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Abstract In 2007, the US National Institute for Standards

and Technology (NIST) announced a call for the design of

a new cryptographic hash algorithm in response to vulner-

abilities like differential attacks identified in existing hash

functions, such as MD5 and SHA-1. NIST received many

submissions, 51 of which got accepted to the first round.

14 candidates were left in the second round, out of which

5 candidates have been recently chosen for the final round.

An important criterion in the selection process is the SHA-3

hash function security. We identify two important classes of

security arguments for the new designs: (1) the possible re-

ductions of the hash function security to the security of its

underlying building blocks, and (2) arguments against dif-

ferential attack on building blocks. In this paper, we com-

pare the state of the art provable security reductions for the

second round candidates, and review arguments and bounds

against classes of differential attacks. We discuss all the

SHA-3 candidates at a high functional level, analyze and

summarize the security reduction results and bounds against

differential attacks. Additionally, we generalize the well-

known proof of collision resistance preservation, such that

all SHA-3 candidates with a suffix-free padding are covered.

Keywords SHA-3 competition · hash functions · classifi-

cation · security reductions · differential attacks
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1 Introduction

Hash functions serve a crucial foundation of numerous cryp-

tographic applications, ranging from key derivation func-

tions over various security protocols to digital signatures.

In 2004, a series of differential attacks by Wang et al. [80,

81] have exposed security vulnerabilities in the design of

the most widely adopted and deployed SHA-1 hash func-

tion. As a result, the US National Institute for Standards

and Technology (NIST) recommended the replacement of

SHA-1 by the SHA-2 hash function family and announced

a call for the design of a new SHA-3 hashing algorithm.

The SHA-3 hash function must allow for message digests

of length 224,256,384 and 512 bits, it should be efficient,

and most importantly it should provide an adequate level of

security. In the second round, 14 candidate hash functions

were considered, 5 candidates remaining in the race for the

selection of the SHA-3 hash function in the current third

round.

As a result of the performed comparative analysis, sev-

eral classifications of the SHA-3 candidates, mostly focused

on hardware performance, appeared in the literature [42,45,

58,78]. A classification based on the NIST-specified secu-

rity criteria is however still due.

NIST Security Requirements. NIST specifies a number

of security requirements [69] to be satisfied by the future

SHA-3 function: (i) at least one variant of the hash function

must securely support HMAC and randomized hashing. Fur-

thermore, for all n-bit digest values, the hash function must

provide (ii) preimage resistance of approximately n bits,

(iii) second preimage resistance of approximately n− L

bits, where the first preimage is of length at most 2L blocks,

(iv) collision resistance of approximately n/2 bits, and (v)

all variants must be resistant to the length-extension attack.

Finally, (vi) for any m ≤ n, the hash function specified by
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taking a fixed subset of m bits of the function’s output is

required to satisfy properties (ii)-(v) with n replaced by

m.

Our Contribution. In this work we provide a survey of the

14 second round SHA-3 candidates including the 5 finalists,

in which we compare their security reductions, and their re-

sistance against differential attacks. Regarding security re-

ductions, we consider preimage, second preimage and col-

lision resistance (security requirements (ii)-(iv)) for the

n = 256 and n = 512 variants. Most of this security analysis

is realized in the ideal model, where one or more of the un-

derlying integral building blocks (e.g., the underlying block

cipher or permutation(s)) are assumed to be ideal, i.e. ran-

dom primitives. To argue collision resistance we extend the

standard proof of Merkle-Damgård collision resistance [37,

67] to cover all second round SHA-3 candidate hash func-

tion with a suffix-free padding (App. B). Notice that the ba-

sic Merkle-Damgård proof does not suffice in the presence

of a final transformation and/or a chopping. Additionally, we

consider the indifferentiability of the candidates. Informally,

indifferentiability guarantees that a design has no structural

design flaws [32], and in particular (as formally proven in

App. A) an indifferentiability result renders upper bounds

on the advantage of finding preimages, second preimages

and collisions. The provable security analysis in this contri-

bution extends to the findings of Andreeva et al. [2].

Recent substantial progress in the differential attacks

against SHA-1 [80] is the main motivation for the SHA-3

competition [29], and many of the first round candidates

fell victim to differential attacks as well, due to their well-

elaborated and advanced toolbox. Hence we survey known

bounds against classes of these attacks. Note that, to the best

of current knowledge, informative bounds exist only for a

subset of relevant differential properties. Also only a sub-

set of all second round SHA-3 candidates allow for such

bounds by design, which excludes e.g. all ARX-based con-

structions from the analysis. Therefore, in this work, we will

be mainly considering upper bounds on the expected dif-

ferential trail probability (EDTP) of hash function building

blocks such as underlying permutations and block ciphers

which are based on substitution-permutation networks. Al-

though EDTP proved to be highly informative in predicting

the power of differential cryptanalysis for keyed block ci-

phers, for most attacks on hash functions all inputs to the

function’s building blocks are known and can often even be

chosen by the adversary. However, at some point in most

major attack techniques against hash functions, the adver-

sary cannot control the difference propagation any more and

relies on the differential trails, EDTP becoming again a good

predictor of the attack complexity. Thus, due to the lack of

a better universal evaluation tool with respect to differential

attacks on the one hand, and because of the ability of the dif-

ferential trails to reflect at least some important features of

such attacks on the other, we have opted to use upper bounds

on EDTP in our comparative analysis.

Section 2 briefly covers the notation, and the basic prin-

ciples of hash function design. In Sect. 3, we consider all

candidates, both from a provable security point of view, and

from a cryptanalysis view. We give a high level algorithmic

description of each hash function, and discuss the existing

security results. All results are summarized in Table 1 and

Table 2. We conclude the paper with Sect. 4 and give some

final remarks on the security comparison.

2 Preliminaries

For a positive integer value n ∈ N, we denote by Z
n
2 the set

of bit strings of length n, and by (Zn
2)
∗ the set of strings of

length a positive multiple of n bits. We denote by Z
∗
2 the set

of bit strings of arbitrary length. If x,y are two bit strings,

their concatenation is denoted by x‖y. By |x| we denote the

length of a bit string x, and for m,n ∈ N we denote by 〈m〉n
the encoding of m as an n-bit string. The function chopn(x)

chops off the n rightmost bits of a bit string x.

Throughout, we use a unified notation for all candidates.

The value n denotes the output size of the hash function, l the

size of the chaining value, and m the number of message bits

compressed in one iteration of the compression function. A

padded message is always parsed as a sequence of k ≥ 1

message blocks of length m bits: (M1, . . . ,Mk).

2.1 Reductionist Security Notions

In this section we investigate the reductionist security of

hash functions in the ‘ideal model’ and the more classical

‘generic’ security.

Security in the ideal model. In the ideal model, a compress-

ing function F (either on fixed or arbitrary input lengths) that

uses one or more underlying building blocks is viewed inse-

cure if there exists a successful information-theoretic adver-

sary that has only query access to the idealized underlying

primitives of F . The complexity of the attack is measured

by the number of queries q to the primitive made by the

adversary. In this work it is clear from the context which

of the underlying primitives is assumed to be ideal. The

three main security properties required from the SHA-3 hash

function are preimage, second preimage and collision resis-

tance. For each of these three notions, with Advatk
F , where

atk ∈ {pre,sec,col}, we denote the maximum advantage of

an adversary to break the function F under the security no-

tion atk. The advantage is the probability function taken over

all random choices of the underlying primitives, and the
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maximum is taken over all adversaries that make at most

q queries to their oracles.

Additionally, we consider the indifferentiability of the

SHA-3 candidates. The indifferentiability framework intro-

duced by Maurer et al. [66] is an extension of the classi-

cal notion of indistinguishability, and ensures that a hash

function has no structural defects. We denote the indiffer-

entiability security of a hash function H by Adv
pro
H

, max-

imized over all distinguishers making at most q queries of

maximal length K ≥ 0 message blocks to their oracles. We

refer to [32] for a formal definition. An indifferentiability

bound guarantees security of the hash function against spe-

cific attacks. In particular, one can obtain a bound on Advatk
H ,

for any security notion atk: Advatk
H ≤ Pratk

RO +Adv
pro
H

, where

Pratk
RO denotes the success probability of a generic attack

against H under atk. This bound is proven in Thm. 1

(App. A).

Generic security. The generic collision resistance security

in the context of this work deals with analyzing the collision

resistance of hash functions in the standard model. A hash

function H is called generically (t,ε) collision resistant if

no adversary running in time at most t can find two different

messages M,M′ such that H(M) = H(M′) with advantage

more than ε . We denote by Adv
gcol
H

the generic collision re-

sistance security of the function H, maximized over all ‘ef-

ficient’ adversaries. We refer the reader to [4,72,73] for a

more formal discussion.

