On Secret Sharing Systems

EHUD D.KARNIN, JONATHAN W.GREENE, MARTIN E.HELLMAN IEEE TRANSACTIONS ON INFORMATION THEORY, VOL IT-29, PP. 35-41, JANUARY 1983
Prepared by Chao-yu Chen
Department of Institute of Communications Engineering National Tsing Hua University, Taiwan 300, R.O.C.
DEC 27, 2000

Outline

- Introduction
- Requirements for a secret sharing system
- Goal
- Bounds on the maximum value of n

Introduction

Cryptography is extremely useful for making data files unintelligible to any one who does not possess the secret key.

- There is a need for providing a backup copy of the key to protect against losing the secret key. To guard against simultaneous destruction, these copies should be stored in separated parts.
Letting v_{i} denote the information stored in the i th deposit box and letting s denote the secret key,

$$
v_{1}=v_{2}=\ldots=v_{n}=s
$$

But theft of even one piece compromises the secret.

Introduction

A approach protects against the threat of theft.
Dividing the secret key s into n pieces. Letting v_{1} to v_{n-1} be independent random variables, uniformly distributed over S, and letting

$$
v_{n}=s+\left(v_{1}+v_{2}+\cdots+v_{n-1}\right)(\bmod q),
$$

where $q=|S|$ is the cardinality of S.
But if even one of the v_{i} is destroyed, the user is unable to reconstruct the secret key.

Goal

Dividing a secret s into n pieces $v_{1}, v_{2}, \cdots, v_{n}$, each chosen from a set V, such that the following conditions are satisfied.

C1) The secret s is recoverable from any k pieces $(k \leq n)$.
$\mathrm{C} 2)$ Knowledge of $k-1$ or fewer pieces provides absolutely no information about s.

If the system is not to involve data expansion we also require:
C3) $|V| \leq|S|$. That is, each pieces v_{i} is to be no longer than s.

Any such system will be referred to as a " k-out - of $-n$ secret sharing system."

Restating these requirements using the notation of information theory we have for any set of k indices $\left\{i_{1}, i_{2}, \cdots, i_{k}\right\}$:

$$
H\left(s \mid v_{i_{1}}, v_{i_{2}}, \cdots, v_{i_{k}}\right)=0
$$

and

$$
H\left(s \mid v_{i_{1}}, v_{i_{2}}, \cdots, v_{i_{k-1}}\right)=H(s) .
$$

Theorem 1: For conditions C1) and C2) to hold it is necessary that

$$
H\left(v_{i}\right) \geq H(s), \quad i=1,2, \cdots, n .
$$

Note: If s is uniformly distributed over S then C3) can be represented as $H\left(v_{i}\right) \leq H(s)$. Then theorem 1 implies that

$$
H\left(v_{1}\right)=H(s), \quad i=1,2, \cdots, n .
$$

Requirements for a Secret Sharing System

Theorem 2: Associating s with v_{0}, and generating from $G F(2)$ to any finite field $G F(q)$, the problem of finding a secret sharing system of the form

$$
v_{i}=u A_{i}
$$

is equivalent to the following.

Requirements for a Secret Sharing System

Find a set of $n+1$ matrices over $G F(q),\left\{A_{0}, A_{1}, A_{2}, \cdots, A_{n}\right\}$, each of dimension $k m$-by- m, such that every set of k of the A_{i} has full rank, $k m$.
(m is the secret size and k is the number of pieces required to reconstruct the secret. The dimension of u is $k m$.)

Requirements for a Secret Sharing System

Example: Here is a 2 -out-of- 4 system with a 2 -bit secret s :

$$
A_{0}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right] A_{1}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] A_{2}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right] A_{3}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] A_{4}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1 \\
0 & 1
\end{array}\right]
$$

, where u is $\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$.

In this example

$$
\begin{gathered}
s=u A_{0}=\left(u_{1}, u_{2}\right), \\
v_{1}=u A_{1}=\left(u_{3}, u_{4}\right), \\
v_{2}=u A_{2}=\left(u_{1}+u_{2}+u_{3}, u_{2}+u_{4}\right), \\
v_{3}=u A_{3}=\left(u_{2}+u_{3}, u_{1}+u_{4}\right), \\
v_{4}=u A_{4}=\left(u_{1}+u_{3}, u_{2}+u_{3}+u_{4}\right) .
\end{gathered}
$$

It can be shown that any single piece knows nothing about s and that any two pieces can solve for $s=\left(u_{1}, u_{2}\right)$.

Requirements for a Secret Sharing System

Theorem 3: The secret s can be taken to be the first m components of u without loss of generality. Further, v_{1} can be taken to be the next m components of u, v_{2} can be taken to be the next m components of u, \cdots, and v_{k-1} can be taken to be the last m components of u.

Bounds On the Maximum Value of n

Theorem 4: Given $|S|=q^{m}$ and k, a one component secret sharing system of the form $v=u G$ has

$$
\begin{array}{cc}
q^{m} \leq n_{\max } \leq q^{m}+k-2, & q^{m}>k \\
n_{\max }=k, & q^{m} \leq k
\end{array}
$$

