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On selecting an optimal wavelet for detecting singularities  
in traffic and vehicular data  

Zuduo Zheng1* and Simon Washington1 

1Queensland University of Technology, Brisbane QLD 4001 Australia 

Abstract 
Serving as a powerful tool for extracting localized variations in non-stationary signals, 
applications of wavelet transforms (WTs) in traffic engineering have been introduced; however, 
lacking in some important theoretical fundamentals. In particular, there is little guidance 
provided on selecting an appropriate WT across potential transport applications. This research 
described in this paper contributes uniquely to the literature by first describing a numerical 
experiment to demonstrate the shortcomings of commonly-used data processing techniques in 
traffic engineering (i.e., averaging, moving averaging, second-order difference, oblique 
cumulative curve, and short-time Fourier transform). It then mathematically describes WT’s 
ability to detect singularities in traffic data. Next, selecting a suitable WT for a particular 
research topic in traffic engineering is discussed in detail by objectively and quantitatively 
comparing candidate wavelets’ performances using a numerical experiment. Finally, based on 
several case studies using both loop detector data and vehicle trajectories, it is shown that 
selecting a suitable wavelet largely depends on the specific research topic, and that the Mexican 
hat wavelet generally gives a satisfactory performance in detecting singularities in traffic and 
vehicular data. 

Keywords:  Wavelet transform; Singularity detection; Traffic data analysis; the Mexican hat 
wavelet; Short-time Fourier transform; Oblique cumulative curve 

1. Introduction 
Irregular structures and transient phenomena (singularities hereafter) of a signal (curve, graph) 
often contain considerably rich information regarding the phenomenon being studied, as 
examples edge detection in image processing (Mallat and Zhong, 1992), vibration analysis in 
machine health monitoring (Peng and Chu, 2004), and irregular structure detection in physics 
(Argoul et al., 1988), etc.  Considering applications in transport, singularities in traffic data may 
indicate activation or deactivation of a bottleneck, state changes of traffic flow, and occurrences 
of abnormal events; these in vehicular data may indicate the start of a driver accelerating or 
decelerating, or changing lanes. Thus, to correctly understand traffic flow characteristics and 
individual driving behavior, singularities in traffic data and/or vehicular data need to be 
accurately and reliably detected. Despite these rather straightforward examples, however, 
random and systematic noise contained in transport related data often makes detection of 
singularities extremely challenging.
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  Obviously, there is a tradeoff between dampening noise’s impact on the underlying signal and 
preserving authentic singularities in the data. Unfortunately, commonly-used data processing 
techniques in traffic engineering (e.g., average, moving average, second-order difference of 
cumulative summation, and oblique cumulative curve1) attenuate the impact of noise at the cost 
of distorting or totally losing the original information, and potentially important singularities in 
particular. Such practice has significant consequences, especially when the underlying process is 
subtle, e.g., a sudden reduction in roadway capacity. Findings using inferior methods might 
identify artifacts created by the methods themselves, leading researchers perhaps to conclusions 
contradictory to what the underlying data really suggest. Importantly, this matter has not 
received sufficient attention in the literature, and thus serves as a primary research motivation 
here. 

Data encountered in transport often exhibit variations across time. As a time-frequency 
decomposition tool, the wavelet transform (WT) is particularly effective for extracting local 
information from non-stationary time-series by moving the wavelet location and squeezing or 
dilating the wavelet window. Such a time-scale representation of the original time-series data, 
which are often noisy and aperiodic, finds plentiful applications in fluid mechanics, engineering 
testing and monitoring, medicine, finance, geophysics, and network operations to name just a 
few (Addison, 2002). The WT has also been introduced to traffic engineering and intelligent 
transportation engineering. Combined with data mining techniques such as clustering, fuzzy 
logic, and neural networks, the WT has been adopted to investigate various traffic-related issues, 
such as automatic detection of freeway incidents (Adeli and Samant, 2000; Ghosh-Dastidar and 
Adeli, 2003; Karim and Adeli, 2002, 2003; Samant and Adeli, 2000, 2001), traffic features 
around freeway work zones (Adeli and Ghosh-Dastidar, 2004; Ghosh-Dastidar and Adeli, 2006), 
traffic flow forecasting (Boto-Giralda et al., 2010; Jiang and Adeli, 2005; Vlahogianni et al, 2007; 
Xie et al., 2007), and traffic pattern recognition (Jiang and Adeli, 2004; Vlahogianni et al., 2008). 
These pioneering studies have demonstrated the potential of WTs in analyzing non-stationary or 
noisy traffic data. Recently, Zheng et al. (2011a) demonstrated WT’s capabilities of analyzing 
important features related to bottlenecks and traffic oscillations in a systematic manner.  
Furthermore, using WTs enabled the identification of the origins of stop-and-go driving and the 
measurement of microscopic features of wave propagation (Zheng et al., 2011b).  
 