To argue generic collision resistance security of the hash

function H (as domain extenders of fixed input length com-

pression functions) we use the composition result of Merkle

and

Damgård [37,67] and extend it to a wider class of suffix-

free hash functions (App. B). This result concludes the col-

lision resistance of the hash function H assuming collision

resistance security guarantees from the underlying compres-

sion functions. We then translate ideal model collision re-

sistance security results on the compression functions via

the latter composition to ideal model collision results on

the hash function (expressed by Advcol
H ). A generic colli-

sion result, generally speaking, applies to a wider class of

schemes for which no bounds on the collision resistance se-

curity of the underlying compression functions is known,

e.g. for BLAKE and BMW.

If a compressing function F outputs a bit string of length

n, one expects to find collisions with high probability af-

ter approximately 2n/2 queries (due to the birthday attack).

Similarly, (second) preimages can be found with high prob-

ability after approximately 2n queries1. Moreover, finding

1 Kelsey and Schneier [55] describe a second preimage attack on

the Merkle-Damgård hash function that requires at most approximately

2n−L queries, where the first preimage is of length at most 2L blocks.

second preimages is provably harder than finding collisions,

and similar for preimages (depending on the specification

of F) [73]. Formally, we have Ω(q2/2n) = Advcol
F = O(1),

Ω(q/2n) = Advsec
F ≤ Advcol

F , and Ω(q/2n) = Adv
pre
F ≤

Advcol
F + ε , where ε is negligible if F is a variable input

length compressing function. In the remainder, we will con-

sider these bounds for granted, and only include security re-

sults that improve either of these bounds. A bound is called

tight if the lower and upper bound are the same up to a con-

stant factor, and optimal if the bound is tight with respect to

the original lower bound.

2.2 Compression Function Design Strategies

A common way to build compression functions is to base it

on a block cipher [25,71,76], or on a (limited number of)

permutation(s) [24,74,75]. Preneel et al. [71] analyzed and

categorized 64 block cipher based compression functions.

Twelve of them were formally proven secure by Black et

al. [25]. These results have been recently generalized by

Stam [76]. Interestingly, the latter result implies security

bounds for some compression functions that do not fit in

the PGV-model, like ECHO, Hamsi and SIMD. In the ideal

model, everywhere second preimage resistance of the com-

pression function can be proven similar as the preimage re-

sistance, up to a constant (the security analysis differs only

in that we give the adversary one query for free). Through-

out, by ‘PGVx’ we denote the xth type compression function

of [71]. We note that PGV1, PGV3 and PGV5 are better

known as the Matyas-Meyer-Oseas, the Miyaguchi-Preneel

and the Davies-Meyer compression functions, respectively.

In the context of permutation based compression func-

tions, Black et al. [24] analyzed 2l- to l-bit compression

functions based on one l-bit permutation, and proved them

insecure. This result has been generalized by Rogaway and

Steinberger [74], Stam [75] and Steinberger [77] to com-

pression functions with arbitrary input and output sizes, and

an arbitrary number of underlying permutations. Their

bounds indicate the number of queries required to find colli-

sions or preimages for permutation based compression func-

tions.

2.3 Hash Function Design Strategies

In order to allow the hashing of arbitrarily long strings, all

SHA-3 candidates employ a specific mode of operation.

Central to all designs is the iterated hash function principle

[61]: on input of an initialization vector IV, the iterated hash

This attack does, however, not apply to all SHA-3 candidates. In par-

ticular, the wide-pipe SHA-3 candidates remain mostly unaffected due

to their increased internal state.
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function H f based on the compression function f proceeds

a padded message (M1, . . . ,Mk) as follows:

H f (IV;M1, . . .,Mk) = hk, where:

h0 = IV,

hi = f (hi−1,Mi) for i = 1, . . . ,k.

This principle is also called the plain Merkle-Damgård

(MD) design [37,67]. Each of the 14 remaining candidates

is based on this design, possibly followed by a final trans-

formation (FT), and/or a chop-function2.

The padding function pad : Z∗2→ (Zm
2 )
∗ is an injective map-

ping that transforms a message of arbitrary length to a mes-

sage of length a multiple of m bits (the number of mes-

sage bits compressed in one compression function iteration).

Most of the candidates employ a sufficiently strong padding

rule (cf. Fig. 2). Additionally, in some of the designs the

message blocks are compressed along with specific counters

or tweaks, which may strengthen the padding rule. We dis-

tinguish between ‘prefix-free’ and/or ‘suffix-free’ padding.

A padding rule is called suffix-free, if for any distinct

M,M′, there exists no bit string X such that pad(M′) =

X‖pad(M). The plain MD design with any suffix-free pad-

ding (also called MD-strengthening [61]) preserves colli-

sion resistance [37,67]. We generalize this result in Thm. 2

(App. B): informally, this preservation result also holds if

the iteration is finalized by a distinct compression function

and/or the chop-function. Other security properties, like

preimage resistance, are however not preserved in the MD

design [4]. It is also proven that the MD design with a suffix-

free padding need not necessarily be indifferentiable [32].

However, the MD construction is indifferentiable if it ends

with a chopping function or a final transformation, both

when the underlying compression function is ideal or when

the hash function is based on a PGV compression function

[32,51,65].

A padding rule is called prefix-free, if for any distinct

M,M′, there exists no bit string X such that pad(M′) =
pad(M)‖X . It has been proved that the MD design, based on

ideal compression function or ideal PGV construction, with

prefix-free padding is indifferentiable from a random ora-

cle [30,32,51,65]. Security notions like collision-resistance,

are however not preserved in the MD design with prefix-free

only padding.

HAIFA design. A concrete design based on the MD princi-

ple is the HAIFA construction [21]. In HAIFA the message

is padded in a specific way so as to solve some deficiencies

2 A function g is a final transformation if it differs from f , and is

applied to the final state, possibly with the injection of an additional

message block. The chop-function is not considered to be (a part of) a

final transformation.

of the original MD construction: in the iteration, each mes-

sage block is accompanied with a fixed (optional) salt of s

bits and a (mandatory) counter Ci of t bits. The counter Ci

keeps track of the number of message bits hashed so far, and

equals 0 by definition if the ith block does not contain any

message bits. Partially due to the properties of this counter,

the HAIFA padding rule is suffix- and prefix-free. As a con-

sequence, the construction preserves collision resistance (cf.

Thm. 2) and the indifferentiability results of [32] carry over.

For the HAIFA design, these indifferentiability results are

improved in [19]. Furthermore, the HAIFA construction is

proven secure against second preimage attacks if the un-

derlying compression function is assumed to behave like an

ideal primitive [27].

Wide-pipe design. In the wide-pipe design [64], the iterated

state size is significantly larger than the final hash output: at

the end of the iteration, a fraction of the output of a con-

struction is discarded. As proved in [32], the MD construc-

tion with a distinct final transformation and/or chopping at

the end is indifferentiable from a random oracle.

Sponge functions. We do not explicitly consider sponge

functions [16] or their generalization [3] as a specific type

of construction: all SHA-3 candidates known to be sponge(-

like) functions, CubeHash, Fugue, JH, Keccak and Luffa,

can be described in terms of the chop-MD construction (pos-

sibly with a final transformation before or instead of the

chopping).

2.4 Concrete Security of Hash Functions and Differential

Cryptanalysis

All security notions and design approaches mentioned so far

substantially assume the underlying primitives of hash func-

tions (such as compression functions, permutations or block

ciphers) to behave in an idealized way, where the primitive

is randomly drawn from the corresponding class of primi-

tives. However, any practical setting requires the primitives

to be efficiently implementable, their representation being

compact. As a matter of fact, this does not comply to the

random procedure of choice assumed, since it is extremely

improbable to select a compactly implementable primitive

at random. Thus, once the rule of domain extension has been

proven sound assuming the idealness of the underlying

primitive, the problem of evaluating the concrete primitive

with respect to real-world attacks arises.

In this paper, we choose to employ the toolbox of differ-

ential cryptanalysis [23] to address the latter problem, par-

ticularly because this analysis approach is also responsible

for the attacks on MD5 and SHA-1, that are the main moti-

vation for the SHA-3 competition.

The security of hash functions with respect to such cen-

tral requirements as (second) preimage and collision resis-
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tance can be reformulated in terms of the input and out-

put differences of the underlying primitives. A large propor-

tion, though not all, of second-round SHA-3 candidates fol-

low design approaches allowing one to efficiently argue the

resistance of their primitives (compression functions, per-

mutations, ciphers) to differential cryptanalysis. These are

mainly those candidates relying on the substitution-diffusion

networks (often similar to AES [43] or even reusing its com-

ponents) which make proofs of some relevant properties in

the domain of differential cryptanalysis possible [34].

