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Abstract. Let B(X ) denote the algebra of operators on a complex Banach space

X , H(X ) = {h ∈ B(X ) : h is hermitian}, and J(X ) = {x ∈ B(X ) : x = x1 +

ix2, x1 and x2 ∈ H(X )}. Let δa ∈ B(B(X )) denote the derivation δa(x) = ax − xa. If

J(X ) is an algebra and δa
−1(0) ⊆ δ−1

a∗ (0) for some a ∈ J(X ), then ||a|| ≤ ||a−(x∗x−xx∗)||
for all x ∈ J(X )∩δa

−1(0). The cases J(X ) = B(H), the algebra of operators on a complex

Hilbert space, and J(X ) = Cp, the von Neumann–Schatten p-class, are considered.

1. Introduction

An element h ∈ B(X ), B(X ) = the algebra of (bounded linear) operators
on a complex Banach space X , is hermitian if the the algebra numerical range
V (B(X ), h) = {f(h) : f ∈ B(X )∗, f(I) = 1 = ||f ||} is a subset of the set of reals [3,
Page 8]. Let

H(X ) = {h ∈ B(X ) : h is hermitian},

and let
J(X ) = {x ∈ B(X ) : x = x1 + ix2, x1 and x2 ∈ H(X )}.

Then each x ∈ J(X ) has a unique representation x = x1 + ix2, x1 and x2 ∈ H(X ),
and we may define a mapping x −→ x∗ from J(X ) into itself by x∗ = x1 − ix2

(= (x1 + ix2)∗): J(X ) with the operator norm ||.|| of B(X ) is a complex Banach
space such that ∗ is a continuous linear involution on J(X ) [3, Lemma 8, Page
50]. Recall that an operator a ∈ B(X ) is normal if a = a1 + ia2 ∈ J(X ) and
[a1, a2] = a1a2 − a2a1 = 0. We say that an operator a ∈ J(X ) satisfies the PF-
property, short for the Putnam–Fuglede property, if a−1(0) ⊆ a∗−1(0). Normal
operators satisfy the PF–property: if a = a1 + ia2 is normal, then ax = 0 implies
a1x = a2x = 0 =⇒ a∗x = 0 [4, Page 124].

Let δa ∈ B(B(X )) denote the derivation δa(x) = ax − xa = (La − Ra)x,
where La and Ra denote, respectively, the operators of left multiplication and right
multiplication by a. If a ∈ H(X ), then La, Ra and La − Ra ∈ H(X ). Evidently,
if a = a1 + ia2, then δa = δa1 + iδa2 , where [δa1 , δa2 ] = 0 whenever [a1, a2] = 0.
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Hence, if a is normal then δa is normal, and this by [12, Corollary 8] implies that

−2
√
||δa(x)||||y||+ ||x|| ≤ ||x− δa(y)||

for all x, y ∈ B(X ). In particular, if x ∈ δa−1(0), then (for all y ∈ B(X ))

||x|| ≤ ||x− δa(y)||,(1)

i.e., the kernel δa−1(0) of δa is orthogonal to the range δa(B(X )) of δa in the sense
of G. Birkhoff and R. C. James [9, page 93]. Kernel-range inequalities of type (1),
especially in the setting of the algebra B(H) (of operators on a complex Hilbert
space H) and the von Neumann–Schatten p-classes Cp = Cp(H) (H separable, 1 ≤
p <∞) have been considered by a number of authors (see [2], [6], [7], [11], [12], [14]
for further references). In this paper we look at the equation δa(x) = 0 from the view
point that x ∈ δa−1(0) ⇐⇒ a ∈ δ−1

x (0), and prove some results on self-commutator
approximants of the type recently proved by P. J. Maher [13] (for self-adjoint a and
x ∈ δa

−1(0)). Assuming that J(X ) is an algebra (in particular, J(X ) = B(H) or
J(X ) = Cp for some 1 ≤ p < ∞) and the PF–property that δa−1(0) ⊆ δ−1

a∗ (0) for
a ∈ J(X ), we prove that

||a|| ≤ ||a− [x∗, x]||(2)

for all x ∈ J(X ) ∩ δa−1(0). In the case in which 1 < p <∞, δa−1(0) ⊆ δ−1
a∗ (0) and

a ∈ Cp, it is proved that

||a||p ≤ min{||a− δx1(y)||p, ||a− δx2(y)||p}(3)

for all x = x1 + ix2 and y ∈ B(H) such that δxj (y) ∈ Cp (j = 1, 2) if and only if
x ∈ δa−1(0). We also prove that inequality (2) holds for essentially normal operators
x ∈ B(H) ∩ δa−1(0) such that ||a|| equals the essential norm ||a||e of a.