In applying WTs to solve practical problems, however, there are hundreds of different wavelets, 
and it is also quite straightforward to design a new wavelet for a particular research or practical 
question. As a consequence of the wide range of readily available and newly derived wavelets, 
researchers are free to select a WT without a reasoned justification or explanation.  As a general 
rule, most WTs perform well if visual verification is satisfactory for the research purposes at 
hand.  However, if more exacting precision is needed, such as microscopic features of traffic 
flow, selecting a different wavelet may produce significantly different results, suggesting that 
justification of wavelet selection is needed. Zheng et al. (2011a, 2011b) neither showed 
mathematically why WT is a powerful tool in detecting singularities in traffic and vehicular data 
nor discussed how to select a suitable wavelet. These two important topics are closely related. 
                                                 
1 Although these methods are  data de-noising and trend analysis techniques, they are often used essentially as 
singularity detection tools directly or indirectly in traffic flow characteristic analysis, see e.g., Mauch & Cassidy 
(2002) and Munoz & Daganzo (2003) among others. 



Without a sound understanding of the mathematical features of wavelets, selecting a good 
wavelet for a particular research application is problematic at best. 
This paper aims to fill this gap and provide sufficient and clear guidance on how and why to 
prefer a particular wavelet to others. Towards this end, the remainder of this paper is organized 
as follows. Based on a numerical experiment, Section 2 demonstrates shortcomings of several 
data processing techniques that are widely used in traffic engineering to detect singularities. 
Section 3 provides a theoretical background of WT essential for understanding its capability for 
detecting singularities of non-stationary signals. Section 4 first presents criteria of selecting a 
suitable wavelet, then uses a numerical experiment to demonstrate how to select a suitable 
wavelet in the context of traffic engineering.  Finally performance of the selected wavelet is 
further verified using several case studies. Section 5 discusses conclusions and future research. 

2. Traffic data processing techniques 
In this section the performances of popular techniques for analyzing traffic data in both the time 
and frequency domains are discussed and compared with that of WT using numerical simulation, 
with the intent to uniquely compare these techniques’ performances and to underscore their 
advantages and disadvantages.  Through such a comparative analysis, undesirable consequences 
of using these popular data processing techniques are demonstrated and superiority of WT is 
confirmed.  

The use of numerical simulation enables the objective comparison of candidates’ performances 
with the ground truth that is unattainable using field data (Cheng and Washington, 2005, 
Washington and Cheng, 2008). Using the same motivation, a numerical experiment is also 
employed in selecting a suitable wavelet, as is discussed later. 

2.1 Numerical Experiment I (NE I) 
To mimic vehicle counts in rush hours collected at a loop detector downstream of a bottleneck, a 
time series is randomly generated, representing a sample of traffic data with a mean of 12 
vehicles and a standard deviation of 5 vehicles. The simulation period is 3 hours with a time 
resolution of 20 s (so the average flow is 2160 vehicles per hour). In total, 540 data points are 
generated.  Note that the simulated data are stochastic and exhibit white noise properties except 
for a non-zero mean, as shown in Figure 1. 

 
Figure 1  

 

2.2 Averaging 
To dampen or attenuate statistical noise in the traffic data, the simplest and one of the most 
commonly used techniques in the time domain is to aggregate data over a certain time interval 
(e.g., 5 or 15 minutes), which may be sufficiently effective to reveal long-term trends in traffic 
patterns.  However, the shortcoming of this technique should be apparent:  fine resolution 
information will be smoothed out and inaccurate or distorted information may be obtained 
because of the decreased time resolution. For example, depending on the starting point of 
averaging and the window size, data belonging to a single event may be divided into two or more 
groups and aggregated in different ways.  



The vehicle counts in NE I are averaged for each 5 minute period as shown in Figure 2. Based on 
this figure, one might conclude that near point a, the lane capacity dropped from 15 vehicles per 
20 s to 12 vehicles per 20 s. In other words, one might claim that the capacity of this bottleneck 
dropped by 20 percent. Recall, however, these data are simulated and randomly generated—thus 
no authentic capacity reduction exists.  

Figure 2 

2.3 Moving average 
To preserve the time resolution, a moving average and its variants (e.g., weighted moving 
average) are often used to process time series traffic data. Generally, a moving average out-
performs simple aggregation. However, a moving average suffers from some of the same issues 
confronted by simple averaging.   Much of the most interesting information contained in the 
traffic data, i.e., singularities, is attenuated when a moving average is applied. Figure 3 
demonstrates that a clear pattern appears once the vehicle counts in NE I are averaged using a 5-
minute moving window. Note that for simplicity, points within the window are equally weighted. 