Differentials, DP, EDP. Strictly speaking, for some prim-

itive φ mapping to n bits, we do not want the differential

probability (DP) of any non-trivial differential (∆ ,∇) over

φ to significantly deviate from 2−n (see [35] for a compre-

hensive statistical study of this parameter for idealized per-

mutations and functions). The differential (∆ ,∇) for prim-

itive φ consists of input difference ∆ and output difference

∇. Once the parameters of φ are fixed (keys, salts, initial

vectors, etc.), one speaks about the differential probability

DP as the probability for (∆ ,∇) to hold averaged over all

inputs. The expected DP (EDP) is the DP averaged over all

sets of parameters for φ .

Differential trails, DTP, EDTP. For most practical con-

structions, however, it is often impossible to derive any tight

(and, thus, informative) upper bounds on DP or even EDP.

That is why, to simplify the analysis, one frequently has

to revert to differential trails and their probabilities for the

evaluation of designs with respect to differential cryptanal-

ysis [23,34]. A differential can be seen as the set of all dif-

ference propagation paths from ∆ to ∇ through intermedi-

ate differences corresponding to the iterations of an iterative

construction. Each of these paths is called a differential trail.

The probability that a differential trail holds is referred to

as differential trail probability (DTP). Similarly to differen-

tials, the expected DTP averaged over all parameters will be

denoted as EDTP.

For substitution-diffusion networks, a common belief is

that keeping the number of active S-boxes (those involved

into the difference propagation) high is correlated with lower

values of EDTPs and EDPs which gave rise to the wide trail

design strategy [36] and resulted in the successful design of

AES [34]. However, formally speaking, the number of active

S-boxes and their local DPs do not directly translate to EDP

over several rounds of primitives, being only adequate for

deriving bounds on single-round EDP. Attempts have been

made to compute informative upper bounds on EDP over

several rounds of AES: though it has been possible to com-

pute the exact maximum EDP for two rounds of AES [54],

the problem persists for 4 rounds [33]. However, one can

still prove some upper bounds on EDP over more than two

rounds, which has been done e.g. to evaluate the security of

SHAvite-3 and ECHO by their respective designers. As ap-

plied to SHA-3 candidates, we will talk about EDTP when-

ever the results deal with more rounds than one could cover

by a tight upper bound on EDP.

Depending on a concrete hash function among the sec-

ond round SHA-3 candidates, the respective designers deal

with distinct definitions of a differential trail to derive a

bound on EDTP for the building blocks. Such definitions

range from the S-box level (e.g. Fugue, Grøstl, and JH) to

several AES rounds (e.g. ECHO and SHAvite-3). As a rule,

going from the S-box level to the level of several rounds re-

sults in bounds on EDTP closer to EDP.

Throughout the paper, we refer to the upper bounds on

EDP and EDTP (attained or not attained) as MEDP and

MEDTP, respectively.

3 SHA-3 Hash Function Candidates

In this section, we analyze the security of the 14 remaining

SHA-3 candidates in more detail, from a provable security

perspective as well as with respect to the security against

classes of differential attacks. Each paragraph contains an

informal discussion for each candidate, its reductionist se-

curity results, and its security against differential attacks.

The mathematical descriptions of the (abstracted) designs

are given in Fig. 1, and the candidates’ padding functions

are summarized in Fig. 2.

With respect to the reductionist security, for simplicity

we only consider the proposals of the SHA-3 candidates

that output digests of 256 or 512 bits. Observe that in many

candidate SHA-3 hash function families, the algorithms out-

putting 224 or 384 bits are the same as the 256- or 512-bits

algorithms, except for an additional chopping at the end.

Particularly, the results of [32] and Thm. 2 carry over in most

of the cases. The same remark applies to requirement (vi)

of NIST.

Requirement (i). All designers claim that their proposal

can safely be used in HMAC mode [12] or for random-

ized hashing [53], and we do not discuss it here;

Requirements (ii)-(iv). Preimage, second preimage and

collision resistance of each hash function are discussed

in this section. Additionally, we also consider the indif-

ferentiability of the candidates;

Requirement (v). All hash function candidates are secure

against the length extension attack, and thus we do not

discuss it further.

The reductionist security results for all current candidate

hash functions are summarized in Table 1.

With respect to the security against classes of differential

attacks, the primitives of all candidate hash functions are

analyzed. These security results are summarized in Table 2.
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BLAKE:

(n, l,m,s, t) ∈ {(256,256,512,128,64),

(512,512,1024,256,128)}

E : Z2l
2 ×Z

m
2 → Z

2l
2 a block cipher

L : Zl+s+t
2 → Z

2l
2 , L′ : Z2l

2 → Z
l
2 linear functions

f (h,M,S,C) = L′(EM(L(h,S,C)))⊕h⊕ (S‖S)

BLAKE(M) = hk , where:

(M1, . . . ,Mk)← pad1(M); h0← IV

S ∈ Z
s
2; (Ci)

k
i=1 HAIFA-counter

hi← f (hi−1,Mi,S,Ci) for i = 1, . . . ,k

BMW:

(n, l,m) ∈ {(256,512,512),(512,1024,1024)}

E : Zm
2 ×Z

l
2→ Z

m
2 a block cipher

L : Zl+m+l
2 → Z

l
2 a compressing function

f (h,M) = L(h,M,Eh(M))

g(h) = f (IV′,h)

BMW(M) = h, where:

(M1, . . . ,Mk)← pad2(M); h0← IV

hi← f (hi−1,Mi) for i = 1, . . . ,k

h← chopl−n[g(hk)]

CubeHash:

(n, l,m) ∈ {(256,1024,256),(512,1024,256)}

P : Zl
2→ Z

l
2 a permutation

f (h,M) = P(h⊕ (M‖0l−m))

g(h) = P10(h⊕ (0992‖1‖031))

CubeHash(M) = h, where:

(M1, . . . ,Mk)← pad3(M); h0← IV

hi← f (hi−1,Mi) for i = 1, . . . ,k

h← chopl−n[g(hk)]

ECHO:

(n, l,m,s, t) ∈ {(256,512,1536,128,64/128),

(512,1024,1024,256,64/128)}

E : Z2048
2 ×Z

s+t
2 → Z

2048
2 a block cipher

L : Z2048
2 → Z

l
2 a linear function

f (h,M,S,C) = L(ES,C(h‖M)⊕ (h‖M))

ECHO(M) = h, where:

(M1, . . . ,Mk)← pad4(M); h0← IV

S ∈ Z
s
2; (Ci)

k
i=1 HAIFA-counter

hi← f (hi−1,Mi,S,Ci) for i = 1, . . . ,k

h← chopl−n[hk ]

Fugue:

(n, l,m) ∈ {(256,960,32),(512,1152,32)}

P, P̃ : Zl
2→ Z

l
2 permutations

L : Zl
2×Z

m
2 → Z

l
2 a linear function

f (h,M) = P(L(h,M))

Fugue(M) = h, where:

(M1, . . . ,Mk)← pad5(M); h0← IV

hi← f (hi−1,Mi) for i = 1, . . . ,k

h← chopl−n[P̃(hk)]

Grøstl:

(n, l,m) ∈ {(256,512,512),(512,1024,1024)}

P,Q : Zl
2→ Z

l
2 permutations

f (h,M) = P(h⊕M)⊕Q(M)⊕h

g(h) = P(h)⊕h

Grøstl(M) = h, where:

(M1, . . . ,Mk)← pad6(M); h0← IV

hi← f (hi−1,Mi) for i = 1, . . . ,k

h← chopl−n[g(hk)]

Hamsi:

(n, l,m) ∈ {(256,256,32),(512,512,64)}

P, P̃ : Z2n
2 → Z

2n
2 permutations

Exp : Zm
2 → Z

n
2 a linear code

f (h,M) = h⊕chopn[P(Exp(M)‖h)]

g(h,M) = h⊕chopn[P̃(Exp(M)‖h)]

Hamsi(M) = h, where:

(M1, . . . ,Mk)← pad7(M); h0← IV

hi← f (hi−1,Mi) for i = 1, . . . ,k−1

h← g(hk−1,Mk)

JH:

(n, l,m) ∈ {(256,1024,512),(512,1024,512)}

P : Zl
2→ Z

l
2 a permutation

f (h,M) = P(h⊕ (0l−m‖M))⊕ (M‖0l−m)

JH(M) = h, where:

(M1, . . . ,Mk)← pad8(M); h0← IV

hi← f (hi−1,Mi) for i = 1, . . . ,k

h← chopl−n[hk ]

Keccak:

(n, l,m) ∈ {(256,1600,1088),(512,1600,576)}

P : Zl
2→ Z

l
2 a permutation

f (h,M) = P(h⊕ (M‖0l−m))

Keccak(M) = h, where:

(M1, . . . ,Mk)← pad9(M); h0← IV

hi← f (hi−1,Mi) for i = 1, . . . ,k

h← chopl−n[hk ]

Luffa:

(n, l,m,w) ∈ {(256,768,256,3),(512,1278,256,5)}

Pi : Zm
2 → Z

m
2 (i = 1, . . . ,w) permutations

L : Zwm+m
2 → Z

wm
2 , L′ : Zwm

2 → Z
m
2 linear functions

f (h,M) = (P1(h
′
1)‖· · ·‖Pw(h

′
w))

where (h′1, . . . ,h
′
w) = L(h,M)

g(h) = (L′(h)‖L′( f (h,0m)))

Luffa(M) = h, where:

(M1, . . . ,Mk)← pad10(M); h0← IV

hi← f (hi−1,Mi) for i = 1, . . . ,k

h← chop512−n[g(hk)]

Shabal:

(n, l,m) ∈ {(256,1408,512),(512,1408,512)}

E : Z896
2 ×Z

1024
2 → Z

896
2 a block cipher

f (h,C,M) = (y1,h3−M,y3)

where h ∈ Z
l
2 → h = (h1,h2,h3) ∈ Z

384+m+m
2

and (y1,y3) = EM,h3
(h1⊕ (0320‖C),h2 +M)

Shabal(M) = h, where:

(M1, . . . ,Mk)← pad11(M); h0← IV

hi← f (hi−1,〈i〉64,Mi) for i = 1, . . . ,k

hk+i← f (hk+i−1,〈k〉64,Mk) for i = 1, . . . ,3

h← chopl−n[hk+3]

SHAvite-3:

(n, l,m,s, t) ∈ {(256,256,512,256,64),

(512,512,1024,512,128)}

E : Zl
2×Z

m+s+t
2 → Z

l
2 a block cipher

f (h,M,S,C) = EM,S,C(h)⊕h

SHAvite-3(M) = hk , where:

(M1, . . . ,Mk)← pad12(M); h0← IV

S ∈ Z
s
2; (Ci)

k
i=1 HAIFA-counter

hi← f (hi−1,Mi,S,Ci) for i = 1, . . . ,k

SIMD:

(n, l,m) ∈ {(256,512,512),(512,1024,1024)}

E, Ẽ : Zl
2×Z

m
2 → Z

l
2 block ciphers

f (h,M) = L(h,EM(h⊕M))

g(h,M) = L(h, ẼM(h⊕M))

SIMD(M) = h, where:

(M1, . . . ,Mk)← pad13(M); h0← IV

hi← f (hi−1,Mi) for i = 1, . . . ,k−1

hk ← g(hk−1,Mk)

h← chopl−n[hk ]

Skein:

(n, l,m) ∈ {(256,256,256),(512,512,512)}

E : Zm
2 ×Z

128
2 ×Z

l
2→ Z

m
2 a tweakable block cipher

f (h,T,M) = Eh,T (M)⊕M

Skein(M) = h, where:

(M1, . . . ,Mk)← pad14(M); h0← IV

(Ti)
k
i=1 round-specific tweaks

hi← f (hi−1,Ti,Mi) for i = 1, . . . ,k

h← chopl−n[hk ]

SHA-2:

(n, l,m) ∈ {(256,256,512),(512,512,1024)}

E : Zl
2×Z

m
2 → Z

l
2 a block cipher

f (h,M) = EM(h)+h

SHA-2(M) = hk , where:

(M1, . . . ,Mk)← pad15(M); h0← IV

hi← f (hi−1,Mi) for i = 1, . . . ,k

Fig. 1 The padding rules employed by the functions are summarized in Fig. 2. In all algorithm descriptions, IV denotes an initialization vector,

h denotes state values, M denotes message blocks, S denotes a (fixed) salt, C denotes a counter and T denotes a tweak. The functions L,L′,Exp
underlying BLAKE, BMW, ECHO, Fugue, Hamsi and Luffa, are explained in the corresponding section.
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BLAKE : pad1(M) = M‖1‖0−|M|−t−2 mod m‖1‖〈|M|〉t ,

BMW : pad2(M) = M‖1‖0−|M|−65 mod m‖〈|M|〉64,

CubeHash : pad3(M) = M‖1‖0−|M|−1 mod m,

ECHO : pad4(M) = M‖1‖0m−1−(|M|+144 mod m)‖〈n〉16‖〈|M|〉128,

Fugue : pad5(M) = M‖0−|M| mod m‖〈|M|〉64,

Grøstl : pad6(M) = M‖1‖0−|M|−65 mod l‖〈⌈(|M|+65)/l⌉〉64,

Hamsi : pad7(M) = M‖1‖0−|M|−1 mod m‖〈|M|〉64,

JH : pad8(M) = M‖1‖0383+(−|M| mod m)‖〈|M|〉128,

Keccak : pad9(M) = M‖1‖0−|M|−2 mod m1,

Luffa : pad10(M) = M‖1‖0(−|M|−1 mod m)+256,

Shabal : pad11(M) = M‖1‖0−|M|−1 mod m,

SHAvite-3 : pad12(M) = M‖1‖0−|M|−t−17 mod m‖〈|M|〉t‖〈n〉16,

SIMD : pad13(M) = M‖0−|M| mod m‖〈|M|〉m,

Skein : pad14(M) = M′‖0(−|M
′| mod m)+m,where M′ =

{

M if |M| ≡ 0 mod 8,

M‖1‖0−|M|−1 mod 8 otherwise.

SHA-2 : pad15(M) =

{

M‖1‖0−|M|−65 mod m‖〈|M|〉64, for n = 224,256,

M‖1‖0−|M|−129 mod m‖〈|M|〉128, for n = 384,512.

Fig. 2 The padding rules of all SHA-3 hash function candidates and SHA-2 are summarized. All padding functions output bit strings parsed as

sequences of m-bit blocks, where m is the message block length of the corresponding function. For the hash functions BLAKE, ECHO, Shabal,

SHAvite-3 and Skein, the complete padding rule of the corresponding hash function is additionally defined by a counter or tweak (as explained in

Sect. 3). Particularly, all hash functions employ an injective padding rule.

3.1. The BLAKE hash function [8] is a HAIFA construc-

tion. The message blocks are accompanied with a HAIFA-

counter, and more generally, the function employs a suffix-

and prefix-free padding rule. The compression function f is

block cipher based3. It moreover employs an injective linear

function L, and a linear function L′ that XORs the first and

second halves of the input.

Reductionist security of BLAKE. The compression func-

tion of BLAKE is proven optimally collision, second preim-

age and preimage resistant [5]. As the mode of operation of

BLAKE is based on the HAIFA structure, all security prop-

erties regarding this type (cf. Sect. 2.3) hold [21], provided

the compression function is assumed to be ideal. However,

as independently shown by Andreeva et al. [5] and Chang

et al. [31], the BLAKE compression function shows non-

random behavior: it is differentiable from a random com-

pression function in about 2n/4 queries, making the above-

mentioned security properties invalid. Still, Thm. 2 applies

to BLAKE, and as a consequence we obtain

Advcol
H = Θ(q2/2n). Additionally, a preimage for BLAKE

implies a preimage for its final transformation, and we ob-

tain Adv
pre
H

= Θ(q/2n). The hash function is moreover

proven optimally second preimage resistant in the ideal ci-

pher model by Andreeva et al. [5], which gives Advsec
H =

Θ(q/2n). Furthermore, the BLAKE hash function is proven

indifferentiable from a random oracle if the underlying block

cipher is ideal [5,31].

3 As observed in [8, Sect. 5], the core part of the compression func-

tion can be seen as a permutation keyed by the message, which we

view here as a block cipher.

Bounds on DTP for BLAKE. No informative bounds on

DTP are known for BLAKE.

3.2. The Blue Midnight Wish (BMW) hash function [50] is

a chop-MD construction, with a final transformation before

chopping. The hash function employs a suffix-free padding

rule. The compression function f is block cipher based4, and

the final transformation g consists of the same compression

function with the chaining value processed as a message,

and with an initial value as chaining input. The compres-

sion function employs a function L which consists of two

compression functions with specific properties as specified

in [50].

Reductionist security of BMW. The compression function

of BMW shows similarities with the PGV3 compression

function [25], but no security results are known for this vari-

ant. Theorem 2 applies to BMW, where the final transfor-

mation has no message block as input, and as a consequence

we obtain Advcol
H = Θ(q2/2n) (if f is assumed ideal). Ad-

ditionally, a preimage for BMW implies a preimage for its

final transformation, and we obtain Adv
pre
H

=Θ(q/2n). Fur-

thermore, albeit no indifferentiability proof for the BMW

hash function is known, we note that BMW can be seen as a

combination of the HMAC- and the chop-construction, both

proven indifferentiable from a random oracle [32]. We re-

mark that a distinguisher for the compression function of

BMW is derived in [7].

4 As observed in [50], the compression function can be seen as a

generalized PGV3 construction, where the function f0 of [50] defines

the block cipher keyed with the chaining value.
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Bounds on DTP for BMW. No informative bounds on DTP

are known for BMW.

