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ABSTRACT: A common problem in applied regression analysisisto select the variablesthat enter
alinear regression. Examples are selection among capital stock series constructed with different
depreciation assumptions, or use of variablesthat depend on unknown parameters, such as Box-Cox
transformations, linear splines with parametric knots, and exponential functions with parametric
decay rates. It isoften computationally convenient to estimate such models by least squares, with
variables selected from possible candidates by enumeration, grid search, or Gauss-Newton iteration
tomaximizetheir conventional |east squaressignificancelevel; term thismethod Prescreened Least
Sguares (PLS). This note shows that PLS is equivalent to direct estimation by non-linear least
squares, and thus statistically consistent under mild regul arity conditions. However, standard errors
and test statistics provided by least squares are biased. When explanatory variables are smooth in
the parameters that index the selection aternatives, Gauss-Newton auxiliary regression is a
convenient procedure for obtaining consistent covariance matrix estimates. In cases where
smoothnessis absent or the true index parameter isisolated, covariance matrix estimates obtained
by kernel-smoothing or bootstrap methods appear from examples to be reasonably accurate for
samples of moderate size.
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ON SELECTING REGRESSORSTO MAXIMIZE THEIR SIGNIFICANCE

Daniel McFadden

1. Introduction

Oftenin applied linear regression analysis one must select an explanatory variable from a set of
candidates. For example, in estimating production functions one must select among aternative
measures of capital stock constructed using different depreciation assumptions. Or, in hedonic
analysis of housing prices, one may use indicator or ramp variables that measure distance from
spatial features such as parks or industrial plants, with cutoffs at distances that are determined as
parameters. In the second example, the problem can be cast as one of nonlinear regression.
However, when there are many linear parameters in the regression, direct nonlinear regression can
be computationally inefficient, with convergence problematic. Itisoften more practical to approach
thisas alinear regression problem with variable selection.

This paper shows that selecting variablesin alinear regression to maximize their conventional
least squares significance level isequivalent to direct application of non-linear least squares. Thus,
this method provides a practical computational shortcut that shares the statistical properties of the
nonlinear least squares solution. However, standard errors and test statistics produced by least
squares are biased by variable selection, and are often inconsistent. | give practical consistent
estimators for covariances and test statistics, and show in examples that kernel-smoothing or
bootstrap methods appear to give adequate approximations in samples of moderate size.

Stated formally, the problem is to estimate the parameters of the linear model

(D y=Xa+Z(y)p+u, yel,

wherey isnx1, X isan nxp array of observations on fixed explanatory variables, Z = Z(y) isan nxq
array of observations on selected explanatory variables, where y indexes candidates from a set of
alternatives I, and u is an nx1 vector of disturbances with a scalar covariance matrix. Letk =p+
g, and assumeI” c R". Theset I isfinitein thetraditional problem of variable selection, but will be
a continuum for parametric data transformations. Assume the data in (1) are generated by
independent random sampling from amodel y = x-a,, + z(y,,W)-B, + u, where (y,x,w) € RXR’xR™ is
an observed datavector, zZI'xR™ —— R%isa"well-behaved" parametric transformation of the dataw,
(00,B,,Y,) denote the true parameter values, and the distribution of u isindependent of x and w, and
has mean zero and variance ¢,2. There may be overlapping variables in w and x. Examples of
parametric data transformations are (a) a Box-Cox transformation z(y,w) = w"*/(y-1) for y = O and
z(0,w) = log(w); (b) aramp (or linear spline) function z(y,w) = Max(y-w,0) with aknot at y; (c) a
structural break z(y,w) = 1(w<y) with abreak at y; and (d) an exponential decay z(y,w) = e™.



One criterion for variable selection is to pick ac € I' that maximizes the conventional |east
sguares test statistic for the significance of the resulting Z(c) variables, using enumeration, a grid
search, or Gauss-Newton iteration, and then pick the least-squares estimates (a,b,s?) of («,,f,,6,2) in
(1) using the selected Z(c). Asashorthand, term thisthe Prescreened Least Squares (PLS) criterion
for estimating (1). | will show that PLSis equivalent to selecting Z(y) to maximize R?, and isalso
equivalent to estimating (o.,B,y,6%) in (1) jointly by nonlinear least squares. Hence, PLS sharesthe
large-sample statistical properties of nonlinear least squares. However, standard errors and test
statistics for a and b that are provided by least squares at the selected Z(c) fail to account for the
impact of variable selection, and will usually be biased downward. When I" is a continuum, a
Gauss-Newton auxiliary regression associated with the nonlinear least squares formulation of the
problem can be used in many cases to obtain consistent estimates of standard errors and test
statistics. When I is finite, the effects of variable selection will be asymptotically negligible, but
least squares estimates of standard errors will be biased downward in finite samples.

Let M =1- X(X'X)*X’, and rewrite the model (1) in the form

(2 y = X[a+ (X X)XZ(y)B] + MZ(y)B +u.

The explanatory variables X and MZ(y) in (2) are orthogonal by construction, so that the sum of
squared residuals satisfies

©) SSR(y) =y'My - y'MZ(y)[Z(y) MZ(x)]"Z(y) My .

Then, the estimate c that minimizes SSR(y) for y € I" also maximizes the expression

(4) S(y) = nhy'MZW)[Z(y) MZ()]Z(y)' My .