Figure 3 

2.4 Second-order difference of cumulative data 
To quantify traffic oscillations, researchers typically take the second-order difference of 
cumulative data sequence (e.g. vehicle counts, time-mean speeds) with a moving time window 
(Mauch and Cassidy, 2002, Ahn and Cassidy, 2007) to remove noise in the data and to de-trend 
longer-term changes, as defined in Eq. (1). This method is criticized for being sensitive to the 
choice of window length; with an inappropriate one, periodic oscillations may be dampened, or 
Gaussian white noise may be distorted into a periodically oscillating sequence (Li et al., 2010). 
This shortcoming is confirmed using the simulated data from NE I. For example, with the 
window size 2� = 50, Figure 4 displays clear periodic patterns, which is further confirmed by 
the scalogram analysis2, with scalograms of the original vehicle counts and the outcome of this 
method shown in figures 5(a)-(b), respectively. Note that the Mexican hat wavelet (MH) is used 
in the scalogram analysis for the reason discussed later. In Figure 5 (a), energy of the original 
data is almost uniformly distributed in the time-scale space except for the energy spikes at the 
boundaries due to the “boundary effect”3. In contrast, based on the energy spikes in Figure 5 (b), 
one may falsely claim that certain scales (frequencies) are prominent between points 100 and 300. 

                                                 
2 Scalogram in the time scale space is equivalent to spectrogram in the time frequency space, communicating the 
time scale localization based on the energy density distribution. Note that the wavelet energy is defined as ���, 
� =	|���, 
�|� = ����� � ����∞�∞ ������ �����, where ���, 
� is the WT coefficient at ��, 
� and � is a scale parameter 

that governs the dilation and contraction of the wavelet, and 
 is a translation parameter that governs the movement 
of the wavelet along the time dimension. ���� is a continuous signal; ���� is a wavelet. ���� is a weighting 
function and typically set to 1/√� to ensure that wavelets at all scales have the same energy. See Zheng et al. (2011a) 
for details. 
 
3 The “boundary effect” is a common phenomenon in signal processing and characterized by large WT coefficients 
at both ends of the signal range. This occurs because the signal range is finite, and the value outside the signal range 
is assumed to be zero. Large WT coefficients are obtained at the boundaries where the signal shifts from zero to an 
actual non-zero value. The “boundary effect” also appears in other examples discussed later in this paper. 



������ =  � − 12 � �+� +  �−��                  (1) 

Where  � = ∑ �$�$=1 ; $ and � are positive integers; � is half of the window length.     

 

Figure 4 

 

Figure 5 

 

2.5 Oblique cumulative curve 
Oblique cumulative curve is another widely used analysis method intended to attenuate noise and 
reveal the underlying data trend. As defined in Eq. (2), an oblique curve is constructed by taking 
the difference between the cumulative measurement at time �, and a background reduction 
(Munoz and Daganzo, 2003). This method is simple to use and often reveals interesting patterns 
that are invisible through plotting of the original data and as a result is gaining in popularity.  ����� =  ���− 0 × �� − �0�                   (2) 

where  ��� = ∑ �����&'�( ;  0 is a scaling factor and �0 is the starting time. 

In addition to the issues (e.g., subjective and labor intensive) identified previously (Zheng et al., 
2011a), this method purports to provide a superior visual glimpse of the underlying phenomenon 
without providing solid theoretical support for such a claim.  Thus, the soundness of its output 
requires additional exposition. The oblique curve of the data from NE I (Figure 6) shows 
different slopes for segments ab, bc, and cd, which implies different traffic flow rates. Based on 
curves like this one, researchers (Cassidy and Bertini, 1999) often measure characteristics of the 
bottleneck, e.g., capacity reductions, and activation and deactivation times. Intuitively, such 
different slopes represent random rather than structural differences in these data, as was the case 
previously. Its poor performance in changing traffic states is discussed later. 

 
Figure 6  

 

2.6 Short-time Fourier transform 
Techniques discussed previously are from the time domain. Techniques from the frequency 
domain are also used by researchers in traffic engineering to process data and extract useful 
information. Among them, a short-time Fourier transform (STFT) is frequently used. The STFT 
is designed to remedy a serious issue suffered by classic Fourier transform (FT) in that FT can 
only extract frequency information globally.  Inaccurate frequencies are identified if FT is 
applied to data that contain local variations, as is the case for most traffic data. Stated simply, 
STFT can be regarded as a series of FTs: a signal is divided into several segments and FT is 



implemented within each segment. To improve its performance, neighboring segments often 
partially overlap.   
 
However, time resolutions and frequency resolutions of STFT cannot be chosen arbitrarily. 
According to the Heisenberg uncertainty principle (Gröchenig, 2001), the product of time and 
frequency resolutions is lower-bounded by ∆� ∗ ∆+ ≥ 1/�4.�. As a result, STFT’s time and 
frequency resolutions must be implemented as demonstrated in Figure 7 (a). This figure shows 
that once the window size is selected, its resolution is fixed, which provides the historical 
motivation of developing WT (Addison, 2002). 
 
When STFT is applied to the simulated data from NE I, the spectrogram is shown in Figure 8. 
This figure reveals several energy spikes, which should not exist.  

Figure 7  
 

Figure 8  
 
Studies have been implemented to formally compare performance of STFT with that of WT. The 
superiority of WT’s capability in extracting accurate localized information from non-stationary 
signals is generally confirmed (Addison, 2002). 
 

2.7 Wavelet transform 
In contrast to STFT, WT can be applied at different frequency and time resolutions (although it 
is also constrained by the Heisenberg Uncertainty Principle (Gröchenig, 2001)), as demonstrated 
in Figure 7 (b). This flexibility makes WT a powerful tool for accurately detecting local 
variations of non-stationary signals.  
 