3.3. The CubeHash hash function [15] is a chop-MD con-

struction, with a final transformation before chopping. The

compression function f is permutation based, and the final

transformation g consists of flipping a certain bit in the state

and applying 10 more compression function rounds on zero-

messages.

Reductionist security of CubeHash. The compression

function of CubeHash is based on one permutation5, and

collisions and preimages for the compression function can

be found in one query to the permutation [24]. The Cube-

Hash hash function is as parazoa design proven indifferen-

tiable from a random oracle if the underlying permutation

is assumed to be ideal [3]. Using Thm. 1, this indifferen-

tiability bound additionally renders an optimal collision re-

sistance bound for CubeHash, Advcol
H = Θ(q2/2n), as well

as an improved upper bound O
(

q
2n +

q2

2l−n

)

on the preimage

and second preimage resistance. Note that these bounds are

optimal for the n = 256 variant.

Bounds on DTP for CubeHash. No informative bounds on

DTP are known for CubeHash.

3.4. The ECHO hash function [14] is a chop-HAIFA con-

struction. The message blocks are accompanied with a

HAIFA-counter, and more generally, the function employs a

suffix- and prefix-free padding rule. The compression func-

tion f is block cipher based6. It moreover employs a linear

function L that chops the state in blocks of length l bits, and

XORs these.

Reductionist security of ECHO. The compression func-

tion of ECHO is a ‘chopped single call Type-I’ compres-

sion function in the categorization of [76]. Therefore, the

results of [76, Thm. 15] carry over, yielding optimal security

bounds for the compression function. Observe that these re-

sults can easily be adjusted to obtain bound Advcol
chop◦ f =

Θ(q2/2n). ECHO is a combination of HAIFA and chop-

MD, but it is unclear whether all HAIFA security properties

hold after chopping. Still, Thm. 2 applies to ECHO, and as

a consequence we obtain Advcol
H =Θ(q2/2n). Additionally,

a preimage for ECHO implies a preimage for its last com-

pression function, and we obtain Adv
pre
H

= Θ(q/2n). Fur-

thermore, the ECHO hash function would be indifferentiable

from a random oracle if the underlying compression func-

tion is assumed to be ideal, due to the chopping function at

the end [32]. However, the compression function of ECHO

5 Effectively, this permutation consists of one simpler permutation

executed 16 times iteratively.
6 As observed in [14], the core part of the compression function can

be seen as a permutation keyed by the salt and counter, which we view

here as a block cipher. This cipher is AES-based.

is easily differentiable from a random oracle [47], and we

cannot directly apply the results of [32].

Bounds on DTP for ECHO. The primitive for all versions

of ECHO is ECHO.AES with a 2048-bit block size, having

8 and 10 rounds for hash sizes up to 256 and 512 bit, respec-

tively. One underlying function of ECHO.AES is given by

the application of two AES rounds. The exact value of the

MEDP for two rounds of AES is about 2−28.27. One round of

ECHO.AES provides one active function. Two rounds pro-

vide an upper bound on MEDP of about 2−4·28.27, an equiv-

alent of four active functions. Similarly, the bound on the

MEDP over 4 rounds yields an equivalent of 16 active func-

tions. MEDP for ECHO is considered averaged over salt

and counter. Combining the above results, one obtains up-

per bounds on the differential trail probability over up to

10 rounds, outlined in Table 2. Note that a differential trail

in this case is defined as a concatenation of either 1, 2 or

4 rounds of ECHO.AES. Correspondingly, the MEDTP is

computed under the consideration of the above MEDP val-

ues for 1, 2 or 4 rounds of ECHO.AES.

3.5. The Fugue hash function [52] is a chop-MD construc-

tion, with a final transformation before chopping. The hash

function employs a suffix-free padding rule. The compres-

sion function f is permutation based, and the final transfor-

mation consists of a permutation P̃ which differs from P in

the parametrization. The compression function employs a

linear function L for message injection (TIX of [52]).

Reductionist security of Fugue. The compression function

of Fugue is based on one permutation, and collisions and

preimages for the compression function can be found in one

query to the permutation [24]. As a consequence, the re-

sult of Thm. 2 is irrelevant, even though the padding rule of

Fugue is suffix-free. The Fugue hash function is as parazoa

design proven indifferentiable from a random oracle if the

underlying permutations P and P̃ are assumed to be ideal

[3]. Using Thm. 1, this indifferentiability bound addition-

ally renders an optimal collision resistance bound for Fugue,

Advcol
H = Θ(q2/2n), as well as an improved upper bound

O
(

q
2n +

q2

2l−m−n

)

on the preimage and second preimage re-

sistance. Note that these bounds are optimal for the n = 256

variant. We remark that a distinguisher for the final round of

Fugue is derived in [9,48].

Bounds on DTP for Fugue. For Fugue a number of argu-

ments against differential attacks exist that are, compared to

all other bounds for candidates discussed in this paper, rather

different in nature. The main statement for Fugue is a theo-

rem, that assumes that the adversary is given a random pair

of states satisfying any difference of his choice. It then in-

vestigates whether the adversary would be able to find a pair

of message inputs that converts these states into a full inter-

nal collision after exactly four round transformations. The

theorem proves, under some independence assumption, that
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the probability that such message inputs exist is bounded by

2−168. For a lower number of rounds, the probability will be

higher though, while it is not clear how the probability of a

higher number of rounds will be.

3.6. The Grøstl hash function [49] is a chop-MD construc-

tion, with a final transformation before chopping. The hash

function employs a suffix-free padding rule. The compres-

sion function f is permutation based, and the final transfor-

mation g is defined as g(h) = P(h)⊕h.

Reductionist security of Grøstl. The compression func-

tion of Grøstl is permutation based, and the results of [74,

75] apply. Furthermore, the preimage resistance of the com-

pression function is analyzed in [46], and an upper bound

for collision resistance can be obtained easily. As a conse-

quence, we obtain tight security bounds on the compression

function, Adv
pre
f =Θ(q2/2l) and Advcol

f =Θ(q4/2l). In the

ideal model, everywhere second preimage resistance of the

compression function can be proven similar as the preim-

age resistance, up to a constant (the security analysis dif-

fers only in that we give the adversary one query for free).

Theorem 2 applies to Grøstl, where the final transforma-

tion has no message block as input. Observe that we also

have Advcol
chop◦g = Θ(q2/2n), and as a consequence we ob-

tain Advcol
H =Θ(q2/2n). Additionally, a preimage for Grøstl

implies a preimage for its final transformation, and we ob-

tain Adv
pre
H

= Θ(q/2n). The hash function is moreover

proven optimally second preimage resistant in the ideal per-

mutations model [6], which gives Advsec
H = Θ(q/2n−L),

where the first preimage is of length at most 2L blocks. Fur-

thermore, the Grøstl hash function is proven indifferentiable

from a random oracle if the underlying permutations are

ideal [1].

Bounds on DTP for Grøstl. The compression function of

Grøstl is based on two permutations of size 512 for Grøstl-

224 and Grøstl-256, and is based on two permutations of

size 1024 for Grøstl-384 and Grøstl-512. Those permuta-

tions are designed according to the wide trail design strategy

[36], hence known bounds on the MEDTP carry over as fol-

lows. For 2 rounds, at least 9 S-boxes, for 4 rounds, at least

81 S-boxes are active. A lower bound on the DP of the em-

ployed AES S-box is 2−6. From this, the 4-round MEDTP

is 2−486. For the 10-round 512-bit permutation the MEDTP

is hence 2−1026, and for the 14-round 1024-bit permutation

the MEDTP is hence 2−1512.

3.7. The Hamsi hash function [59] is a MD construction,

with a final transformation before chopping. The hash func-

tion employs a suffix-free padding rule. The compression

function f is permutation based, but the last round is exe-

cuted with a compression function g based on a permutation

P̃ which differs from P in the parametrization. The com-

pression functions employ a linear code Exp for message

injection [59].

Reductionist security of Hamsi. The compression func-

tion of Hamsi is a ‘chopped single call Type-I’ compression

function in the categorization of [76]. Therefore, the results

of [76, Thm. 15] carry over, yielding optimal security

bounds for the compression function. Observe that these

bounds also apply to the function g. Theorem 2 applies to

Hamsi, and as a consequence we obtain Advcol
H =Θ(q2/2n).

Additionally, a preimage for Hamsi implies a preimage for

its last compression function, and we obtain

Adv
pre
H

= Θ(q/2n). Furthermore, the Hamsi hash function

is proven indifferentiable from a random oracle if the under-

lying permutations are ideal [60].

Bounds on DTP for Hamsi. No informative bounds on DTP

are known for Hamsi.

3.8. The JH hash function [82] is a chop-MD construction.

The hash function employs a suffix-free padding rule. The

compression function f is permutation based.

