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This paper examines a class of heuristics for main- 
taining a sequential list in approximately optimal order 
with respect to the average time required to search for 
a specified element, assuming that each element is 
searched for with a fixed probability independent of 
previous searches performed. The "move to front" and 
"transposition" heuristics are shown to be optimal to 
within a constant factor, and the transposition rule is 
shown to be the more efficient of the two. Empirical 
evidence suggests that transposition is in fact optimal 
for any distribution of search probabilities. 
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Heuristics for Maintaining a Sequential List 

We consider heuristics for maintaining a sequential 
list in approximately optimal order, prove that the 
"transposit ion" heuristic is more efficient than the 
"move to f ront"  heuristic analyzed by Knuth in [6, pp. 
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398-399], and present experimental evidence that the 
transposition heuristic is in fact optimal. 

Suppose we have a set of  n records R1, R x , . . . ,  Rn 
which we list in an arbitrary order r ,  so that Ri is in 
position r(i)  for l < i < n. At each instant of  time we 
are presented with a key Ki and asked to retrieve the 
associated record R i .  We do so by examining in turn 
each position of the list until Ri is found in position 7r(i). 
This search costs r( i)  units of time to perform. 

Let us assume that each key Ki is presented in- 
dependently with probabili ty p~. The expected cost 
(average search length) for a permutation r is then 

cost(r) = Y~ pit( i) .  (1) 
l < i < n  

We assume without loss of generality throughout that 
pl  _> p;+l for 1 < i < n. Thus cost(r) is minimized when 
r is the identity permutation, since the records are then 
in order of decreasing probability of being requested. 

In practice, the relevant probabilities p~ are seldom 
known a priori, so that  the optimal ordering can not be 
arranged in advance. A random initial arrangement can 
be expected to perform ~poorly, so we consider self- 
organizing schemes by which the initial ordering is 
gradually transformed on the basis of experience into a 
hopefully less costly arrangement.  

A "counter"  scheme immediately spfi: 'gs to mind, 
whereby we record the frequencyf~ of requests for each 
record R~, and maintain the records in order of de- 
creasing frequency. By the strong law of large numbers, 
i f p i  > p ,  we can expect f i  > f~ to hold for at most  a 
finite number of steps. Thus the counter scheme will 
stabilize on the optimal ordering. 

The asymptotically optimal counter scheme requires 
extra memory  space which, as Knuth remarks, could 
perhaps be better used by employing nonsequential 
search techniques. I f  using extra memory  for counters is 
undesirable or not feasible, other self-organizing heuris- 
tics are available which tend to keep the list in near- 
optimal order. 

The move to front heuristic has been studied by 
McCabe [7], Hendricks [3, 4], Burville and Kingman 
[1], and Knuth [6]. Schay and Dauer  have studied a 
similar scheme [8]. Using this heuristic, whenever a 
record Ri is found in position r( i) ,  the list is rearranged 
by moving R~ to the front of the list and moving the 
records in positions 1, . . . , r ( i )  -- 1 each down one 
position. The permutation r becomes (1, 2 . . . r ( i ) )  r ,  
the product of  the cyclic permutation on the first i 
positions and r .  Thus the records which are accessed 
frequently will tend to stay near the front of  the list, 
while records infrequently accessed will drift towards 
the end. While no stable ordering is achieved, we can 
expect that near-optimal orderings will occur with high 
probability. 

The average search time for this heuristic is easily 
calculated. Let b(i, j)  denote the asymptotic probability 
that R~ is before Rj in the list. This will be true at any 
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time for which the most recent request for Ri has oc- 
curred since the most  recent request for Ry. In this case, 
there exists a unique k such that the preceding k requests 
have been a request for Ri followed by k -- 1 requests 
for records other than R~ or R j .  Thus 

b( i , j )  = p,.  ~ (1 - - p ,  - -p j )k-~  
l_<k<= (2) 

= P,/(P~ + Pi). 

The average search time is then 

p j - ( l +  ~ b ( i , j ) )  
l < j < n  l < i < n  

i~'J (3) 
= 1 + 2 Y'~ p,pf f (p ,  + p j ) .  

l < i < j < n  

the result obtained in [6], [4], [1], and [7]. This counts 
only the search time; we should approximately double 
this if we wish to include the time to permute the ele- 
ments after each search. A linked-list representation 
would allow these permutat ions to be made efficiently, 
but  the space used for pointers might better be used for 
counters. 

