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ABSTRACT:  A common problem in applied regression analysis is to select the variables that enter
a linear regression.  Examples are selection among capital stock series constructed with different
depreciation assumptions, or use of variables that depend on unknown parameters, such as Box-Cox
transformations, linear splines with parametric knots, and exponential functions with parametric
decay rates.  It is often computationally convenient to estimate such models by least squares, with
variables selected from possible candidates by enumeration, grid search, or Gauss-Newton iteration
to maximize their conventional least squares significance level; term this method Prescreened Least
Squares (PLS).  This note shows that PLS is equivalent to direct estimation by non-linear least
squares, and thus statistically consistent under mild regularity conditions.  However, standard errors
and test statistics provided by least squares are biased.  When explanatory variables are smooth in
the parameters that index the selection alternatives, Gauss-Newton auxiliary regression is a
convenient procedure for obtaining consistent covariance matrix estimates.  In cases where
smoothness is absent or the true index parameter is isolated, covariance matrix estimates obtained
by kernel-smoothing or bootstrap methods appear from examples to be reasonably accurate for
samples of moderate size.
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ON SELECTING REGRESSORS TO MAXIMIZE THEIR SIGNIFICANCE

Daniel McFadden

1.  Introduction

Often in applied linear regression analysis one must select an explanatory variable from a set of
candidates.  For example, in estimating production functions one must select among alternative
measures of capital stock constructed using different depreciation assumptions.  Or, in hedonic
analysis of housing prices, one may use indicator or ramp variables that measure distance from
spatial features such as parks or industrial plants, with cutoffs at distances that are determined as
parameters.  In the second example, the problem can be cast as one of nonlinear regression.
However, when there are many linear parameters in the regression, direct nonlinear regression can
be computationally inefficient, with convergence problematic.  It is often more practical to approach
this as a linear regression problem with variable selection.

This paper shows that selecting variables in a linear regression to maximize their conventional
least squares significance level is equivalent to direct application of non-linear least squares.  Thus,
this method provides a practical computational shortcut that shares the statistical properties of the
nonlinear least squares solution.  However, standard errors and test statistics produced by least
squares are biased by variable selection, and are often inconsistent.  I give practical consistent
estimators for covariances and test statistics, and show in examples that kernel-smoothing or
bootstrap methods appear to give adequate approximations in samples of moderate size.

Stated formally, the problem is to estimate the parameters of the linear model

(1)      y = X  + Z( )  + u,    �  ,

where y is n×1, X is an n×p array of observations on fixed explanatory variables, Z = Z( ) is an n×q
array of observations on selected explanatory variables, where  indexes candidates from a set of
alternatives , and u is an n×1 vector of disturbances with a scalar covariance matrix.  Let k = p +
q, and assume  � �h.  The set  is finite in the traditional problem of variable selection, but will be
a continuum for parametric data transformations.  Assume the data in (1) are generated by
independent random sampling from a model y = x� o + z( o,w)� o + u, where (y,x,w) � �×�p×�m is
an observed data vector, z: ×�m �� �q is a "well-behaved" parametric transformation of the data w,
( o, o, o) denote the true parameter values, and the distribution of u is independent of x and w, and
has mean zero and variance o

2.  There may be overlapping variables in w and x.  Examples of
parametric data transformations are (a) a Box-Cox transformation z( ,w) = w -1/( -1) for  � 0 and
z(0,w) = log(w); (b) a ramp (or linear spline) function z( ,w) = Max( -w,0) with a knot at ; (c) a
structural break z( ,w) = 1(w< ) with a break at ; and (d) an exponential decay z( ,w) = e- w.
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One criterion for variable selection is to pick a c �  that maximizes the conventional least
squares test statistic for the significance of the resulting Z(c) variables, using enumeration, a grid
search, or Gauss-Newton iteration, and then pick the least-squares estimates (a,b,s2) of ( o, o, o

2) in
(1) using the selected Z(c).  As a shorthand, term this the Prescreened Least Squares (PLS) criterion
for estimating (1).  I will show that PLS is equivalent to selecting Z( ) to maximize R2, and is also
equivalent to estimating ( , , , 2) in (1) jointly by nonlinear least squares.  Hence, PLS shares the
large-sample statistical properties of nonlinear least squares.  However, standard errors and test
statistics for a and b that are provided by least squares at the selected Z(c) fail to account for the
impact of variable selection, and will usually be biased downward.  When  is a continuum, a
Gauss-Newton auxiliary regression associated with the nonlinear least squares formulation of the
problem can be used in many cases to obtain consistent estimates of standard errors and test
statistics.  When  is finite, the effects of variable selection will be asymptotically negligible, but
least squares estimates of standard errors will be biased downward in finite samples.

Let M = I - X(X�X)-1X�, and rewrite the model (1) in the form

(2)      y = X[  + (X�X)-1X�Z( ) ] + MZ( )  + u .

The explanatory variables X and MZ( ) in (2) are orthogonal by construction, so that the sum of
squared residuals satisfies 

(3)      SSR( ) = y�My - y�MZ( )[Z( )�MZ( )]-1Z( )�My .

Then, the estimate c that minimizes SSR( ) for  �  also maximizes the expression

(4)      S( ) � n-1�y�MZ( )[Z( )�MZ( )]-1Z( )�My .