When WT is used to analyze the simulated data from NE I, a uniform distribution of the energy 
is obtained, except for the energy spikes at the boundaries as shown in Figure 5(a). This uniform 
energy distribution is consistent with randomly generated synthetic data, unlike the energy spikes 
found using the previously described methods. The theoretical background on WT and how to 
select a suitable wavelet are now discussed. 
 
Note that a sensitivity analysis has been implemented to investigate the robustness and 
consistency of the data processing methods by generating eight datasets with different standard 
deviations (STD) (i.e., STD=1, 2, …,8. STD is unlikely to be over 8 since it is in rush hours and 
traffic demand is relatively stable). The mechanism used to generate these datasets is the same as 
in NE I except that a different STD is used. Then the data processing techniques discussed in this 
paper were applied to analyze each of the datasets. Distorted and inconsistent representations 
were found from all the techniques except WT. More specifically, for commonly-used data 
processing techniques, a similarly distorted representation was generated for each dataset when 
the STD was less than 5, whereas distorted representation varied when the STD was above 5. In 
contrast, the scalogram of WT for each dataset consistently showed the randomness of the data 
series. This additional analysis further highlights the inappropriateness of these commonly-used 



data processing techniques and the robustness of WT in detecting the underlying structure of data 
series contaminated by noise. Furthermore, these techniques’ performances in detecting singular 
points from changing traffic states are also evaluated and compared later (see 4.2) and the same 
conclusion is obtained. 

3. Detecting singularities using wavelets: Theoretical background 
Detecting and measuring singularities are well studied in mathematics. The local regularity of a 
function +��� is often measured using Lipschitz exponents. A function +��� is said to be 
Lipschitz α at �0 if and only if the following condition is met: |+��/ + ℎ� − 12�ℎ�| ≤ 4|ℎ|5 if ℎ < ℎ/ 

where 7 is a positive integer; A and ℎ0 are positive constants;  7 ≤ 8 ≤ 7 + 1; 12�ℎ� is a 
polynomial of order 7 at ℎ. Lipschitz exponents of +��� over an interval can be similarly defined 
(Mallat and Hwang, 1992). 

Unlike the asymptotic decay of +���’s FT, which can be used to measure global Lipschitz 
regularity of +��� but is not able to describe its local regularity, the asymptotic decay of +���’s 
WT is effective in measuring the local Lipschitz regularity at a point �0 or at an interval (Mallat 
and Hwang, 1992).  Before mathematical features of WT are discussed, two important concepts 
need to be introduced: vanishing moments and compact support.  

A wavelet ���� is said to have 7 vanishing moments if and only if it satisfies  

9 �:������ = 0;<
�<  

where = = 1, 2, … , 7 − 1. 

Support of a function +��� is a widely used concept in mathematical analysis. The support of +��� is the set of points where +��� ≠ 0. A wavelet ���� is said to have a compact support in   
if and only if its support is a compact subset of   (Mallat, 2009). Loosely speaking, ���� with a 
compact support is zero at infinity and negative infinity.  Based on the definition, ���� with a 
compact support of size @ produces @ high-amplitude coefficients at each scale.  As a 
consequence, the number of high-amplitude coefficients can be reduced by minimizing the 
support size of ����.  
Theoretically, the Lipschitz regularity of +���	either at a point �0 or over an interval can be 
precisely estimated from the asymptotic decay of its WT if ���� has enough vanishing moments 
with a compact support (Mallat and Hwang, 1992). However, it is difficult to use this property to 
directly detect local singularities and characterize the Lipschitz exponents due to enormous 
computational cost.  To remedy this issue, researchers have developed an effective method for 
detecting local singularities by combining the modulus and the phase information of WT (Mallat 
and Hwang, 1992). Without delving into mathematical details, a simple example depicted in 
Figure 9 is used to demonstrate this basic idea. 

 



Figure 9  

 

In this figure, +��� is a piece-wise linear function with two singularities at �0 and �2.  A��� is a 

smoothing function and AB��� = CDBE ∗ A�FB�. Two wavelets are defined as  �D��� = GH�F�GF  and ����� = GIH�F�GFI , respectively. Their corresponding WTs of +��� are defined as JD+�K, �� = + ∗�BD��� and J�+�K, �� = + ∗ �B����. This figure clearly reveals that the local regularities of +��� 
can be well characterized by either the zero-crossings of J�+�K, �� or the local maxima of JD+�K, ��. However, �0 ∼	�2 all correspond to zero-crossings in J�+�K, ��. Slow variations at �1and sharp variations at �0 and �2 cannot be distinguished using J�+�K, ��. To accomplish this, 
modulus maxima of a WT is used to measure local regularities of a signal. Specifically, the 
nearest local maxima at different scales are connected to form local maxima lines. Isolated local 
maxima are excluded because they are caused by noise.  Then, accurate locations of singularities 
are identified using the corresponding local maxima line at the finest scale (i.e., scale 1). It has 
been mathematically proved that the Lipschitz exponents of the signal singularities are 
characterized by these modulus maxima (Mallat and Zhong, 1992).  

