
On Semantically-Deterministic Automata∗

Bader Abu Radi and Orna Kupferman
School of Computer Science and Engineering
The Hebrew University, Jerusalem, Israel

May 26, 2023

Abstract

A nondeterministic automaton is semantically deterministic (SD) if different nondeterministic
choices in the automaton lead to equivalent states. Semantic determinism is interesting as it is a
natural relaxation of determinism, and as some applications of deterministic automata in formal
methods can actually use automata with some level of nondeterminism, tightly related to semantic
determinism.

In the context of finite words, semantic determinism coincides with determinism, in the sense
that every pruning of an SD automaton to a deterministic one results in an equivalent automaton.
We study SD automata on infinite words, focusing on Büchi, co-Büchi, and weak automata. We
show that there, while semantic determinism does not increase the expressive power, the combina-
torial and computational properties of SD automata are very different from these of deterministic
automata. In particular, SD Büchi and co-Büchi automata are exponentially more succinct than
deterministic ones (in fact, also exponentially more succinct than history-deterministic automata),
their complementation involves an exponential blow up, and decision procedures for them like uni-
versality and minimization are PSPACE-complete. For weak automata, we show that while an SD
weak automaton need not be pruned to an equivalent deterministic one, it can be determinized
to an equivalent deterministic weak automaton with the same state space, implying also efficient
complementation and decision procedures for SD weak automata.

1 Introduction

Automata are among the most studied computation models in theoretical computer science. Their
simple structure has made them a basic formalism for the study of fundamental notions, such as
determinism and nondeterminism [34]. While a deterministic computing machine examines a single
action at each step of its computation, nondeterministic machines are allowed to examine several
possible actions simultaneously. Understanding the power of nondeterminism is at the core of open
fundamental questions in theoretical computer science (most notably, the P vs. NP problem).

A prime application of automata on infinite words is specification, verification, and synthesis of
nonterminating systems. The automata-theoretic approach reduces questions about systems and
their specifications to questions about automata [27, 40], and is at the heart of many algorithms and
tools. A run of an automaton on infinite words is an infinite sequence of states, and acceptance is
determined with respect to the set of states that the run visits infinitely often. For example, in Büchi
automata, some of the states are designated as accepting states, and a run is accepting iff it visits
states from the set α of accepting states infinitely often [8]. Dually, in co-Büchi automata, a run is

∗A preliminary version appears in the Proceedings of the 50th International Colloquium on Automata, Languages,
and Programming, 2023. Research supported by the Israel Science Foundation, Grant 2357/19, and the European
Research Council, Advanced Grant ADVANSYNT.

1

ar
X

iv
:2

30
5.

15
48

9v
1

 [
cs

.F
L

]
 2

4
M

ay
 2

02
3

accepting if it visits the set α only finitely often. Then, weak automata are a special case of both
Büchi and co-Büchi automata in which every strongly connected component in the graph induced
by the automaton is either contained in α or is disjoint from α. We use DBW and NBW to denote
determinisitic and nondeterministic Büchi word automata, respectively, and similarly for D/NCW,
D/NWW, and D/NFW, for co-Büchi, weak, and automata on finite words, respectively.

For automata on infinite words, nondeterminism not only leads to exponential succinctness, but
may also increase the expressive power. This is the case, for example, in Büchi and weak automata,
thus NBWs are strictly more expressive than DBWs [28], and NWWs are strictly more expressive than
DWWs [5]. On the other hand, NCWs are as expressive as DCWs [31], and in fact, also as NWWs [26].
In some applications of the automata-theoretic approach, such as model checking, algorithms can be
based on nondeterministic automata, whereas in other applications, such as synthesis and reasoning
about probabilistic systems, they cannot. There, the advantages of nondeterminism are lost, and
algorithms involve a complicated determinization construction [35] or acrobatics for circumventing
determinization [25, 20].

In a deterministic automaton, the transition function maps each state and letter to a single successor
state. In recent years there is growing research on weaker types of determinism. This includes, for
example, unambiguous automata, which may have many runs on each word, yet only one accepting
run [9, 11], automata that are deterministic in the limit, where each accepting run should eventually
reach a deterministic sub-automaton [39], and automata that are determinizable by pruning (DBP),
thus embody an equivalent deterministic automaton [3].

In terms of applications, some weaker types of determinism have been defined and studied with
specific applications in mind. Most notable are history-deterministic automata (HD), which can
resolve their nondeterministic choices based on the history of the run [17, 7, 22]1, and can therefore
replace deterministic automata in algorithms for synthesis and control, and good-for-MDPs automata
(GFM), whose product with Markov decision processes maintains the probability of acceptance, and
can therefore replace deterministic automata when reasoning about stochastic behaviors [15, 38].

The different levels of determinism induce classes of automata that differ in their succinctness and
in the complexity of operations and decision problems on them. Also, some classes are subclasses
of others. For example, it follows quite easily from the definitions that every automaton that is
deterministic in the limit is GFM, and every automaton that is DBP is HD.

In this paper we study the class of semantically deterministic automata (SD). An automaton A
is SD if its nondeterministic choices lead to equivalent states. Formally, if A = ⟨Σ, Q, q0, δ, α⟩, with
a transition function δ : Q × Σ → 2Q, then A is SD if for every state q ∈ Q, letter σ ∈ Σ, and
states q1, q2 ∈ δ(q, σ), the set of words accepted from A with initial state q1 is equal to the set of
words accepted from A with initial state q2. Since all nondeterministic choices lead to equivalent
states, one may be tempted to think that SD automata are DBP or at least have similar properties to
deterministic automata. This is indeed the case for SD-NFWs, namely when one considers automata
on finite words. There, it is not hard to prove that any pruning of an SD-NFW to a DFW results in
an equivalent DFW. Thus, SD-NFWs are not more succinct than DFWs, and operations on them are
not more complex than operations on DFWs.

Once, however, one considers automata on infinite words, the simplicity of SD automata is lost.
In order to understand the picture in the setting of infinite words, let us elaborate some more on HD
automata, which are strongly related to SD automata. Formally, a nondeterministic automaton A
is HD if there is a strategy g that maps each finite word u ∈ Σ∗ to a transition to be taken after
u is read, and following g results in accepting all the words in the language of A. Obviously, every
DBP automaton is HD – the strategy g can suggest the same transition in all its visits in a state.
On the other hand, while HD-NWWs are always DBP [24, 32], this is not the case for HD-NBWs

1The notion used in [17] is good for games (GFG) automata, as they address the difficulty of playing games on top
of a nondeterministic automaton. As it turns out, the property of being good for games varies in different settings and
HD is good for applications beyond games. Therefore, we use the term history determinism, introduced by Colcombet
in the setting of quantitative automata with cost functions [10].

2

and HD-NCWs [6]. There, the HD strategy may need to suggest different transitions in visits (with
different histories) to the same state.

It is easy to see that a strategy g as above cannot choose a transition to states whose language
is strictly contained in the language of states that are reachable by other transitions. Thus, all HD
automata can be pruned in polynomial time to SD automata [19, 4]. The other direction, however,
does not hold: it is shown in [2] that an SD-NWW need not be HD (hence, SD-NBWs and SD-
NCWs need not be HD too). Moreover, while all all HD-NWWs are DBP, this is not the case for all
SD-NWWs.

In this work we study the succinctness of SD automata with respect to deterministic ones, as well
as the complexity of operations on them and decision problems about them. Our goal is to understand
the difference between determinism and semantic determinism, and to understand how this difference
varies among different acceptance conditions. Our study is further motivated by the applications of
automata with different levels of nondeterminism in algorithms for synthesis and for reasoning in a
stochastic setting. In particular, beyond the connection to HD automata discussed above, as runs of
an SD-NBW on words in the language are accepting with probability 1, all SD-NBWs are GFM [2].

We study semantic determinism for Büchi, co–Büchi, and weak automata. We consider automata
with both state-based acceptance conditions, as defined above, and transition-based acceptance con-
ditions. In the latter, the acceptance condition is given by a subset α of transitions, and a run is
required to traverse transitions in α infinitely often (in Büchi automata, termed tD/tNBW) or finitely
often (in co-Büchi automata, termed tD/tNCW). As it turns out, especially in the context of HD
automata, automata with transition-based acceptance conditions may differ in their properties from
automata with traditional state-based acceptance conditions. For example, while HD-tNCWs can be
minimized in PTIME [1], minimization of HD-NCWs is NP-complete [37]. In addition, there is re-
cently growing use of transition-based automata in practical applications, with evidences they offer a
simpler translation of LTL formulas to automata and enable simpler constructions and decision proce-
dures [13, 14, 12, 39, 29]. Our results for all types of acceptance conditions are summarized in Table 1
below, where we also compare them with known results about deterministic and HD automata.

Deterministic HD SD

Succinctness n (B,C,W) n2 (B), 2n (C), n (W) 2n (B,C), n (W)
[19, 24, 32] Theorems 3.3, 4.3, 5.3

Complementation n (B,C,W) n (B), 2n (C), n (W) 2n (B,C), n (W)
[21] [19] Theorems 3.4, 4.4, 5.4

Universality NL (B,C,W) P (B,C,W) PSPACE (B,C), P (W)
[21] [16, 19] Theorems 3.6, 4.5, 5.5

Minimization NP (B,C), P (W) NP (B,C), P (W) PSPACE (B,C), P (W)
(state based) [36, 30] [37, 24, 30] Theorems 3.7, 4.6, 5.5
Minimization open (B,C), P (W) open (B), P (C,W) PSPACE (B,C), P (W)

(transition based) [30] [1, 24, 30] Theorems 3.7, 4.6, 5.5

Table 1: Succinctness (determinization blow-up), complementation (blow-up in going from an au-
tomaton to a complementing one), universality (deciding whether an automaton accepts all words),
and minimization (deciding whether an equivalent automaton of a given size exists, and the described
results apply also for the case the given automaton is deterministic). All blow-ups are tights, except
for HD-NBW determinization, where the quadratic bound has no matching lower bound; all NL, NP,
and PSPACE bounds are complete.

Let us highlight the results we find the most interesting and surprising. While all three types of SD
automata are not DBP, we are able to determinize SD-NWWs in polynomial time, and end up with
a DWW whose state space is a subset of the state space of the original SD-NWW. Essentially, rather
than pruning transitions, the construction redirects transitions to equivalent states in deep strongly

3

connected components of the SD-NWW, which we prove to result in an equivalent deterministic
DWW2. This suggests that despite the “not DBP anomaly” of SD-NWWs, they are very similar in
their properties to DWWs. On the other hand, except for their expressive power, SD-NBWs and
SD-NCWs are not at all similar to DBWs and DCWs: while HD-NBWs are only quadratically more
succinct than DBWs, succinctness jumps to exponential for SD-NBWs. This also shows that SD-
NBWs may be exponentially more succinct than HD-NBWs, and we show this succinctness gap also
for co-Büchi automata, where exponential succinctness with respect to DCWs holds already in the
HD level.

The succinctness results are carried over to the blow-up needed for complementation, and to the
complexity of decision procedures. Note that this is not the case for HD automata. There, for
example, complementation of HD-NBWs results in an automaton with the same number of states [19].
Moreover, even though HD-NCWs are exponentially more succinct than DCWs, language-containment
for HD-NCWs can be solved in PTIME [16, 19], and HD-tNCWs can be minimized in PTIME [1].
For SD automata, we show that complementation involves an exponential blow-up. Also, universality
and minimization of SD Büchi and co-Büchi automata, with either state-based or transition-based
acceptance conditions, is PSPACE-complete, as it is for NBWs and NCWs. We also study the D-to-
SD minimization problem, where we are given a deterministic automaton A and a bound k ≥ 1, and
need to decide whether A has an equivalent SD automaton with at most k states. Thus, the given
automaton is deterministic, rather than SD. By [18], the D-to-N minimization problem for automata
on finite words (that is, given a DFW, minimize it to an NFW) is PSPACE-complete. It is easy to
see that the D-to-SD minimization problem for automata on finite words can be solved in PTIME.
We show that while this is the case also for weak automata, D-to-SD minimization for Büchi and
co-Büchi automata is PSPACE-complete.

Our results show that in terms of combinatorial and computational properties, semantic deter-
minism is very similar to determinism in weak automata, whereas for Büchi and co-Büchi automata,
semantic determinism is very similar to nondeterminism. The results are interesting also in comparison
with history determinism, whose affect on Büchi and co-Büchi automata is different.

2 Preliminaries

2.1 Languages and Automata

For a finite nonempty alphabet Σ, an infinite word w = σ1 · σ2 · · · ∈ Σω is an infinite sequence of
letters from Σ. A language L ⊆ Σω is a set of words. For 1 ≤ i ≤ j, we use w[i, j] to denote the
infix σi · σi+1 · · ·σj of w, use w[i] to denote the letter σi, and use w[i,∞] to denote the infinite suffix
σi · σi+1 · · · of w. We also consider languages R ⊆ Σ∗ of finite words, denote the empty word by ϵ,
and denote the set of nonempty words over Σ by Σ+; thus Σ+ = Σ∗ \ {ϵ}. For a set S, we denote
its complement by S. In particular, for languages R ⊆ Σ∗ and L ⊆ Σω, we have R = Σ∗ \ R and
L = Σω \ L.