Let us consider how this scheme compares with the 
optimal ordering. Under  our assumption that p~ >__ 
P~+I for 1 < i < n, the minimal cost is 

Ps'J. (4) 
l~gj_<n 

The ratio of (3) to (4) is then 

1 + 2 Y~ pj. ~ p,/(p, + p j )  
~ s - < .  l ~ i < ;  ( 5 )  

1 -t- ~_~ p j . ( j - -  1) 
l < j < n  

<_ (1 + 2x) / ( l  + x) where x = 
l < _ _ j < n  

pj .  ( j  -- 1) 

(6) 

since x <_ ½ ( n -  1). (7) < 2(1 -- 1/(n q- 1)) 

Thus the move to front scheme never does more than 
twice the work done with the optimal ordering. (An 
interesting open question is to determine the least con- 
stant c which is an upper bound to (5) ; the value 2 may 
not be the best possible.) This can be a considerable 
savings over a " r a n d o m "  initial ordering (average 
cost = ½(n + 1)) for typical probability distributions. 
For  example, the optimal average cost for Zipf 's  dis- 
tribution pi  = i - l H (  x (where H ,  is the nth harmonic 
number) is just nH-~ ~, so that searching is O( ln  17) 
times faster than with a random ordering. For  Zipf 's  law 
Knuth  shows, in addition, that with the move to front 
heuristic approximately 1.386 times the optimal cost is 
incurred asymptotically as n --~ ~ .  

We would like to know if we can do better. The 
generalized version of the above heuristic is to apply 
some permutat ion r j  to the list after finding the desired 
record in position j .  Is there a better choice for the 
r 's? We show that there is. We conjecture that the trans- 
position heuristic is in fact optimal (that is, the best 

choice of r ' s  for any probability distribution). The 
transposition heuristic exchanges the desired record with 
the immediately preceding record; if the desired record 
heads the list nothing is done. Note that the transposi- 
tion heuristic is simple to implement even if the list is 
stored in an ordinary one-dimensional array. We define 
a set of permuta t ionsr  to be optimal if for any probabil- 
ity distribution {p~} and any initial ordering 
R; 1 , . . . ,  R;,  of the records, the expected cost of a 
search converges to a value c(r) which is less than or 
equal to e(r') for any other set of permutations r ' .  The 
following theorem gives a partial characterization of an 
optimal set of r 's .  

THEOREM 1. An optimal set o f  permutations r i for  
1 < j < n must have theproperty that each rj: (i) leaves 

positionsj q- 1 to n of  the list fixed, and (ii) moves record 
, . J inpositionj to someposmonj  < j. 

PROOF. Consider the probability distribution 
Pk :p~ = l / k f o r  1 < i <  k a n d p i  = 0 f o r k  < i X  n, 
for some k < n. Any set of permutations r satisfying 
(i) and (ii) above will have an asymptotic  cost of 
½(k + 1) since all of the records with zero probability 
will move to the end of the list and stay there. We prove 
(i) must hold by contradiction. Let r be a set of permu- 
tations such that there are integers i, j such that i < j 
and r~(j) < j. Consider the probability distribution Pk 
with k = j -- 1. Call an ordering Rq , . . .  , R;. "good"  
i fpq  = 0 for I > k. Clearly, under Pk any scheme which 
does not yield an asymptotic probability of zero for all 
non-good orderings will have a cost greater than 
½(k + 1) and will thus be non-optimal. Thus if r were 
optimal, r i  would be invoked with probabili ty l / k ,  
since position i is occupied by a record with probability 
1/k in all good orderings. Yet if r~ is applied to a good 
ordering, a non-good ordering necessarily results, since 
the record in position j, having zero probability, is 
moved in front of a record with nonzero probability. 
Thus non-good orderings would occur with frequency 
at least 1/k. This contradiction proves that r is non- 
optimal, proving that any optimal set r must satisfy (i). 

If  r satisfies (i) but not (ii), then there exists a j such 
that r j( j)  >_ j. By (i) we know tha t r i ( j )  = j for i < j. 
We can further conclude that r i(j) = j since r ~(j) > j 
would cause rj(l) ~ I to occur for some l > j ,  thereby 
violating (i). Now consider an initial ordering Rq , . . . ,  
R~. and corresponding probability distribution such 
that P~i ¢ 0 and P~L = 0 for / > j. Clearly R i  i will re- 
main in posi t ionj .  But ifpi~ = 0 for some l < j in the 
initial ordering, then the records with zero probabili ty 
will not end up at the end of the list, as any optimal 
scheme must do. Thus (ii) is also necessary in an optimal 
scheme. [] 

Note that we have not shown that an optimal set of 
permutations exist (that is, optimal for any probabili ty 
distribution), but only what it must be like if it does. 
Theorem 1 also implies that under an optimal set of 
permutations every possible ordering of the records 
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which have nonzero  probabil i ty will in fact occur with 
nonzero probability. 