The nonlinear least squares estimators for , , and 2 can be obtained by applying least squares to
(1) using Z = Z(c); in particular, the estimator of 2 is s2 = SSR(c)/(n-k) and the estimator of  is b
= [Z(c)�MZ(c)]-1Z(c)�My.  Since R2 is monotone decreasing in SSR( ), and therefore monotone
increasing in S( ), the estimator c also maximizes R2.  Least squares estimation of (1) also yields an
estimator Ve(b) = s2[Z(c)�MZ(c)]-1 of the covariance matrix of the estimator b; however, this
estimator does not take account of the impact of estimation of the embedded parameter  on the
distribution of the least squares estimates.  The conventional least-squares F-statistic for the null
hypothesis that the  coefficients in (1) are zero, treating Z as if it were predetermined rather than
a function of the embedded estimator c, is

(5)    F = b�Ve(b)-1b/q = y�MZ(c)[Z(c)�MZ(c)]-1Z(c)�My/s2q =  .(n�k)�S(c)
q�(y�My/n � S(c))

But the nonlinear least squares estimator selects  �  to maximize S( ), and (5) is an increasing
function of S( ).  Then estimation of ( , , , 2) in (1) by nonlinear least squares, with  � , is
equivalent to estimation of this equation by least squares with c �  selected to maximize the
F-statistic (5) for a least squares test of significance for the hypothesis that  = 0.  When there is a
single variable that depends on the embedded  parameter , the F-statistic equals the square of the
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T-statistic for the significance of the coefficient , and the PLS procedure is equivalent to selecting
c to maximize the "significance" of the T-statistic.

I have not found this result stated explicitly in the literature, but it is an easy special case of
selection of regressors in nonlinear least squares using Unconditional Mean Square Prediction Error,
which in this application where all candidate vectors are of the same dimension coincides with the
Mallows Criterion and the Akaike Information Criterion; see Amemiya (1980).  Many studies have
noted the impact of variable selection or embedded parameters on covariance matrix estimates, and
given examples showing that least squares estimates that ignore these impacts can be substantially
biased; see Amemiya (1978), Freedman (1983), Freedman-Navidi-Peters (1988), Lovell (1983),
Newey-McFadden (1994), and Peters-Freedman (1984).

2.  Consistency and Asymptotic Normality

Estimation of (1) by the PLS procedure will be consistent and asymptotically normal whenever
nonlinear least squares applied to this equation has these properties.  The large-sample statistical
properties of nonlinear least squares have been treated in detail by Jenrich (1969), Amemiya (1985,
Theorems 4.3.1 and 4.3.2), Tauchen (1985), Gallant (1987), Davidson & MacKinnon (1993), and
Newey & McFadden (1994, Theorems 2.6 and 3.4).  I give a variant of these results that exploits the
semi-linear structure of (1) to limit the required regularity conditions:  I avoid requiring a
compactness assumption on the linear parameters, and impose only the usual least squares conditions
on moments of x and z( o,w).  For consistency, I require an almost sure continuity condition on z( ,w)
that is sufficiently mild to cover ramp and structural break functions.  For asymptotic normality, I
require almost sure smoothness conditions on z( ,w) that are sufficiently mild to cover ramp
functions.  These conditions are chosen so that they will cover many applications and are easy to
check.

Several definitions will be needed.  A function g: ×�m �� �q will be termed well-behaved if

i.  g( ,w) is measurable in w for each  � ,

ii.  g( ,w) is separable; i.e.,  contains a countable dense subset o, and the graph of g: ×�m

�� �q is contained in the closure of the graph of g: o×�
m �� �q.

iii.  g( ,w) is pointwise almost surely continuous in ; i.e., for each � � , the set of w for
which lim 6 N g( ,w) = g( �,w) has probability one.  

Condition (iii) allows the exceptional set to vary with �, so that a function can be pointwise almost
surely continuous without requiring that it be continuous on  for any w.  For example, the structural
break function 1( <w) has a discontinuity for every w, but is nevertheless separable and pointwise
almost surely continuous when  is compact and the distribution of w has no point mass.  A function
g: ×�m �� �q is dominated by a function r:�m �� � if �g( ,w)� � r(w) for all  � .
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The main result on large sample properties of PLS draws from the following assumptions: 

[A.1] The data in (1) are generated by an independent random sample of size n, with data
(y,x,w) from a model y = x� o + z( o,w)� o + u, with o �  and o � 0.  The u are independently
identically distributed, independent of x and w, and have mean zero and variance o

2.  The
vector x has a finite second moment and the function z( ,w) is dominated by a function r(w)
that is square integrable.  For each  � , the array H( ) = E(x,z( ,w))�(x,z( ,w)) is positive
definite.

[A.2] Let 2( ) = Min ,  E(y - x  - z( ,w) )2.  When minimands exist, denote them by ( ) and
( ).  Then ( o) = o, ( o) = o, and Min 0  2( ) = 2( o) = o

2.  For each  > 0, the

identification condition 2( )/ o
2 > 1 holds.  inf

0 &| & o|$

[A.3] The set  is compact and the function z( ,w) is well-behaved.

[A.4] The random disturbance u has a proper moment generating function.  There exist an
open set o with o � o �  and a bounded function r(w) such that z( ,w) satisfies a Lipschitz
property �z( ,w) - z( �,w)� � r(w)��  - �� for all , � � o.  The derivative d( , ,w) =
�	 z( ,w) exists almost surely for  � o and is well-behaved.  Then Ed( , ,w) = �	 Ez( ,w)

and J( , ) = E(x,z( ,w),d( , ,w))�(x,z( ,w),d( , ,w)) exist and are continuous for  � o.
Assume that J( o, o) is positive definite.  

Assumption A.1 guarantees that the regression (1) is almost surely of full rank and satisfies
Gauss-Markov conditions.  The independence assumption on u is stronger than necessary for large
sample results, but nonlinear dependence of z( ,w) on w implies more is needed than just an
assumption that u is uncorrelated with x and w.  The independence assumption also rules out
conditional heteroskedasticity and (spatial or temporal) serial correlation in the disturbances, which
may be present in some applications.  Independence is not fundamental, and establishing large
sample results with weaker assumptions on u merely requires substituting appropriate statistical
limit theorems in the proof of Theorem 1 below, with the additional regularity conditions that they
require.  However, weakening the independence assumption on u requires that bootstrap estimates
of variances use a compatible method, such as the conditional wild bootstrap defined in Section 3.

