
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

ON SELECTION PROCEDURES FOR EXPONENTIAL
DISTRIBUTIONS

Ofosu, J. B.
School of Mathematics, University of Bath

https://doi.org/10.5109/13078

出版情報：統計数理研究. 16 (1/2), pp.1-9, 1974-03. 統計科学研究会
バージョン：
権利関係：



ON SELECTION PROCEDURES FOR EXPONENTIAL 

            DISTRIBUTIONS

        By 

 J.  B. OFOSU* 

(Received October 24, 1972)

   1. Introductson. 

   The problem of selecting a subset of k given populations which includes the best 

population has extensively been studied by several authors notably by Gupta ([1], 

[2]), Gupta and Sobel ([3]). The best population is usually defined as the one with 
the largest (or smallest) parameter value. 

   In this paper we are concerned with the location parameters 0, (i = 1, 2, •-• , k) 

of k given exponential populations with a common known scale parameter. The 

best population is defined as the one with the largest 0-value. Based on a common 

number of observations from each population, two procedures, R1 and R2 are defined 

such that each procedure selects a subset which is never empty, small in size and 

yet large enough to guarantee with pre-assigned probability that it includes the best 

population, regardless of the true unknown values of the 0i's. Tables necessary for 
carrying out the procedures are given. 

   The main formulation is formally described in section 2. Procedures R1 and R2 

are defined in sections 3 and 4 respectively. It should be pointed out that the ex-

pected size of the selected subset, using each procedure, is a random variable and 
can be regarded as a measure of the efficiency of the procedure. In section 5 we 

show, numerically, that in most situations, the expected size of the selected subset 

for R1 is smaller than for R2.

   2. Formal statement of the problem. 

   Let 771, 72, • • • 74 denote k given exponential populations with density functions 

(2.1)1exp {—(x-01)/q} x> 0, (i= 1, 2, ••• , k) 

with a common known scale parameter q(> 0) and unknown location parameters 0,. 

The population associated with the largest 0-value is defined as the best population. 
Our goal is to select a subset of the k populations which contains the best population. 

Any such selection will be called a correct selection (CS). The problem is to find a 

rule R such that for a pre-assigned probability P*(1/k<P*< 1),
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(2.2)P(CS I R).� P* 

regardless of the unknown values of the 0i's. 

   From each population 7ri we take n observations and compute the minimum value 
Yi (i = 1, 2, ••• , k). Y1, ••• , Y k form a set of sufficient statistics for the problem and 

the rules R1 and R2, defined in sections 3 and 4 respectively, depend only on these 

statistics. 

   Let Y(Z) denote the Y-value associated with population it with parameter 0[i], 

where Orn is the i-th smallest 0i. The c. d. f. and p. d. f. of Y(1) are respectively 

(2.3)G0ui3(y) 1—exp { —n(y —0En)/q} y> 0[i] 

(2.4)                   goE,3(y)=----  exp {—n(y-0[2:-)1q} y>

   3. Procedure R1. 

   The procedure R1 is defined as follows ; " Include r; in the selected subset iff 

(3.1)Y.; max Yi—dqln (1 =1, 2, ••• , k) 

where d = d(k, P*), a positive constant, is determined in advance so as to satisfy 

(2.2) regardless of the unknown values of the 0i's."

   3.1. The P(CS I R1) and its infimum. 

   We now derive expressions for the P(CS R1) and its infimum over all points 

in the parameter space I2, which is the set of all admissible vectors 0 = (O[l], ••• 0E111). 

   The procedure R1 yields a correct selection iff the event 

                          Y(k)�.- max Ym—dq/n occurs . 
                                                    1�_i�k 

Hence, 

(3.2)P(CS I R1) = P Y,i) 17(k)d-dq/n (i = 1, 2, • , k-1)} 
                                                 k-i 

                   -= H [1—exp {—(x+d+n(0[k]-0m)lq)}]rxdx . 
                                0 i=1 

It follows from (3.2) that 

(3.3)IS2fP(CSIRi)0[1 —exp {—(X+d)}1k-le-xdX 

                            ed{1—(1—clk} /k . 

Thus the constant d satisfying the P* requirement (2.2) can be obtained by equating 
the last expression in (3.3) to P*. This gives 

                                 d= —log it 

where 

                              (1—u)k-l-kP*u-1---= 0 . 