The nonlinear least squares estimators for «, B, and o can be obtained by applying least squaresto
(1) using Z = Z(c); in particular, the estimator of 6% iss* = SSR(c)/(n-k) and the estimator of B isb
=[2(c)’MZ(c)]*Z(c)’My. Since R? is monotone decreasing in SSR(y), and therefore monotone
increasingin S(y), the estimator ¢ also maximizes R?. Least squares estimation of (1) alsoyieldsan
estimator V(b) = sZ(c)’MZ(c)]™* of the covariance matrix of the estimator b; however, this
estimator does not take account of the impact of estimation of the embedded parameter y on the
distribution of the least squares estimates. The conventional |east-squares F-statistic for the null
hypothesis that the B coefficientsin (1) are zero, treating Z asif it were predetermined rather than
afunction of the embedded estimator c, is

(5)  F=bV(b)biq=yMZ(Q)[Z()MZE]"Z()My/$g= — K9

a{y'My/n - §(c))
But the nonlinear least squares estimator selectsy € I' to maximize (y), and (5) is an increasing
function of S(y). Then estimation of (a,B,y,6%) in (1) by nonlinear least squares, with y € T, is
equivalent to estimation of this equation by least squares with ¢ € I selected to maximize the
F-statistic (5) for a least squarestest of significance for the hypothesisthat § = 0. When thereisa
single variable that depends on the embedded parameter vy, the F-statistic equals the square of the




T-statistic for the significance of the coefficient B, and the PLS procedure is equivalent to selecting
¢ to maximize the "significance" of the T-statistic.

| have not found this result stated explicitly in the literature, but it is an easy special case of
selection of regressorsin nonlinear least squaresusing Unconditional Mean Square Prediction Error,
which in this application where all candidate vectors are of the same dimension coincides with the
Mallows Criterion and the Akaike Information Criterion; see Amemiya (1980). Many studies have
noted theimpact of variable sel ection or embedded parameters on covariance matrix estimates, and
given examples showing that least squares estimates that ignore these impacts can be substantially
biased; see Amemiya (1978), Freedman (1983), Freedman-Navidi-Peters (1988), Lovell (1983),
Newey-McFadden (1994), and Peters-Freedman (1984).

2. Consistency and Asymptotic Nor mality

Estimation of (1) by the PLS procedure will be consistent and asymptotically normal whenever
nonlinear least squares applied to this equation has these properties. The large-sample statistical
properties of nonlinear least squares have been treated in detail by Jenrich (1969), Amemiya (1985,
Theorems 4.3.1 and 4.3.2), Tauchen (1985), Gallant (1987), Davidson & MacKinnon (1993), and
Newey & McFadden (1994, Theorems 2.6 and 3.4). | giveavariant of these resultsthat exploitsthe
semi-linear structure of (1) to limit the required regularity conditions: | avoid requiring a
compactnessassumption onthelinear parameters, andimpose only the usual least squaresconditions
onmomentsof xand z(y,,w). For consistency, | requirean almost sure continuity condition on z(y,w)
that is sufficiently mild to cover ramp and structural break functions. For asymptotic normality, |
require almost sure smoothness conditions on z(y,w) that are sufficiently mild to cover ramp
functions. These conditions are chosen so that they will cover many applications and are easy to
check.

Several definitions will be needed. A function g:I'xR™ —— R% will be termed well-behaved if

I. g(y,w) ismeasurableinw for eachy e I',

ii. g(y,w) isseparable; i.e., I' contains a countable dense subset I, and the graph of g:I'xR™
—— RYis contained in the closure of the graph of g:I' ;) xR™ — RA.

lii. g(y,w) is pointwise almost surely continuousin v; i.e., for each y’ € I', the set of w for
whichlim, . g(y,w) = g(y’,w) has probability one.

Condition (iii) allowsthe exceptional set to vary with y’, so that afunction can be pointwise almost
surely continuouswithout requiring that it be continuousonI" for any w. For example, the structural
break function 1(y<w) has a discontinuity for every w, but is nevertheless separable and pointwise
almost surely continuouswhen I" iscompact and the distribution of w hasno point mass. A function
gI'xR™ —— RYisdominated by afunction r:R™ — R if [g(y,w)| < r(w) foralyeT.



The main result on large sample properties of PLS draws from the following assumptions:

[A.1] Thedatain (1) are generated by an independent random sample of size n, with data
(y,x,w) fromamodel y = x-a,, + z(y,,w)-B, + U, withy, € I"and B, # 0. Theu areindependently
identically distributed, independent of x and w, and have mean zero and variance 6,2>. The
vector x has afinite second moment and the function z(y,w) is dominated by a function r(w)
that is square integrable. For each y € T, the array H(y) = E(x,z(y,w))’(X,z(y,w)) is positive
definite.

[A.2] Let 6*(y) = Min,; E(y - xa - (y,w)B)?. When minimandsexist, denote them by a(y) and
B(y). Then a(y)) = oy, B(Y,) = Bo and Min,. o%(y) = o*(y,) = o, For each § > 0, the

identification condition inf .o 5 o*(y)ls,/ > 1 holds.

[A.3] Theset T iscompact and the function z(y,w) is well-behaved.

[A.4] The random disturbance u has a proper moment generating function. There exist an
openset ', withy, € I', < I and abounded function r(w) such that z(y,w) satisfiesaLipschitz
property |z(y,w) - z(y',w)| < r(w)-|y - y’| for dl v,y € T',, The derivative d(y,p,w) =
B'V,z(y,w) existsalmost surely for y € I', and iswell-behaved. Then Ed(y,,w) =B'V,Ez(y,w)
and J(y,B) = E(x,z(y,w),d(v,B,w))’ (x,z(y,w),d(y,B,w)) exist and are continuous for y € T',.
Assume that J(y,,B,) is positive definite.

Assumption A.1 guarantees that the regression (1) is aimost surely of full rank and satisfies
Gauss-Markov conditions. Theindependence assumption on uis stronger than necessary for large
sample results, but nonlinear dependence of z(y,w) on w implies more is needed than just an
assumption that u is uncorrelated with x and w. The independence assumption also rules out
conditional heteroskedasticity and (spatial or temporal) serial correlationinthedisturbances, which
may be present in some applications. Independence is not fundamental, and establishing large
sample results with weaker assumptions on u merely requires substituting appropriate statistical
limit theorems in the proof of Theorem 1 below, with the additional regularity conditionsthat they
require. However, weakening the independence assumption on u requiresthat bootstrap estimates
of variances use a compatible method, such as the conditional wild bootstrap defined in Section 3.