Reductionist security of JH. The compression function of

JH is based on one permutation, and collisions and preim-

ages for the compression function can be found in one query

to the permutation [24]. As a consequence, the result of

Thm. 2 is irrelevant, even though the padding rule of JH is

suffix-free. The JH hash function is proven optimally colli-

sion resistant [62], and proven preimage and second preim-

age resistant up to bound O
(

q
2n +

q2

2l−m

)

[6]. Furthermore,

the JH hash function is proven indifferentiable from a ran-

dom oracle if the underlying permutation is ideal [20].

Bounds on DTP for JH. The JH permutation consists of 42

rounds of a generalized AES-like structure. Note the number

of rounds has been increased in the 3rd round submission

documents for JH. The maximum DP of the 4-bit S-box used

is 2−2. The specification document suggests that 17 rounds

of the underlying permutation yield at least 296 active S-

boxes. Since no formal treatment of the differential effect

has been conducted, we consider the differential trails on the

S-box level in this work. So the MEDTP for the 2 ·17 = 34

rounds is at most 2−1184, which is also the MEDTP value we

take for all 42 rounds, as no lower bounds are provided on

the number of active S-boxes for less than 17 rounds.

3.9. The Keccak hash function [18] is a chop-MD construc-

tion. The compression function f is permutation based. The

hash function output is obtained by chopping off l− n bits

of the state. Notice that the parameters of Keccak satisfy

l = 2n+m.

Reductionist security of Keccak. The compression func-

tion of Keccak is based on one permutation, and collisions

and preimages for the compression function can be found in

one query to the permutation [24]. The Keccak hash function

is proven indifferentiable from a random oracle if the under-

lying permutation is assumed to be ideal [17]. Using Thm. 1,

this indifferentiability bound additionally renders an optimal
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collision resistance bound for Keccak, Advcol
H = Θ(q2/2n),

as well as an optimal preimage second preimage resistance

bound Θ(q/2n).

Bounds on DTP for Keccak. No informative bounds on

DTP are known for Keccak.

3.10. The Luffa hash function [38] is a chop-MD construc-

tion, with a final transformation before chopping. The com-

pression function f is permutation based, and the final trans-

formation g is built on this compression function and a lin-

ear function L′ that chops the state in blocks of length m bits,

and XORs these. The compression function employs a lin-

ear function L for message injection (MI of [38])7. Notice

that the state size of Luffa satisfies l = w ·m.

Reductionist security of Luffa. The compression function

of Luffa is based on w permutations executed independently.

As a consequence, collisions and preimages for the com-

pression function can be found in at most 5 queries to the

permutations [24]. The Luffa hash function borrows charac-

teristics from the sponge design and is similar to the parazoa

design, if the permutation P consisting of the w permutations

Pi is considered ideal, and ideas from the indifferentiability

proofs of [3,17] may carry over. However, for the case of w

different permutations Pi this is not immediately clear. We

remark that a distinguisher for the permutation of Luffa is

derived in [56].

Bounds on DTP for Luffa. The Luffa permutations consist

of 8 rounds. Using an exhaustive search, designers report

a minimal number of active S-boxes for 4 rounds of 31. A

lower bound on the DP of the employed AES S-box is 2−2,

hence the MEDTP for the full 8-round permutation is 2−124.

3.11. The Shabal hash function [28] is a chop-MD construc-

tion. The message blocks are accompanied with a counter,

and the last block is iterated three times. In particular, the

function employs a suffix- and prefix-free padding rule. The

compression function f is block cipher based. Notice that

the parameters of Shabal satisfy l = 384+2m.

Reductionist security of Shabal. A bound on the collision

resistance of the compression function of Shabal is derived

in [28]. Concretely, it is proven that the Shabal compres-

sion function is collision resistant up to q= 2(l−m)/2 queries.

Theorem 2 applies to Shabal. Collision and preimage resis-

tance of Shabal are studied in [28], yielding optimal bounds

Adv
pre
H

= Θ(q/2n) and Advcol
H = Θ(q2/2n). Furthermore,

the same authors prove the Shabal hash function to be in-

differentiable from a random oracle if the underlying block

cipher is assumed to be ideal [28]. Using Thm. 1, this in-

differentiability bound additionally renders an improved up-

per bound O
(

q
2n +

q2

2l−m

)

on the second preimage resistance.

7 We defined the output transformation in a slightly more compli-

cated but unified way. Essentially, Luffa256 simply outputs L′(h). Ob-

serve that we implicitly captured the extra compression function call in

the adjusted padding.

Note that this bound is optimal for the n = 256 variant. We

remark that a distinguisher for the block cipher of Shabal is

derived in [10,11,57,70,79].

Bounds on DTP for Shabal. No informative bounds on

DTP are known for Shabal.

3.12. The SHAvite-3 hash function [22] is a HAIFA con-

struction. The message blocks are accompanied with a

HAIFA-counter, and more generally, the function employs a

suffix- and prefix-free padding rule. The compression func-

tion f is block cipher based.

Reductionist security of SHAvite-3. The compression

function of SHAvite-3 is the PGV5 compression function,

and the security results of [25] carry over. As a consequence,

we obtain optimal security bounds on the compression func-

tion. The mode of operation of SHAvite-3 is based on the

HAIFA structure, and as a consequence all security prop-

erties regarding this type hold [21]. In particular, the de-

sign preserves collision resistance, and as a consequence

we obtain Advcol
H = Θ(q2/2n). Also, the design is secure

against second preimage attacks. Additionally, a preimage

for SHAvite-3 implies a preimage for its last compression

function, and we obtain Adv
pre
H

= Θ(q/2n). Finally, the

SHAvite-3 hash function is indifferentiable from a random

oracle if the underlying block cipher is assumed to be ideal,

due to the prefix-free padding [32]. This result has been im-

proved under the assumption that the underlying compres-

sion function is ideal [19]. However, the compression func-

tion of SHAvite-3 is easily differentiable from a random or-

acle due to the presence of fixed-points.

Bounds on DTP for SHAvite-3. The underlying cipher for

SHAvite-3224 and SHAvite-3256 is E256 which operates on

two block halves of 128 bit each using the balanced Feistel

construction. Every two or three rounds of balanced Feistel

add at least one or two active functions, respectively. The

differential probability of one function (3 AES rounds) in

E256 is shown to be upper bounded by 2−49 [22]. This leads

to at least 8 functions active within 12 rounds and a differen-

tial trail probability of at most 2−392 after 12 rounds of E256.

While the lower bounds of [22] on the number of differen-

tially active functions appear to be tight for E256, this is not

the case for E512, the block cipher underlying SHAvite-3384

and SHAvite-3512 which is based on a 4-line type-II gener-

alized Feistel network structure. One can prove that 2, 3, 4,

5 and 6 rounds of E512 yield at least 1, 2, 3, 4 and 6 differ-

entially active functions, respectively. This result combined

with the proven upper bound of 2−113 on the differential

probability of one function (4 AES rounds) [22] gives the

upper bound of 2−1356 on the differential trail probability

over 14 rounds of E512. Note that we consider differential

trails on the round level of SHAvite-3 here.

3.13. The SIMD hash function [63] is a chop-MD construc-

tion, with a final transformation before chopping. The hash
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function employs a suffix-free padding rule. The compres-

sion function f is block cipher based, but the last round is

executed with a compression function g based on a block ci-

pher Ẽ which differs from E in the parametrization. These

function employ a quasi-group operation8 L [63].

Reductionist security of SIMD. The compression function

of SIMD is a ‘rate-1 Type-I’ compression function in the

categorization of [76]. Therefore, the results of [76, Thm. 6]

carry over, yielding optimal security bounds for the com-

pression function. Observe that these bounds also apply to

the function g. Observe moreover that these results can eas-

ily be adjusted to obtain bound Advcol
chop◦g =Θ(q2/2n). The-

orem 2 applies to SIMD, and as a consequence we obtain

Advcol
H =Θ(q2/2n). Additionally, a preimage for SIMD im-

plies a preimage for its last compression function, and we

obtain Adv
pre
H

= Θ(q/2n). Furthermore, the SIMD hash

function would be indifferentiable from a random oracle if

the underlying compression functions are assumed to be

ideal, due to the chopping function at the end [32]. However,

the compression functions of SIMD are easily differentiable

from a random oracle [26], and we cannot directly apply the

results of [32].

Bounds on DTP for SIMD. A number of arguments against

differential attacks are made [26] that do not directly fit into

the framework considered in this paper as they are based

on some (mild) conditions rather than applying uncondi-

tionally. One assumption is that the attacker has to use dif-

ferences on the message input, which rules out certain at-

tacks on building blocks like the block cipher or compres-

sion function. Using a minimum distance of 520 for SIMD-

256 and 1032 for SIMD-512, and a number of assumptions

some of which are in favor of an attacker and some of the de-

sign, authors give a lower bound of at least 132 conditions

for any differential trail in SIMD-256, and a lower bound

of at least 253 conditions for any differential trail in SIMD-

512.