Assumption A.2 is a mild identification condition that requires the asymptotic nonlinear least
squares problem have a unique solution at o.  One must have o � 0 for A.2 to hold.  Assumption
A.3 holds trivially if  is finite.  When  is not finite, A.3 is needed to guarantee consistency of the
nonlinear least squares estimator of (1).  It can be relaxed, at a considerable cost in complexity, to
a condition that the family of functions z( ,w) for  �  can be approximated to specified accuracy
by finite subfamilies that are not too numerous; see Pollard (1984, VII.4.15).  Pakes and Pollard
(1989) characterize some families of functions that satisfy such conditions.

Assumption A.4 is used when  is a continuum to guarantee that the nonlinear least squares
estimator is asymptotically normal.  It will also imply that a Gauss-Newton auxiliary regression can
be used to iterate to a solution of the nonlinear least squares problem, and to obtain consistent
estimates of standard errors and test statistics for a and b.  I have chosen this assumption to cover
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applications like ramp functions where z( ,w) is not continuously differentiable.  The price for
generality in this dimension is that I require a strong assumption on the tails of the distribution of
the disturbance u (the moment generating function condition), and a strong form of continuity (the
uniform Lipschitz condition).  The first of these conditions is palatable for most applications, and
the second is easy to check.  Again, both can be relaxed, using empirical process methods, at the
cost of introducing conditions that are more difficult to check.  The requirement that J( o, o) be
non-singular is a local identification condition.  The following result is proved in the appendix.

Theorem 1.  Suppose A.1-A.3.  Then PLS is strongly consistent.  In detail, the functions
( ( ), ( ) 2( )), are continuous on ; least squares estimators (a( ),b( ),s2( )) from (1) satisfy
sup 0  �(a( )- ( ),b( )- ( ),s2( ) - 2( ))� ��as 0; and c ��as o.  Equivalently, nonlinear least
squares applied to (1) is strongly consistent for the parameters ( o, o, o, o

2).  If o is an isolated
point of , then n1/2(c- o) ��p 0 and

(6)     n1/2  ��d N(0, o
2H( o)

-1) .
a� o

b� o

Alternately, if A.4 holds, then

(7)    n1/2  ��d N(0, o
2J( o, o)

-1) .

a� o

b� o

c� o

This theorem establishes consistency and asymptotic normality in the case of the classical
variable selection problem where  is finite, and in the parametric transformation problem where
the derivative of the transformation with respect to the index parameters is well-behaved.  This
covers most applications, including linear spline functions with parametric knots.  However, it is
possible that o is not isolated and z( ,w) fails to have a well-behaved derivative, so that A.4 fails.
The structural break function z( ,w) = 1( <w) is an example that fails to satisfy the Lipschitz
condition.  The asymptotic distribution of c, and the properties of various covariance matrix
estimators, must be resolved on an individual basis for such cases.

3.  Gauss-Newton Auxiliary Regression and Bootstrap Covariance Estimates

When assumptions A.1-A.4 hold, so that o is in the interior of  and z( ,w) is almost surely
continuously differentiable, Theorem 1 establishes that nonlinear least squares applied to (1) is
strongly consistent and asymptotically normal.  Consider a least squares regression,
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(8)      y = X  + Z(cj)  + D(cj,bj)  + v ,

where (aj,bj,cj) are previous-round estimates of the model parameters and D(cj,bj) is the n×h array
with rows d(cj,bj,w) = bj�	 z(cj,w).  The rule for updating parameter estimates is aj+1 = a, bj+1 = b,
and cj+1 = cj + c, where a, b, and c are the least squares estimates from (8).  The regression (8)
is called the Gauss-Newton auxiliary regression for model (1), and the updating procedure is called
Gauss-Newton iteration; see Davidson and MacKinnon (1993).  Comparing the least squares
formulas for (a,b, c) with the first-order conditions for nonlinear least squares applied to (1), from
the proof of Theorem 1, one sees that the non-linear least squares estimators (a,b,c) determine a
fixed point of Gauss-Newton iteration:  If one starts from (a,b,c) as previous-round estimates, one
obtains c = 0, and the linear regressions (1) and (8) will yield identical estimates a and b for the
regression coefficients.  Comparing the least squares estimate from (8) of the covariance matrix of
the estimates (a,b, c) with the covariance matrix of the nonlinear least squares estimates (a,b,c)
from the proof of Theorem 1, one sees that these estimates are asymptotically equivalent.
Summarizing, we have the following results:

(a) The nonlinear least squares estimates (a,b,c) of (1) are a fixed point of the Gauss-Newton
auxiliary regression (8), and the estimated covariance matrix of the regression coefficients
from this auxiliary regression at this fixed point is a strongly consistent estimate of the
covariance matrix of (a,b,c).

(b) For an initial value c1, suppose the initial values (a1,b1) are obtained from the regression
(1) using Z(c1).  For c1 in some neighborhood of o, Gauss-Newton iteration will converge to
the fixed point (a,b,c).  Gauss-Newton iteration from a sufficiently dense grid of initial values
for c1 will determine all fixed points of the process, and the fixed point at which S(c) is largest
is (a,b,c).

The reason for considering a grid of starting values c1 is that Gauss-Newton iteration may fail to
converge outside a neighborhood of c, or if the fixed point is not unique may converge to a fixed
point where S(c) is at a secondary maximum.  The assumptions in A.4 that o is an interior point of

 and that z( ,w) is Lipschitz and its derivative 	 z( ,w) is well-behaved are essential in general for
use of the Gauss-Newton auxiliary regression to obtain covariance estimates.  For example, the
structural break function 1(w> ) fails to satisfy the Lipschitz condition, and (8) fails to give a
consistent estimate of the covariance matrix.  