Assumption A.2 isamild identification condition that requires the asymptotic nonlinear least
squares problem have a unique solution at y,. One must have 8, # O for A.2 to hold. Assumption
A.3holdstrivialy if I"isfinite. WhenI isnot finite, A.3isneeded to guarantee consistency of the
nonlinear least squares estimator of (1). It can berelaxed, at a considerable cost in complexity, to
acondition that the family of functions z(y,w) for y € I" can be approximated to specified accuracy
by finite subfamilies that are not too numerous; see Pollard (1984, V11.4.15). Pakes and Pollard
(1989) characterize some families of functions that satisfy such conditions.

Assumption A.4 is used when I' is a continuum to guarantee that the nonlinear least squares
estimator isasymptotically normal. Itwill alsoimply that aGauss-Newton auxiliary regression can
be used to iterate to a solution of the nonlinear least squares problem, and to obtain consistent
estimates of standard errors and test statistics for a and b. | have chosen this assumption to cover
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applications like ramp functions where z(y,w) is not continuously differentiable. The price for
generality in thisdimension isthat | require a strong assumption on the tails of the distribution of
the disturbance u (the moment generating function condition), and a strong form of continuity (the
uniform Lipschitz condition). Thefirst of these conditionsis pal atable for most applications, and
the second is easy to check. Again, both can be relaxed, using empirical process methods, at the
cost of introducing conditions that are more difficult to check. The requirement that J(y..p,) be
non-singular is alocal identification condition. The following result is proved in the appendix.

Theorem 1. Suppose A.1-A.3. Then PLSis strongly consistent. In detail, the functions
(a(y),B(y)5%(y)), are continuous on T'; least squares estimators (a(y),b(y),sX(y)) from (1) satisfy
sup,.r | (@(y)-a(y),b()-B().S(¥) - 6°(¥))| —a 0; @and ¢ — v,- Equivalently, nonlinear least
squares applied to (1) is strongly consistent for the parameters (o,,B,7.:0.9). If v, is an isolated
point of I, then n”(c-y,) -, 0 and

a-a

b-B,

o

(6) n]J2

] —d N(O’GOZH(YO)_l) :

Alternately, if A.4 holds, then

a-a,

(7) n]J2 b_Bo —d N(O,GOZJ(YO,BO)-]') .

C,

This theorem establishes consistency and asymptotic normality in the case of the classical
variable selection problem where I" isfinite, and in the parametric transformation problem where
the derivative of the transformation with respect to the index parameters is well-behaved. This
covers most applications, including linear spline functions with parametric knots. However, itis
possible that v, is not isolated and z(y,w) failsto have awell-behaved derivative, so that A.4 fails.
The structural break function z(y,w) = 1(y<w) is an example that fails to satisfy the Lipschitz
condition. The asymptotic distribution of ¢, and the properties of various covariance matrix
estimators, must be resolved on an individual basis for such cases.

3. Gauss-Newton Auxiliary Regression and Bootstrap Covariance Estimates
When assumptions A.1-A.4 hold, so that vy, isin the interior of I" and z(y,w) is amost surely

continuoudly differentiable, Theorem 1 establishes that nonlinear least squares applied to (1) is
strongly consistent and asymptotically normal. Consider aleast squares regression,



(8) y =Xa+Z(c)B +D(c,b)Ay +v,

where (a,b/,d) are previous-round estimates of the model parameters and D(c,b) isthe nxh array
with rows d(c,b',w) = b'V,z(c,w). Therulefor updating parameter estimatesisa** = a, b** = b,
and d** = d + Ac, where a, b, and Ac are the least squares estimates from (8). The regression (8)
iscalled the Gauss-Newton auxiliary regression for model (1), and the updating procedureiscalled
Gauss-Newton iteration; see Davidson and MacKinnon (1993). Comparing the least squares
formulasfor (a,b,Ac) with thefirst-order conditionsfor nonlinear |east squares applied to (1), from
the proof of Theorem 1, one sees that the non-linear least squares estimators (a,b,c) determine a
fixed point of Gauss-Newton iteration: If one startsfrom (a,b,c) as previous-round estimates, one
obtains Ac = 0, and the linear regressions (1) and (8) will yield identical estimates a and b for the
regression coefficients. Comparing the least squares estimate from (8) of the covariance matrix of
the estimates (a,b,Ac) with the covariance matrix of the nonlinear least squares estimates (a,b,c)
from the proof of Theorem 1, one sees that these estimates are asymptotically equivalent.
Summarizing, we have the following results:

(a) Thenonlinear least squares estimates (a,b,c) of (1) area fixed point of the Gauss-Newton
auxiliary regression (8), and the estimated covariance matrix of the regression coefficients
from this auxiliary regression at this fixed point is a strongly consistent estimate of the
covariance matrix of (a,b,c).

(b) For aninitial value ¢, suppose theinitial values (a*,b") are obtained fromtheregression
(1) using Z(c?). For c'in some neighborhood of y,, Gauss-Newton iteration will convergeto
thefixed point (a,b,c). Gauss-Newton iteration froma sufficiently densegrid of initial values
for ¢t will determineall fixed points of the process, and thefixed point at which S(c) islargest
is(a,b,c).

The reason for considering a grid of starting values ¢! is that Gauss-Newton iteration may fail to
converge outside a neighborhood of c, or if the fixed point is not unique may converge to a fixed
point where S(c) is at asecondary maximum. The assumptionsin A.4 that y, iSsan interior point of
I" and that z(y,w) isLipschitz and its derivative V,z(y,w) is well-behaved are essential in general for
use of the Gauss-Newton auxiliary regression to obtain covariance estimates. For example, the
structural break function 1(w>y) fails to satisfy the Lipschitz condition, and (8) fails to give a
consistent estimate of the covariance matrix.