2. Results

Evidently, x ∈ δa
−1(0) ⇐⇒ a ∈ δ−1

x (0) for all a, x ∈ B(X ). Since h ∈ H(X )
does not (in general) imply that h2 ∈ H(X ) [3, Example 1, Page 58], J(X ) is not
(in general) a subalgebra of B(X ). If however J(X ) is an algebra, then h, k ∈
H(X ) implies that h2 and hk + kh ∈ H(X ) [3, Theorem 3, Page 59]. Recall that
i(a1a2 − a2a1) ∈ H(X ) whenever a1, a2 ∈ H(X ) [3, Lemma 4, Page 47]. Let
a = a1 + ia2 and b = b1 + ib2 ∈ J(X ), and assume that J(X ) is an algebra. Then
both

ab+ b∗a∗ = {(a1b1 + b1a1)− (a2b2 + b2a2)}+ i{(a2b1 − b1a2) + (a1b2 − b2a1)}

and

i(ab− b∗a∗) = i{(a1b1 − b1a1)− (a2b2 − b2a2)} − {((a2b1 + b1a2) + (a1b2 + b2a1)}
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are in H(X ). Hence

(ab)∗ =
1
2
(ab+ b∗a∗) +

i

2
(ab− b∗a∗) = b∗a∗.

Theorem 2.1. If J(X ) is an algebra and δa
−1(0) ⊆ δ−1

a∗ (0) for some a ∈ J(X ),
then ||a|| ≤ ||a− [x∗, x]|| for all x ∈ J(X ) ∩ δa−1(0).

Proof. The hypotheses J(X ) is an algebra and δa−1(0) ⊆ δ−1
a∗ (0) imply that δx(a) =

δx∗(a) = 0 for every x ∈ J(X ) ∩ δa−1(0). Hence, upon letting x = x1 + ix2,
δx1(a) = δx2(a) = 0. Since xj ∈ H(X ), j = 1, 2, it follows that

||a|| ≤ min{||a− δx1(y)||, ||a− δx2(y)||}

for all y ∈ J(X ) [12, Corollary 8]. Choose y = 2ix2 (in δx1(y)); then δx1(y) = [x∗, x]
and ||a|| ≤ ||a− [x∗, x]|| for all x ∈ J(X ) ∩ δa−1(0). �

The following corollary is immediate from Theorem 2.1.

Corollary 2.2. If a ∈ B(H) is such that δa−1(0) ⊆ δ−1
a∗ (0), then ||a|| ≤ ||a−[x∗, x]||

for all x ∈ B(H) ∩ δa−1(0).

An operator a ∈ B(H) is essentially normal if π(a) is normal, where π :
B(H) −→ B(H)/K(H) is the Calkin map. (Equivalently, a is essentially normal
if π([a∗, a]) = 0.) For essentially normal x ∈ δa−1(0), we have the following.

Theorem 2.3. If x ∈ δa
−1(0) ∩ B(H) is essentially normal, then ||π(a)|| ≤

||a− [x∗, x]||.
Proof. If x ∈ δa

−1(0), then π(a) ∈ δ−1
π(x)(0). Since B(H)/K(H) is a C∗−algebra,

there exists a Hilbert space H0 and a ∗-isometric isomorphism ψ : B(H)/K(H) −→
B(H0) such that x0 = ψ(π(x)) is a normal element of B(H0). Letting a0 = ψ(π(a)),
it follows that

||π(a)|| = ||a0|| ≤ ||a0 − δx0(ψ(π(y))|| = ||π(a− δx(y))|| ≤ ||a− δx(y)||

for all y ∈ B(H). Choose y = −x∗. �

In general, ||π(a)|| 6= ||a||. However, if a ∈ B(H) is hyponormal (i.e., |a∗|2 ≤
|a|2), or normaloid (||a|| equals the spectral radius of a) and without eigen-values
of finite multiplicity, then ||π(a)|| = ||a|| (see [8, Page 1730]): for such a ∈ B(H),
||a|| ≤ ||a− [x∗, x]||.