The analysis of  the average cost of  an arbi t rary set of  
permutat ions  r is a s t raightforward if tedious task for 
any given set of  probabilities p~. We consider the finite 
M a r k o v  chain where each state is one of  the n! possible 
orderings of  the set of  records. The transition probabili- 
ties t~j for the M a r k o v  chain are determined by the 
particular set o f  probabilities p and the permutat ions  r 
used; each t~i will either be zero or else one of  the p's.  
The stat ionary (asymptotic) probabilities of  each state 
are the elements of  the eigenvector of  the matrix T = 
{t~j[1 < i <  n ! a n d  I < j  < n!} corresponding to the 
eigenvalue 1 (see [5]). The cost is then easily calculated 
f rom the formula  

Prob(Tr). ~ p~(i).i. (8) 
states ~r 1 _< i _<. n 

As an example, consider a file of  three records R~ = A, 
R2 = B, and R3 = C with respective probabilities of  
being requested of  a, b, and c. Figure 1 shows the state 
diagram for the M a r k o v  system which results f rom using 
the transposit ion heuristic. 

The transition matrix T for this system is then 

T = 

a a b" 

b b a 

- -  c b b 

c c b -- 

a C C 

C a a 

(9) 

The eigenvector of  T corresponding to the eigenvalue 1 
gives the stat ionary probabilities of  this system. While 
these probabilities are difficult to compute  symbolically 
as explicit functions of  the variables a, b, and c, the 
eigenvector is easily calculated for any particular values. 
For  example, if we take a = .6, b = .3, and c = .1 we 
obtain 

Prob(A B C) = 0.5, Prob(B C A) = 0.0417, 

Prob(A C B) = 0.167, Prob(C A B) = 0.0278, (10) 

Prob(B A C) = 0.25, Prob(C B A) = 0.0139. 

The average search time for this system is 1.67, com-  
pared to 1.72 for the move to f ront  heuristic with the 
same record request probabilities. 

The reader may have noticed the rather remarkable  
relationship holding between the values in (10), given 
in the following theorem. 

THEOREM 2. Under the transposition heuristic the 
stationary probabilities obey: 

Prob(RilRi2 • • • R i ~ R i i +  I • • • Ri,,) _ pi t ( 11 ) 
Prob(R,lR,~ . . .  Rij+iRij . . .  Ri.) pli+ ~ 

for l < j < n if pk # O for l < k < n. 
PROOF. We note that  if a set of  state probabilities 

obeys (11), then it is a s tat ionary distribution. For  then 
we have 

Prob(Rq .. .  Ri,) = pi," Pt'ob(Ril . . .  R~N) 

L ~ pii" Prob(Rq. . .  Ri,+~Rij.. .  Ri.) 
<j<n 

(12) 

which implies with (11) that  

Prob(R,., . . .  R,.) = [ I / (1  - - p q ) ] . P r o b ( R q . . .  R~.) 

l<_~<,pij(pli+,/pij) (13) 

= Prob(Rq . . .  Ri,). 

We also note that  the set of  inequalities (11) is consist- 
ent, since any sequence o f  transposit ions leading f rom 
some ordering r of  the records to another  ordering 7r' 
will always yield the same ratio Prob(r)/Prob(r/). 
Since (11) is consistent and stat ionary,  the s tat ionary 
distribution must  satisfy (11) since it is unique. [] 

Theorem 2 allows us to write a rather complicated 
expression for the average search time using the trans- 
position heuristic. Let L, denote the identity permutat ion 
on n letters L,(i) = i for 1 < i < n. This is the optimal 
ordering under our assumption that  p(i) >__ p(i + 1) 
for 1 < i < n. Let. 6(i, rr) denote the quanti ty i -- ~-(i) 
for any permutat ion ~- and I < i < n; this is the number  
of  places that Re is displaced f rom its opt imal  posit ion 
in 7r. Then the cost of  the transposi t ion heuristic is seen 
to be 

Prob(ln). ~ ((1<_~i< - p~(i.~)) ~ p~.Tr(j)) (14) 
n l<_j<n 

where the first sum ranges over all permutat ions  rr of  the 
n records. We also have the following formula  for 
Prob(l,): 

( ~  ~i(i, r) \ - -1  
Prob( l , )  = i_<i_<nH p i  ) ( 1 5 )  

We can now prove the following result, which was 
conjectured in [7]. 