In cases where direct application of the Gauss-Newton auxiliary regression fails, it may be
possible to use approximate Gauss-Newton auxiliary regression or a bootstrap procedure to obtain
covariance estimates that are reasonably accurate for samples of moderate size. Theideaisthat in
amodel y = xa + z(y,w) + u satisfying A.1-A.3, but not A.4, one can replace a poorly-behaved z(y,w)
by a kernel smoother Z'(y,w) = [z(y’,w)-k((y-y')/A)-dy’, where k(*) is a continuously differentiable
probability density that has mean zero and variance one, and A is a small positive bandwidth. For
fixed A, Z (y,w) satisfies the continuous differentiability condition in A.4. Let (o',p",y") be the
minimand of E(y - xo. - Z (y,w)B)% Theorem 1 can be adapted to show that PLS applied toy = xa +
Z (y,w)B + uis strongly consistent for (o’,p",y") and asymptotically normal, and that the auxiliary



regressiony = xa + Z (y ,w)b + p'V,Z (y ,w)Ac + U’ provides a consistent estimate of the correct
covariance matrix for PLSin the smoothed model. Thebiasin (o' ,8",y") goesto zerowith .. Then,
decreasing X until the coefficients (o' ,B",y") stabilize, and using the Gauss-Newton auxiliary
regression at this to estimate the covariance matrix, can provide areasonabl e approximation when
the underlying model is consistent and asymptotically normal.

Toillustrate the kernel smoothing approximation, consider the simple structural break model y
= 1(w<y,)B, + U, where A.1-A.3 are satisfied and w has a CDF F(w) with bounded support and a
density f(w) that is positive in a neighborhood of y,. The asymptotics of structural break problems
havebeen characterized for discrete time seriesby Andrews (1993) and Stock (1994). Thestructural
break example hereissimpler inthat wiscontinuously distributed and thedisturbancesarei.i.d. The
features of this example often appear in spatial models where the span of proximity effects must be
estimated. The kernel approximation to 1(w<vy) is K((y-w)/%), where K is the kernel CDF. The
asymptotic covariance matrix obtained from the kernel approximation is J*, where

5= ! K((y-w)/a)(wydw  [k(@)K(a)f(y-ra)dg
[k(@K(@)f(y-ra)da  [k(a)*f(y-ra)da/A

F(v) f(v) [K(a)K(a)dg
f(v) [K(a)K(a)dg teo

—

as) —— 0. Thisimpliesthat c converges to v, at a greater than n'? rate, and that the asymptotic
covariance matrix of b is given by the least squares formula with y, known. A Monte Carlo
experiment completestheillustration. Lety=1(w<y,)p,+ uwithw uniformly distributed on [0,1],
u standard normal, y, = 0.5, and B, = 1. The probability of tiesis zero, so the observations can be

ordered almost surely withw, <... <w,. Lety, = ,kl y/k. The sum of squares explained, S(y)

from (4), is piecewise constant and right-continuous with jumps at w,, and S(w,) = i-y2 Then, ¢
equals the value w, that maximizes ky,2, and b = y,. Table 1 gives exact finite-sample moments,
calculated using 10,000 Monte Carlo trials for u, conditioned on one sample of w's. Finite sample
biasis small and disappears rapidly as sample size grows. The variance of n¥?(c - y,) is substantial
at n = 100, but drops rapidly with n. Correspondingly, the variance of n**(b - B,) at n = 100 is
substantially above its asymptotic value of 1.90, but drops rapidly toward this limit as n increases.
The probability that the conventional PLS F-statistic exceeds n/2 is given next. If y, were known
and fixed, then this probability would equal the upper tail probability from the noncentral
F-distribution F(n/2,1,n-1,5), with noncentrality parameter 6 =) 1(w;<0.5). This probability and &
are given in the last two rows. The actual finite sample distribution of the F-statistic has a larger
upper tail than the corresponding noncentral F-distribution, with the difference disappearing with
growing sample size. A kernel-smoothed approximation to the covariance matrix for n > 100 is
accurate to two significant digits for a normal kernel and A = 15/n; | omit the detailed results. A
disadvantage of kernel-smoothing islack of a cross-validation method for determining values of A
that give agood empirical approximation.



Table 1. Sample Sizen: 100 400 1600 6400
Meanc (y,=0.5) 0.495 0.496 0.500 0.500

Meanb (B,=1) 1.023 1.005 1.001 1.000

Mean & (6 ,2=1) 1.004 1.001 1.001 1.000
Var(n**(c - v,)) 0.293 0.093 0.027 0.006

Var(n¥¥(b - B,)) 2.823 2135 2.024 1.956
Cov(n¥4(c - v,),(n"*(b - B,)) -0.469 -0.083 -0.023 -0.007
Prob(F > n/2) 0.317 0.433 0.470 0.682
1-F(n/2,1,n-1,) 0.281 0.415 0.464 0.680
Noncentrality parameter & 41 193 794 3259

A bootstrap procedure is a possible alternative to a Gauss-Newton auxiliary regression to
estimate covariances. The following procedure for estimating the covariances of PLS estimatesis
called the conditional bootstrap; see Peters and Freedman (1984), Brown and Newey (1995), and
Ved (1992):

(a) Given PLS estimates (a,b,c) from (1), formresiduals G =y - Xa - Z(c)b.

(b) Let 0" be an nx1 vector drawn randomly, with replacement, from elements of 0. For
bootstrap trialsr = 1,...,R, calculatey' = Xa + Z(c)b + U, and apply PLSto model (1) with
dependent variable y' to obtain estimates (a',b',c'). Form bootstrap means (a°,b°c’) =

nt rR:l (@,b',c") and the bootstrap covariance matrix

VR=nt YR (a-a°b-be,c-c%)’ (ar-a° bi-be o).

(c) The vector (a',b",c") = 2:(a,b,c) - (a°b°,c°) is a bias-corrected bootstrap estimate of the
parameters of (1), and VR is a bootstrap estimate of the covariance matrix of (a’,b’,c").

An dternative that can handle conditional heteroskedasticity is the conditional wild bootstrap,
where (' = 0-{', with {" avector of independent identically distributed draws from adistribution that
hasE( =0, E¢?=1,and E(3= 1. A typica construction is =n,/2Y? + (n>-1)/2 withn, standard
normal; see Liu (1988) and Davidson and Flachaire (1996).