Completeness of the wavelet modulus maxima has also been studied. Although it has been 
proven that a unique function cannot be constructed from the wavelet modulus maxima, Mallat 
and Zhong (1992) developed a numerical algorithm with the capability of reconstructing a close 
approximation of the original signal. 

The theories briefly discussed above lay the foundation for using WT to detect singularities 
and/or remove noise in a signal. Note that denoising traffic data using WT is not discussed in this 
paper. 

4. Wavelet selection for detecting singularities 

4.1 Selection criteria 
 
Although several widely known wavelets (e.g., Haar, Daubechies, MH, Morlet, Coiflets, etc.) are 
near-optimal and provide similar results for a wide variety of signals (Donoho, 1993), selecting 
different wavelets may have significant influences on analysis results. An inappropriate wavelet 
cannot accurately extract underlying information as demonstrated by examples discussed later in 
this paper, which highlights the importance of selecting a suitable wavelet for detecting 
singularities in traffic and vehicular data. 

Several factors need to be considered in selecting a wavelet, e.g., orthogonality, symmetry, 
support size and vanishing moments. Among them, support size and vanishing moments play 
key roles. 

The number of vanishing moments of a wavelet is determined by the maximum Lipschitz 
exponents we want to estimate. For example, a wavelet with one vanishing moment cannot 
detect the singularities in the derivative of a function. Obviously, wavelets with more vanishing 
moments are able to measure higher Lipschitz exponents. However, the number of maxima lines 



is also increased accordingly, which is not desirable because the complexity and the 
computational cost are increased. Therefore, a good candidate wavelet should 1) have as few 
vanishing moments as possible; yet 2) have enough vanishing moments to detect the highest 
Lipschitz exponents of interest. In traffic engineering, we are often only interested in detecting 
discontinuities and peaks that have Lipschitz exponents not greater than two because the 
maximum derivative of interest is normally two (i.e., acceleration of a vehicle), whereas wavelets 
with two vanishing moments are theoretically sufficient. Another important factor in selecting a 
suitable wavelet is the support size. Roughly speaking, a wavelet with a smaller support size is 
more efficient in detecting singularities and denoising data. It can be mathematically proven 
(Daubechies, 1992) that the minimum achievable support size of ���� with M vanishing 
moments is �2M − 1�. Note that not all wavelets have the minimum achievable support size, 
when a particular wavelet is chosen, the analyst faces a trade-off between the number of 
vanishing moments and the support size. 
In practice, more than one wavelet that satisfies the vanishing moments and the support size 
requirements often exists. Thus, researchers have developed various methods to quantitatively 
compare and select a wavelet (e.g., Energy and Shannon entropy based measures, similarity 
based measures, information theory based measures, and their combinations) (Addison, 2002, 
Yan, 2007). In this paper, Shannon entropy is utilized to select a wavelet because it is 
extensively studied and widely used (Briggs and Levine, 1997, Katul and Vidakovic, 1996). For 
a discrete probability distribution MN  (∑ MN = 12D ), the Shannon entropy is defined as O�M� =−∑ MN�PQ	�MN�2D . The normalized energy distribution of WT is used as the value of MN. 
Controlling for other factors, a smaller Shannon entropy yields better performance. 

In summary, to objectively select a suitable wavelet for detecting singularities in traffic and 
vehicular data, one first considers theoretical properties of candidates (e.g., vanishing moments 
and support size) and then uses Shannon entropy to quantitatively compare them.  A final 
decision is made based on this comparison and locations of local maxima lines. This approach is 
now demonstrated using a numerical experiment, with the performance of the selected wavelet 
discussed in the context of several problems researchers in traffic engineering typically face.   

4.2 Numerical Experiment II (NE II) 
To demonstrate and compare the performance of different wavelets for detecting singularities in 
traffic data, a numerical experiment is designed.  As previously mentioned, using numerical 
experiments supports the objective comparison of candidates’ performances with the ground 
truth that is often unknown in real data. Using this approach high performing wavelets can be 
identified.  

In this experiment, a speed time series is simulated to represent a typical speed profile collected 
at a loop detector. The data are simulated to progress through the following phases sequentially 
(number in the parentheses is the duration of each phase):  

   
Free flow 
(3 hr) 

Transition 
(20 min) 

Congestion 
(2 hr) 

Transition 
(20 min) 

Free flow 
(3 hr) 



 

Note that the transition represents a period in which traffic flow is transitioning from a free flow 
to a congested state and vice versa (Gazis, 2002; Munoz & Daganzo, 2003; Bertini & Ahn, 2010). 
Although the duration of a transition period varies, 20 minutes is typical (Munoz & Daganzo, 
2003). Of keen interest are four singularities (i.e., A, B, C and D) in Figure 10 (a) because they 
are indicative of traffic state changes.  Accurately identifying these state changes is of great 
importance to traffic operations. Unfortunately, such nicely behaved data are not readily 
available in reality due to traffic dynamics and noise. To make the simulated data more realistic, 
noise is added at a signal-to-noise ratio (SNR) of 25, as shown in Figure 10 (b).  