A version of Theorems 2.1 has been proved by Maher [13, Theorems 4.1(a) and
4.2] for the von Neumann-Schatten p-classes (Cp, ||.||p); 1 ≤ p < ∞. Observe from
the proof of Theorem 2.1 that if δa−1(0) ⊆ δ−1

a∗ (0), then ||a||p ≤ ||a − [x∗, x]||p
for all a ∈ Cp and x ∈ δa

−1(0) such that [x∗, x] ∈ Cp. The following theorem
proves that the condition x = x1 + ix2 ∈ δa−1(0) is necessary for ||a||p ≤ min{||a−
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δx1(y)||p, ||a − δx2(y)||p} in the case in which 1 < p < ∞. But before that we
introduce some terminology. If (V, ||.||) is a Banach space, then ||.|| is said to be
Gateaux–differentiable at a non-zero x ∈ V if

lim
t−→0

||x+ ty|| − ||x||
t

= ReDx(y)

exists for all y ∈ V. Here t ∈ R (= the set of reals), Re denotes the real part
and Dx is the unique support functional in the dual space V∗ such that ||Dx|| = 1
and ||Dx(x)|| = ||x||. The Gateaux–differentiability of ||.|| at x implies that x
is a smooth point of the sphere with radius ||x||. If an a ∈ Cp, 1 < p < ∞,

has the polar decomposition a = u|a|, then |a|p−1u∗ ∈ Cp′ ,
1
p

+
1
p′

= 1, and

Da(y) = tr{|a|p−1u∗y/||a||p−1
p ) for every y ∈ Cp [1, Theorem 2.3]. (As usual, tr

denotes the trace functional.) Recall from [10] that if a, b ∈ V and a is a smooth
point of V, then ||a|| ≤ ||a+ tb|| for all complex t if and only if Da(b) = 0.

Theorem 2.4. If δa−1(0) ⊆ δ−1
a∗ (0) then

||a||p ≤ min{||a− δx1(y)||p, ||a− δx2(y)||p}(4)

for all a ∈ Cp and y ∈ B(H) such that δxj (y) ∈ Cp, j = 1, 2 and 1 < p <∞, if and
only if x = x1 + ix2 ∈ δa−1(0).

Proof. The ‘if part’ being evident (from δa(x) = 0 =⇒ δx1(a) = δx2(a) = 0), we
prove the ‘only if’ part. Recall that Cp, 1 < p < ∞, is uniformly convex; hence
operators a ∈ Cp are smooth points of Cp. Let a have the polar decomposition
a = u|a|. Then, [10], the inequality of the statement of the theorem holds for all
y ∈ B(H) such that δxj

(y) ∈ Cp, j = 1, 2, if and only if the support functional
Da(δxj

(y)) = tr(|a|p−1u∗δxj
(y)/||a||p−1

p ) = 0. Set |a|p−1u∗ = ã; then ã ∈ Cp′ ,
1
p

+
1
p′

= 1. Choose y to be the rank one operator y = e ⊗ f for some e, f ∈ H.

Then δxj (y) ∈ Cp and

tr(ãδxj
(y)) = tr(ã(xjy − yxj)) = tr((ãxj − xj ã)y)

= tr(δã(xj)e⊗ f) = (δã(xj)e, f) = 0

for all e, f ∈ H. Hence δã(xj) = 0; j = 1, 2. The operator xj being self–adjoint

u|a|p−1xj = xju|a|p−1 =⇒ |a|2(p−1)xj = |a|p−1u∗xju|a|p−1 = xj |a|2(p−1).