In cases where direct application of the Gauss-Newton auxiliary regression fails, it may be
possible to use approximate Gauss-Newton auxiliary regression or a bootstrap procedure to obtain
covariance estimates that are reasonably accurate for samples of moderate size.  The idea is that in
a model y = x  + z( ,w) + u satisfying A.1-A.3, but not A.4, one can replace a poorly-behaved z( ,w)
by a kernel smoother z*( ,w) = 
z( �,w)�k(( - �)/ )�d �, where k(�) is a continuously differentiable
probability density that has mean zero and variance one, and  is a small positive bandwidth.  For
fixed , z*( ,w) satisfies the continuous differentiability condition in A.4.  Let ( *, *, *) be the
minimand of E(y - x  - z*( ,w) )2.  Theorem 1 can be adapted to show that PLS applied to y = x  +
z*( ,w)  + u is strongly consistent for ( *, *, *) and asymptotically normal, and that the auxiliary
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regression y = xa + z*( *,w)b + *�	 z*( *,w) c + u* provides a consistent estimate of the correct
covariance matrix for PLS in the smoothed model.  The bias in ( *, *, *) goes to zero with .  Then,
decreasing  until the coefficients ( *, *, *) stabilize, and using the Gauss-Newton auxiliary
regression at this  to estimate the covariance matrix, can provide a reasonable approximation when
the underlying model is consistent and asymptotically normal.

To illustrate the kernel smoothing approximation, consider the simple structural break model y
= 1(w� o) o + u, where A.1-A.3 are satisfied and w has a CDF F(w) with bounded support and a
density f(w) that is positive in a neighborhood of o.  The asymptotics of structural break problems
have been characterized for discrete time series by Andrews (1993) and Stock (1994).  The structural
break example here is simpler in that w is continuously distributed and the disturbances are i.i.d.  The
features of this example often appear in spatial models where the span of proximity effects must be
estimated.  The kernel approximation to 1(w� ) is K(( -w)/ ), where K is the kernel CDF.  The
asymptotic covariance matrix obtained from the kernel approximation is J-1, where

    J =  ��
K(( �w)/ )2f(w)dw 
k(q)K(q)f( � q)dq


k(q)K(q)f( � q)dq 
k(q)2f( � q)dq/

F( ) f( )
k(q)K(q)dq

f( )
k(q)K(q)dq ��

as  �� 0.  This implies that c converges to o at a greater than n1/2 rate, and that the asymptotic
covariance matrix of b is given by the least squares formula with o known.  A Monte Carlo
experiment completes the illustration.  Let y = 1(w� o) o + u with w uniformly distributed on [0,1],
u standard normal, o = 0.5, and o = 1.  The probability of ties is zero, so the observations can be

ordered almost surely with w1 < ...  < wn.  Let y�k = yi/k.  The sum of squares explained, S( )�k
i'1

from (4), is piecewise constant and right-continuous with jumps at wi, and S(wi) = i�y�i
2.  Then, c

equals the value wk that maximizes ky�k
2, and b = y�k.  Table 1 gives exact finite-sample moments,

calculated using 10,000 Monte Carlo trials for u, conditioned on one sample of w’s.  Finite sample
bias is small and disappears rapidly as sample size grows.  The variance of n1/2(c - o) is substantial
at n = 100, but drops rapidly with n.   Correspondingly, the variance of n1/2(b - o) at n = 100 is
substantially above its asymptotic value of 1.90, but drops rapidly toward this limit as n increases.
The probability that the conventional PLS F-statistic exceeds n/2 is given next.  If o were known
and fixed, then this probability would equal the upper tail probability from the noncentral
F-distribution F(n/2,1,n-1, ), with noncentrality parameter  = � 1(wi�0.5).  This probability and 
are given in the last two rows.  The actual finite sample distribution of the F-statistic has a larger
upper tail than the corresponding noncentral F-distribution, with the difference disappearing with
growing sample size.  A kernel-smoothed approximation to the covariance matrix for n 
 100 is
accurate to two significant digits for a normal kernel and  = 15/n; I omit the detailed results.  A
disadvantage of kernel-smoothing is lack of a cross-validation method for determining values of 
that give a good empirical approximation.
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Table 1.                      Sample Size n:  100  400  1600  6400
Mean c  ( o = 0.5) 0.495 0.496 0.500 0.500
Mean b  ( o = 1) 1.023 1.005 1.001 1.000

Mean s2  ( o
2 = 1) 1.004 1.001 1.001 1.000

Var(n1/2(c - o)) 0.293 0.093 0.027 0.006
Var(n1/2(b - o)) 2.823 2.135 2.024 1.956

Cov(n1/2(c - o),(n
1/2(b - o)) -0.469 -0.083 -0.023 -0.007

Prob(F > n/2)  0.317 0.433 0.470 0.682
1 - F(n/2,1,n-1, )  0.281 0.415 0.464 0.680

oncentrality parameter    41  193  794 3259

A bootstrap procedure is a possible alternative to a Gauss-Newton auxiliary regression to
estimate covariances.  The following procedure for estimating the covariances of PLS estimates is
called the conditional bootstrap; see Peters and Freedman (1984), Brown and Newey (1995), and
Veal (1992):  

(a) Given PLS estimates (a,b,c) from (1), form residuals û = y - Xa - Z(c)b.
  
(b) Let ûr be an n×1 vector drawn randomly, with replacement, from elements of û.  For
bootstrap trials r = 1,...,R, calculate yr = Xa + Z(c)b + ûr, and apply PLS to model (1) with
dependent variable yr to obtain estimates (ar,br,cr).  Form bootstrap means (ao,bo,co) =

n-1 (ar,br,cr) and the bootstrap covariance matrix �R
r'1

VR = n-1 (ar-ao,br-bo,cr-co)�(ar-ao,br-bo,cr-co).  �R
r'1

(c) The vector (a*,b*,c*) = 2�(a,b,c) - (ao,bo,co) is a bias-corrected bootstrap estimate of the
parameters of (1), and VR is a bootstrap estimate of the covariance matrix of (a*,b*,c*).  