 

Figure 10  

 

Considering the requirements on the vanishing moments and the support size discussed 
previously, wavelets considered in this paper include Haar, the Daubechies family (D(n), n is the 
order of the Daubechies wavelet, similar notations are also used for other wavelet families), MH, 
the Coiflets family (Coif(n)), the Symlets family (Sym(n)), Meyer,  Morlet, and the Gaussian 
family (Gaus(n)) because they are well studied and widely used in other fields (Addison, 2002, 
Daubechies, 1992, Mallat, 2009). Their mathematical definitions are included in the Appendix. 
Note that although some of the candidates do not have a compact support, e.g., MH, Gaus(n), 
Meyer, and Morlet, they have a small range of effective support size (see the Appendix). In 
addition, whilst wavelets with two vanishing moments should be sufficient for detecting abrupt 
changes in traffic data (as described previously), considering noise in the field data, the wavelet 
candidate pool is extended to include ones with three or four vanishing moments. 

We also assume that the duration of traffic oscillations (stop-and-go driving) is around a couple 
of minutes, e.g., 4~5 minutes (Laval & Leclercq, 2010; Li et al., 2010), which is about 0.0039 Hz. 
Thus, 0.0039 Hz is set as the lowest central frequency to which the wavelet candidates should be 
decomposed4. The corresponding maximum decomposition scale and the Shannon entropy of 
each candidate are summarized in Table 1. 

 

Table 1  

 

If Shannon entropy measures are solely relied upon and theoretical properties ignored, a Gaus1 
would emerge as the best wavelet. However, as depicted in Figure 11(a), four state changes are 

                                                 
4 For issues without sufficient prior knowledge, a pragmatic approach to identifying a reasonable lowest central 
frequency for implementing WT decomposition is through trial and error. More specifically, WT can be 
implemented up to a scale that is obviously too big. Then a series of statistical tests along with Monte Carlo 
simulations can be utilized to test whether the energy output at a particular scale is significantly different from the 
one from a white or red noise (see Torrence & Compo (1998)). Moreover, the energy output at a particular scale 
should not be dominated by the “boundary effect”(see footnote 3). 



not successfully detected by the local maxima lines produced by Gaus1. Specifically, only two 
useful maxima lines are produced, because Gaus1 has only one vanishing moment.  Applying the 
same criteria, Haar is also excluded from any further comparison, although its Shannon entropy 
is not the largest.  Morlet has the biggest Shannon entropy. Not surprisingly, its performance on 
this numerical experiment is poor. Figure 11(b) shows that the four turning points detected by 
Morlet are 295, 387, 589, and 678, which are significantly different from the ground truth (360, 
400, 640, 680). For the same reason, other candidates with high Shannon entropy measures (i.e., 
Sym3, D3, Meyer, Coif1, D4, Coif2, and Sym4) are excluded.  

The remaining candidates can detect these state changing points with differing degrees of 
success, as shown in Table 1. Gaus3 has small Shannon entropy but a high average error in 
detecting the changing points. The average error is calculated as the average absolute difference 
between the measured points and the ground truth. Gaus4 performs well; however, two extra 
maxima lines are produced in Figure 11(c), which is due to Gaus4 having four vanishing 
moments. As shown in figures 11(d)-(e), D2, Sym2 and Gaus2 also perform well, but 
confounding maxima lines appear, too. Note that D2 and Sym2 essentially have the same 
performance, which is due to their almost identical mathematical features (see the Appendix).  

Among the candidates, MH reveals the best performance. As shown in the middle of Figure 11(f), 
four energy spikes that correspond to four singularities in the original signal are present in the 
energy contour. Furthermore, the locations of these points are accurately captured by the maxima 
lines and no confounding maxima lines are produced, which make it possible to automate this 
process, e.g., Zheng et al. (2011a) proposed a method using the average wavelet-based energy to 
automatically detect abrupt speed changes. 

A sensitivity analysis was implemented by repeating the above procedure to signals with 
different SNRs (i.e., SNR=10, 15, 20, or 30) and similar conclusions were obtained. 

To further demonstrate the superiority of WT (MH in particular), the popular methods discussed 
in NE I with a stationary traffic state was also applied to NE II with a changing traffic state. 
Unsatisfactory performances of these popular methods were observed. As an example, Figure 12 
is the outcome produced by using the oblique cumulative curve, which clearly shows that this 
method only detected two singular points (i.e., 373 and 670) and thus completely failed to detect 
the two transition periods.  Similar observations were found for other methods. 

Next, to further verify MH’s performance, it is used to study several well-known research topics 
in traffic engineering using real data. 

Figure 11  
 

Figure 12 

 

4.3 Case studies 
In this section, field data collected from loop detectors and video cameras are used to 
demonstrate that a well-selected wavelet is capable of detecting information-rich singularities in 
traffic and vehicular data. Conclusions derived from NE II are confirmed by these case studies. 