Hence [xj , |a|] = 0. Since ãxj = xj ã implies [xj , u]|ran|a|p−1 = 0, it follows that

axj = u|a|xj = uxj |a| = xju|a| = xja.

Hence δa(x1) + iδa(x2) = δa(x) = 0. �

A stronger result is possible in the case in which p = 2.
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Corollary 2.5. If a ∈ C2, then

||a+ δxj (y)||22 = ||a||22 + ||δxj (y)||22 = ||a∗ + δxj (y)||22, j = 1, 2,

for all y ∈ C2 if and only if x = x1 + ix2 ∈ δa−1(0) ∩ δ−1
a∗ (0).

Proof. C2 has a Hilbert space structure with inner product (s, t) = tr(t∗s). Since

||a+ δxj
(y)||22 = ||a||22 + ||δxj

(y)||22 + 2Re(δxj
(y), a),

||a∗ + δxj
(y)||22 = ||a||22 + ||δxj

(y)||22 + 2Re(a, δ∗xj
(y)) = ||a||22 + ||δxj

(y)||22 + 2Re(a, δxj
(y)),

(δxj
(y), a) = tr(a∗δxj

(y)) = tr(δa∗(xj)y) = tr(δ∗a(xj)y),

and

(a, δxj
(y)) = tr(δxj

(y)a) = tr(δa(xj)y),

it follows that if x ∈ δa−1(0)∩δ−1
a∗ (0), then ||a+δxj

(y)||22 = ||a||22+||δxj
(y)||22 = ||a∗+

δxj
(y)||22 for all y ∈ C2. Conversely, if this equality is satisfied, then the argument of

the proof Theorem 2.4 (with p = 2) applied to the inequalities ||a||2 ≤ ||a−δxj
(y)||2

and ||a∗||2 ≤ ||a∗ − δxj (y)||2 implies that xj , and so also x, ∈ δa−1(0) ∩ δ−1
a∗ (0). �

The elementary operator 4a(x) = axa − x. We close this note with a remark
on the elementary operator 4a. If a ∈ B(X ) is a contraction, then LaRa is a
contraction. Hence

V (B(B(X ))), LaRa) ⊆ {λ ∈ C : |λ| ≤ 1}

and

V (B(B(X )),4a) = V (B(B(X )), LaRa − I) ⊆ {λ ∈ C : |λ+ 1| ≤ 1}

[5, Proposition 4, Page 52]. (Here C denotes the complex plane.) This implies that
the operator 4a is dissipative [3, Page 30], and hence

||x|| ≤ ||x−4a(y)||

for all x ∈ 4−1
a (0) and y ∈ B(X ) [12, Theorem 7]. Although 4a may not be

normal even for normal a ∈ B(X ), see [7, Example 2.1], a number of kernel–range
orthogonality results for the elementary operator 4a ∈ B(B(H)) and 4a ∈ B(Cp)
are to be found in the extant literature; see for example [6], [7], [11], [14]. Seemingly,
self–commutator approximant inequalities of the type (2) are not possible for 4a.
However, one does have the following interesting result.

Theorem 2.6. Assume that 4−1
a (0) ⊆ 4−1

a∗ (0). If a ∈ B(H) (resp., a ∈ Cp), then
||a|| ≤ ||a − [|x|, |x∗|]|| for all x ∈ B(H) ∩ 4−1

a (0) (resp., ||a||p ≤ ||a − [|x|, |x∗|]||p
for all x ∈ Cp ∩4−1

a (0)).
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Proof. If x ∈ 4−1
a (0), then axa = x and a∗xa∗ = x (⇐⇒ ax∗a = x∗). Since

ax∗x = (ax∗)axa = (ax∗a)xa = x∗xa,

[a, |x|] = 0. Hence δ|x|(a) = 0, which, since |x| ≥ 0, implies that ||a|| ≤ ||a−δ|x|(y)||
for all y ∈ B(H) (resp., ||a||p ≤ ||a − δ|x|(y)||p for all y ∈ B(H) such that
δ|x|(y) ∈ Cp). Choose y = |x∗|. Since x ∈ Cp implies |x| ∈ Cp, the proof is complete.
�
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