An alternative that can handle conditional heteroskedasticity is the conditional wild bootstrap,
where ûr = û� r, with r a vector of independent identically distributed draws from a distribution that
has E i = 0, E i

2 = 1, and E i
3 = 1.  A typical construction is i = i/2

1/2 + ( i
2-1)/2 with i standard

normal; see Liu (1988) and Davidson and Flachaire (1996).  
Suppose A.1-A.3 hold, and PLS is strongly consistent by Theorem 1.  Suppose in addition that

n1/2[(a,b,c) - ( o, o, o)] is asymptotically normal, either because A.4 holds or because n1/2(c - o) ��p

0.  Then, the bootstrap procedure with R �� +� will give consistent estimates of its covariance
matrix.  The simple bootstrap procedure just described will not guarantee a higher order
approximation to the finite sample covariance matrix than conventional first-order asymptotics,
although in practice it may capture some sources of variation that appear in finite samples.  Various
iterated bootstrap schemes are available to get higher order corrections; see Beran (1988) and
Martin (1990).

Consider the structural break example y = 1(w� o) o + u with w uniformly distributed on [0,1],
u standard normal, o = 0.5, and o = 1.  As indicated by the kernel smoothing analysis, this is a case
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where asymptotic normality holds because n1/2(c - o) ��p 0.  For a single sample of w’s, we draw
100 samples from the true model, and then apply the conditional bootstrap with R = 100 repetitions
to each sample.  Table 2 gives exact sample and bootstrap estimates of the means and variances of
the estimators of o and o.  As in Table 1, bias in the estimated coefficients is small, and attenuates
rapidly; a bootstrap bias correction has a negligible effect.  The bootstrap variance estimates are
relatively accurate for the sample sizes larger than 100, and do appear to capture some of the
finite-sample effects that disappear asymptotically.

Table 2: Sample Size n  100  400  1600  6400
Exact Mean c 0.495 0.496 0.500 0.500

Bootstrap Mean c 0.499 0.493 0.500 0.500
Exact Mean b 1.023 1.005 1.001 1.000

Bootstrap Mean b 1.062 1.007 0.999 1.000
Exact Var(n1/2(c - o)) 0.293 0.093 0.027 0.006

Bootstrap Var(n1/2(c - o)) 0.385 0.090 0.029 0.006
Exact Var(n1/2(b - o)) 2.823 2.135 2.024 1.956

Bootstrap Var(n1/2(b - o)) 2.893 2.070 2.014 1.926
 

Summarizing, the conditional bootstrap appears in one example where an explanatory variable
is poorly behaved to provide acceptable covariance estimates.  It appears to be at least as accurate
in samples of moderate size as Gauss-Newton regression using a kernel-smoothing asymptotic
approximation, and in addition avoids having to choose a smoothing bandwidth.

4.  The Effects of Selection from a Finite Set of Candidates

When  is finite, so that o is isolated, Theorem 1 establishes that the asymptotic effects of
variable selection are negligible, and one can treat c as if it were known and fixed in forming least
squares estimates of asymptotic standard errors or test statistics for  and .  However, in finite
samples, variable selection will have a non-negligible effect on standard errors and test statistics,
and the least squares estimates will generally be biased downward.  This problem and several
closely related ones have been investigated in the literature.  Amemiya (1980) and Breiman and
Freedman (1983) deal with the question of how many variables to enter in a regression.  Freedman
(1983) and Freedman, Navidi, and Peters (1988) show that variable selection leads least squares
standard errors to be biased downward.  There is a related literature on pre-test estimators; see
Judge and Bock (1978).  Also closely related is the econometrics literature on the problem of testing
for a structural break at an unknown date; see Andrews (1993) and Stock (1994).

Suppose the disturbances in (1) are normal.  If o were known and Z( o) always selected, then
the test statistic (5) for the significance of Z is distributed non-central F(q,n-k, ), with noncentrality
parameter  = o�(Z( o)�MZ( o)) o/ o

 2.  When o is unknown and c is selected to maximize (5), then
this statistic will always be at least as large as the F-statistic when Z( o) is always selected.  This
implies that the probability in the upper tail of the distribution of (5) exceeds the probability in the
corresponding upper tail of the F(q,n-k, ) distribution.
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An example provides an idea of the magnitude of the bias in the PLS test statistic.  Suppose
candidate variables (zo,z1) take the values (1,1) with probability (1+ )/4, (-1,-1) with probability
(1+ )/4, (1,-1) with probability (1- )/4, and (-1,1) with probability (1- )/4.  Suppose y = zo o + u,
with u normal with mean 0 and variance o

2, so that zo is the correct variable.  In a random sample
of size n, conditioned on the covariates, the alternative estimates of o when zo or z1 are selected,

respectively, are jointly distributed  ~ , where n = �zoz1/n.  The
b0

b1

N
o

o n

, o
2

n

1 n

n 1

residuals from these respective regressions are independent of b0 and b1, and jointly distributed

  ~ N  ,
w0

w1

0

Q1Zo o

, o
2

Qo QoQ1

Q1Qo Q1

where Zk is the n×1 vector of zo's for k = 0 and of z1's for k = 1; Qk = I - ZkZk�/n; and sk
2 =

wk�wk/(n-1).  The T-statistics are Tk = n1/2�bk/sk, and Zo is selected if To is larger in magnitude than
T1.  The statistic To has unconditionally a T-distribution with n-1 degrees of freedom.  Conditioned
on wo and w1, To ~ N( on

1/2/so, o
2/so

2).  The distribution of T1, given Wo, W1, and To = t,

is .  Let k be the critical level for a conventional T-test of significance levelN
tso n

s1

, o
2

s 2
1

(1� 2
n)

, and let  denote the conventional power of this test; i.e., o = Prob(F(1,n-1, )>k), with  = on/so.
Then, the probability that PLS yields a test statistic of magnitude larger than k is

 Prob(max{�To�,�T1�} > k) = o + Prob(�T1�>k�To=t)� � �dt�
k

&k

sot � n 1/2

o

so

o

= o + � � �dt .Ew0,w1�
k

&k

�s1k�tso n

o(1� n)
1/2

�
�s1k�tso n

o(1� n)
1/2

sot �
|||

o

so

o

Table 3 gives this probability, denoted , as well as the probability o, for  = 0.05, o = 1, and
selected values of , o, and n.  When o = 0, the identification condition A.2 fails, and the
probability of rejecting the null hypothesis using either zo or z1 alone equals the nominal significance
level, 0.05.  When zo and z1 are uncorrelated,  = 1 - (0.95)2 = 0.0975; the bias is reduced when zo

and z1 are correlated.  This effect continues to dominate for n and o where o is low.  When o is
large, the bias is smaller in relative terms, and increases when zo and z1 are correlated.  Adding more
candidates would increase the biases.