Suppose A.1-A.3 hold, and PLSis strongly consistent by Theorem 1. Suppose in addition that
n"?[(a,b,C) - (a,,B,,Y,)] isasymptotically normal, either because A .4 holds or because n**(c-vy,) —
0. Then, the bootstrap procedure with R —— + will give consistent estimates of its covariance
matrix. The simple bootstrap procedure just described will not guarantee a higher order
approximation to the finite sample covariance matrix than conventional first-order asymptotics,
althoughin practiceit may capture some sources of variation that appear infinite samples. Various
iterated bootstrap schemes are available to get higher order corrections; see Beran (1988) and
Martin (1990).

Consider the structural break exampley = 1(w<y,)B, + uwith w uniformly distributed on[0,1],
u standard normal, y, = 0.5, and B, = 1. Asindicated by thekernel smoothing analysis, thisisacase



where asymptotic normality holds because n*(c - y,) —, 0. For asingle sample of w's, we draw
100 samplesfrom the true model, and then apply the conditional bootstrap with R = 100 repetitions
to each sample. Table 2 gives exact sample and bootstrap estimates of the means and variances of
theestimatorsof y, and B,. AsinTable1, biasin the estimated coefficientsissmall, and attenuates
rapidly; a bootstrap bias correction has a negligible effect. The bootstrap variance estimates are
relatively accurate for the sample sizes larger than 100, and do appear to capture some of the
finite-sample effects that disappear asymptotically.

Table 2: Sample Sizen 100 400 1600 6400
Exact Mean c 0.495 0.496 0.500 | 0.500
Bootstrap Mean c 0.499 0.493 0.500 0.500
Exact Mean b 1.023 1.005 1.001 | 1.000
Bootstrap Mean b 1.062 1.007 0.999 1.000

Exact Var(n**(c - v,)) 0.293 0.093 0.027 | 0.006
Bootstrap Var(n“(c - v,)) 0.385 0.090 0.029 0.006
Exact Var(n**(b - B,)) 2.823 2135 2024 | 1.956
Bootstrap Var(n“3(b - B,)) 2.893 2.070 2.014 1.926

Summarizing, the conditional bootstrap appearsin one example where an explanatory variable
is poorly behaved to provide acceptable covariance estimates. It appearsto be at least as accurate
in samples of moderate size as Gauss-Newton regression using a kernel-smoothing asymptotic
approximation, and in addition avoids having to choose a smoothing bandwidth.

4. The Effects of Selection from a Finite Set of Candidates

When I" isfinite, so that vy, is isolated, Theorem 1 establishes that the asymptotic effects of
variable selection are negligible, and one can treat c asif it were known and fixed in forming least
squares estimates of asymptotic standard errors or test statistics for o and . However, in finite
samples, variable selection will have a non-negligible effect on standard errors and test statistics,
and the least squares estimates will generaly be biased downward. This problem and severa
closely related ones have been investigated in the literature. Amemiya (1980) and Breiman and
Freedman (1983) deal with the question of how many variablesto enter in aregression. Freedman
(1983) and Freedman, Navidi, and Peters (1988) show that variable selection leads |least squares
standard errors to be biased downward. There is a related literature on pre-test estimators; see
Judgeand Bock (1978). Alsoclosely related isthe econometricsliterature onthe problem of testing
for astructural break at an unknown date; see Andrews (1993) and Stock (1994).

Suppose the disturbancesin (1) are normal. If y, were known and Z(y,) always selected, then
thetest statistic (5) for the significance of Z isdistributed non-central F(q,n-k,0), with noncentrality
parameter § = B, (Z(y,)'MZ(y,))B/o,2. Wheny,isunknown and cisselected to maximize (5), then
this statistic will always be at least as large as the F-statistic when Z(y,) is aways selected. This
impliesthat the probability in the upper tail of the distribution of (5) exceeds the probability in the
corresponding upper tail of the F(q,n-k,5) distribution.



An example provides an idea of the magnitude of the bias in the PLS test statistic. Suppose
candidate variables (z,,z)) take the values (1,1) with probability (1+p)/4, (-1,-1) with probability
(1+p)/4, (1,-1) with probability (1-p)/4, and (-1,1) with probability (1-p)/4. Supposey =z, + u,
with u normal with mean 0 and variance ¢ 2, so that z, isthe correct variable. In arandom sample
of size n, conditioned on the covariates, the alternative estimates of 3, when z, or z, are selected,

b0 [Bo
~ N

BoPn|
residuals from these respective regressions are independent of b, and b,, and jointly distributed

2
Oy

n

1 p,

respectively, are jointly distributed ] , Where p, = Y zz/n. The

1 pn 1

W0 0 Qo Qle
-~ N ,002 )
Wl QlZoBo QlQo Ql
where Z, is the nx1 vector of z'sfor k =0and of z'sfork =1, Q, =1-ZZ/In; and 52 =

w,'w,/(n-1). The T-statisticsare T, = n“2h,/s,, and Z, is selected if T, islarger in magnitude than
T,. Thestatistic T, hasunconditionally a T-distribution with n-1 degrees of freedom. Conditioned
on w, and w,, T, ~ N(B,n"*/s,,6,4s,?). The distribution of T,, given W,, W,, and T, = t,

. Let kbethecritical level for aconventional T-test of significancelevel

Sl Sl

a, and | et = denote the conventional power of thistest; i.e., &, = Prob(F(1,n-1,8)>k), with ¢ = B n/s..
Then, the probability that PLS yields atest statistic of magnitude larger thank is

112
s,t-B,n ) o5

o

ts c 2
is N[ Po %o (1-p)

Prob(max{ | T,|,| T,[} >k =+ [* Prob(|T,|>k| =ty [
-k

© -sk-tsp, O -sk+tsp,

o,(1-p*? o,(1-p*?
Table 3 gives this probability, denoted =, as well as the probability =, for a = 0.05, 6, = 1, and
selected values of p, B,, and n. When B, = 0O, the identification condition A.2 fails, and the
probability of rejectingthenull hypothesisusing either z, or z, aloneequal sthenominal significance
level, 0.05. When z, and z, are uncorrelated, = = 1 - (0.95)? = 0.0975; the bias is reduced when z,
and z, are correlated. This effect continues to dominate for n and B, wherer, islow. When x, is
large, thebiasissmaller inrelativeterms, and increaseswhen z, and z, are correlated. Adding more
candidates would increase the biases.