A nondeterministic automaton is a tuple A = ⟨Σ, Q,Q0, δ, α⟩, where Σ is an alphabet, Q is a finite
set of states, Q0 is a set of initial states, δ : Q × Σ → 2Q \ ∅ is a transition function, and α is an
acceptance condition, to be defined below. For states q and s and a letter σ ∈ Σ, we say that s is
a σ-successor of q if s ∈ δ(q, σ). Note that the transition function of A is total, thus for all states
q ∈ Q and letters σ ∈ Σ, q has at least one σ-successor. If |Q0| = 1 and every state q has a single
σ-successor, for all letters σ, then A is deterministic. The transition function δ can be viewed as a
transition relation ∆ ⊆ Q × Σ × Q, where for every two states q, s ∈ Q and letter σ ∈ Σ, we have

2Our result implies that checking language-equivalence between states in an SD-NWW can be done in PTIME,
as the check can be performed on the equivalent DWWs. We cannot, however, use this complexity result in our
algorithm, as this involves a circular dependency. Consequently, our construction of the equivalent DWWs involves a
language-approximation argument.

4

that ⟨q, σ, s⟩ ∈ ∆ iff s ∈ δ(q, σ). We define the size of A, denoted |A|, as its number of states, thus,
|A| = |Q|.

Given an input word w = σ1 · σ2 · · · , a run of A on w is a sequence of states r = r0, r1, r2, . . .,
such that r0 ∈ Q0, and for all i ≥ 0, we have that ri+1 ∈ δ(ri, σi+1), i.e, the run starts in some
initial state and proceeds according to the transition function. If the word in the input is infinite,
then so is the run. We sometimes view the run r = r0, r1, r2, . . . on w = σ1 · σ2 · · · as a sequence
of successive transitions ⟨r0, σ1, r1⟩, ⟨r1, σ2, r2⟩, Note that a deterministic automaton has a single
run on an input w. We sometimes extend δ to sets of states and finite words. Then, δ : 2Q×Σ∗ → 2Q

is such that for every S ∈ 2Q, finite word u ∈ Σ∗, and letter σ ∈ Σ, we have that δ(S, ϵ) = S,
δ(S, σ) =

⋃
s∈S δ(s, σ), and δ(S, u · σ) = δ(δ(S, u), σ). Thus, δ(S, u) is the set of states that A may

reach when it reads u from some state in S.
The acceptance condition α determines which runs are “good”. For automata on finite words,

α ⊆ Q, and a run is accepting if it ends in a state in α. For automata on infinite words, we consider
state-based and transition-based acceptance conditions. Let us start with state-based conditions. Here,
α ⊆ Q, and we use the terms α-states and α-states to refer to states in α and in Q \ α, respectively.
For a run r ∈ Qω, let sinf (r) ⊆ Q be the set of states that r visits infinitely often. Thus, sinf (r) =
{q : q = ri for infinitely many i’s}. In Büchi automata, r is accepting iff sinf (r) ∩ α ̸= ∅, thus if r
visits states in α infinitely often. Dually, in co-Büchi automata, r is accepting iff sinf (r)∩α = ∅, thus
if r visits states in α only finitely often.

We proceed to transition-based conditions. There, α ⊆ ∆ and acceptance depends on the set of
transitions that are traversed infinitely often during the run. We use the terms α-transitions and
ᾱ-transitions to refer to transitions in α and in ∆ \ α, respectively. For a run r ∈ ∆ω, we define
tinf (r) = {⟨q, σ, s⟩ ∈ ∆ : q = ri, σ = σi+1, and s = ri+1, for infinitely many i’s}. As expected, in
transition-based Büchi automata, r is accepting iff tinf (r) ∩ α ̸= ∅, and in transition-based co-Büchi
automata, r is accepting iff tinf (r) ∩ α = ∅.

Consider an automaton A = ⟨Σ, Q,Q0, δ, α⟩. In all automata classes, a run of A that is not
accepting is rejecting. A word w is accepted by an automaton A if there is an accepting run of A on
w. The language of A, denoted L(A), is the set of words that A accepts.

Consider a directed graph G = ⟨V,E⟩. A strongly connected set in G (SCS, for short) is a set
C ⊆ V such that for every two vertices v, v′ ∈ C, there is a path from v to v′. An SCS is maximal
if for every non-empty set C ′ ⊆ V \ C, it holds that C ∪ C ′ is not an SCS. The maximal strongly
connected sets are also termed strongly connected components (SCCs, for short). An automaton
A = ⟨Σ, Q,Q0, δ, α⟩ induces a directed graph GA = ⟨Q,E⟩, where ⟨q, q′⟩ ∈ E iff there is a letter σ ∈ Σ
such that ⟨q, σ, q′⟩ ∈ ∆. The SCSs and SCCs of A are those of GA.

An automaton A = ⟨Σ, Q,Q0, δ, α⟩ with a state-based acceptance condition α ⊆ Q is weak [33] if
for each SCC C of A, either C ⊆ α in which case C is accepting, or C ∩ α = ∅ in which case C is
rejecting. We view A as a Büchi automaton, yet note that a weak automaton can be viewed as both
a Büchi and a co-Büchi automaton. Indeed, a run of A visits α infinitely often iff it gets trapped in
an SCC that is contained in α iff it visits states in Q \ α only finitely often. Note also that when
A uses a transition-based acceptance condition, we can ignore the membership in α of transitions
between SCCs (indeed, such transitions are traversed only finitely often), and say that A is weak if
the transitions in each SCC are all in α or all disjoint from α.

Consider two automata A1 and A2. We say that A1 is contained in A2 if L(A1) ⊆ L(A2). Then, A1

and A2 are equivalent if L(A1) = L(A2), and A1 is universal if L(A1) = Σω (or L(A1) = Σ∗, in case
it runs on finite words). Finally, A1 is minimal (with respect to a class of automata, say state-based
deterministic Büchi automata) if for all automata A2 equivalent to A1, we have that |A1| ≤ |A2|.

5

2.2 SD and HD Automata

Consider an automaton A = ⟨Σ, Q,Q0, δ, α⟩. For a state q ∈ Q of A, we define Aq = ⟨Σ, Q, {q}, δ, α⟩,
as the automaton obtained from A by setting the set of initial states to be {q}. We say that two
states q, s ∈ Q are equivalent, denoted q ∼A s, if L(Aq) = L(As). We say that q is reachable if there
is a finite word x ∈ Σ∗ with q ∈ δ(Q0, x), and say that q is reachable from s if q is reachable in
As. We say that A is semantically deterministic (SD, for short) if different nondeterministic choices
lead to equivalent states. Thus, all initial states are equivalent, and for every state q ∈ Q and letter
σ ∈ Σ, all the σ-successors of q are equivalent. Formally, if s, s′ ∈ δ(q, σ), then s ∼A s′. The following
proposition, termed the SDness property, follows immediately from the definitions and implies that
in SD automata, for all finite words x, all the states in δ(Q0, x) are equivalent. Intuitively, it means
that a run of an SD automaton can take also bad nondeterministic choices, as long as it does so only
finitely many times.

Proposition 2.1. Consider an SD automaton A = ⟨Σ, Q,Q0, δ, α⟩, and states q, s ∈ Q. If q ∼A s,
then for every σ ∈ Σ, q′ ∈ δ(q, σ), and s′ ∈ δ(s, σ), we have that q′ ∼A s′.

A nondeterministic automaton A is history deterministic (HD, for short) if its nondeterminism can
be resolved based on the past, thus on the prefix of the input word read so far. Formally, A is HD if
there exists a strategy f : Σ∗ → Q such that the following hold:

1. The strategy f is consistent with the transition function. That is, f(ϵ) ∈ Q0, and for every finite
word u ∈ Σ∗ and letter σ ∈ Σ, we have that f(u · σ) ∈ δ(f(u), σ).

2. Following f causes A to accept all the words in its language. That is, for every word w =
σ1 · σ2 · · · , if w ∈ L(A), then the run f(ϵ), f(w[1, 1]), f(w[1, 2]), . . . is an accepting run of A on
w.

We say that the strategy f witnesses A’s HDness. Note that, by definition, we can assume that every
SD and HD automaton A has a single initial state. Thus, we sometimes abuse notation and write A
as A = ⟨Σ, Q, q0, δ, α⟩, where q0 is the single initial state of the SD (or HD) automaton A.

For an automaton A, we say that a state q of A is HD, if Aq is HD. Note that every deterministic
automaton is HD. Also, while not all HD automata can be pruned to deterministic ones [6], removing
of transitions that are not used by a strategy f that witnesses A’s HDness does not reduce the
language of A and results in an SD automaton. Moreover, since every state that is used by f is HD,
the removal of non-HD states does not affect A’s language nor its HDness. Accordingly, we have the
following [19, 4].

Proposition 2.2. Every HD automaton A can be pruned to an equivalent SD automaton all whose
states are HD.

We use three-letter acronyms in {D,N} × {B,C,W,F} × {W} to denote the different automata
classes. The first letter stands for the branching mode of the automaton (deterministic or nondeter-
ministic); the second for the acceptance condition type (Büchi, co-Büchi, weak, or an automaton that
runs on finite inputs); and the third indicates that we consider automata on words. For transition-
based automata, we start the acronyms with the letter “t”, and for HD or SD automata, we add an
HD or SD prefix, respectively. For example, an HD-tNBW is a transition-based HD nondeterministic
Büchi automaton, and an SD-NWW is a state-based weak SD automaton.

3 Semantically Deterministic Büchi Automata

In this section we examine SD-tNBWs and SD-NBWs. Our results use the following definitions and
constructions: For a language R ⊆ Σ∗ of finite words, we use ∞R to denote the language of infinite

6

words that contain infinitely many disjoint infixes in R. Thus, w ∈ ∞R iff ϵ ∈ R or there are infinitely
many indices i1 ≤ i′1 < i2 ≤ i′2 < · · · such that w[ij , i

′
j] ∈ R, for all j ≥ 1. For example, taking

Σ = {a, b}, we have that ∞{ab} is the language of words with infinitely many ab infixes, namely all
words with infinitely many a’s and infinitely many b’s. We say that a finite word x ∈ Σ∗ is a good
prefix for a language R ⊆ Σ∗ if for all finite words y ∈ Σ∗, we have that x · y ∈ R. For example, while
the language (a + b)∗ · a does not have a good prefix, the word a is a good prefix for the language
a · (a+ b)∗.

Theorem 3.1 below states that one can translate an NFW that recognizes a language R ⊆ Σ∗ to
an SD-tNBW for ∞R. Theorem 3.2 is more complicated and suggests that this translation can be
viewed as a reversible encoding, in the sense that one can obtain an NFW for R from an SD-tNBW
for ∞($ · R · $), where $ /∈ Σ. The translations involve no blow up, and both theorems play a major
rule in the rest of this section.

Theorem 3.1. Given an NFW N , one can obtain, in polynomial time, an SD-tNBW A such that
L(A) = ∞L(N) and |A| = |N |.

Proof. Let N = ⟨Σ, Q,Q0, δ, F ⟩. Then, A = ⟨Σ, Q,Q0, δ
′, α⟩ is obtained from N by adding transitions

to Q0 from all states with all letters. A new σ-transition is in α if Q0∩F ̸= ∅ or when N could transit
with σ to a state in F . Formally, for all s ∈ Q and σ ∈ Σ, we have that δ′(s, σ) = δ(s, σ) ∪ Q0, and
α = {⟨s, σ, q⟩ : q ∈ Q0 and (Q0 ∩ F ̸= ∅ or δ(s, σ) ∩ F ̸= ∅)}.

It is easy to see that |A| = |N |. In order to prove that A is SD and L(A) = ∞L(N), we prove
next that for every state q ∈ Q, it holds that L(Aq) = ∞L(N). We distinguish between two cases.
First, if Q0 ∩ F ̸= ∅, then ϵ ∈ L(N), in which case ∞L(N) = Σω. Indeed, every word in Σω has
infinitely many empty infixes. Recall that when Q0∩F ̸= ∅, the tNBW A has Σ-labeled α transitions
from every state to Q0. Then, the run q, (q0)

ω, where q0 ∈ Q0, is an accepting run of Aq on any word
w ∈ Σω. So, L(Aq) = Σω = ∞L(N), and we are done.

Now, if Q0 ∩ F = ∅, we first prove that for every state q ∈ Q, we have that ∞L(N) ⊆ L(Aq).
Consider a word w ∈ ∞L(N), and consider a run of Aq on w that upon reading an infix σ1 ·u ·σ2 such
that u · σ2 ∈ L(N q0) ⊆ L(N), for some q0 ∈ Q0, moves to q0 while reading the letter σ1, and then
follows an accepting run of N on u · σ2 except that, upon reading the letter σ2, it moves to a state in
Q0, traversing an α transition, instead of traversing a transition to F . Note that the transitions in A
enable such a behavior. Also note that ∞L(N) ⊆ ∞Σ ·L(N), and so such a run traverses α infinitely
often and is thus accepting.