6 5  Communications February 1976 
of Volume 19 
the ACM Number 2 



THEOREM 3. The transposi t ion heurist ic  is a lways  Fig. 2. 
more  eff icient  a sympto t i ca l l y  than the move  to f r o n t  ~= 
heurist ic,  excep t  when n = 2 or all  nonzero probabi l i t ies  ~_ 
p i are equal. ~-o 

PROOF. Consider the probability b'(i ,  j )  that Ri is E 
before Rj under the transposition heuristic. We show "- ~. 1.20 
that b'(i, j )  >__ b ( i , j )  for 1 ~ i < j < n, with equality o 
holding only for n = 2 or p~ = p j ,  where b ( i , j )  is the 
corresponding probability for the move to front heuris- o 

tic. We then have 
A 

b'( i , j )  ,~- 1.10 
b'fj, i) a~ 

Prob(Rkl • .. Rk~ Ri Rk~+l " • • Rk,,, Ry Rk,,,+l • "" R~-,,_2) '~ 
k ' s  *g 

o 
t 9  

I.oo 

Prob(Rkl ' ' '  Rkt R/ Rkt+l " ' "  Rk,, RI~R#,,,+I . . .  Rkn-2) 

(16) 

where the sums are taken over all permutations 
k l , . . . , k n _ ~ o f t h e i n t e g e r s l ,  2 , . . . , i -  1, i +  1 , . . . ,  
j - 1, j -k- 1 , . . . ,  n. But this gives immediately from 
Theorem 2: 

b ' ( i , j ) / b ' ( j ,  i) > min ( p i / p j )  "n-z+1 = p i / p j  (17) 
l < l < m < < n  

with equality holding only i f p i  = pj or n = 2. When 
equality holds then b ' ( i , j )  = p ~ / ( p i  q- p j ) ,  the same as 
(2). Otherwise we have b'(i ,  j )  > b(i,  j ) ,  which by the 
first part  of (3) proves our theorem. [] 

We conjecture that the transposition heuristic is 
asymptotically more efficient than any other set of 
permutations for any probability distribution on the 
record requests. This conjecture is intuitively appealing 
since the transposition heuristic is the closest approxi- 
mation obtainable to the optimal counter scheme, in a 
certain sense. Note that an element is advanced more 
than one position with the counter scheme only in the 
case where two or more of the preceding counters are 
equal. This is highly unlikely to happen often if all of 
thep i ' s  are distinct. In all other cases the counter scheme 
either performs a simple transposition or does nothing. 
The transposition heuristic is also the heuristic obeying 
(i) and (ii) of Theorem 1 which does the least damage to 
the previously established order, thus preserving the 
most  information. We unfortunately lack a proof  of this 
conjecture, however. 

Andrew Yao [9] has shown that the transposition 
heuristic must be the optimal heuristic if there exists a 
single scheme which is optimal independent of the prob- 
ability distribution. He shows that for the distribution 
pl = 1 -- ( n - -  1) e,p~ = p3 = . . .  = p ,  = ~ the t r ans -  
position scheme is the only optimal scheme for e suffi- 
ciently small. This lends strength to the conjecture. 

Extensive simulation results for 3 < n < 12 tend to 
confirm this conjecture. For  example, Figure 2 plots the 
asymptotic cost of rule Ai over the optimal cost (4) for 
Zipf 's  distribution with n = 7 elements, where rule A~ 
is "move  the desired record forward i places in the list, 
or to the front of the list if it was found in a position 

n = 7  
Zipf's distribution 

Move to front rule-~ 

~ 
,,,.e f e  

e ~ T r a n  sposit ion rule 

I I I I I I 
AI A2 A3 A4 A5 A6 

j < i ."  Thus A1 is the transposition rule and A,,-x is the 
move to front rule. The values plotted were obtained by 
simulating the search and rearrangement  process for 
5000 trials. A clear superiority of the transposition rule 
over the other rules is observed. While it is possible to 
consider other rules here, we have only plotted val- 
ues for those rules which preserve the relative order 
of the unrequested elements, an intuitively reasonable 
feature. 

For  the case n = 4, all 72 sets of permutat ions r 
satisfying (i) and (ii) of Theorem 1 were examined for 
several probability distributions. In every case the trans- 
position heuristic was the most  efficient. For  example, 
with the geometric probability distribution p = (8/15, 
4/15, 2/15, 1 / 15) the average search time varied between 
1.94 and 2.24, with the transposition heuristic costing 
1.94, the move to front rule costing 2.06, and the rule 

T I  ~ ~ T 2  

2 3 1 3 ' 

2 1 2 4 

costing the most. The optimal  cost for this system 
(given by (4)) is 1.73. These results were obtained by 
explicitly calculating the associated eigenvectors, in- 
stead of performing a simulation, since there are only 24 
states to consider. 