The previous section found relatively accurate bootstrap estimates of standard errors in an
example where convergence of ¢ to vy, occurs at a better than n*? rate, so that nY(c - v,) is
asymptotically degeneratenormal. Theproblem of isolatedy, issimilar, so that bootstrap estimates
of covariances and asymptotic tests utilizing these bootstrap covariances can also be reasonably
accurate in samples of moderate size.

k

=7, t EWo’Wlf,k

N NI

st-pvl s
¢ [—" B"V] - 2 .t
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Table 3 p: 0.00 0.45 0.90
B, n T, T T bl
0.0 100 0.050 0.097 0.093 0.070
0.0 1000 0.050 0.097 0.093 0.070
0.01 100 0.051 0.093 0.093 0.072
0.01 1000 0.062 0.107 0.104 0.084
0.1 100 0.168 0.208 0.208 0.200
0.1 1000 0.885 0.890 0.893 0.899
0.2 100 0.508 0.532 0.539 0.546
0.2 1000 0.999 0.999 0.999 0.999

5. Conclusions

Thispaper demonstratesthat Prescreened L east Squares, wherewhere explanatory variablesare
selected to maximize their conventional least squares significance level, or to maximize R?, are
statistically consi stent and equival ent to nonlinear | east squaresunder general regul arity conditions.
However, standard errors and test statistics provided by least squares software are biased. When
explanatory variables are smooth in the parameters that index the selection aternatives, a
Gauss-Newton auxiliary regression provides a convenient procedure for getting consistent
covariance matrix estimates, and asymptotic tests from nonlinear least squares employing these
covariance estimates are consistent. In situations where regularity conditions for Gauss- Newton
auxiliary regression are not met, such as explanatory variables that are not smooth in the index
parameters, or an isolated value for thetrueindex parameter, bootstrap estimates of the covariance
matrix appear from examples to be reasonably accurate in samples of moderate size.

APPENDI X: Proof of Theorem 1

I will need three preliminary lemmas, The first is a uniform stong law of large numbers
established by Tauchen (1985); see also McFadden (2000), Theorem 4.24:

Lemma 1. If w, are independently and identically distributed for i = 1,...,n, I is compact,
g:I'xR™ —— R%iswell-behaved and dominated by an integrable functionr, then E,g(y,w) exists
and is continuous on I', and a uniform strong law of large numbers holds; i.e.,

sup,. [ Y, g w) - E9(vW) | — 0.

Let 3, be asequence of numbers. A random variable R, issaid to be of order O,(6,,), or R, =O,(3,),
if for each € > 0O, there exists M > 0 such that P(|R,,| > M3§,) < e for all n sufficiently large. Then
convergence in probability, R, —, O, is equivalent to R, = O,(3,) for a sequence 3, — 0. For
n"2-consistency under the conditionsin A.4, | usearesult on uniform stochastic boundednesswhich
may be of independent interest.

11



Lemma 2. Supposey(8,w) isa measurablefunction of a random vector w for each 6 in an open
set ® < R that contains 0, with y(0,w) = 0 and Ey(8,w) = 0. Supposey(8,w) satisfiesa Lipschitz
condition |y(6’,w) - y(6,w)| < r(w)-|6" - 6| for 6 and 6’ in ®, where r(w) isarandom variable
that has a proper moment generating function. Suppose w; are independent draws. Then,

SUP gy 5| M Yoyew) = O,(6). In further detail, there exist positive constants T and A
determined by r(w) such that for M? > 16:-kA and n > (M/2Ax)?,
P(SUpy < (M7 331 Y(8w)| > M-3) < 4exp(-M?/16A) .

Corollary. Supposetheassumptionsof Lemma 2, and supposethat y(6,w) satisfiesthe Lipschitz
condition |y(8’,w) - y(6,w)| < s(8,w)-r(w)-|6’ - 6| for 6 and 6’ in ® and |6| < 3, with s(3,w) a
well-behaved function satisfying 0 < s(6,w) < 1 and ES(3,w) -— Owhené —— 0. Then

SUP|g <5 I Zinzl y(0,w)| = 0,(8) .

Proof: Thereexistst > 0 such that E€"™ < +« on an open interval that contains[0,t]; animplication
of thisisA=Er(w)>e"™ <+, Since|y(0,w)| < r(w)-|0|, the moment generating function of y(0,w,)
existsfor [t-0| < T and hasa Taylor's expansion

H(t) = E€YO" = 1+ Ey(0,w)>€™0")2

for some & € (0,1), implying u(t) < 1 + t>[0|*Er(w)>€®"™/2 < 1 + A|0]|%%2. The moment
generating functionof n¥2 Y . y(6,w;) isthen bounded by [1 + A|0|%%2n]" < exp(A| 0| %%/2) for

1t-0]/n"? < 1. Any random variable X satisfies the bound P(|X| > m) < f e™-e”F(dx) +
Xx>m

f e™e™F(dx) < e™[Ee™* + Ee™] for t > 0. Apply thisinequality to obtain
X<-m

n
(A-D) SUP o< P Y0 y(8,)| > m) < 2-exp(-tm + Aw’/2)
i=1
for |t-0|/n”? < 1. | use this exponential inequality and a chaining argument to complete the proof.
A hypercube centered at 0 with sides of length 26 contains the 6 satisfying [0] < 8. Recursively
partition thiscubeinto 24 cubeswith sides of length 25-27. Let ®, denotethe set of centroidsof these
cubesfor partitionj, and let 6,(6) denotethe pointin ®; closest to 6. Notethat |6,(6) - 6,,(6)| < 26-27,
and that

n? Zin:l y(6,w) = ZT:l n*? Zinzl [y(6,(0),w) - y(6;4(6),w))] .
Therefore, for M2 > 16:-kA and n > (M/2Ar)?,

12



(A-2) P(supg; ™7 D0 y(O,W)| > M3)

IA

Zjil P(supjp <5 N D |[y(6;(8).w,) - y(6,4(6),w)] | > j-27*M8)

IN

D 2 Ylimaxg P YN [y(6,w) - y(O,.,w)] | >]-27M8)

IN

Yo 2%2exp(-j-2Mat + AS2M P for 524 < '

Yoy 2%2exp(-(-1/2)M%4A)  fort = 2M/AS and n> (M/2Ac)?