It is left to prove that L(Aq) ⊆ ∞L(N) for every state q ∈ Q. Let r = r0, r1, . . . be an accepting
run of Aq on a word w = σ1 · σ2 · · · . We show that w ∈ ∞L(N). For that, we show that for every
i ≥ 0, there are k1, k2 such that i ≤ k1 ≤ k2 and w[k1 + 1, k2 + 1] is an infix of w in L(N). Being
accepting, the run r traverses infinitely many α-transitions. Given i ≥ 0, let k2 ≥ i be such that
t = ⟨rk2

, σk2+1, rk2+1⟩ is an α-transition, but not the first α-transition that r traverses when it reads
the suffix w[i+1,∞], and let k1 be the maximal index such that i ≤ k1 ≤ k2 and rk1

∈ Q0. Since t is
not the first α-transition that r traverses when it reads the suffix w[i+ 1,∞], and since α-transitions
lead to Q0, then k1 exists. Note that the maximality of k1 imply that the run rk1 , rk1+1, . . . , rk2 is a
run of N on the infix w[k1 + 1, k2]. Now, as ⟨rk2 , σk2+1, rk2+1⟩ ∈ α and Q0 ∩ F = ∅, it follows by the
definition of δ′ that there is a state s ∈ δ(rk2

, σk2+1) ∩ F . Hence, rk1
, rk1+1, . . . , rk2

, s is an accepting
run of N on the infix w[k1 + 1, k2 + 1], which is thus in L(N).

We proceed to the other direction, translating an automaton for ∞($ · R · $) to an automaton
for R. Note that the language R is well defined. That is, if R1 ⊆ Σ∗ and R2 ⊆ Σ∗ are such that
∞($ ·R1 · $) = ∞($ ·R2 · $), then it must be that R1 = R2.

Theorem 3.2. Consider a language R ⊆ Σ∗ and a letter $ /∈ Σ. For every SD-tNBW A such that
L(A) = ∞($ ·R · $), there exists an NFW N such that L(N) = R and |N | ≤ |A|+ 1. In addition, if
R has no good prefixes, then |N | ≤ |A|.

7

Proof. If R is trivial, then one can choose N to be a one-state NFW. Assume that R is nontrivial.
Let A = ⟨Σ ∪ {$}, Q, q0, δ, α⟩ be an SD-tNBW for ∞($ · R · $), W.l.o.g we assume that all the states
of A are reachable. For a nonempty set of states S ∈ 2Q \ ∅, we define the universal α language of S
as Luα(S) = {w ∈ (Σ∪ {$})ω : for all q ∈ S, all the runs of Aq on w do not traverse α}. We say that
S is hopeful when ($ ·R)ω ⊆ Luα. Note that S is hopeful iff for every state q ∈ S, it holds that {q} is
hopeful. Also, if S is hopeful, x ∈ Σ∗ is a finite word, and there is a run from S on $ ·x that traverses
α, then x ∈ R. Then, we say that S is good when for all words x ∈ Σ∗, it holds that x ∈ R iff all the
runs from S on $ · x do not traverse α, and the set δ(S, $ · x) is hopeful. Note that as R is nontrivial,
there exists a word x in R, and thus by definition, all the $-labled transitions going out from a good
set S are in α.

Note that good sets in A characterize the language R. We first show that a good set exists. Assume
towards contradiction that every nonempty set S ∈ 2Q\∅ is not good. We define iteratively a sequence
S1, S2, S3, . . . of nonempty sets in 2Q, and a sequence x1, x2, x3, . . . of finite words in (Σ ∪ {$})+, as
follows. The set S1 is chosen arbitrarily. For all i ≥ 1, given the set Si, we define xi and Si+1 as
follows. By the assumption, Si is not good. Therefore at least one of the following holds:

(a) There is a witness in R that Si is not good: there is a word ai ∈ R such that all the runs from
Si on $ · ai do not traverse α, and the set δ(Si, $ · ai) is hopeful.

(b) There is a witness in R that Si is not good: there is a word bi ∈ R such that there is a run from
Si on $ · bi that traverses α, or the set δ(Si, $ · bi) is not hopeful.

If there is a witness ai ∈ R that Si is not good, we take xi = $ · ai and Si+1 = δ(Si, xi). Otherwise,
there is a witness bi ∈ R that Si is not good. Then, as we argure below, there exists a word zi ∈ ($·R)+,
and there is a run ri from Si on zi that traverses α. In this case, we take Si+1 to be the set that
contains only the state that ri ends in, and we take xi = zi. To see why such zi exists, we distinguish
between two cases. First, if there is a run from Si on $ · bi that traverses α, then we take zi = $ · bi.
Otherwise, the set δ(Si, $ · bi) is not hopeful. Therefore, it contains a state q that has a run that
traverses α on a word in ($ ·R)ω. The latter implies that there is a word z′ ∈ ($ ·R)+ such that there
is a finite run r′ of q on z′ that traverses α. Then, since q is reachable from Si upon reading $ · bi,
we take zi = $ · bi · z′. Indeed, a run ri from Si on zi = $ · bi · z′ that traverses α, starts from Si and
reaches q upon reading $ · bi, and then follows the run r′ upon reading z′.

So, let S1, S2, S3 . . . and x1, x2, x3, . . . be sequences as above. We distinguish between three cases:

1. There exists i ≥ 1 such that for all j ≥ i, there is a witness aj ∈ R that Sj is not good: consider
j ≥ i. In this case, xj = $ · aj ∈ $ · R, Sj+1 = δ(Sj , xj), and all the runs of Sj on xj do not
traverse α. Hence, all the runs from Si on the word w = xi · xi+1 · xi+2 · · · ∈ ($ · R)ω do not
traverse α, in particular, if we consider a state q ∈ Si, we get that the word w is not accepted
from q. As all the states of A are reachable, there is a word y ∈ (Σ∪{$})∗ such that q ∈ δ(q0, y).
Then, the SDness property of A implies that all the states in δ(q0, y) do not accept w, and hence
the word y · w is not accepted by A even though it has infinitely many infixes in $ · R · $, and
we have reached a contradiction.

2. There exists i ≥ 1 such that for all j ≥ i, no word in R witnesses that Sj is not good: consider
j ≥ i. In this case, as argued above, there is a witness bj ∈ R that Sj is not good. So,
xj = zj ∈ ($ · R)+, and there is a run rj from Sj on zj that traverses α and ends in a state
sj+1, where Sj+1 = {sj+1}. The concatenation of the runs ri, ri+1, . . . is an accepting run of
Aq, for some q ∈ Si, on the word zi · zi+1 · zi+2 · · · ∈ ($ · R)ω. Let y ∈ (Σ ∪ {$})∗ be such that
q ∈ δ(q0, y); then the word w = y · zi · zi+1 · zi+2 · · · is accepted by A even though it has only
finitely many infixes in $ ·R · $, and we have reached a contradiction.

3. If the above two cases do not hold, then there are infinitely many indices i ≥ 1 such that no
word in R witnesses that Si is not good, and there are infinitely many indices i ≥ 1 such that

8

there is a witness in R that Si is not good. Therefore, there must be i ≥ 1 such that there is a
witness ai ∈ R that Si is not good, and no word in R witnesses that Si+1 is not good. On the
one hand, the set Si+1 = δ(Si, $ · ai) is hopeful. On the other hand, the fact that no word in R
witnesses that Si+1 is not good, implies that there is a witness bi+1 ∈ R that Si+1 is not good,
and thus there is a run from Si+1 that traverses α on the word xi+1 = zi+1 ∈ ($ · R)+. Thus,
we have reached a contradiction to the fact that Si+1 is hopeful.

We show now that a good set in A induces an NFW N for R with the required properties. Let
S ∈ 2Q \ ∅ be a good set. We define the NFW N = ⟨Σ, Q ∪ {qacc}, QS

0 , δS , FS⟩, where QS
0 = δ(S, $),

FS = {qacc}∪{q ∈ Q : the set {q} is not hopeful}, and the transition function δS is defined as follows.
For every two states q, s ∈ Q and letter σ ∈ Σ, it holds that s ∈ δS(q, σ) iff ⟨q, σ, s⟩ ∈ α. Also,
qacc ∈ δS(q, σ) iff there is a σ-labeled α-transition going out from q in A. Also, for all letters σ ∈ Σ,
it holds that δ(qacc, σ) = {qacc}; that is, qacc is an accepting sink. Thus, N behaves as the states in
δ(S, $) as long as it reads α transitions of A, moves to the accepting sink qacc whenever an α-transition
is encountered, and accepts also whenever it reaches a state in Q that is not hopeful.

We prove next that L(N) = R. We first prove that L(N) ⊆ R. Consider a word x = σ1 ·σ2 · · ·σn ∈
L(N). If there is a state q ∈ δ(S, $) such that Aq has a run on x that traverses α, then as S is good,
we get that x ∈ R. Otherwise, for all states q ∈ δ(S, $), it holds that all the runs of Aq on x do not
traverse α. Let r = r0, r1, . . . rn be an accepting run of N on x. By the definition of N , we have
that r0 ∈ δ(S, $); in particular, all the runs of Ar0 on x do not traverse α. Hence, since r follows a
run of Ar0 as long it does not visit qacc, and since r visits qacc only when it follows a run of Ar0 that
traverses α, we get that the run r exists in A. Hence, rn ∈ Q and as r is an accepting run of N , we
get that the set {rn} is not hopeful. The fact that r exists in A implies also that rn ∈ δ(S, $ · x), and
so δ(S, $ · x) is not hopeful. Hence, as S is a good set, we conclude that x ∈ R.

For the other direction, namely R ⊆ L(N), consider a word x ∈ R. If there is a state q ∈ δ(S, $)
and a run r of Aq on x that traverses α, then an accepting run r′ of N on x can be obtained by
following the run r, and moving to the accepting sink qacc when r traverses α for the first time. Indeed,
q ∈ QS

0 , α transitions of A exist in N , and N moves to qacc whenever A traverses α. Otherwise, for all
q ∈ δ(S, $), it holds that all the runs of Aq on x do not traverse α. Also, recall that all the $-labeled
transitions from a good set are in α. Hence, all the runs from S on $ · x do not traverse α. In this
case, as S is a good set, and x ∈ R, it follows that δ(S, $ ·x) is not hopeful. Therefore, there is a state
s ∈ δ(S, $ ·x) such that {s} is not hopeful. Hence, by the definition of N , it holds that s ∈ FS . Hence,
a run in A from δ(S, $) that reaches s upon reading x and does not traverse α, is an accepting run of
N on x, and we are done.

Since the state space of N is Q∪{qacc}, then |N | = |A|+1. Moreover, as qacc is an accepting sink,
a word x ∈ L(N) that has a run that ends in qacc is a good prefix for L(N). Hence, as L(N) = R,
if R has no good prefixes, then qacc is not reachable in N and thus can be removed without affecting
N ’s language. Thus, in this case, we get an NFW N for R whose size is at most |A|.

3.1 Succinctness and Complementation

In this section we study the succinctness of SD Büchi automata with respect to deterministic ones,
and the blow-up involved in their complementation. We show that SD-tNBWs are exponentially more
succinct than tDBWs, matching the known upper bound [2], and in fact, also from HD-tNBWs. We
also prove an exponential lower bound for complementation. Similar results for SD-NBWs follow, as
the transition between the two types of acceptance conditions is linear.

Theorem 3.3. There is a family L1, L2, L3, . . . of languages such that for every n ≥ 1, there is an
SD-tNBW with 3n + 3 states that recognizes Ln, yet every tDBW or HD-tNBW that recognizes Ln

needs at least 2n states.

9

Proof. For n ≥ 1, let [n] = {1, . . . , n}, and let Σn = {1, . . . , n, $,#}. We say that a word z ∈ Σ∗
n is

good if z = $ · x ·# · i, where x ∈ [n]+ and i appears in x. Let Rn ⊆ Σ∗
n be the language of all good

words. We define Ln = ∞Rn. First, it is not hard to see that Rn can be recognized by an NFW Nn

with 3n+3 states. Essentially, Nn guesses the last letter i in the input word and then checks that the
guess is correct. A sketch of Nn appears in Figure 1 below. By Theorem 3.1, there is an SD-tNBW
for Ln with 3n+ 3 states.

Figure 1: The NFW Nn. Missing transitions lead to a rejecting-sink

Before we prove that every tDBW or HD-tNBW that recognizes Ln needs at least 2n states,
let us note that it is already known that going from a DFW for a language R ⊆ Σ∗ to a tDBW
for ∞R, may involve a blow-up of 2n−2−log2(n)[23]. Thus, Theorem 3.1 implies an exponential gap
between SD-tNBWs and tDBWs. Moreover, as HD-tNBWs are at most quadratically more succinct

than tDBWs [19], the above can be extended to a 2
n−2−log2(n)

2 lower bound for the succinctness of
SD-tNBWs with respect to HD-tNBWs. Our example here is tighter.