Note that in-depth analysis of the topics used in the case studies is on-going and beyond this 
study’s scope. 

4.3.1 Using loop detector data 
A segment of US-101 data (from milepost (MP) 19.832 to MP 25.562) in Los Angeles, 
California is used in this first case study (see Figure 13). Vehicle counts and occupancies were 
collected by loop detectors and aggregated every 30 seconds (PeMS, 2008).  Speed at each loop 
detector is not measured directly and estimated using Eq. (3) (Kockelman and Ma, 2007):  
 R̅TU,� = C VW,XY//YZ//E × [ UW̅,X;U\]�^/×_VVW,X`,         (3) 

 
Where R̅TU,�: is the estimated time-average speed at location l and time t, aU,�: is the vehicle count, baaU,�: :is the occupancy (%) defined as the average percentage of time that the detectors are 
occupied by vehicles, �U̅,�:is the average vehicle length, and �G: is the effective detection zone 
length.  
 
The sum of �U̅,� and �G is the effective vehicle length, which is assumed to be 18 ft. The average 
effective vehicle length can change by time of day and tends to be bi-modal around effective 
lengths for passenger cars (around 20 ft) and larger vehicles (around 60 ft) (Kwon et al., 2003, 
Coifman, 2001). However, because our method is designed to detect considerable temporal 
changes in speed, the accuracy of the estimated effective vehicle length is not critical.  

 

Figure 13  

 

(1) Detecting traffic state changing points 

Detecting traffic state changing points is an important task in traffic operations because such 
information is critical for congestion management and for understanding other important 
questions, e.g., onset of traffic congestion, traffic wave propagation, and driving behaviors in 
different traffic states. MH is capable of accurately detecting these singularities. To illustrate, the 
speed time series in the first lane at MP 21.482, US-101, September 1 2009 and the output of its 
WT are shown in Figure 14. The figure reveals that four state-changing points are accurately 
located by the local maxima lines of WT. Specifically, onset of the congestion is around point A, 
and the congestion is fully developed around point B, and lasts until point C. Traffic returns to 
the normal condition near to point D. 

 
Figure 14 

 
 

(2) Detecting discontinuity of the FD diagram 



An empirical fundamental diagram (FD) constructed by plotting vehicle count (or flow) and 
occupancy(or density) is potentially a powerful tool to study traffic phenomena, e.g., to analyze 
transitions (Munoz and Daganzo, 2003).  The start of transition is identified when flow-
occupancy pairs start to drift from the uncongested to the congested branches of the empirical 
FD. The end of transition is identified when the data points finally reach the congested branch. 
However, identifying the precise event times can be rather subjective or inaccurate because of 
noise in the data and reduced data resolution. To again illustrate, MH is implemented to detect 
the start and the end points of a transitioning from the free flow to the congested regime based on 
the FD diagram at MP 24.552, September 1 2009. Result is shown in Figure 15, which clearly 
reveals that the transitioning started around point A and ended around point B. 

 
Figure 15 

 

4.3.2 Using vehicle trajectory data 
This case study uses vehicle trajectory data collected as part of FHWA’s Next Generation 
Simulation (NGSIM) program (NGSIM, 2010). The study site, shown in Figure 16, is a 2100-ft 
section on US-101 southbound in Los Angeles, California (note that the lane numbering is 
incremented from the left-most lane). Trajectory data were collected with the resolution of 10 
records per second from 7:50 a.m. to 8:35 a.m. on June 15, 2005. 

 

Figure 16  

 

(1) Detecting start point of acceleration (deceleration) waves 

As shown in Figure 17, the speed profile of vehicle 1753 (the top figure) is used to demonstrate 
the performance of MH in detecting start points of acceleration (deceleration) waves. The local 
maxima lines produced by MH are shown in the bottom figure.  Figure 17 convincingly shows 
that each local maxima line at the finest scale (points A, B, C, D, and E) can be traced back to an 
abrupt change in the speed profile, signaling arrivals of acceleration (deceleration) waves. 

 

Figure 17  

 

(2) Determining start and end of vehicle lane-changing maneuvers (LCMs) 

LCMs on freeways have received increased attention due to their negative impact on crashes 
(Zheng et al., 2010) and their macroscopic impacts on traffic streams such as capacity reduction, 
traffic oscillations, and delay (Zheng et al., 2011c). To study characteristics of LCM, the first 
task is to find a tool that can reliably determine the start and the end of a LCM. MH is such a tool. 
As shown in Figure 18, by visually checking the lateral trajectory of vehicle 373, we observe that 
the vehicle starts changing its lanes around point A and completes it around point B. Such 



information is successfully detected by the local maxima lines of its WT, despite the notable 
fluctuations contained in its lateral trajectory.  