The previous section found relatively accurate bootstrap estimates of standard errors in an
example where convergence of c to o occurs at a better than n1/2 rate, so that n1/2(c - o) is
asymptotically degenerate normal.  The problem of isolated o is similar, so that bootstrap estimates
of covariances and asymptotic tests utilizing these bootstrap covariances can also be reasonably
accurate in samples of moderate size.
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Table 3          : 0.00 0.45 0.90
 o  n  o    

 0.0  100 0.050 0.097 0.093 0.070
 0.0 1000 0.050 0.097 0.093 0.070
 0.01  100 0.051 0.093 0.093 0.072
 0.01 1000 0.062 0.107 0.104 0.084
 0.1  100 0.168 0.208 0.208 0.200
 0.1 1000 0.885 0.890 0.893 0.899
 0.2  100 0.508 0.532 0.539 0.546
 0.2 1000 0.999 0.999 0.999 0.999

5.  Conclusions

This paper demonstrates that Prescreened Least Squares, where where explanatory variables are
selected to maximize their conventional least squares significance level, or to maximize R2, are
statistically consistent and equivalent to nonlinear least squares under general regularity conditions.
However, standard errors and test statistics provided by least squares software are biased.  When
explanatory variables are smooth in the parameters that index the selection alternatives, a
Gauss-Newton auxiliary regression provides a convenient procedure for getting consistent
covariance matrix estimates, and asymptotic tests from nonlinear least squares employing these
covariance estimates are consistent.  In situations where regularity conditions for Gauss- Newton
auxiliary regression are not met, such as explanatory variables that are not smooth in the index
parameters, or an isolated value for the true index parameter, bootstrap estimates of the covariance
matrix appear from examples to be reasonably accurate in samples of moderate size.

APPENDIX: Proof of Theorem 1

I will need three preliminary lemmas,  The first is a uniform stong law of large numbers
established by Tauchen (1985); see also McFadden (2000), Theorem 4.24: 

Lemma 1.  If wi are independently and identically distributed for i = 1,...,n,  is compact,
g: ×�m �� �q is well-behaved and dominated by an integrable function r, then Ewg( ,w) exists
and is continuous on , and a uniform strong law of large numbers holds; i.e.,

sup 0  �n-1 g( ,wi) - Ewg( ,w)� ��as 0.�n
i'1

Let n be a sequence of numbers.  A random variable Rn is said to be of order Op( n), or Rn = Op( n),
if for each � > 0, there exists M > 0 such that P(�Rn� > M n) < � for all n sufficiently large.  Then
convergence in probability, Rn ��p 0, is equivalent to Rn = Op( n) for a sequence n �� 0.  For
n1/2-consistency under the conditions in A.4, I use a result on uniform stochastic boundedness which
may be of independent interest.   
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Lemma 2.  Suppose y( ,w) is a measurable function of a random vector w for each  in an open
set  � �k that contains 0, with y(0,w) � 0 and Ey( ,w) = 0.  Suppose y( ,w) satisfies a Lipschitz
condition �y( �,w) - y( ,w)� � r(w)�� � - � for  and � in , where r(w) is a random variable
that has a proper moment generating function.  Suppose wi are independent draws.  Then,

sup* *< �n
-1/2 y( ,wi)� = Op( ).  In further detail, there exist positive constants  and A�n

i'1

determined by r(w) such that for M2 
 16�kA and n > (M/2A )2, 

 P(sup* *<  �n-1/2 y( ,wi)� > M� ) � 4�exp(-M2/16A) .�n
i'1

Corollary.  Suppose the assumptions of Lemma 2, and suppose that y( ,w) satisfies the Lipschitz
condition �y( �,w) - y( ,w)� � s( ,w)�r(w)�� � - � for  and � in  and � � < , with s( ,w) a
well-behaved function satisfying 0 � s( ,w) � 1 and Es( ,w) �� 0 when  �� 0.  Then 

sup* *<  �n-1/2 y( ,wi)� = op( ) .�n
i'1

Proof: There exists  > 0 such that Eetr(w) < +� on an open interval that contains [0, ]; an implication
of this is A = Er(w)2�e r(w) < +�.  Since �y( ,w)� � r(w)�� �, the moment generating function of y( ,wi)
exists for �t� � �  and has a Taylor’s expansion

µ(t) = Eet"y( ,w) = 1 + t2�Ey( ,w)2�e t"y( ,w)/2

for some  � (0,1), implying µ(t) � 1 + t2�� �2�Er(w)2�e*t *"r(w)/2 � 1 + A� �2t2/2.  The moment

generating function of n-1/2 y( ,wi) is then bounded by [1 + A� �2t2/2n]n � exp(A� �2t2/2) for�n
i'1

�t� �/n1/2 � .  Any random variable X satisfies the bound P(�X� > m) � e-tm�etxF(dx) +�x>m

e-tm�e-txF(dx) � e-tm�[EetX + Ee-tX] for t > 0.  Apply this inequality to obtain�x<&m

(A-1)        sup* *<  P(n-1/2� y( ,wi)� > m) � 2�exp(-tm + A 2t2/2)�
n

i'1

for �t� �/n1/2 � .  I use this exponential inequality and a chaining argument to complete the proof.
A hypercube centered at 0 with sides of length 2  contains the  satisfying | | < .  Recursively
partition this cube into 2kj cubes with sides of length 2 �2-j.  Let j denote the set of centroids of these
cubes for partition j, and let j( ) denote the point in j closest to .  Note that � j( ) - j-1( )� � 2 �2-j,
and that 

n-1/2 y( ,wi) =  n-1/2 [y( j( ),wi) - y( j-1( ),wi)] .�n
i'1 �4

j'1 �n
i'1

Therefore, for M2 
 16�kA and n > (M/2A )2,
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(A-2)        P(sup* *<  n-1/2� y( ,wi)� > M ) �n
i'1