IN

k+1, _\M 2
o ZePCMITBA) g ein(-MY16A) for M2 > 16KA.

1-2%exp(-M?/4A)

The first inequality in (A-2) holds because the event on the left is contained in the union of the
events on theright. The second inequality holds because the event on the left at partition level | is
contained in one of the 2% events on the right for the partition centroids. The third inequality is
obtained by applying the exponential inequality (A-1) to the difference y(6;,w;) - y(6;,,w)), with m
replaced by M-+j-232 and o replaced by 8-2*1. The next inequality is obtained by substituting the
specified t; arguments, and the final inequality is obtained by using the lower bound imposed on M
and summing over j.

To provethe corollary, note that the moment generating function of y(6,w;) now satisfies pu(t) <
1+ A|0|2%2 for |t-0] < ©/2, with A = ES(8,w)%r(w)*>e"™ < {[ES(8,w)"]-[Er(w)*e*™]} Y2 by the
Cauchy-Schwartz inequality. Theremainder of the proof of thelemmaholdsfor thisA, and Es(5,w)*
< Es(6,w) — OimpliesA -— 0asdé —— 0, giving theresult. =

Let 6 beafinite-dimensiona parameter varyinginaset ®. Suppose 6, minimizesafunction q(6)
defined on ®. Suppose further that a sample analog Q,(6) isminimized at apoint T,, that converges
in probability to 6,. Define Q,(6) - q(6) to be uniformly convergent at rate O,(e,) on O,(3,)
neighborhoods of 6, if for each sequence of random variables R, of order O,(3,) there exists a

sequence of random variables S of order O(e,) such that SUPy g, |Q,(0)-q(0)] < S, 1 will

employ conditions for n*2-consistency established by Sherman (1993):
Lemma 3. Suppose T,, minimizes Q,(6) and 6, minimizes q(0) on ©. If
(i) |T, - 6,] = Oy(3,) for a sequence of numbers s, — 0,

(i) for some neighborhood ©, of 6, and constant x > 0, q(6) - q(8,) > k|02,
(iii) uniformly over O,(8,,) neighborhoods of 6,,

Qn(e) - q(e) - Qn(eo) + q(eo) = Op(n_]jz‘ e_eo‘) + Op(‘e_eo‘ 2) + Op(l/n)a
13



then |T,-6,| = Op(n‘”). Suppose, in addition, that uniformly over Op(n‘”z) nei ghborhoods of
0,,Q,0)-Q,6,)=(0-6,)R/n"?+(0-6.))0-6,)/2+ 0,(1/n), where R, isaymptotically normal
with mean 0 and covariance matrix K. Then, n**(T,, - 8,) —, N(0,J'KJ%).

| turn now to the proof of Theorem 1. Absorb x into z(y,w), so that the model issimply y =
Z(y,w)B +u. A.1and A.3imply that z(y,w)’z(y,w) iswell-behaved and dominated by integrabler (w)?,
and z(y,w)'y iswell-behaved and dominated by r(w)y which satisfiesE [r(w)y| < Er(w)?|B,|. Then,
by Lemma 1, H(y) = Ez(y,w) z(y,w) and y(y) = Ez(y,w)'y are continuousiny, and
sup,cr (M YN Z(yw) Z(yw) - H(y)| —x0 and sup, [0t D3 Z(rw)'y - w(¥)| 0.
From A.1, H(y) is positive definite. Therefore, B(y) = H(y)w(y) and s(y) = B(y)'H(y)B(y) are
continuous on T, sup,.- |S(y) - S(y)| —. 0, and o*(y) + s(y) = Ey’. Given £, > 0, one has

inf, rg iy s o(y)lo,2 =% >1from A.2. Notethat 6*(y) > »o,” implies(y,) > S(y) + (A-1)c 2
Choose n such that Prob(sup,,.., sup,. |S(y) - s(y)| > (A-1)c,7/3) <e. Forn’ > n and |y-y,| > §, one
then has with probability at least 1- theinequality S(y,) > S(y) + (A-1)6,%/3. Then with at least this
probability, the maximand ¢ of S(y) is contained within a é-neighborhood of vy, for al n” > n.

Thereforec —— . v,. Uniform a.s. convergence then implies s> = SSR(c)/(n-k) — o2 Let b(y) =

(Y 2w Zyw) | P YT 2y w)'y, . Then sup,.p [b() - B(r)| . O, and hence bi(c)

— 4 Po- This establishes strong consistency.

Supposey, isan isolated point of I". Then an implication of ¢ -—_ v, isthat Prob(c # v, for n’
> n) — 0, and hence Prob(n“*(c-y,)#0) - 0. Hence for £,6 > O, there exists n, such that
Prob(n"[B(c)-B(y,)| > 8) < Prob(n"*(c-y,) #0) < e for n> n,. But n*(0(y,)-B,) —q N(0,0,"H(v,)™)

by application of the Lindeberg-Levy central limit theoremton? ) " [z(yo,wi)’yi - H(yO)BO] :

Combining theseresults establishesthat n¥(b(c)-B,) —4N(0,5,H(y,) ™). Thisestablishesasymptotic
normality in the case of isolated v,.