We now prove that every HD-tNBW that recognizes Ln needs at least 2n states. Assume towards
contradiction that A = ⟨Σn, Q, q0, δ, α⟩ is an HD-tNBW for Ln with |Q| < 2n states. Below, we
iteratively define infinite sequences of finite words x1, x2, x3, . . . and states q0, q1, . . . such that for all
k ≥ 1, the word xk starts with $, has no good infixes, and there is a run of the form rk = qk−1

xk−→ qk in
A on xk that traverses α. To see why such sequences imply a contradiction, note that the concatenation
of the runs r1, r2, . . . is an accepting run of A on the word x = x1 ·x2 · · · . As A recognizes Ln = ∞Rn,
it follows that x ∈ ∞Rn. On the other hand, x has no good infixes, and so x /∈ ∞Rn. Indeed, if there
is a good infix in x, then it must contain letters from different xk’s; in particular, it must contain at
least two $’s.

We proceed by describing how, given x1, x2, . . . , xk−1 and q0, q1, . . . , qk−1, we define xk and qk.
The challenging part in the construction is to make it valid also for HD (and not only deterministic)
automata. For this, the definition of the words in the sequence is defined with respect to a strategy
that attempts to witness the HDness of A. First, recall that by Proposition 2.2, we can assume that

A is SD and all its state are HD. Also, note that q0
x1−→ q1

x2−→ q2 · · ·
xk−1−−−→ qk−1 is a run in A; in

particular, qk−1 is reachable in A. Hence, L(A) ⊆ L(Aqk−1). Indeed, if y is a word in L(A) = ∞Rn,
then x1·x2 · · ·xk−1·y ∈ ∞Rn, and so the SDness ofA implies that all the states in δ(q0, x1·x2 · · ·xk−1);
in particular qk−1, accept y. We abuse notation and use S, for a subset S ⊆ [n], to denote a finite
word over [n] consisting of exactly the numbers appearing in S. We can now define xk and qk. Fix
u0, d0 = qk−1, and let f be a strategy witnessing Aqk−1 ’s HDness. We define inductively two infinite

10

runs ru and rd on distinct words, and of the form

ru = u0
$·2[n]

−−−→ p0
#·[n]−−−→ u1

$·2[n]

−−−→ p1
#·[n]−−−→ u2

$·2[n]

−−−→ · · ·

rd = d0
$·2[n]

−−−→ p0
#·[n]−−−→ d1

$·2[n]

−−−→ p1
#·[n]−−−→ d2

$·2[n]

−−−→ · · ·

Thus, while the states ui and di are not necessarily equal, the runs meet infinitely often at the states
pi upon reading infixes of the form $ · 2[n]. When we define the runs, we make sure that both are
runs of Aqk−1 that are consistent with the strategy f . Consider j ≥ 0, and assume that we have

defined the following sub-runs u0
zj
u−→ uj and d0

zj
d−→ dj that are consistent with the strategy f . A

finite run r of the state uj on a word z = z1 · z2 · · · zn is consistent if it is of the form the form
r = f(zju), f(z

j
u · z1), . . . , f(zjuzn); that is, r is consistent with the strategy f w.r.t the prefix zju.

Similarly, we consider runs of dj that are consistent with the strategy f w.r.t the prefix zjd. As
|Q| < 2n, there are subsets Sj+1, Tj+1 ⊆ [n] with ij+1 ∈ Sj+1 \ Tj+1 such that

((uj
$·Sj+1−−−−→ pj

#·ij+1−−−−→ uj+1) and (dj
$·Tj+1−−−−→ pj

#·ij+1−−−−→ dj+1))

or

((uj
$·Tj+1−−−−→ pj

#·ij+1−−−−→ uj+1) and (dj
$·Sj+1−−−−→ pj

#·ij+1−−−−→ dj+1))

where the runs are consistent. Indeed, if we consider all consistent runs of uj on words of the form
$ · 2[n] and all consistent runs of dj on words of the form $ · 2[n], we get that there are two runs, of
uj and of dj , corresponding to distinct subsets of [n], that reach the same state pj . So far, we have
defined two infinite runs of Aqk−1 that are consistent with the strategy f :

ru = u0
$·U1−−−→ p0

#·i1−−−→ u1
$·U2−−−→ p1

#·i2−−−→ u2
$·U3−−−→ · · ·

rd = d0
$·D1−−−→ p0

#·i1−−−→ d1
$·D2−−−→ p1

#·i2−−−→ d2
$·D3−−−→ · · ·

where for all j ≥ 1, ij ∈ (Uj \ Dj) ∪ (Dj \ Uj). In particular, exactly one of $ · Uj · # · ij and
$ ·Dj ·# · ij is good. Therefore, at least one of the runs ru and rd runs on a word in ∞Rn. Since both
runs are consistent with the strategy f and ∞Rn ⊆ L(Aqk−1), we get that one of the runs traverses

α infinitely often. W.l.o.g consider some j > 0 such that the sub-run pj
#ij+1−−−−→ uj+1

$·Uj+2−−−−→ pj+1

traverses α. We define

xk = ($ ·A1 ·# · i1) · ($ ·A2 ·# · i2) · · · ($ ·Aj ·# · ij) · ($ ·Aj+1 ·# · ij+1) · $ · Uj+2

where for all 1 ≤ l ≤ j + 1, it holds that Al ∈ {Ul, Dl} and il /∈ Al. In particular, xk starts with $
and has no good infixes. To conclude the proof, we show that there is a run rk of Aqk−1 on xk that
traverses an α-transition (in particular, we can choose qk to be the last state that rk visits). The run
rk can obtained from the runs ru and rd as follows. First, rk starts by following one of the sub-runs

u0
$·U1−−−→ p0 or d0

$·D1−−−→ p0, depending on whether A1 = U1 or A1 = D1, respectively. Then, if the
run rk is in a state of the form pm, for m < j, the run rk proceeds, upon reading # · im+1, to one
of the states um+1 or dm+1, depending on whether the next two letters to be read are $ · Um+2 or
$ ·Dm+2, respectively. Finally, once rk reaches pj , it ends by traversing α while following the sub-run

pj
#ij+1−−−−→ uj+1

$·Uj+2−−−−→ pj+1.

Remark 3.1. In order to get a slightly tighter bound, one can show that a minimal tDBW for Ln

needs at least 2n+1 states and that the language Ln is not HD-helpful. That is, a minimal HD-tNBW
for Ln is not smaller than a minimal tDBW for Ln, and so the 2n+1 bound holds also for a minimal

11

HD-tNBW. The proof starts with a tDBW for Ln that has 2n+1 states, considers its complement
tDCW, and shows that the application of the polynomial minimization algorithm of [1] on it, namely
the algorithm that returns an equivalent minimal HD-tNCW, does result in a smaller automaton. The
result then follows from the fact that a minimal HD-tNCW for a language is smaller than a minimal
HD-tNBW for its complement [19]. The proof is easy for readers familiar with [1], yet involves many
notions and observations from there. We thus leave it for the appendix. Specifically, in Appendix A.1,
we describe a tDBW with 2n+1 states for Ln, and readers familiar with [1] can observe that the
application of the HD-tNCW minimization algorithm on its dual tDCW does not make it smaller.

Theorem 3.4. There is a family L1, L2, L3, . . . of languages such that for every n ≥ 1, there is an
SD-tNBW with O(n) states that recognizes Ln, yet every SD-tNCW that recognizes Ln needs at least
2O(n) states.

Proof. Let Σ = {0, 1}. For n ≥ 1, let Rn = {w : w ∈ 0 · (0 + 1)n−1 · 1 + 1 · (0 + 1)n−1 · 0}. Thus, Rn

contains all words of length n+1 whose first and last letters are different. It is easy to see that Rn can
be recognized by an NFW (in fact, a DFW) Nn with O(n) states. We define Ln = ∞Rn. First, by
Theorem 3.1, there is an SD-tNBW with O(n) states for Ln. In order to prove that an SD-tNCW for
Ln needs at least 2O(n) states, we prove that in fact every tNCW for Ln needs that many states. For
this, note that Ln consists of all words w for which there is u ∈ (0 + 1)n such that w ∈ (0 + 1)∗ · uω.
Indeed, for such words w, the suffix uω contains no infix in Rn. Also, if a word contains only finitely
many infixes in Rn, then it must have a suffix with no infixes in Rn, namely a suffix of the form uω for
some u ∈ (0 + 1)n. Then, the proof that a tNCW for Ln needs exponentially many states is similar
to the proof that an NFW for {u · u : u ∈ (0 + 1)n} needs exponentially many states. Indeed, it has
to remember the last n letters read.

3.2 Decision Problems

We continue to decision problems about SD-tNBWs and SD-NBWs, and show that the exponential
succinctness comes with a price: the complexity of all the problems we study coincides with the one
known for tNBWs and NBWs. Accordingly, we only prove lower bounds for SD-tNBWs. Matching
upper bounds follow from the known complexity for tNBWs, and same bounds for SD-NBWs follow
from linear translations between SD-tNBWs and SD-NBWs. The problems we study are language
containment: given two SD-tNBWs A1 and A2, decide whether L(A1) ⊆ L(A2), universality: given
an SD-tNBW A1, decide whether L(A1) = Σω, and minimization: given an SD-tNBW A1 and an
integer k ≥ 1, decide whether there is an SD-tNBW A2 such that L(A1) = L(A2) and |A2| ≤ k.

The exponential succinctness of SD automata motivates also the study of the D-to-SD minimization
problem. Here, we are given a tDBW A1 and an integer k ≥ 1, and we need to decide whether there is
an SD-tNBW A2 such that L(A1) = L(A2) and |A2| ≤ k. For automata on finite words, the D-to-N
minimization problem is known to be PSPACE-complete [18].

Note that a lower bound for universality implies a lower bound also for language containment. We
still start with language containment, as it is much simpler.

Theorem 3.5. The language-containment problem for SD-tNBWs is PSPACE-hard.

Proof. We describe a reduction from the universality problem for NFWs. Given an NFW N over Σ,
let N ′ be an NFW over Σ∪ {$} such that L(N ′) = $ ·L(N) · $. Now, let A1 be a 1-state tDBW over
Σ∪{$} such that L(A1) = ∞$, and let A2 be the SD-tNBW obtained by applying the operation from
Theorem 3.1 on N ′. Note that L(A2) = ∞($ · L(N) · $) and |A2| = |N |+ 3.

We claim that N is universal iff L(A1) ⊆ L(A2). First, if L(N) = Σ∗, then L(A2) = ∞($ ·Σ∗ ·$) =
∞$ and so L(A1) ⊆ L(A2). Conversely, if there is a word x ∈ Σ∗ \ L(N), then the word w = ($ · x)ω
is in L(A1) \ L(A2). Indeed, w has infinitely many $’s, yet for every infix $ · y · $ of w, we have that
y ̸∈ L(N), and so w ̸∈ L(A2).

12

The proof in Theorem 3.5 uses ∞$ as the “contained language”. For the universality problem, we
cannot relay on hints from words in the contained language. In particular, taking the union of A2

there with an automaton for “only finitely many $’s” results in an automaton that is not SD, and it
is not clear how to make it SD. Consequently, we have to work much harder. Specifically, we prove
PSPACE hardness by a generic reduction from polynomial space Turing machines. Such reductions
associate with a Turing machine T an automaton A that recognizes the language R of words that
do not encode legal rejecting computations of T , and so R = Σ∗ iff the machine has no rejecting
computations. The automaton A is nondeterministic, as it has to guess violations of attempts to
encode legal accepting computations. In order to replace A by an SD automaton, we manipulate the
Turing machine so that the language of the generated automaton is of the form ∞R, for which we
can construct an SD-tNBW.

Theorem 3.6. The universality problem for SD-tNBWs is PSPACE-hard.

Proof. We do a reduction from polynomial-space Turing machines. Given a Turing machine T with
space complexity s : N → N, we construct in time polynomial in |T | and s(0), an SD-tNBW A of size
polynomial in T and s(0), such that A is universal iff T accepts the empty tape3. Let n0 = s(0). Thus,
each configuration in the computation of T on the empty tape uses at most n0 cells. We assume that
T halts from all configurations (that is, not just from these reachable from an initial configuration of
T); Indeed, by adding a polynomial-space counter to T , one can transform a polynomial-space Turing
machine that need not halt from all configurations to one that does halt. We also assume, without loss
of generality, that once T reaches a final (accepting or rejecting) state, it erases the tape, moves with
its reading head to the leftmost cell, and moves to the initial state. Thus, all computations of T are
infinite and after visiting a final configuration for the first time, they eventually consists of repeating
the same finite computation on the empty tape that uses at most n0 tape cells.

We define A so that it accepts a word w iff (C1) no suffix of w is an encoding of a legal computation
of T that uses at most n0 tape cells, or (C2) w has infinitely many infixes that encode the accepting
state of T .

It is not hard to see that T accepts the empty tape iff A is universal. Indeed, if T accepts the empty
tape, and there is a word w that does not satisfy (C1), thus w has a suffix that is an encoding of a
legal computation of T that uses at most n0 cells, then the encoded computation eventually reaches
a final configuration, from which it eventually repeats the accepting computation of T on the empty
tape infinitely many times, and so w satisfies (C2). Conversely, If T rejects the empty tape, then the
word w that encodes the computation of T on the empty tape does not satisfy (C1) nor (C2), and so
A does not accept w.