� P(sup* *<  n-1/2 �[y( j( ),wi) - y( j-1( ),wi)]� > j�2-j-2�M ) �4
j'1 �n

i'1

� 2jk P(n-1/2� [y( j,wi) - y( j-1,wi)]� > j�2-j-2�M ) �4
j'1 �n

i'1 max
j �n

i'1

� 2jk�2�exp(-j�2-j-2�M �tj + A 221-2jtj
2)      for tj �2

1-j � n1/2 �4
j'1

� 2jk�2�exp(-(j-1/2)�M2/4A)      for tj = 2j-2M/A  and n > (M/2A )2�4
j'1

�  � 4�exp(-M2/16A) for M2 
 16�kA.
2k%1�exp(�M 2/8A)

1�2k�exp(�M2/4A)

The first inequality in (A-2) holds because the event on the left is contained in the union of the
events on the right.  The second inequality holds because the event on the left at partition level j is
contained in one of the 2jk events on the right for the partition centroids.  The third inequality is
obtained by applying the exponential inequality (A-1) to the difference y( j,wi) - y( j-1,wi), with m
replaced by M�j�2-j-2 and  replaced by �21-j.  The next inequality is obtained by substituting the
specified tj arguments, and the final inequality is obtained by using the lower bound imposed on M
and summing over j.

To prove the corollary, note that the moment generating function of y( ,wi) now satisfies µ(t) �
1 + A� �2t2/2 for �t� � � /2, with A = Es( ,w)2�r(w)2�e "r(w) � {[Es( ,w)4]�[Er(w)4�e2 r(w)]}1/2 by the
Cauchy-Schwartz inequality.  The remainder of the proof of the lemma holds for this A, and Es( ,w)4

� Es( ,w) �� 0 implies A �� 0 as  �� 0, giving the result.  � 

Let  be a finite-dimensional parameter varying in a set .  Suppose o minimizes a function q( )
defined on .  Suppose further that a sample analog Qn( ) is minimized at a point Tn that converges
in probability to o.  Define Qn( ) - q( ) to be uniformly convergent at rate Op(�n) on Op( n)
neighborhoods of o if for each sequence of random variables Rn of order Op( n) there exists a

sequence of random variables Sn of order Op(�n) such that �Qn( ) - q( )� � Sn.  I willsup| & 0|#Rn

employ conditions for n1/2-consistency established by Sherman (1993): 

Lemma 3.  Suppose Tn minimizes Qn( ) and o minimizes q( ) on .  If

(i) �Tn - o� = Op( n) for a sequence of numbers n �� 0,
(ii) for some neighborhood o of o and constant  > 0, q( ) -  q( o) 
 � �2,
(iii) uniformly over Op( n) neighborhoods of o, 

Qn( ) - q( ) - Qn( o) + q( o) = Op(n
-1/2� - o�) + op(� - o�

2) + Op(1/n),
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then �Tn - o� = Op(n
-1/2).  Suppose, in addition, that uniformly over Op(n

-1/2) neighborhoods of

o, Qn( ) - Qn( o) = (  - o)�Rn/n
1/2 + (  - o)J(  - o)/2 + op(1/n), where Rn is aymptotically normal

with mean 0 and covariance matrix K.  Then, n1/2(Tn - o) ��d N(0,J-1KJ-1).

I turn now to the proof of Theorem 1.  Absorb x into z( ,w), so that the model is simply y =
z( ,w)  + u.  A.1 and A.3 imply that z( ,w)�z( ,w) is well-behaved and dominated by integrable r(w)2,
and z( ,w)�y is well-behaved and dominated by r(w)y which satisfies E�r(w)y� � Er(w)2� o�.  Then,
by Lemma 1, H( ) = Ez( ,w)�z( ,w) and ( ) = Ez( ,w)�y are continuous in , and 

 sup 0  �n-1 z( ,w)�z( ,w) - H( )� ��as 0  and  sup 0  �n-1 z( ,w)�y - ( )� ��as 0 .�n
i'1 �n

i'1

From A.1, H( ) is positive definite.  Therefore, ( ) = H( )-1 ( ) and s( ) � ( )�H( ) ( ) are
continuous on , sup 0  �S( ) - s( )� ��as 0, and 2( ) + s( ) = Ey2.  Given �,  > 0, one has

 2( )/ o
2 =  > 1 from A.2.  Note that 2( ) 
 � o

2 implies s( o) 
 s( ) + ( -1) o
2.inf

0 &* & o|$

Choose n such that Prob(supnN$n sup 0  �S( ) - s( )� > ( -1) o
2/3) < �.  For n� 
 n  and � - o� 
 , one

then has with probability at least 1-� the inequality S( o) 
 S( ) + ( -1) o
2/3.  Then with at least this

probability, the maximand c of S( ) is contained within a -neighborhood of o for all n� 
 n.
Therefore c ��as o.  Uniform a.s. convergence then implies s2 = SSR(c)/(n-k) ��as o

2.  Let b( ) =

.  Then sup 0  �b( ) - ( )� ��as 0, and hence b(c)n&1�n
i'1 z( ,wi)�z( ,wi)

&1
n&1�n

i'1 z( ,wi)�yi

��as o.  This establishes strong consistency.  
Suppose o is an isolated point of .  Then an implication of c ��as o is that Prob(c � o for n�


 n) �� 0, and hence Prob(n1/2�(c- o)�0) �� 0.  Hence for �,  > 0, there exists no such that
Prob(n1/2�� (c)- ( o)� > ) � Prob(n1/2�(c- o)�0) < � for n 
 no.  But n1/2�(b( o)- o) ��d N(0, o

2H( o)
-1)

by application of the Lindeberg-Levy central limit theorem to n-1/2 .�n
i'1 z( o,wi)�yi � H( o) o