The main result of this paper concerns the asymp- 
totic behavior of two self-organizing heuristics. A natu- 
ral question to ask is, "what  is the rate of  convergence of 
these heuristics to their asymptotic  efficiencies, given 
some initial ordering, or a probabili ty distribution for 
initial orderings?", especially if one notes that  the trans- 
position heuristic generally takes more time to converge 
than the move to front if the records are initially in the 
reverse of the i r  optimal ordering. This is perhaps an 
improbable way of beginning; a better model might be 
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one in which the list is initially empty and records which 
are searched for, but not found, are added to the end of 
the list. We can define a probability distribution for 
initial configurations as follows: let the algorithm begin 
with an empty table and insert new items as described 
above, until the table becomes full (and not using any 
self-organizing heuristics if a record is requested which is 
already in the table). The probability Prob(rc) that a 
given ordering 7r is arrived at when the last item is 
inserted into the table, will be our approximation to a 
reasonable initial probability distribution. 

THEOREM 4. The initial probability f o r  a given order- 
ing rr is equal to the asymptotic probability o f  rc occurring 
under the move to f ront  heuristic. 

PROOF. The probability b"(i, j )  that R; will be in 
front of R~. in the ordering is just the probability that a 
request for Ri occurred before a request for Ri in the 
list of  requests. It is obvious that b" (i, j )  = p~/(pl  + p~) 
(as in eq. (2)), yielding the theorem (cf. eq. (3)). Note  
that our table-finding process is just the time dual of  the 
move to front heuristic: R~ will be in front of Ri in the 
table-filling (move to front) process iff the first (last) 
request for R~ preceded (succeeded) the first (last) re- 
quest for Rj. [] 

Under this model, the average efficiency of the initial 
states is equal to the average efficiency of the move to 
front heuristic, so that convergence for the move to 
front heuristic is instantaneous, but the transposition 
heuristic will be more efficient even from the begin- 
ning, since it yields an improvement  from this state. 

While the above result suggests that a possibly slower 
convergence to the asymptotic state by the transposition 
heuristic may not be a problem if the initial probabilities 
are arranged as indicated, it does not answer fully the 
question of the relative rate of convergence of these two 
strategies. This remains an open problem. 

could be easily inserted into such a system, and would 
hopefully reduce the running time of an average pro- 
gram by a significant percentage at no extra cost in 
terms of storage. Many other similar applications are 
imaginable in the same kind of system where one has 
chosen a sequential list representation of the data for 
reasons of programming convenience, yet one wishes to 
reduce the search time at no extra cost in storage utiliza- 
tion. The transposition heuristic is an appealing choice 
in these situations due to its ease of  implementation and 
demonstrated efficiency. 

Another  related application is the construction of 
paging algorithms for managing storage hierarchies. 
The list of  pages concurrently in memory can be ordered 
using the transposition heuristic at each memory  refer- 
ence, and when a page fault occurs the last page on the 
list is replaced. The common "least recently used" 
scheme corresponds to the move to front heuristic 
described here. These schemes are studied by Franaszek 
and Wagner in [2]. 

It  remains to be shown that the transposition heuris- 
tic is in fact optimal under our independence assump- 
tions, or to find a counterexample to this conjecture. 
Another  open problem is to examine the effects of  re- 
laxing the independence assumption upon the relative 
efficiency of various heuristics. 
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Conclusions Received November 1974, revised March 1975 

The transposition heuristic outperforms the move to 
front heuristic, and is quite likely the optimal heuristic 
for any probability distribution, given our assumption 
of  the independence of requests. (If  there is a high cor- 
relation between successive requests, one can show that 
the move to front heuristic is sometimes more efficient.) 

A potential application for this result is the construc- 
tion of list-processing systems such as LISP. Here one 
typically has a large number of  names (atoms), each 
associated with a set of  attribute-value pairs, such as 
"value,"  "pr in tname,"  "function definition," and so on. 
A separate "proper ty  list" is usually maintained for each 
name listing these attributes and associated values. 
These property lists are repeatedly searched for the 
various variable values and function definitions during 
execution, and there is often not enough storage avail- 
able to consider using a counter scheme. A dynamic 
optimization heuristic such as the transposition rule 
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