Finally, the fact that T is a polynomial-space Turing machine enables us to define A with polyno-
mially many states, as we detail next. Let T = ⟨Γ, Q,→, q0, qacc, qrej⟩ be a Turing machine with
polynomial space complexity s : N → N, where Γ is the tape-alphabet, Q is the set of states,
→⊆ Q × Γ × Q × Γ × {L,R} is the transition relation (we use (q, a) → (q′, b,∆) to indicate that
when T is in state q and it reads the input a in the current tape cell, it moves to state q′, writes b in
the current tape cell, and its reading head moves one cell to the left/right, according to ∆), q0 is the
initial state, qacc is the accepting state, and qrej is the rejecting one.

We encode a configuration of T that uses at most n0 = s(0) tape cells by a word of the form
#γ1γ2 . . . (q, γi) . . . γn0

. That is, the encoding of a configuration starts with a special letter #, and all
its other letters are in Γ, except for one letter in Q× Γ. The meaning of such a configuration is that
the j’th cell in T , for 1 ≤ j ≤ n0, is γj-labeled, the head of T points at i’th cell, and T is in the state

3This is sufficient, as one can define a generic reduction from every language L in PSPACE as follows. Let TL be
a Turing machine that decides L in polynomial space f(n). On input w for the reduction, the reduction considers the
machine Tw that on every input, first erases the tape, writes w on its tape, and then runs as TL on w. Then, the
reduction outputs an automaton A, such that Tw accepts the empty tape iff A is SD. Note that the space complexity
of Tw is s(n) = max(n, f(|w|)), and that w is in L iff Tw accepts the empty tape. Since A is constructed in time
polynomial in s(0) = f(|w|) and |Tw| = poly(|w|), it follows that the reduction is polynomial in |w|.

13

q. For example, the initial configuration of T on the empty tape is encoded as #(q0, b)b . . . b (with
n0 − 1 occurrences of b’s) where b stands for an empty cell. We can now encode a computation of T
as a sequence of configurations.

Let Σ = {#} ∪ Γ ∪ (Q × Γ), and let #σ1 . . . σn0
#σ′

1 . . . σ
′
n0

be two successive configurations of T .
We also set σ0, σ

′
0, and σn0+1 to #. For each triple ⟨σi−1, σi, σi+1⟩ with 1 ≤ i ≤ n0, we know, by

the transition relation of T , what σ′
i should be. In addition, the letter # should repeat exactly every

n0 + 1 letters. Let next(σi−1, σi, σi+1) denote our expectation for σ′
i. That is,

• next(σi−1, σi, σi+1) = σi if σi = #, or if non of σi−1, σi and σi+1 are in Q× Γ.

• next((q, γi−1), γi, γi+1) = next((q, γi−1), γi,#) ={
γi If (q, γi−1) → (q′, γ′

i−1, L)
(q′, γi) If (q, γi−1) → (q′, γ′

i−1, R)

• next(γi−1, γi, (q, γi+1)) = next(#, γi, (q, γi+1)) ={
γi If (q, γi+1) → (q′, γ′

i+1, R)
(q′, γi) If (q, γi+1) → (q′, γ′

i+1, L)

• next(γi−1, (q, γi), γi+1) = next(γi−1, (q, γi),#) = next(#, (q, γi), γi+1) = γ′
i where (q, γi) →

(q′, γ′
i,∆). 4

Note that every word that encodes a legal computation of T that uses at most n0 tape cells must be
consistent with next.

Consider now an infinite word w. Note that if w satisfies (C1), then w has infinitely many infixes
that witness a violation of the encoding of a legal computation of T that uses at most n0 tape cells.
Accordingly, we can write the language of A as ∞R, where R is the language of one-letter words of
the form (qacc, γ), or words that describe a violation of a legal computation that uses at most n0 cells.
Words that describe a violation, either are words of length n0 + 1 that describe a violation of the
encoding of a single configuration, or are words of length n0 + 3 that describe a violation next.

We can now define an NFW N for R of size polynomial in T and n0, and thus the required SD-
tNBW A can be obtained from N by applying the construction described in Theorem 3.1. The NFW
N is defined as follows. From its initial states, N guesses to check whether the input word is a single-
letter word of the form (qacc, γ), or guesses to check whether the input is a violation of the encoding
of a legal computation of T that uses at most n0 tape cells: this amounts to guessing that the input
is a word of length n0+1 that has no #’s, or starts with #, yet does not encode a legal configuration,
or amounts to guessing that the input is a word of length n0 + 3 that describes a violation of next,
where N checks whether the input start with three letters σ1, σ2, σ3 describing three successive letters
in the encoding and ends with a letter σ′

2, which comes n0 + 1 letters after σ2 in the encoding, yet is
different than next(σ1, σ2, σ3).

We continue to the minimization problem. Note that here, a PSPACE upper bound does not
follow immediately from the known PSPACE upper bound for tNBWs, as the candidate automata
need to be SD. Still, as SDness can be checked in PSPACE [2], a PSPACE upper bound follows.
Also note that here, the case of SD-NBWs is easy, as a non-empty SD-NBW is universal iff it has
an equivalent SD-NBW with one state. For transition-based acceptance, the language of a single-
state SD-tNBW need not be trivial, and so we have to examine the specific language used for the
universality PSPACE-hardness proof:

4We note that in the case where the head of T is at leaft most cell, and T moves its head to the left should be
handeled slightly differently, as we assume that the tape of T is left bounded.

14

Theorem 3.7. The minimization problem for SD-tNBWs is PSPACE-hard.

Proof. We argue that the SD-tNBW A in the proof of Theorem 3.6 has an equivalent one-state SD-
tNBW iff A is universal. To see why, assume towards contradiction that T rejects the empty tape
and there is a one-state SD-tNBW D equivalent to A. Recall that we encode computations of T as a
sequence of successive configurations of length n0 each, separated by the letter #. On the one hand,
as the word #ω has infinitely many violations, then it is in L(A), and so the #-labeled self-loop at
the state of D must be an α-transition. On the other hand, the word w that encodes the computation
of T on the empty tape is not in L(A), yet it has infinitely many #’s.

As we show below, the minimization problem stays hard even when we start from a deterministic
automaton:

Theorem 3.8. The D-to-SD minimization problem for Büchi automata is PSPACE-hard.

Proof. We start with Büchi automata with transition-based acceptance, and describe a reduction
from the D-to-N minimization problem for automata on finite words: given a DFW A1, and an
integer k ≥ 1, decide whether there is an NFW A2 such that L(A1) = L(A2) and |A2| ≤ k. In [18],
the authors prove that the problem is PSPACE-hard, in fact PSPACE-hard already for DFWs that
recognize a language that has no good prefixes.

Consider a language R ⊆ Σ∗. The reduction is based on a construction that turns an NFW for R
into an SD-tNBW for ∞($ · R · $), for a letter $ /∈ Σ. Note that by applying the construction from
Theorem 3.1 on the language $ ·R ·$, we can get an SD-tNBW for ∞($ ·R ·$). The construction there,
however, does not preserve determinism. Therefore, we need a modified polynomial construction,
which takes advantage of the $’s. We describe the modified construction below.

Given an NFW A = ⟨Σ, Q,Q0, δ, F ⟩, and a letter $ /∈ Σ, we construct the tNBW A′ = ⟨Σ ∪
{$}, Q,Q0, δ

′, α⟩, where for all states q ∈ Q and letters σ ∈ Σ, we have that δ′(q, σ) = δ(q, σ). Also,
δ′(q, $) = Q0, and α = {⟨s, $, q⟩ : q ∈ Q0 and s ∈ F}. Thus, A′ is obtained from A by adding
$-transitions from all states to Q0. A new transition is in α iff its source is an accepting state of A.
It is not hard to see that the construction of A′ preserves determinism. Indeed, if A is deterministic,
then all the $-transitions in A′ are deterministic since they are directed to the single initial state of
A. To show that A′ is SD and L(A′) = ∞($ · L(A) · $), we prove below, similarly to Theorem 3.1,
that for all states q ∈ Q, it holds that L(A′q) = ∞($ · L(A) · $).

Consider a state q ∈ Q, we first show that L(A′q) ⊆ ($ · L(A) · $). Consider a word w ∈ L(A′q)
and let r = r0, r1, r2, . . . be an accepting run of A′q on w. We show that for every i ≥ 1, there are
k1, k2 such that i ≤ k1 ≤ k2 and w[k1, k2 + 1] is an infix of w in $ · L(A) · $. Given i ≥ 1, let k2
be such that t = ⟨rk2 , w[k2 + 1], rk2+1⟩ is an α-transition, but not the first $-transition that r reads
when it runs on the suffix w[i,∞], and let k1 be the maximal index such that i ≤ k1 ≤ k2 and
⟨rk1−1, w[k1], rk1

⟩ = ⟨rk1−1, $, rk1
⟩. Since t is not the first $-transition that r traverses when it reads

the suffix w[i,∞], then k1 exists. Note that the fact that new transitions lead to Q0 in A′, and the
maximality of k1, imply that the run rk1

, rk1+1, . . . , rk2
is a run of A on the infix w[k1+1, k2]. Also, as

t is an α transition, the latter run is an accepting run of A. Now, as the transitions ⟨rk1−1, w[k1], rk1⟩
and t are $-transitions, we get that rk1−1, rk1 , . . . , rk2 , rk2+1 is a run on a word in $ · L(A) · $. Thus,
w[k1, k2 + 1] is an infix of w in $ · L(A) · $.

Next, we show that ∞($ · L(A) · $) ⊆ L(A′q). Consider a word w ∈ ∞($ · L(A) · $), and consider
a run of A′q on w that upon reading an infix $ · x · $ in $ · L(Aq0) · $, for some q0 ∈ Q0, moves to q0
while reading $, and then follows an accepting run of Aq0 on x, and finally moves to a state in Q0,
traversing α while reading $. Note that the transitions in A′ enable such a behavior. Thus, such a
run traverses α infinitely often and is thus accepting.

We now describe the reduction. Given a DFW A over Σ such that L(A) has no good prefixes, and
given an integer k, the reduction returns the polynomial tDBW A′ and the integer k. We prove next
that the reduction is correct. Thus, the DFW A has an equivalent NFW with at most k states iff

15

the tDBW A′ has an equivalent SD-tNBW with at most k states. For the first direction, if B is an
NFW equivalent to A whose size is at most k, then by the above construction, it holds that B′ is an
SD-tNBW whose size is at most k, and L(B′) = ∞($ · L(B) · $) = ∞($ · L(A) · $) = L(A′).

Conversely, if B′ is an SD-tNBW for ∞($ · L(A) · $) whose size is at most k, then as L(A) has no
good prefixes, we get by Theorem 3.2 that there is an NFW B for L(A) whose size is at most k, and
we are done.

Finally, we show next that despite the fact that transitions between automata with transition-based
and state-based acceptance may involve a linear blow-up, it is possible to adapt the above arguments
to automata with state-based acceptance, thus PSPACE-completeness holds also for Büchi automata
with state-based acceptance. Essentially, given a DFW A and an integer k, the reduction returns a
DBW for ∞($ · L(A) · $) and the integer k + 1.

To see why such a reduction exists, note that the construction of the SD-tNBW A′ from the NFW
A can be adapted to the state-based setting by adding a single new α state to A′ that behaves as the
initial states of A, and captures infixes in $ · L(A) · $. Formally, given an NFW A = ⟨Σ, Q,Q0, δ, F ⟩,
and a letter $ /∈ Σ, we construct the NBW A′ = ⟨Σ∪{$}, Q∪{qacc}, Q0, δ

′, {qacc}⟩, where for all states
q ∈ Q and letters σ ∈ Σ, we have that δ′(q, σ) = δ(q, σ). Also, δ′(Q \ F, $) = Q0, δ

′(F, $) = {qacc},
δ(qacc, $) = Q0, and δ′(qacc, σ) = δ(Q0, σ). Intuitively, the state qacc mimics traversal of α transitions.

Then, Theorem 3.2 can also be adapted to SD-NBWs as follows. If A is an SD-NBW for ∞($ ·R ·$)
for some nontrivial language R ⊆ Σ∗ that has no good prefixes, then one can construct an NFW N for
R with at most |A|−1 states. Essentially, we viewA as a transition-based automatonAt by considering
transitions that leave α states as α transitions. Then, we consider the proof of Theorem 3.2 when
applied on At. As R has no good prefixes, then the state qacc of N is unreachable. Hence, all runs
from QS

0 cannot reach α transitions in At. In particular, α states of A are unreachable in N and they
can be removed with qacc as well.

4 Semantically Deterministic co-Büchi Automata

In this section we study SD co-Büchi automata. Here too, our results are based on constructions that
involve encodings of NFWs by SD-tNCWs. Here, however, the constructions are more complicated,
and we first need some definitions and notations.