   Table 1 gives values of d for k = 2(1)20 and P* = 0.85, 0.90, 0.95, 0.99.
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Table 1. This table gives the necessary d-value required for procedure R1 . 

k/P*0. 85 0.  900. 950. 99 

 21. 2041. 6092. 3033. 911 

 31. 8432. 2672. 9794. 603 

 42. 2302. 6613. 3785. 006 

 52. 5092. 9433. 6635. 290 

 62. 7273. 1633. 8855. 518 

 72. 9053. 3434. 0665. 697 

 83. 0573. 4954. 2195. 855 

 93. 1893. 6274. 3525. 982 

103. 3053. 7444. 4696. 105 

113.4093. 8494. 5746.209 

123. 5033. 9434. 6696. 304 

133. 5904. 0304. 7566. 395 

143.6694. 1104. 8366.471 

153.7424.1834. 9106.544 

163. 8114. 2524. 9796. 615 

173. 8754. 3165. 0436. 681 

183. 9354. 3775. 1046. 741 

193. 9924. 4335. 1616. 794 

204. 0464. 4875. 2156. 850

   EXAMPLE 1. From each of k = 6 exponential populations with a common scale 

parameter q= 3, eight observations were taken. The observed minimum values based 
on:the n= 8 observations were 91.16, 106.20, 110.63, 126.81, 124.92, 80.81. If P* = 0.99, 
then from Table 1, d= 5.518. Applying the procedure R1 we find that the two pop-
ulations that gave rise to the values 126.81, 124.92 are retained in the subset. At 
this point the experimenter can assert with confidence level 0.99 that one of these 
two populations has the largest 0-value among the 6 populations.

   3.2. Expected size of the selected subset for R1. 

   For the procedure R1 the size S of the selected subset is a discrete random 

variable which can take on only integer values from 1 to k. The expression, E(S I R,), 

for the expected size of the selected subset using the procedure R1, is 

                                       k 
(3.4)E(S I R1) = p fru, is selected I R1} 
                                                   )=1 

where 

(3.5) P{n-co is selected I R1} =P{Y(;)� Ym-dqln (i= 1, 2, ••• , k; ij)} 

                                         k 

                        =J II [1 -exp {-(x+d+n(0[;]-0m)1q)}1e-xdx 

and 

(3.6)Li= max [0, In(O[k] -0[;3)/q-c/I] . 

   Consider the following configurations of the unknown parameters :
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                    eC.7] = 0(j =1, 2, ••• , k-1) (
3.7) 

                 O[c= 0+5q 3> 0 , 

(3.8)0[;,= +( j —1)5q 5> 0 (i =1, 2, • •• , k) . 

   When (3.7) holds, (3.5) simplifies to 

(3.9) Jb [1—exp { —(x+d)}]'[1 —exp {—(x+d—On)}]e-xdx 

                                           for j = 1, 2, ••• , k —1 , 

(3.10)S:[1—exp {—(x+d-i-On)}]'e-xdx for j = k 
                    = es {1—(1—es)k} /k 

where 
                               s= d+On 

and 
                         b = max {0, (5n— d)} . 

   Under (3.8) the probability (3.5) simplifies to 

(3.11) [1—exp {—(x+d-l-an(j—i))11e-xdx (1 =1, 2, ••• , k) 
                               2" • 2=1 

where 
                      r = max [0, {(k—j)On—c1}1 . 

The expected subset-size for R2 under the configurations (3.7) and (3.8) of the pop-

ulation parameters has been calculated and are given in Table 3 and 4 for P* = 0.95 

and for selected values of k and on. 

   From (3.9) to (3.11) we can make the following two remarks ! 

   REMARK 3.1. For fixed P*, k, j (j = 1, 2, ••• , k —1), the probability of selecting 

population rcu, decreases from P* to zero as On increases from 0 to co. 
    REMARK 3.2. For fixed P*, the probability of selecting 77(0 increases from P* 

to 1 as 5n increases from 0 to 00.

   3.3. Properties of the Procedure R1. 

   The procedure R1 has the following desirable properties : 

(a) E(S I R1) kP* for all points in the parameter space [2 . 

We omit the proof ; it is tedious algebraically and is available for similar situations, 

along with further discussion, in the references cited below. 

(b) If 6ci3�0E,i, then P{r(i) is selected I R1} Pirc,i) is selected I R1} . 

The proof of this assertion follows from equation (3.5).

4. Procedure R2. 

This procedure is defined as follows. " Include 71 in the selected subset if
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(4.1) Y.; Z il(k —1)—cqln 

where 

(4.2)Z., = Yi 
                                                              irt-J 

and c= c(k, P*) is a positive constant which is determined so as to satisfy (2.2) 

regardless of the unknown values of the 0i's."