Combining these results establishes that n1/2�(b(c)- o) ��d N(0, oH( o)
-1).  This establishes asymptotic

normality in the case of isolated o.
Suppose A.4 holds.  Then d( , ,w) = 	 z( ,w)  exists a.s. and is well-behaved, implying that it

is piecewise a.s. continuous in .  Given � > 0, there a.s. exists (�, ,w) > 0 such that � � - � <
(�, ,w) implies �d( �, ,w) - d( , ,w)� < �� � and, by the theorem of the mean, (z( �,w) - z( ,w))  =

d( *, ,w)( �- ) for * � ( , �).  Let W(�, , ) be the set of w for which (�, ,w) < .   The a.s.
continuity of d( , ,w) implies the (outer) probability of W(�, , ) approaches zero as  �� 0.  Choose
 such that the probability of W(�, , ) is less than � and Er(w)�1(w�W(�, , )) < �.  Then, ( , �, ,w)
� (z( �,w) - z( ,w))  - d( , ,w)( �- ) satisfies the bounds � ( , � ,w)� � ��� ��� �- � for w � W(�, , )
and � ( , � ,w)� � 3�r(w)�� ��� �- � a.s.  Since � is arbitrary, this establishes that ( , �, ,w) =
op(� ��� �- �) and E ( , �, ,w) = o(� ��� �- �).  The same argument establishes the approximations

(A-3)        Ez( ,w)�(z( ,w) - z( o,w))  = z( ,w)�d( o, ,w)( - o) + o(� - o�)

and
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(A-4)       �E(z( ,w) - z( o,w))�(z( ,w) - z( o,w))   = ( - o)�Ed( o, ,w)�d( o, ,w)( - o) + o(� - o�
2) .

Define  = ( , ) and Qn( ) = n-1 (yi - z( ,wi) )2.  Then q( o) = o
2 and q( ) = E(y - z( ,w) )2�n

i'1

� o
2 + E(z( o,w) o - z( ,w) )2.  Write (z( ,w)  - z( o,w)) o = z( o,w)( - o) + (z( ,w) - z( o,w))  =

z( o,w)( - o) + d( o, ,w)( - o) + ( o, , ,w).  Then 

(A-5)        q( ) - q( o) = ( - o)�Ez( o,w)�z( o,w)( - o) + 2( - o)�Ez( o,w)�(z( ,w) - z( o,w))  
+ o�E(z( ,w) - z( o,w))�(z( ,w) - z( o,w)) o 

= N  
� o

� o

N Ez( ,w)�z( ,w) Ez( ,w)�d( o, ,w)

Ed( o, ,w)�z( ,w) Ed( o, o,w)�d( o, ,w)

� o

� o

+ 2�E ( , ,w)[d( o, ,w)( - o) + z( o,w)( - o)] + E ( , ,w)2 .

The final terms in this expression are o(� - o�
2), and the conditions from A.4 that J( , ) is continuous

and J( o, o) is positive definite imply that q( ) - q( o) = ( - o)�J( o, o)( - o) + o(� - o�
2) 
 � - o�

2

for some  > 0 on a neighborhood of o.  Consider the expression

(A-6)        Qn( ) - q( ) - Qn( o) + q( o) = n-1 ui(z( ,wi)  - z( o,wi)) o) �n
i'1

+ n-1 {(z( ,wi)  - z( o,wi)) o)
2 - E(z( ,w)  - z( o,w)) o)

2}.�n
i'1

The first term on the right-hand-side of this expression can be written

(A-7)       n-1 ui(z( ,wi)  - z( o,wi)) o) �n
i'1

   = n-1 ui  + n-1 ui� ( o, , ,wi).�n
i'1 z( o,wi) d( o, ,wi)

� o

� o
�n

i'1

The Lindeberg-Levy central limit theorem implies 

(A-8)        Rn � n-1/2 ui  ��d N(0, o
2J( o, )) ;�n

i'1 z( o,wi) d( o, ,wi)

hence n-1 ui  = Op(n
-1/2� - o�).  The assumptions in A.4 that u�n

i'1 z( o,wi) d( o, ,wi)
� o

� o

has a proper moment generating function and r(w) is bounded implies that u� ( o, , ,w) has a proper
moment generating function.  An application of the Corollary to Lemma 2, utilizing the condition
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that ( , �, ,w) = op(� ��� �- �), implies that uniformly n-1 ui ( o, , ,w) = op(n
-1/2� ��� - o�).�n

i'1

Finally, write 

(A-9)       n-1 {(z( ,wi)  - z( o,wi)) o)
2 - E(z( ,w)  - z( o,w)) o)

2}�n
i'1

= n-1 {d( o, ,wi)( - o) + z( o,wi)( - o) + ( o, , ,wi)}
2 �n

i'1

- E{d( o, ,w)( - o) + z( o,w)( - o) + ( o, , ,w)}2.

The squares and cross-products that do not involve ( o, , ,w) will be Op(n
-1/2� - o�

2) by the
Lindeberg-Levy central limit theorem.  The terms that involve ( o, , ,w) or its square will be
uniformly op(n

-1/2� - o�
2) by the Corollary to Lemma 2.  Conditions (i) to (iii) of Lemma 3 are now

established, implying the nonlinear least squares estimates satisfy Tn - o = Op(n
-1/2).   Finally, observe

from (A-5) to (A-8) that 

Qn( ) - Qn( o) = 2n-1 ui  + op(n
-1/2� ��� - o�) �n

i'1 z( o,wi) d( o, ,wi)
� o

� o

+  + o(� - o�
2) 

� o

� o

N Ez( ,w)�z( ,w) Ez( ,w)�d( o, ,w)

Ed( o, ,w)�z( ,w) Ed( o, o,w)�d( o, ,w)

� o

� o

= 2n-1/2Rn  + J( o)  + op(n
-1/2� ��� - o�) + o(� - o�

2) .
� o

� o

� o

� o

N � o

� o

Then, the final condition of Lemma 3 is satisfied, and the nonlinear least squeares estimator is
asymptotically normal with covariance matrix o

2J( o)
-1.  � 
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