3.14. The Skein hash function [41] is a chop-MD construc-

tion. The message blocks are accompanied with a round-

specific tweak9, and more generally, the function employs a

suffix- and prefix-free padding rule. The compression func-

tion f is based on a tweakable block cipher.

Reductionist security of Skein. The compression function

of Skein is the PGV1 compression function, with a differ-

ence that a tweak is involved. As claimed in [13], the results

8 For any of the variables fixed, the function L is a permutation.
9 More formally, the design is based on the UBI (unique block iden-

tifier) chaining mode which queries its underlying tweakable block ci-

pher on additional tweaks, that differ in each iteration. The general

description of Skein involves a specific final transformation. In the

primary proposal of the hash function, however, this final transforma-

tion consists of another execution of the compression function, with an

output-specific tweak and with message 0m. As we included this final

message block in the padding, the given description of Skein suffices.

of [25] carry over, which in turn results in optimal security

bounds on the compression function. Theorem 2 applies to

Skein, and as a consequence we obtain Advcol
H =Θ(q2/2n).

Additionally, a preimage for Skein implies a preimage for its

last compression function, and we obtain Adv
pre
H

=Θ(q/2n).

The hash function is moreover proven optimally second

preimage resistant in the ideal cipher model [6], which gives

Advsec
H =Θ(q/2n). Furthermore, the Skein hash function is

proven indifferentiable from a random oracle if the underly-

ing tweakable block cipher is assumed to be ideal [13]. This

proof is based on the preimage-awareness approach [40].

Bounds on DTP for Skein. No informative bounds on DTP

are known for Skein.

3.15. The SHA-2 hash function [44] is an MD construction.

The hash function employs a suffix-free padding. The com-

pression function f is block cipher based.

Reductionist security of SHA-2. The compression function

of SHA-2 is the PGV5 compression function (with minor

modification), and the security results of [25] carry over. As

a consequence, we obtain optimal security bounds on the

compression function. Theorem 2 applies to SHA-2, and as

a consequence we obtain Advcol
H =Θ(q2/2n). Additionally,

a preimage for SHA-2 implies a preimage for its last com-

pression function, and we obtain Adv
pre
H

= Θ(q/2n). The

hash function is moreover proven optimally second preim-

age resistant in the ideal function model [27], which gives

Advsec
H = Θ(q/2n−L), where the first preimage is of length

at most 2L blocks. Furthermore, the SHA-2 hash function

is differentiable from a random oracle due to an attack de-

scribed in [32].

Bounds on DTP for SHA-2. No informative bounds on

DTP are known for SHA-2.

4 Summary and Conclusions

In this survey, we compared the security achieved by the

round 2 SHA-3 hash function candidates. The main con-

tribution of this paper are the summary of the security re-

ductions for the hash function candidates in Table 1, and a

comparison of the resistance of the designs against classes

of differential attacks in Table 2. Before giving an interpre-

tation of these results, we first make some remarks on the

provided classification.

– Assuming ideality of the underlying primitives (permu-

tations or block ciphers) is not realistic. In particular,

none of the candidates’ primitives is ideal, and some

even have identified weaknesses. However, assuming

ideality of these primitives gives significantly more con-

fidence in the security of the higher level structure and

is the only way to get useful (and comparable) security

bounds on the candidate hash functions;
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Table 2 Maximum EDTP (MEDTP) for the 14 second round SHA-3 candidates. Note that the presented bounds do not allow for direct comparisons, as proofs of bounds on
EDTP for different hash functions work with distinct definitions of a differential trail. See the respective subsections of Sect. 3 for the differential trail definitions for each specific
hash function under consideration. Note that the absence of MEDTP-related information (marked with -) does not mean that the respective design is insecure against differential
cryptanalysis. Neither does it mean that there are no other attacks on the design.

hash size rounds log2MEDTP r for r/R for r with log2MEDTP log2 MEDTP log2MEDTP

n R for R MEDTP ≈ 2−n log2MEDTP ≈−n for R/4 for R/3 for R/2

BLAKE all - - - - - - -

BMW all - - - - - - -

CubeHash all - - - - - - -

ECHO

224 8 −904.64 4 0.500 −113.08 −141.35 −452.32

256 8 −904.64 4 0.500 −113.08 −141.35 −452.32

384 10 −1017.72 4 0.400 −141.35 −452.32 −480.32

512 10 −1017.72 6 0.600 −141.35 −452.32 −480.32

Fugue all Comes with bounds regarding differential attacks that do not fit into the framework we use here. See Sect. 3.5.

Grøstl

224 10 −972 4 0.400 -54 -102 -534

256 10 −972 4 0.400 -54 -102 -534

384 14 −1458 4 0.286 -102 -486 -588

512 14 −1458 5 0.357 -102 -486 -588

Hamsi all - - - - - - -

JH

224 42 <−1184 < 17 < 0.405 - - <−592

256 42 <−1184 < 17 < 0.405 - - <−592

384 42 <−1184 < 17 < 0.405 - - <−592

512 42 <−1184 ≈ 17 ≈ 0.405 - - <−592

Keccak all - - - - - - -

Luffa

224 8 −124 > 8 > 1 - - -

256 8 −124 > 8 > 1 - - -

384 8 −124 > 8 > 1 - - -

512 8 −124 > 8 > 1 - - -

Shabal all - - - - - - -

SHAvite-3

224 12 −392 8 0.667 −98 −98 −196

256 12 −392 9 0.750 −98 −98 −196

384 14 −1469 5 0.357 −339 −452 −678

512 14 −1469 6 0.423 −339 −452 −678

SIMD all Comes with bounds regarding differential attacks that do not fit into the framework we use here. See Sect. 3.13.

Skein all - - - - - - -

SHA-2 all - - - - - - -

– The fact that different hash functions have different

bounds, does not directly imply that one of the func-

tions offers a higher level of security: albeit the under-

lying structure of the basic primitives is abstracted away

(see the previous item), still many differences among the

schemes remain (chaining size, message input size, etc.).

Moreover, not all bounds are tight, and different defini-

tions of differential trails are employed.

In general, stronger assumptions as a rule imply stronger

claims, however, results making less assumptions often offer

higher correlation with the real-world security.

4.1 Reductionist Security

Security of the compression function. For the sponge(-like)

hash functions, CubeHash, Fugue, JH, Keccak and

Luffa, collisions and preimages for the compression

function can be found in a constant number of queries.

This does not have direct implications for the security of

the hash function. In fact, the only consequence is that

it becomes unreasonable to assume ideality of the com-

pression function in order to prove security at a higher

level. Most of the remaining nine candidates are pro-

vided with a tight bound for collision and/or preimage

resistance of the compression function, merely due to

the results of [25,76,5]. Single exception is BMW, for

which the results of [76] are not directly applicable. With

respect to second preimage resistance of the compres-

sion functions, we note that in the ideal model (every-

where) second preimage resistance of the compression

function can be proven similar as the preimage resis-

tance, up to a constant (the security analysis differs only

in that we give the adversary one query for free);

Indifferentiability of the hash function. Ten of the candi-

dates are proven indifferentiable from a random oracle,

and four of the candidates have a similar constructions

to ones proven indifferentiable. We note that there ex-

ist some differences among the bounds. For instance, for

the hash function variant outputting n = 512 bits, the in-

differentiability bounds vary between O(Kq3/2512) and

O((Kq)2/21024). These differences are mainly caused by

the fact that the bounds are parameterized by the inter-

nal chaining value size l, rather than the output size n

(as is the case for bounds on the collision resistance). As

a consequence, a higher state size often results in a bet-
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ter indifferentiability bound. The indifferentiability re-

sults are powerful, as they render bounds on the (second)

preimage and collision resistance of the design (Thm. 1);

(Second) preimage resistance of the hash function. Most of

the hash functions are not provided with an optimal se-

curity bound on the second preimage resistance. Main

cause for this is that the MD design does not preserve

second preimage resistance [4]. Additionally, the second

preimage bound that can be derived via the indifferen-

tiability (Thm. 1) is not always sufficiently tight. Prov-

ing security against these attacks could be attempted ei-

ther by making a different (possibly weaker) assumption

on the compression function or by basing it directly on

the ideality of the underlying block cipher or permuta-

tion(s). A fruitful direction might be the graph based ap-

proach followed in [5,6,27,28];

Collision resistance of the hash function. Except for the

sponge(-like) functions, the collision resistance preser-

vation result of Thm. 2 (App. B) applies to all candi-

dates. This theorem results in a bound on the generic col-

lision resistance of the hash function, which, intuitively,

means that ‘finding collisions for the hash function is at

least as hard as finding collisions for (one of) the un-

derlying function(s)’. Together with the collision resis-

tance bounds on the compression functions in the ideal

model, the preservation result allows for obtaining a col-

lision resistance bound on the entire hash function. This

leads to optimal bounds on the collision resistance for

ECHO, Grøstl, Hamsi, SHAvite-3, SIMD and Skein. For

BLAKE, CubeHash, Fugue, JH, Keccak and Shabal, the

same optimal bound is obtained differently (e.g. based

on the indifferentiability of the hash function). Again,

the graph based approach may be suitable to prove col-

lision resistance of the candidates for which no collision

resistance bound is yet obtained.