   4.1. The P{selecting 7r0,1 R2} • 

   The probability that population r(;), with parameter O[;], is selected using proce-

dure R2 can be expressed as 

(4.3)P[Zu)�(k-1){170)±clwl] 

where 

(4.4)w=n/q, 

                                                k (4.5)Zw= E Y(i) 
                                                                     t=i 

                                         i#j 

   Now, the p. d. f. and c. d. f. of (Zu)—E0m) are given respectively by 
                                                                     i=i 

                                             wiwz)k-2e-wz (4
.6)f(z),(k2)! ' 

(4.7)F(z) = H*,(wz) , 

where 
                                                k-2 e-xxr 

(4.8)H*„(x)= 1— E r !x> 0, 
                        r=o 

and w is given by (4.4). 
   Using (2.4) and (4.6)-(4.8), expression (4.3) simplifies to 

(4.9) Hk,(a+ Ve-udu 

                                      0 where 

(4.10)a = (k-1)(u+c) 

and 

(4.11)b1=w{(k-1)0E.n— ± 0,4 
                                                                              i=i 

   In particular, from (4.9), 

(4.12)P(CS I R2) = P{r(k) is selected I R2} = H*„(a+b*)e-udu 

                                                              0 where a is given by (4.10) and 

                      bk =tv{(k-1)0[k] —                                                                                k-1 
                                 bk. 

                                                                                    Z=1
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   Clearly, bk � 0, hence 

(4.13)Inf P (CS I R2) = 0Hk_,(a)e-udu. 

   From (2.2) and (4.13) we see that the constant c to carry out the procedure R2 

can be obtained by solving 

(4.14)fk_1{(k-1)(u+c)} e-udu= P* for c .          :11 
Table 2 gives the values of c satisfying (4.14) for selected values of P* and k. 

       Table 2. This table gives the necessary c-values required for procedure R2. 

   k/P*0. 850. 900. 950. 99 
    3 1.0671.3361.7742.736 

    4 1.0011.2161. 5582.283 
    5 0.9621. 1471.4372.037 

    6 0.9371. 1031.3591.879 
    70. 9191.0711.3031.769 

     80. 9051. 0481. 2621. 687 
    9 0.8951. 0301. 2301. 622 
    100. 8871.0151. 2041. 571 
    150. 8640.9711.1251.413 

    20 0.8530.9491. 0841.330 

   We note that for k= 2, the procedures R1 and R2 are equivalent, hence the c-
values corresponding to k= 2 can be obtained from Table 1. 

   It should be noted from (4.1) and (4.2) that the procedure R2 can also be defined 

as follows : " Include 7T1 in the selected subset if 

(4.15)Y; )7-clqIn 

where 

(4.16) 1/k Yi , 
                                                                =i 

(4.17)c1= c(k-1)/k , 

and c is the root of equation (4.14)." 

   In applying the procedure R2, it is easier to use equations (4.15)-(4.17) than 

equations (4.1) and (4.2). 

   EXAMPLE 2. Let us solve Example 1 by applying the procedure R2. The mean 

Y of the 6 observations is 106.76. From Table 2, the value of c corresponding to 

k = 6, P* = 0.99 is 1.879 ; thus from (4.17), c1q/n = 0.59. Hence, from (4.15), the selected 

subset contains all populations which gave rise to values greater than or equal to 

106.17. Thus the populations which gave rise to the values 106.20, 110.63, 126.81, 
124.92 are retained in the subset. The size of the selected subset is 4, compared 

with 2 when the procedure R1 is used. The superiority of R1 over R2 is quite evident 

here.
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   4.2. Properties of the Procedure R2. 

   The procedure R2 possesses all the desirable properties that the procedure  R, 

has and that are discussed in section 3.3. The proofs are omitted.

   4.3. Expected size of the selected subset for R2. 

   The expected subset-size using procedure R2, E (SI R2), is given by 

(4.18)E(SI R2) = E P17(;) is selected I R2} 
                                                       j=1 

where P fr(,) is selected I R21 is given by (4.9)-(4.11). 

   We now evaluate E(SIR2) for the configurations (3.7) and (3.8) of the unknown 

parameters. 
   Case (i) : For the configuration (3.7) of the 8[ ]'s, we can express the P {ro, is 

selected I R2} as 

(4.19) 0k-1H{(k —1)(u+ c) an}e-" du (1 =1, 2, ••• , k —1) , 

(4.20) f 0Hk-1{(k —1)(u+-an)}rchtu= k . 
                       c.° 

It should be noted from (4.19) and (4.20) that Remarks 3.1 and 3.2 (see section 3.2) 
apply to the above probability. Values of E(SIR2) for the configuration (3.7) of the 

t9En's are given in Table 3 for P* = 0.95 and for selected values of k and on. 