Suppose A.4 holds. Then d(y,,w) =V, z(y,w)B exists a.s. and is well-behaved, implying that it
is piecewise a.s. continuous in y. Given € > 0, there as. exists d(e,y,w) > 0 such that |y’ - y| <
d(e,y,w) implies |d(y’,B,w) - d(v,B,w)| <e|B| and, by the theorem of the mean, (z(y',w) - z(y,w))B =
d(y*.B.w)(y’-y) for v* € (y,y’). Let W(e,y,v) be the set of w for which d(e,y,w) <v. The as.
continuity of d(y,B,w) impliesthe (outer) probability of W(e,y,v) approacheszero asv — 0. Choose
v such that the probability of W(e,y,v) islessthan € and Er(w)-1(weW(e,y,v)) <e. Then, A(y,y’,p,w)
= (2y'\w) - 2y, W))B - d(y,B.w)(y'-y) setisfiesthebounds [A(y,y'B.w)| < &[B|-[y"-y| for w & We,y,v)
and |A(y,y'Bw)| < 3r(w)-|B|-|y'-y| as. Since ¢ is arbitrary, this establishes that A(y,y’,p,w) =
o,(|B|*|v'-v|) and EA(y,y",B,w) = o(|B|*|y'-y|). Thesame argument establishes the approximations

(A'?’) EZ(%W)/(Z(Y’W) - Z(YO’W))B = EZ(Y’W)’d(YmB!W)(Y'Yo) + 0(‘7'70‘)

and
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(A'4) B/E(Z(%W) - Z(YO,W))’(Z(Y,W) - Z(me))B = (Y-YO)/Ed(YO1B1W)/d(YO’B’W)(Y-YO) + O(‘Y'Yo‘ 2) .
Define6 = (v,8) and Q,(6) =n™ Y, (v - Z(yW)B)>. Thenq(8,) = o, and q(8) = E(y - (v, W)B)’

= 0,° + E(Z(y,W)B, - Z(yW)B)>. Write (z(y,W)B - Z(y,W))B, = Z(yo,W)(B-Bo) + (Z(y:W) - Z(y,W))B =
Z(y,W)(B-Bo) + d(ve:B.W)(v-70) + MyorY,B.W). Then

(A-5)  q(6) - a6,) = (B-Bo) Ez(yoW) Zvo,W)(B-Bo) + 2(B-Bo) EZ(yoW)" (2 W) - Z(y,W))B
+ Bo E(2y.W) - Zvo,W))' (2, W) - Z(v:W))B,

, B_Bo I EZ(%W)/Z(%W) EZ(Y’W)’d(Y()!B!W) B_Bo
Y=Yo| [Ed(e:B.W) Z(v,W)  Ed(v,,B,W) d(v,,B:W) || ¥ -7,
+ 2'E;\‘(%B1W)[d(YO1B1W)(Y'Yo) + Z(me)(B'Bo)] + Ey\‘(Y!B!W)Z :

Thefinal termsinthisexpression areo(|6-0,|?), and the conditionsfrom A.4 that J(y,B) iscontinuous
and J(y,,B,) is positive definite imply that g(6) - q(8,) = (6-0,)' J(v.,B,)(8-6,) + 0(|6-6,|?) > k[0-0,|>
for some k > 0 on a neighborhood of 6,. Consider the expression

(A'6) Qn(e) - q(e) - Qn(eo) + q(eo) =n* Zinzl ui(z(%VVi)B - Z(Ymvvi))Bo)

+t 3 (@B - Z(reWi)Bo) - E(Z(rW)B - Z(7,W))B)F -

The first term on the right-hand-side of this expression can be written

(A-7) nt Y u(@yw)B - Z(y,w))B,)

B-p
=nt 3L U [2rew) A b))

o

0t 3 Uy, BW).

The Lindeberg-Levy centra limit theorem implies
(A-8)  Ry=n"2 3, u [2Zr,w)  diveBw)] —aNOG1e)) ;

-1 n B_BO -1/2 . .
hencen® Y, u [z(yo,wi) d(yO,B,wi)] - = 0,(n"*]0-6,|). The assumptionsin A.4 that u

(o]

hasaproper moment generating function and r(w) isbounded impliesthat u-A(y,,y,B,w) hasaproper
moment generating function. An application of the Corollary to Lemma 2, utilizing the condition
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n

that A(y,y’,8.w) = (||| y'-y|),impliesthat uniformly n® ¥ ", U (yoy,B,w) = 0,( ™2 (B [v-7,]).
Finaly, write
(A-9) nt Y0 {@rwW)B - ZroW))Bo)” - E(2(y.W)B - Z(veW))Bo)}

=0t Y {dWeBW) (o) + ZreW)(B-Bo) + AYory,Bw)}
- E{ d(YmB!W)(Y'Yo) + Z(me)(B'Bo) + ;\‘(YO’%B!W)} 2'

The squares and cross-products that do not involve (y,y,8,.w) will be O (n"?/6-6,|>) by the
Lindeberg-Levy central limit theorem. The terms that involve A(y,,y,p,w) or its square will be
uniformly o,(n™?|6-6,|?) by the Corollary to Lemma 2. Conditions (i) to (iii) of Lemma3 are now
established, implying thenonlinear |east squaresestimatessatisfy T,,- 0, = Op(n‘”). Finally, observe
from (A-5) to (A-8) that

+ Op(n-y2|B"|Y'Yo‘)

Qu®) - Qu(6) =2n™ 3y U [2yow)  dlvoBw)]

(o]

+ O(‘e'eo‘z)

N B_Bol EZ(%W)/Z(%W) EZ(Y’W)’d(Y()!B!W) _ B_Bo
Ed(y,B.w) Zlyw)  Ed(y,,B,wW) d(ve,B.W) |[v-Y

P-B,
J0,)

Y7o
Then, the final condition of Lemma 3 is satisfied, and the nonlinear least squeares estimator is
asymptoticaly normal with covariance matrix ,23(6,)". =

Y%

(o]

B-B,|
Y=Y,

B-B,
Yo

=2n""R, +

+ 0y(2 (B[ v-vo|) + 0(|0-6,]) -
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