4.2 Bounds on the Differential Properties

We presented a first approach to the problem of compar-

ing the differential properties of diverse contemporary hash

function designs at the example of the second round SHA-3

candidates. This research problem is not easy, nor is it close

to being resolved, which is mainly for the following reasons:

– Many hash function primitives have been designed us-

ing non-SPN approaches, mostly relying on ARX oper-

ations, for which it does not appear trivial to compute

an informative upper bound on any differential proper-

ties such as differential trail probability. Therefore, for

approximately half of the SHA-3 candidates we do not

know where the bounds are and we have to perform our

comparative analysis among the remaining designs only;

– The bounds on differential properties are derived for sin-

gle underlying primitives, while a hash function can in-

voke multiple primitives in each compression step: it is

one invocation for ECHO, Fugue, JH, and SHAvite-3,

two invocations for Grøstl, as well as 3 to 5 invocations

for Luffa. This fact has to be taken into account before

drawing conclusions about the security of a hash func-

tion with respect to differential attacks. Note also that

different attacks can use different numbers of building

blocks and relations among them;

– Strictly speaking, given a bound on the expected differ-

ential trail probability it is hard to say what it exactly

implies for the expected differential probability, since

there might be strong differential effects. Note that such

MEDTP bounds as the ones for ECHO and SHAvite-3

already take into account much of the differential effect;

– An upper bound on the expected differential trail proba-

bility (averaged over some parameters of the primitive)

can make only a limited statement about the differential

probability taken for the fixed parameters or the max-

imum differential probability taken over all inputs. At

the same time, it is exactly the latter properties which

are related to the real-world attack complexities on hash

functions.

Each of the limitations mentioned can be seen as an impor-

tant research problem which can be informally summarized

as deriving tighter bounds on more informative properties of

larger objects. We think that having some formal arguments

against at least basic types of attacks contributes to the con-

fidence in the design.

A hash function that is provided with a sound security

analysis, is not necessarily a ‘good’ function, nor is it a ‘bad’

function if only little security results are known. The qual-

ity of the hash function depends further on other criteria not

covered in this classification, such as its software/hardware

performance as well as the strength of a concrete instanti-

ation towards more specific attacks, not necessarily of dif-

ferential nature. Yet, both security reductions and provable

resistance against basic differential cryptanalysis guarantee

that the hash function has no severe structural weaknesses,

and in particular that the design does not suffer weaknesses

that can be trivially exploited by cryptanalysts.
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A Security Implications of Indifferentiability

Indifferentiability assures that a design is structurally correct, and that

it can replace a random oracle without security loss. In particular, it

guarantees that, up to a certain degree, the design is secured against

any generic attack, like finding preimages, collisions, multicollisions,

etc. In Thm. 1, we formally prove a security reduction to derive security

against specific attacks from the indifferentiability of a hash function.

This proof is based on a personal communication with Joan Daemen.

Theorem 1 Let H be a hash function, built on underlying primitive π ,

and RO be a random oracle, where H and RO have the same domain

and range space. Denote by Adv
pro
H

(q) the advantage of distinguishing

(H,π) from (RO,S), for some simulator S, maximized over all distin-

guishers D making at most q queries. Let atk be a security property of

H. Denote by Adv
atk
H (q) the advantage of breaking H under atk, maxi-

mized over all adversaries A making at most q queries. Then:

Adv
atk
H (q)≤ Pr

atk
RO(q)+Adv

pro
H

(q), (1)

where Pr
atk
RO(q) denotes the success probability of a generic attack

against H under atk, after at most q queries.

Proof Let A be any (q,ε) attacker for H under security notion atk, and

assume ε > Pratk
RO(q). We define a distinguisher D for the indifferentia-

bility of H as follows: D makes the same queries as A, and obtains

a query history Q (with query answers coming from either H or RO).

Next, D outputs 1 if Q violates security notion atk, and 0 otherwise.

Denote by Adv
pro
H

(D) the success probability of D. By definition, we

have
∣

∣Pr
(

DH,π = 1
)

−Pr
(

DRO,S = 1
)∣

∣= Adv
pro
H

(D)≤ Adv
pro
H

(q).
By EH (resp. ERO), we denote the event that Q defines a set of

query pairs that break H (resp. RO) under security notion atk. The dis-

tinguisher outputs 1 if and only if Q violates security notion atk, and

hence we obtain:

Pr
(

D
H,π = 1

)

=Pr
(

D
H,π = 1 | EH

)

Pr(EH)

+Pr
(

D
H,π = 1 | ¬ EH

)

Pr(¬ EH)

=1 ·Pr(EH)+0 = ε.

Similarly, we get Pr
(

DRO,S = 1
)

= Pr(ERO) = Pratk
RO(q). As

ε > Pratk
RO(q), we consequently derive ε ≤ Pratk

RO(q)+Adv
pro
H

(q). This

holds for any (q,ε) adversary for H under security notion atk, which

completes the proof. ⊓⊔

B Preservation of Collision Resistance

For the purpose of the analysis of the SHA-3 candidates, we generalize

the well-known result by Merkle and Damgård. The result of Thm. 2

differs in three cases: we consider any suffix-free padding, the proof

allows for different compression functions in one hash function eval-

uation, and it includes an optional chopping at the end. Related work

can, a.o., be found in [37,39,67,68].

Theorem 2 Let l,m,n ∈ N such that l ≥ n. Let pad : Z∗2 → (Zm
2 )
∗

be

a suffix-free padding and let f ,g : Zl
2×Z

m
2 → Z

l
2 be two compression

functions. Consider the hash function H : Z∗2→ Z
n
2 defined as follows

(cf. Fig. 3), where h0 = IV is the initialization vector:

H(M) = h, where: (M1, . . . ,Mk) = pad(M),

hi = f (hi−1,Mi) for i = 1, . . . ,k−1,

hk = g(hk−1,Mk),

h = chopl−n(hk).

Define the function g′ : Zl
2×Z

m
2 → Z

n
2 by g′ = chopl−n ◦ g. Then, the

advantage of finding collisions for H is upper bounded by the advan-

tage of finding collisions for f or g′. Formally, if f is (t1,ε1) collision

secure, and g′ is (t2,ε2) collision secure, then H is (t,ε) collision se-

cure for ε = ε1 + ε2, and t = min{t1, t2}−2(K−1)τ f , where τ f is the

time to evaluate f and K is the maximum length of the messages, in

blocks.

Proof Suppose A is a (t,ε) collision finding attacker for H. We con-

struct collision finding adversaries B1 and B2 for f and g, respectively,

using the following observation.

Let M,M′ be two distinct messages such that H(M) =H(M′). Let

(M1, . . . ,Mk) be the padded message of M, and (M′1, . . . ,M
′
k′
) be the

padded message of M′. Define the intermediate state values hi,h
′
i sim-

ilarly. A collision on M,M′ means that

chopl−n

(

g(hk−1,Mk)
)

= chopl−n

(

g(h′k′−1,M
′
k′ )
)

.

Now, if (hk−1,Mk) 6= (h′
k′−1,M

′
k′
) this results in a collision for g′. As-

sume the contrary, and let j ∈ {1, . . . ,min{k,k′}− 1} be the minimal

index such that (hk− j−1,Mk− j) 6= (h′
k′− j−1,M

′
k′− j

). We notice that such

index j exists: in case k = k′ it exists as M 6= M′, and in case k 6= k′

it exists as the padding rule is suffix-free. By definition of the index j,

we have hk− j = h′
k′− j

, and in particular we obtain a collision for f :

f (hk− j−1,Mk− j) = hk− j = h′k′− j = f (h′k′− j−1,M
′
k′− j).

Both B1,B2 follow this procedure. If M,M′ define a collision for f , B1

outputs this collision. Similarly for B2 and g′. Both adversaries work in

time at most t + 2(K− 1)τ f , from which we deduce t ≥ min{t1, t2}−
2(K− 1)τ f . The messages M,M′ define a collision for f or g′. Thus,

we obtain ε ≤ ε1 + ε2. ⊓⊔

In case the design is based on the compression function f only (but it

may still include the chopping), the above result can easily be simpli-

fied to Adv
gcol
H

(A) ≤ Adv
gcol

f ′
(B1), where f ′ = chopl−n ◦ f . Observe

that this result also holds if l = n, and in particular, the basic theorems

of Merkle and Damgård are covered as well. We note that Thm. 2 can

be generalized arbitrarily, e.g. to more different compression functions,

but for the purpose of this paper, the mentioned generalization of the

Merkle-Damgård structure suffices.
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