   Case (ii). If the unknown parameters are given by (3.8), then from (4.9)-(4.11), 

we can write the PIrco, is selected I R2} as 

(4.21) f 0Hk_i {(k-1)(u+c)-FknO(2j—k-1)/21cudu (1 =1, 2, ••• , k) . 
From (4.21) we can make the following three remarks. 

   REMARK 4.1. For fixed P*, k, j (1 j k ; 2j < k+1), the probability of selecting 

z(;, decreases from P* to 0 as an increases from 0 to 00. 

   REMARK 4.2. For fixed P*, k, j (1 j k ; 2j = k+1), the probability of selecting 
ro, is equal to P* for all values of On. 

   REMARK 4.3. For fixed P*, k, j (1 j k ; 2j > k+1), the probability of selecting 

ru, increases from P* to 1 as an increases from 0 to 00. Thus for fixed P*, k, 

O(> 0) 1(1 j k, 2j > k+1) and for sufficiently large n, population ru, is selected 

with probability 1. 

   Using (4.18) and (4.21) we have computed E(SIR2) and is given in Table 4 for 
P* = 0.95 and selected values of On and k.

  5. Comparison of E(SIR,) and E(SI R2). 

   Tables 3 and 4 compare E(SIR,) with E(S I R2) when the unknown parameters 

are given by (3.7) and (3.8) respectively. From the tables, we can make the following 

remarks.
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Table 3. Comparison of E (SI Ri) (top entry) with E(SI R2) (bottom entry) ; 
           O[j]=B(j=1, 2, ••• k -1) , O[k]=0 + Oq(O>0) , P*=0. 95. 

k\On1. 502. 503. 504. 505. 50 

 32.72 2.35 1.59 1.22 1.08        2. 682. 361. 911. 55 1.34 

 43.67 3.30 2.30 1.48 1.18       3.593. 28 2.83 2.34 1.96 
       4. 624. 253. 241. 861. 32   5 

      4.52 4.19 3.75 3.23 2.75 

      9.37 9.00 7.99 5.24 2.59  10
9.17 8.80 8.347.817.22 

       14.1213.7612.759.994.82  15
13.8513.4612.9812.4411.83 

       18.8818.5017.5014.747.96  20
18. 5618. 14 17.64 17.08 16.48 

Table 4. Comparison of E(SI Ri) (top entry) with E(SI R2) (bottom entry) ; 
           euj=0 + (j -1)5q (j =1, 2, ••• , k) (o >0), P* =O. 95. 

k\On 1.5 2.5 3.5 4.5 5.500 
       2. 13 1.75 1.311. 111. 041. 0  3

2. 232. 011. 961. 951. 951. 95 

 42. 681. 88 1.461. 16 1.06 1.0       2 .78 2.39 2.19 2.10 2.05 2.0 

       2. 881. 981. 59 1.221. 081. 0   5 
       3.24 3.03 2.97 2.95 2.95 2.95 

        3. 022. 051. 681. 271. 101. 0  6
3.75 3.37 3.19 3.11 3.06 3.0

   ( i) Both E(SIR,) and E(S1R2) are monotonically decreasing with an. 

   ( ii) Both E(SIR,) and E(S I R2) decrease as the Ow's become more unequal (com-

       pare Tables 3 and 4). 
   If we let D(k, P*, On) = E(SIR,)-E(SIR2) then based on the behaviour of E(SIRO 

and E(SIR2) in the range computed, the following additional properties would appear 

to hold : 

   (iii) For fixed k, P*, there exists a value do = do(k, P*) of an such that D(k, P*, 
       an) < 0 On> do. 

   (iv) For fixed P*, On (On > do), D(k, P*, On) decreases with k.

   6. Discussion. 

   Although we have used special cases and relied heavily on numerical results, it 

seems that some important points emerge from this work. 

   The above results show that the expected size of the selected subset for the 

procedure R1 is smaller than that for the procedure R2 in most situations. This 
minimization of the expected size appears to be the most desirable criterion on which 

the selection of the optimum rule should be based. We therefore conclude that R, 

will be superior to R2 in almost all situations and even for those rare situations 

when R2 is superior, R1 will be only slightly inferior. The present study will sug-

gest that R1 should be preferred to R2 in all practical situations.
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