Consider a tNCW A = ⟨Σ, Q,Q0, δ, α⟩. We refer to the SCCs we get by removing A’s α-transitions
as the α-components of A; that is, the α-components of A are the SCCs of the graph GAᾱ = ⟨Q,Eᾱ⟩,
where ⟨q, q′⟩ ∈ Eᾱ iff there is a letter σ ∈ Σ such that ⟨q, σ, q′⟩ ∈ α. We say that A is normal if there
are no α-transitions connecting different α-components. That is, for all states q and s of A, if there is
a path of α-transitions from q to s, then there is also a path of α-transitions from s to q. Note that an
accepting run of A eventually gets trapped in one of A’s α-components. In particular, accepting runs
in A traverse transitions that leave α-components only finitely often. Hence, we can add transitions
among α-components to α without changing the language of the automaton. Accordingly, in the
sequel we assume that given tNCWs are normal.

We proceed to encoding NFWs by SD-tNCWs. For a language R ⊆ Σ∗, we define the language
▷◁$(R) ⊆ (Σ ∪ {$})ω, by

▷◁$(R) = {w : if w has infinitely many $, then it has a suffix in ($R)ω}.

Also, we say that a finite word x ∈ Σ∗ is a bad infix for R if for all words w ∈ Σ∗ that have x as an
infix, it holds that w ∈ R.

Note that for every language R ⊆ Σ∗, we have that ▷◁$ (R) = ∞($ ·R · $). Thus, ▷◁$ (R) com-
plements ∞($ · R · $). Yet, unlike tDCWs and tDBWs, which dualize each other, SD-tNBWs and
SD-tNCWs are not dual. Hence, adjusting Theorems 3.1 and 3.2 to the co-Büchi setting, requires
different, in fact more complicated, constructions.

16

Theorem 4.1. Given an NFW N , one can obtain, in linear time, an SD-tNCW A such that
L(A) =▷◁$(L(N)) and |A| = |N |.

Proof. Given N = ⟨Σ, Q,Q0, δ, F ⟩, we obtain A by adding $-transitions from all states to Q0. The
new transitions are in α iff they leave a state in Q \ F . Formally, A = ⟨Σ ∪ {$}, Q,Q0, δ

′, α⟩, where
for all s ∈ Q and σ ∈ Σ, we have that δ′(s, σ) = δ(s, σ), and δ′(s, $) = Q0. Then, α = {⟨s, $, q⟩ :
q ∈ Q0 and s ∈ Q \ F}. It is easy to see that |A| = |N |. In order to prove that A is SD and
L(A) =▷◁$(L(N)), we prove next that for every state q ∈ Q, it holds that L(Aq) =▷◁$(L(N)).

First, we show that ▷◁$(L(N)) ⊆ L(Aq). Consider a word w ∈▷◁$(L(N)). If w has finitely many
$’s, then as α transitions in A are $-labeled, we have that all runs of Aq on w traverse α finitely often
and thus are accepting. Assume that w = z · y, where y is of the form $x1$x2$x3 · · · , where for all i,
xi ∈ L(N). An accepting run r of Aq on w can be defined arbitrarily upon reading z. Then, upon
reading an infix of the form $xi, r moves to q0 upon reading $, where q0 ∈ Q0 and xi ∈ L(N q0).
Then, r proceeds by following an accepting run of N q0 on xi. As accepting runs of N end in states in
F , and $-transitions from F are in α, we get that r does not traverse α upon reading the $’s after x1.
Also, as transitions of N are α transitions in A, we get that r follows a run that does not traverse α
when it reads xi. Hence, r eventually vists only α transitions and thus is accepting.

Next, we show that L(Aq) ⊆▷◁$ (L(N)). Consider a word w = σ1 · σ2 · · · ∈ L(Aq) and let r =
r0, r1, . . . be an accepting run of Aq on w. If w has finitely many $’s, then w ∈▷◁$(L(N)) and we are
done. Assume that w has infinitely many $’s and let t be such that r[t − 1,∞] = rt−1, rt, rt+1, . . . is
a run that does not traverse α on w[t,∞]. To conclude the proof, we show that between every two
consecutive $’s in w[t,∞] there is a word in L(N). That is, we show that for all t ≤ t1 < t2 such that
σt1 = σt2 = $ and w[t1 + 1, t2 − 1] has no $’s, it holds that w[t1 + 1, t2 − 1] ∈ L(N). As $-transitions
lead to Q0, we have that rt1 , rt2 ∈ Q0. Recall that r[t − 1,∞] does not traverse α, in particular, we
have that r[t1, t2] = rt1 , rt1+1, . . . rt2 is a run from Q0 to Q0 that traverses only α transitions, on the
infix w[t1+1, t2]. Also, r[t1, t2] traverses $ only in its last transition. As the transition ⟨rt2−1, σt2 , rt2⟩
is an α $-transition that leads to Q0, then rt2−1 ∈ F . Also, since all the transitions that r[t1, t2 − 1]
traverses are Σ-labeled, then they are transitions in N , and so r[t1, t2 − 1] is an accepting run of N
on w[t1 + 1, t2 − 1]. Hence w[t1 + 1, t2 − 1] ∈ L(N) and we are done.

Theorem 4.2. Consider a language R ⊆ Σ∗ and a letter $ /∈ Σ. For every tNCW A such that
L(A) =▷◁$(R), there exists an NFW N such that L(N) = R and |N | ≤ |A|+1. In addition, if R has
bad infixes, then |N | ≤ |A|.

Proof. Let A = ⟨Σ ∪ {$}, Q,Q0, δ, α⟩ be a tNCW for ▷◁$(R). We assume that A is normal and all of
its states are reachable. We define the NFW N = ⟨Σ, Q∪ {qrej}, QN

0 , δN , FN ⟩, where QN
0 = {q ∈ Q :

there is a state q′ such that ⟨q′, $, q⟩ ∈ α}, FN = {q ∈ Q : there is a state q′ such that ⟨q, $, q′⟩ ∈ α},
and for every two states q, s ∈ Q and letter σ ∈ Σ, it holds that s ∈ δN (q, σ) iff ⟨q, σ, s⟩ ∈ α.
Also, if {q} × {σ} × δ(q, σ) ⊆ α, then δN (q, σ) = qrej . Also, for all letters σ ∈ Σ, it holds that
δN (qrej , σ) = qrej ; that is, qrej is a rejecting sink. Thus, N tries to accept words x ∈ Σ∗ for which
there is a run in A that does not traverse α on the word $ · x · $.

We prove that L(N) = R. We first prove that R ⊆ L(N). Consider a word x ∈ R, and let
r = r0, r1, r2, . . . be an accepting run of A on ($ · x)ω. As r is accepting, there are i < j such that
ri, ri+1, . . . , rj is a run that does not traverse α on $ ·x · $. By the definition of δN , ri+1 ∈ QN

0 , rj−1 ∈
FN , and so ri+1, ri+2, . . . , rj−1 is an accepting run of N on x.

We prove next that L(N) ⊆ R. Consider a word x = σ1·σ2 · · ·σn ∈ L(N) and let r = r0, r1, . . . rn be
an accepting run of N on x. As r ends an accepting state of N , then it does not visit qrej . Hence, the
definition of δN implies that r is a run that does not traverse α in A. Also, as r0 ∈ QN

0 and rn ∈ FN ,
there are states q1, q2 ∈ Q such that ⟨q1, $, r0⟩, ⟨rn, $, q2⟩ ∈ α. Hence, q1, r0, r1, . . . , rn, q2 is a run that
does not traverse α in A on the word $ ·x ·$. As A is normal, there is a word y ∈ (Σ∪{$})∗ such that
there is a run that does not traverse α of Aq2 on y that reaches q1. Therefore, ($·x·$·y)ω ∈ L(Aq1). As

17

all the states of A are reachable, it follows that there is a word z ∈ (Σ∪{$})∗ such that q1 ∈ δ(Q0, z),
and thus z · ($ · x · $ · y)ω ∈ L(A). Hence, as L(A) =▷◁$(R), we get that x ∈ R.

Since the state space of N is Q ∪ {qrej}, we have that |N | = |A| + 1. Moreover, if R has a bad
infix x, then x ∈ R. Hence, if we consider the word xω, then as it has no $’s, it is accepted by A.
Hence, there is a state q ∈ Q such that Aq has a run on xω that does not leave the α-component of
q. As we detail below, the fact that x is a bad infix of R implies that the α-component of q does not
contain $-transitions. Hence, since the only states in Q that are reachable in N lie in α-components
that contain a $-transition, we can remove the state qrej from N and make q a rejecting sink instead.
Hence, in this case, we have that |N | ≤ |A|, and we are done.

Let x be a bad infix of R, and let q ∈ Q be such that Aq has a run on xω that does not leave the
α-component of q. Let S(q) denote the α-component of q. To conclude the proof, we show that S(q)

does not contain a $-transition. Assume by contradiction that S(q) contains a $-transition s1
$−→ s2.

As q has a run on xω that does not leave S(q), we get that q has a finite run of the form q
x−→ qx on x

that does not leave S(q). As A is normal, we get that there is a run in S(q) that starts at qx, passes

through the transition s1
$−→ s2, and finally ends in q: qx

y1−→ s1
$−→ s2

y2−→ q. Hence, we get that there

is a cycle in S(q) of the form q
x·y−−→ q on a word of the form x · y, where y contains a $. Hence, (x · y)ω

is accepted from q in A.
Note that the word (x · y)ω = x · y · x · y · · · has infinitely many infixes of the form $ · u · $, where

u ∈ Σ∗ is a bad infix of R. To see why, consider the infix z = y · x · y that appears infinitely often in
(x · y)ω, and consider the infix $ · u · $ of z = y · x · y that starts at last $ of the first y and ends at the
first $ of the second y. Clearly, such u is over Σ, and since it contains x as an infix, then it is also a
bad infix. In particular, u ∈ R. As all the states of A are reachable, there is a word v ∈ (Σ ∪ {$})∗
such that q ∈ δ(q0, v). Hence, the word v · (x · y)ω is accepted in A even though it has infinitely
many infixes of the form $ · u · $, where u ∈ R, and we have reached a contradiction to the fact that
L(A) =▷◁$(R).

4.1 Succinctness and Complementation

In this section we study the succinctness of SD co-Büchi automata with respect to deterministic ones,
and the blow-up involved in their complementation. Recall that unlike Büchi automata, for co-Büchi
automata, HD automata are exponentially more succinct than deterministic ones. Accordingly, our
results about the succinctness of SD automata with respect to HD ones are more surprising than those
in the setting of Büchi automata.

Theorem 4.3. There is a family L1, L2, L3, . . . of languages such that for every n ≥ 1, there is an
SD-tNCW with 3n + 3 states that recognizes Ln, yet every tDCW or HD-tNCW that recognizes Ln

needs at least 2n states.

Proof. For n ≥ 1, consider the alphabet Σn = [n] ∪ {#}, and the language Rn = {x ·# · i : x ∈ [n]+

and i appears in x} ⊆ Σ∗
n. We define Ln =▷◁$(Rn). Recall that a word over z ∈ (Σn ∪ {$})∗ is good

if z = $ · x ·# · i, where x ∈ [n]+ and i appears in x, and note that Ln consists of exactly the words
with finitely many $’s, or that have a suffix that is a concatenation of good words. First, it is not
hard to see that Rn can be recognized by an NFW Nn with 3n + 3 states, for example, a candidate
for Nn can be obtained from the NFW in Figure 1 by removing the $-transitions from q0, and letting
q0 guess to behave as any state in

⋃
i∈[n]{q1i }. By Theorem 4.1, there is an SD-tNCW for Ln with

3n+ 3 states.
We show next that an HD-tNCW for Ln needs at least 2n states. Consider an HD-tNCW

A = ⟨Σn ∪ {$}, Q, q0, δ, α⟩ for Ln. By [19, 1], we can assume that A is α-deterministic, thus
for all states q and letters σ, we have that there is at most one state q′ such that ⟨q, σ, q′⟩ ∈ α.
We also assume that A is normal, and all its states are reachable. To prove that |Q| ≥ 2n,
we first prove that there is a state q ∈ Q such that ($ · Rn)

ω ⊆ Lα(q), where Lα(q) = {w :

18

there is a run from q on w that does not traverse α}. Then, we argue that the α-component of q has
at least 2n states.

For a nonempty set S ∈ 2Q, and a letter σ ∈ Σn∪{$}, define δα(S, σ) = {q′ ∈ Q : there is a state q ∈ S
such that ⟨q, σ, q′⟩ ∈ α}. Consider the tDCW D = ⟨Σn ∪ {$}, 2Q \ ∅, Q, δD, αD⟩, where for every
nonempty set S ∈ 2Q \ ∅, and letter σ ∈ Σn ∪ {$}, it holds that δD(S, σ) = δα(S, σ), if δα(S, σ) ̸= ∅,
and δD(S, σ) = Q, otherwise. The former type of transitions are in αD, and the latter are in αD.
Thus, the state space of D encodes nonempty sets S ∈ 2Q of states, and D starts a run from the set
of all states Q. Reading its input, D keeps track of runs in A that have not traversed α from the last
traversal of αD, and when all tracked runs in A have traversed α, the tDCW D resets again to the
set of all states Q.