 

Figure 18  
 

5. Conclusions 
Based on two numerical experiments, several commonly-used data processing techniques are 
shown to be inappropriate for detecting singularities in traffic and vehicular data. A distorted 
representation of the original signal is likely to be obtained and incorrect conclusions may be 
drawn using these techniques. Particularly, singular points are falsely detected when traffic 
conditions are stable; however, true singular points in non-stationary traffic states are either 
inaccurately detected or completely ignored by these techniques. In contrast, WT has been 
demonstrated as a powerful tool to analyze complex traffic phenomena, e.g., activation and 
deactivation of a bottleneck and characteristics of traffic oscillations (Zheng et al., 2011b, Zheng 
et al., 2011a). However, neither theoretical background essential to WT’s ability to detect 
singularities nor how to select a suitable wavelet is provided. This paper fills this gap in the 
literature. 

It has been mathematically proven by others that the Lipschitz exponents of the signal 
irregularities are characterized by the modulus maxima produced by WT. Researchers have 
developed a numerical algorithm with the capability of reconstructing a close approximation of 
the original signal. These nice mathematical features indicate that local maxima lines can be used 
to effectively detect singularities in data. Specifically, the accurate locations of singularities can 
be identified using the corresponding local maxima line at the finest scale.  

This paper addresses another important question: how to select a suitable wavelet among many 
candidates. In selecting a suitable wavelet for a particular research question, theoretical 
properties of candidates need to be first considered (e.g., vanishing moments and support size), 
then Shannon entropy and the result from numerical experiments can be utilized to quantitatively 
compare them. This approach is demonstrated using a numerical experiment and MH is selected 
as a suitable wavelet for detecting singularities in traffic and vehicular data. To further verify 
performance of MH, it is applied to detect traffic state changing points, transitioning period in 
FD, arrivals of acceleration (deceleration) waves, and the start and the end points of LCM. Good 
results are consistently obtained. 

In further work, the authors are using the WT to investigate some other well-known traffic 
phenomena such as capacity drops e.g. see Hall and Agyemang-Duah, 1991), and hysteresis 
effects (e.g. see Treiterer and Myers, 1974)). 
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 Appendix 
A brief description of each wavelet used in this paper is provided in this appendix (Mallat, 2009, 
Daubechies, 1992). 

1. Haar 

Haar wavelet is the oldest and the simplest wavelet, as defined in Eq. (A.1). 

���� = c 1		0 ≤ � < 0.5−1		0.5 ≤ � < 10		P�ℎef�$Ke g                    (A.1) 

 Haar is orthogonal, symmetric, and not continuous. It is compactly supported with the support 
size of one. The number of vanishing moments is also one. 

2. The Mexican hat 

The Mexican hat is the second derivative of the Gaussian probability density function, as defined 
in Eq. (A.2). 



���� = [1 − ��]e�XII                            (A.2) 
 

It is symmetric but not orthogonal with no compact support (its effective support size is [-5 5]) 
and two vanishing moments. 

3. Gaussian family 

The Gaussian family is derivatives of the Gaussian probability density function, as defined in Eq. 
(A.3). Q�jK��, 7� = a7 ∗ �$++�exp�−��� , 7�             (A.3) 

The Gaussian family wavelets are not orthogonal with no compact support (their effective 
support size is [-5 5]). When n is even, it is symmetric; otherwise, it is anti-symmetric. 

4. Daubechies family 

The Daubechies wavelet family is well known because it has the highest number of vanishing 
moments for a given support width. Specifically, for D(n), the vanishing moments is n and the 
support size is 2n-1. 

It is orthogonal and asymmetric. Note that the Daubechies wavelets do not have explicit 
mathematical expression except for N=1, which is actually the Haar wavelet. 

5. Coiflets family 

They are also constructed by Daubechies for an application in numerical analysis, at the request 
of Ronald Coifman. They are designed to yield the highest number of vanishing moments for 
both the base wavelet and the scaling function for a given support width.  For Coif(n), the 
vanishing moments are 2n and the support size is 6n-1. 

Coiflets family wavelets are orthogonal and near symmetric. 

6. Meyer 

The Meyer wavelet is regular orthogonal with no compact support (the effective support size is [-
8 8]), as defined in Eq. (A.4). 

�T�n� =
opq
pr�2.��sI	etuI sin yz� { C Y�z |n| − 1E| , �zY ≤ |n| ≤ }zY ,�2.��sI	etuI cos yz� { C Y}z |n| − 1E| , }zY ≤ |n| ≤ ^zY ,0						P�ℎef�$Ke,

g             (A.4) 

Where { is a function satisfying  

{��� = � 0, � ≤ 0,K$7� .2 �, 0 ≤ � ≤ 1,1, � ≥ 1. g 



With the additional property {��� + {�1 − �� = 1 

7. Morlet 

The Morlet wavelet is defined as in Eq. (A.5). 

���� = ��.�s�e�sI�I�eN�� − ���                  (A.5) 

Where �� = e�sI�I; 	�� = �1 + e��I − 2e����I��sI 
It is symmetric and non-orthogonal with no compact support (the effective support size is [-4 4]). 

8. Symlets family 

The symelets family wavelets are similar to the Daubechies wavelets except for better symmetry. 
They are compactly supported wavelets with least asymmetry and highest number of vanishing 
moments for a given support size. 
 


