stadler, F. J., A. Leygue, H. Burhin and C. Bailly,"The potential of large amplitude oscillatory 

shear to gain an insight into the long-chain branching structure of polymers," The 235th 

ACS National Meeting, New Orleans, LA, U.S.A.,Polymer Preprints ACS, 49, 121-122 

(2008) 

Tee, T. T. and J. M. Dealy, "Nonlinear viscoelasticity of polymer melts," Transactions of the 

Society of Rheology 19(4), 595-615 (1975) 

Wilhelm, M., "Fourier-Transform rheology," Macromolecular Materials and Engineering 287(2), 

83-105 (2002) 

 

 