We prove next that5 L(A) ⊆ L(D). Consider a word w ∈ L(A), and let r = r0, r1, r2, . . . be an
accepting run of A on w. As r is accepting, there is i ≥ 0 such that r[i,∞] = ri, ri+1, ri+2, . . . does
not traverse α on the suffix w[i+1,∞]. Let rS = S0, S1, S2, . . . denote the run of D on w, and assume
towards contradiction that rS traverses αD infinitely often. Then, consider an index j ≥ i such that
⟨Sj , w[j+1], Sj+1⟩ ∈ αD. By the definition of D, we have that Sj+1 = Q. Consider the run r[j+1,∞]
on the suffix w[j +2,∞]. As rj+1 ∈ Sj+1, r[j +1,∞] is a run of rj+1 that does not traverse α, and D
keeps track of runs in A that do not traverse α from the last reset, then it must be the case that the
run rS [j + 1,∞] = Sj+1, Sj+2, Sj+3, . . . does not traverse αD, and we have reached a contradiction.

Next, we show that there is a state q ∈ Q such that ($·Rn)
ω ⊆ Lα(q). Assume towards contradiction

that for all states q ∈ Q, it holds that there is a word wq ∈ ($ · Rn)
ω \ Lα(q). We define a sequence

S0, S1, S2, . . . of states in D, and a sequence w1, w2, w3, . . . of finite words in ($ · Rn)
+ such that for

all i ≥ 0, it holds that δD(Si, wi+1) = Si+1. We take S0 = Q. For all i ≥ 0, given Si, we define
wi+1 and Si+1 as follows. Consider a state qi ∈ Si and the word wqi ∈ ($ · Rn)

ω \ Lα(qi). Then, as
we argue below, there exists a prefix hq of wqi in ($ · Rn)

+ such that all runs of qi on hq traverse
α. We take wi+1 to be hq, and take Si+1 = δD(Si, wi+1). We explain now why such a prefix exists.
Assume contrarily that there are indices k1 < k2 < k3 < · · · such that for all j ≥ 1, the word
wqi [1, kj] = σ1 · σ2 · · ·σkj

∈ ($ ·Rn)
+ is a prefix of wqi = σ1 · σ2 · σ3 · · · such that qi has a run rkj

that
does not traverse α on wqi [1, kj]. Then, as A is α deterministic, we get that the run rkj2

extends the
run rkj1

for all j2 > j1. Hence, there is an infinite run of qi that does not traverse α on wqi , and we
have reached a contradiction to the fact that wqi /∈ Lα(qi).

Consider sequences S0, S1, S2, . . . and w1, w2, w3, . . . as above. First, it holds that the word w =
w1 · w2 · w3 · · · is in ($ · Rn)

ω ⊆ Ln, and, by definition, rS = S0
w1−−→ S1

w2−−→ S2 · · · is a run of D
on w. Recall that L(A) = Ln ⊆ L(D); in particular w ∈ L(D). To reach a contradiction, we prove
below that the run rS of D on w, is rejecting. We claim that it is sufficient to show that for all i ≥ 0,

either the run ri→i+1 = Si
wi+1−−−→ Si+1 traverses αD, or |Si| > |Si+1|. Indeed, if the latter holds, and

there is i ≥ 0 such that the run Si
wi+1−−−→ Si+1

wi+2−−−→ Si+2 · · · does not traverse αD, then we get that
|Sj | > |Sj+1| for all j ≥ i, which is a impossible.

So we prove next that for all i ≥ 0, either the run ri→i+1 = Si
wi+1−−−→ Si+1 traverses αD, or

|Si| > |Si+1|. Consider a state S of D, a letter σ ∈ Σn ∪ {$}, and note the following. If for
all q ∈ S it holds that ({q} × {σ} × δ(q, σ)) ∩ α ̸= ∅, then as S proceeds to the α σ successors
of the states in S upon reading σ, and as A is α deterministic, we get that |S| ≥ |δD(S, σ)| and
⟨S, σ, δD(S, σ)⟩ ∈ αD. Otherwise, if there is a state q ∈ S such that ({q} × {σ} × δ(q, σ)) ∩ α = ∅,
then either ⟨S, σ, δD(S, σ)⟩ ∈ αD, or |S| > |δD(S, σ)|. Consider i ≥ 0. Let wi+1 = σ1 · σ2 · · ·σni

, and

consider the run ri→i+1 = Si
wi+1−−−→ Si+1 = T0, T1, . . . , Tni . If, by contradiction, the run ri→i+1 does

not traverse αD and |Si| = |Si+1|, then by the above, for all 0 ≤ j < ni and q ∈ Tj , we have that
({q}×{σj+1}×δ(q, σj+1))∩α ̸= ∅. Hence, if we consider a state t0 ∈ T0, we get that there is a transition
⟨t0, σ1, t1⟩ ∈ α, and by the defition of δD, we have that t1 ∈ T1. Then, proceeding iteratively from t1,

5In fact, using the fact that all the states of A are reachable, the fact that HD-tNCWs can be assumed to be SD
[19], and the fact that A recognizes Ln, one can prove that D is equivalent to A.

19

we get that there is a run of t0 in A that does not traverse α on the word wi+1 = σ1 · σ2 · · ·σni . As
the latter holds for all t0 ∈ T0 = Si; in particular, for t0 = qi, we get a contradiction to the definition
of wi+1.

What we have shown so far is that there exists a state q ∈ Q such that ($ · Rn)
ω ⊆ Lα(q). To

complete the proof, we prove next that the α-component of q has at least 2n states. Assume towards
contradiction that the α-component of q has strictly less than 2n states. For every subset S ⊆ [n], we
abuse notation and use S to also denote a word in [n]∗ consisting of exactly the numbers that appear
in S. Then, consider the word $ · S. The word $ · S can be extended to a word in ($ ·Rn)

ω ⊆ Lα(q).
Hence, q has a run rS that does not traverse α on the word $ ·S, and as A is normal, we have that rS
ends in a state that belongs to the α-component of q. As the α-component of q has strictly less than
2n states, there are sets S, T ⊆ [n] and i ∈ [n] such that i ∈ S \ T , and rS and rT end in the same
state q′. As A is α deterministic, we get that the run rS is the only run that does not traverse α from
the state q on the word $ · S. Hence, as $ · S ·# · i · $ can be extended to a word in ($ ·Rn)

ω ⊆ Lα(q)

and rS ends in q′, we get that there is a run of the form q′
#·i·$−−−→ q′′ that traverses only α transitions,

in particular, it does not leave the α-component of q. Now consider the run r = q
$·T−−→ q′

#·i·$−−−→ q′′.
The run r is a run that does not traverse α from the state q on the word $ ·T ·# · i ·$. As A is normal,
there is a word y ∈ (Σn ∪{$})∗ such that there is a run that does traverse α of Aq′′ on y that reaches
q. Therefore, ($ · T ·# · i · $ · y)ω ∈ Lα(q) ⊆ L(Aq). As all the states of A are reachable, there is a
word z ∈ (Σn ∪ {$})∗ such that q ∈ δ(q0, z). Hence, the word z · ($ · T ·# · i · $ · y)ω is accepted by A
even though it has infinitely many infixes in $ ·Rn · $, and we have reached a contradiction.

Remark 4.1. As has been the case with Büchi automata, here too, an analysis of the application of the
HD-tNCW minimization algorithm on a tDCW for Ln leads to a slightly tighter bound. Specifically,
in Appendix A.2, we describe a tDCW for Ln with 2n+1 + 1 states, such that the application of the
HD-tNCW minimization algorithm on it does not make it smaller.

Theorem 4.4. There is a family L1, L2, L3, . . . of languages such that for every n ≥ 1, there is an
SD-tNCW with O(n) states that recognizes Ln, yet every SD-tNBW that recognizes Ln needs at least
2O(n) states.

Proof. Let Σ = {0, 1}, and let Rn = {w : w ∈ (0+ 1)∗ · (0 · (0+ 1)n−1 · 1+ 1 · (0+ 1)n−1 · 0) · (0+ 1)∗}.
Thus, Rn is the language of all words that contain two letters that are at distance n and are different.
We define Ln =▷◁$(Rn).

It is easy to see that Rn can be recognized by an NFW with O(n) states. Hence, by Theorem 4.1,
there is an SD-tNCW with O(n) states for Ln. We prove next that every SD-tNBW for Ln needs
at least 2O(n) states. For this, note that Ln consists of all words w such that w contains infinitely
many $’s yet has no suffix in ($Rn)

ω. Thus, w contains infinitely many infixes in Rn. Therefore,
Ln = ∞($ ·Rn · $). It is not hard to prove that an NFW for Rn needs at least 2O(n) states. Then, by
Theorem 3.2, this bound is carried over to a 2O(n) lower bound on an SD-tNBW for Ln.

4.2 Decision Problems

We continue to decision problems for SD-tNCWs and SD-NCWs. As in Section 3.2, we state only the
lower bounds, and for SD-tNCWs. Matching upper bounds and similar results for SD-NCWs follow
from the known upper bounds for tNCWs and the known linear translations between state-based and
transition-based automata.

We start with language-containment and universality.

Theorem 4.5. The language-containment and universality problems for SD-tNCWs are PSPACE-
hard.

20

Proof. We describe a reduction from universality of NFWs to universality of SD-tNCWs. Given an
NFW N over Σ, the reduction returns the SD-tNCWA over Σ∪ {$} that is obtained by applying the
operation from Theorem 4.1 on N . Thus, L(A) =▷◁$(L(N)).

First, if L(N) = Σ∗, then (Σ ∪ {$})∗ · ($L(N))ω = ∞$, and so L(A) = (Σ ∪ {$})ω. Conversely,
if there is a word x ∈ Σ∗ \ L(N), then the word w = ($x)ω is not in L(A). Indeed, w has infinitely
many $’s, yet it has a word not in L(N) between every two consecutive $’s.

We continue to the minimization problem. Note that while minimization is PSPACE-complete for
NCWs, it is NP-complete for DCWs and in PTIME for HD-tNCWs. Thus, our PSPACE lower bound
suggests a significant difference between SD and HD automata. Note also that, as has been the case
with Büchi automata, the case of SD-NCWs is easy, as a non-empty SD-NCW is universal iff it has
an equivalent SD-NCW with one state, which is not the case for SD-tNCWs:

Theorem 4.6. The minimization problem for SD-tNCWs is PSPACE-hard.

Proof. We analyze the reduction from Theorem 4.5 and show that an NFW N over Σ is universal iff
the SD-tNCW A over Σ ∪ {$} that is constructed in Theorem 4.1 for ▷◁$(L(N)) has an equivalent
SD-tNCW with a single state.

First, note that N is universal iff ▷◁$(L(N)) is universal. Hence, if N is universal, then A has an
equivalent SD-tNCW with a single state. For the other direction, assume that A has an equivalent
SD-tNCW D with a single state, and assume towards contradiction that N is not universal. Then,
there is a word x /∈ L(N). Consider the word ($x)ω. By the definition of ▷◁$(L(N)), we have that
($x)ω ̸∈ L(A). Hence, ($x)ω is not accepted by D and so at least one of the letters σ in the word $x
is such that the σ-labeled self-loop at the state of D is an α-transition. Now as L(A) =▷◁$(L(N)), we
get that D accepts all words that have no $’s; in particular, the α-self-loop at the state of D must be
$-labeled.

Recall that the universality problem for NFWs is PSPACE-hard already for NFWs N that accept
ϵ. For example, this is valid for the NFW that is generated in the generic reduction from a PSPACE
Turing machine, and which accepts all words that do not encode a valid computation of the Turing
machine. Hence, for such an NFW N , the word $ω is in ▷◁$(L(N)), and should be accepted by D,
and we have reached a contradiciton.

We continue to the D-to-SD minimization problem, showing it stays PSPACE-hard.

Theorem 4.7. The D-to-SD minimization problem for co-Büchi automata is PSPACE-hard.

Proof. We reduce from the D-to-N minimization problem for automata on finite words, which is
already PSPACE-hard for languages that have bad infixes [18]. We start with co-Büchi automata
with transition-based acceptance.

Consider the construction from Theorem 4.1. Recall it takes an NFW A as input, returns an
SD-tNCW A′ of the same size for ▷◁$(L(A)), and preserves determinism.

Consider a DFW A over Σ such that L(A) has a bad infix, and an integer k. The reduction
returns the SD-tNCW A′ constructed from A in Theorem 4.1, and the integer k. Recall that L(A′) =
▷◁$(L(A)), and that the construction in Theorem 4.1 preserves determinism. Thus, the automaton A′

is really a tDCW.
We prove next that the reduction is correct. That is, the DFW A has an equivalent NFW with

at most k states iff the tDCW A′ has an equivalent SD-tNCW with at most k states. For the
first direction, if B is an NFW equivalent to A whose size is at most k, then, by applying to it
the construction from Theorem 4.1, we get an SD-tNCW B′ whose size is at most k, and L(B′) =
▷◁$(L(B)) = ▷◁$(L(A)) = L(A′).

Conversely, if B′ is an SD-tNCW for ▷◁$(L(A)) whose size is at most k, then as L(A) has bad
infixes, we get by Theorem 4.2 that there is an NFW B for L(A) whose size is at most k, and we are
done.

21

Finally, as in Büchi automata, it is not hard to see that the above arguments can be adapted to
state-based automata, and so the D-to-SD minimization problem is PSPACE-hard also for co-Büchi
automata with state-based acceptance. Essentially, given a DFW A and an integer k, the reduction
returns a DCW for ▷◁$(L(A)) and the integer k + 1.

The above reduction exists since the construction from Theorem 4.1 can be adapted to state-based
automata, essentially, by letting the co-Büchi automaton have one additional α state that behaves as
the initial states, and that is reachable from every state in Q \ F upon reading $.

Also, Theorem 4.2 can be adapted to the state-based setting. Indeed, if A is an NCW for ▷◁$(R)
for some language language R ⊆ Σ∗ that has a bad infix x, then one can construct an NFW N for R
with at most |A|−1 states. To see why, we view A as a transition-based automaton At by considering
transitions that touch α states as α transitions. Then, we consider the proof of Theorem 4.2 when
applied on At. We claim that all states p that are α states of A can be removed from N without
affecting its language. Indeed, the α-component of such a state p in At is {p} and contains no
transitions, in paritcular, no $-transitions. Also, note that such states p are distinct from the state q
that has a run that does not traverse α transitions on xω. Thus, they can be removed from N along
with the state qrej . Hence, we get in this case that |N | ≤ |A| − 1.

5 Semantically Deterministic Weak Automata

By [2], SD-NWWs need not be DBP or even HD. For completeness we describe here the example
from [2], as it highlights the challenges in SD-NWW determinization. Consider the automaton A in
Figure 2.

Figure 2: An SD-NWW that is not DBP.

It is easy to see that A is weak, and all its states are universal, and so it is SD. On the other hand,
A is not HD as every strategy has a word with which it does not reach qacc – a word that forces
every visit in qa and qb to be followed by a visit in q0. Below we show that despite not being DBP,
SD-NWWs can be determinized in polynomial time. Essentially, our proof is based on redirecting
transitions of the SD-NWW to deep components in the automaton. In our example, note that while
the SD-NWW A is not HD, it has a deterministic state qacc that recognizes L(A).

Consider an SD-NWW A = ⟨Σ, Q, q0, δ, α⟩. We denote the set of A’s SCCs by C(A), and the SCC
containing a state q by C(q). Let C1 ≤ C2 ≤ · · · ≤ Cm be a total order on the SCCs of A, extending
the partial order induced by δ. That is, if q′ ∈ δ(q, σ), for some letter σ, then C(q) ≤ C(q′). When
C ≤ C ′, we say that C ′ is deeper than C. Thus, states along runs of a weak automaton proceed from
SCCs to deeper ones, and eventually get stuck in some SCC.

If we had an algorithm that checks language equivalence between states in A in polynomial time,
we could have a polynomial determinization algorithm that defines the σ-successor of a state as the
deepest state among all states equivalent to its σ-successors (since A is SD, all these successors agree
on their language). Since we still do not have such an algorithm (in fact, it would follow from our
construction), we approximate language equivalence by an equivalence that follows from the semantic
determinism of A.

22

For two states s1, s2 ∈ Q, we say that s1 and s2 are δ-close, if there is a state q ∈ Q and a word
w ∈ Σ∗ such that s1, s2 ∈ δ(q, w). Note that the δ-close relation refines equivalence, yet the converse
does not hold. Indeed, the SDness property implies that s1 ∼A s2 for all δ-close states s1 and s2.

Lemma 5.1. If s1 and s2 are δ-close, then there is a state q and word w of length at most |Q|2 such
that s1, s2 ∈ δ(q, w).

Proof. Consider δ-close states s1 and s2. Let q and w be such that s1, s2 ∈ δ(q, w). If |w| > |Q|2, then
in the runs from q to s1 and from q to s2 there must be a pair of states ⟨p1, p2⟩ that repeats twice, and
we can shorten w by removing the subword between the two occurrences of ⟨p1, p2⟩. Formally, there
is a partition of w = x · y · z such that p1, p2 ∈ δ(q, x), p1 ∈ δ(p1, y), p2 ∈ δ(p2, y), s1 ∈ δ(p1, z), and
s2 ∈ δ(p2, z). Then, s1, s2 ∈ δ(q, x · z). This process can repeat until w is of length at most |Q|2.

In order to calculate the δ-close relation in polynomial time, we define a sequence H0, H1, H2, . . . ⊆
Q×Q of relations, where ⟨s1, s2⟩ ∈ Hi iff there is a state q and word w of length at most i such that
s1, s2 ∈ δ(q, w). By Lemma 5.1, we are guaranteed to reach a fixed point after at most |Q|2 iterations.
The relations Hi are defined as follows.

• H0 = {⟨q, q⟩ : q ∈ Q}.

• For i ≥ 0, we define Hi+1 = Hi ∪ {⟨s1, s2⟩ : there is ⟨q1, q2⟩ ∈ Hi and letter σ ∈ Σ such that
s1 ∈ δ(q1, σ) and s2 ∈ δ(q2, σ)}.

Let j ≥ 0 be such that Hj+1 = Hj . It is not hard to see that Hj is the δ-close relation. While the
δ-close relation is reflexive and symmetric, it is not transitive. Now, let H ⊆ Q × Q be the closure
of Hj under transitivity. That is, ⟨s1, s2⟩ ∈ H iff there is k ≥ 2 and states q1, q2, . . . , qk such that
q1 = s1, qk = s2 and ⟨qi, qi+1⟩ ∈ Hj for all 1 ≤ i < k.

The following lemma implies that H propagates to successor states.

Lemma 5.2. If H(s, s′), then for every letter σ ∈ Σ and states q ∈ δ(s, σ) and q′ ∈ δ(s′, σ), we have
that H(q, q′).

Proof. Consider the fixed point relation Hj . By definition, if Hj(s, s
′), then for every letter σ ∈ Σ

and states q ∈ δ(s, σ) and q′ ∈ δ(s′, σ), we have that Hj+1(q, q
′), and since Hj is the fixed point, then

Hj(q, q
′). Then, the lemma follows from the definition of H as the closure of Hj under transitivity.

Indeed, ifH(s, s′), then there is k ≥ 2 and states q1, q2, . . . , qk such that q1 = s, qk = s′ andHj(qi, qi+1)
for all 1 ≤ i < k. Now if s1, s2, . . . , sk are such that si ∈ δ(qi, σ), then by the above considerations,
we have that Hj(si, si+1) for all 1 ≤ i < k. Hence, the definition of H implies that H(s1, sk), and we
are done.

It is easy to see thatH is an equivalence relation. Let P = {P1, . . . , Pk} be the set of the equivalence
classes of H. For each equivalence class P ∈ P, we fix the representative of P as some state in P ∩C,
where C ∈ C(A) is the deepest SCC that intersects P . Let p1, . . . , pk be the representatives of the
sets in P. For a state q ∈ Q, let q̃ denote the representative of the set P ∈ P with q ∈ P . Note that
as H refines ∼A, we have that q ∼A q̃.

Theorem 5.3. Given an SD-NWW A with state space Q, we can construct, in polynomial time, an
equivalent DWW D with state space Q′, for Q′ ⊆ Q.

Proof. Given A = ⟨Σ, Q, q0, δ, α⟩, we define D = ⟨Σ, Q′, q′0, δ
′, α ∩Q′⟩, where

• Q′ = {p1, . . . , pk}. Note that indeed Q′ ⊆ Q.

• q′0 = q̃0.

23

• For p ∈ Q′ and σ ∈ Σ, we define δ′(p, σ) = q̃, for some q ∈ δ(p, σ). Note that all the states in
δ(p, σ) are δ-close, and thus belong to the same set in P. Hence, the choice of q is not important,
as δ′(p, σ) is the representative of this set.

We prove that D is a DWW equivalent to A. First, in order to see that D is weak, consider states
p, p′ such that p′ ∈ δ′(p, σ). Thus, p′ is the representative of a state q ∈ δ(p, σ). As A is weak, we
have that C(p) ≤ C(q). As p′ = q̃, we have that C(q) ≤ C(p′). Hence C(p) ≤ C(p′), and we are done.

We continue and prove that L(A) = L(D). We first prove that L(A) ⊆ L(D). Consider a word
w and assume that w ∈ L(A). Let r = q0, q1, q2, . . . be an accepting run of A on w, and let r′ =
s0, s1, s2, . . . be the run of D on w. If r′ is accepting, we are done. Otherwise, namely if r′ is rejecting,
we point to a contradiction. Let j ≥ 0 be the index in which r′ visits only states in sinf(r′). Note
that all the states sj , sj+1, sj+2, . . . belong to some SCC C of A. Since we assume that r′ is rejecting,
and acceptance in D is inherited from A, we get that C is a rejecting SCC of A. We claim that all
the runs of Asj on the suffix w[j + 1,∞] of w are stuck in C. Thus, w[j + 1,∞] ̸∈ L(Asj). On the
other hand, we claim that for all i ≥ 0, we have that qi ∼A si. Then, however, w[j + 1,∞] ̸∈ L(Aqj),
contradicting the fact that r is accepting:

The easy part is to prove that for all i ≥ 0, we have that qi ∼A si. Indeed, it follows from the fact
that for all i ≥ 0, we have that H(qi, si) and the fact that H refines ∼A. The proof proceeds by an
induction on i. First, as for every state q ∈ Q, we have that H(q, q̃), then H(q0, q

′
0), and so the claim

follows from s0 being q′0. Assume now that H(qi, si). Recall that si+1 is q̃ for some q ∈ δ(si, w[i+1]).
Also, qi+1 ∈ δ(qi, w[i+1]). Then, by Lemma 5.2, we have that H(qi+1, q). Since, in addition, we have
that H(q, q̃), then the transitivity of H implies that H(qi+1, si+1), and we are done.

We proceed to the other part, namely, proving that all the runs of Asj on the suffix w[j+1,∞] of w
are stuck in C. Let uj+1, uj+2, . . . be such that for all i ≥ 1, it holds that uj+i ∈ δ(sj+i−1, w[j+i]) and

H(uj+i, sj+i). Note that such states exist, as sj+i−1
w[j+i]−−−−→ sj+i is a transition of D and so sj+i = q̃

for all q ∈ δ(sj+i−1, w[j + i]). Consider a run r′′ = v0, v1, v2, . . . of Asj on w[j + 1,∞]. Note that
v0 = sj , and so H(v0, sj). Therefore, by Lemma 5.2, we have that H(v1, uj+1), implying H(v1, sj+1).
By repeated applications of Lemma 5.2, we get that H(vi, uj+i), implying H(vi, sj+i), for all i ≥ 1.
Assume now by way of contradiction that the run r′′ leaves the SCC C, and so there is i ≥ 1 such
that C(vi) ̸≤ C(sj+i). As H(vi, sj+i), the states vi and sj+i are in the same equivalence class P ∈ P.
Then, the definition of Q′ implies that C(sj+i) ≥ C(vi), and we have reached a contradiction.

It is left to prove that L(D) ⊆ L(A). The proof follows similar considations and is detailed next.
Consider a word w ∈ L(D). Let r′ = s0, s1, s2, . . . be the run of D on w, and let j ≥ 0 be the index
in which r′ visits only states in sinf(r′); in particular, as argued above, sinf(r′) is included in some
SCC C of A. Thus, all the states sj , sj+1, sj+2, . . . are in C. Since w ∈ L(D), then r′ is accepting,
and so C is an accepting SCC of A. As in the previous direction, it holds that sj is A-equivalent to
all the states in δ(q0, w[1, j]). Hence, to conclude that w ∈ L(A), we show that there is an accepting
run of Asj on w[j+1,∞]. Assume by way of contradiction that all the runs of Asj on w[j+1,∞] are
rejecting. In particular, all these runs leave the SCC C. As in the previous direction, this contradicts
the choice of the states sj , sj+1, sj+2, . . . as representatives of equivalence classes in P.

Since DWWs can be complemented by dualization (that is, by switching α and ᾱ), Theorem 5.3
implies the following.

Theorem 5.4. Given an SD-NWW A with n states, we can construct, in polynomial time, an SD-
NWW (in fact, a DWW) that complements A.

Since the language-containment problem for DWW can be solved in NLOGSPACE, and minimiza-
tion for DWW is similar to minimization of DFWs and can be solved in polynomial time [30], we have
the following.

Theorem 5.5. The language-containment, universality, and minimality problems for SD-NWWs can
be solved in polynomial time.

24

References

[1] B. Abu Radi and O. Kupferman. Minimizing GFG transition-based automata. In Proc. 46th Int.
Colloq. on Automata, Languages, and Programming, volume 132 of LIPIcs, pages 100:1–100:16.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019.

[2] B. Abu Radi, O. Kupferman, and O. Leshkowitz. A hierarchy of nondeterminism. In 46th Int.
Symp. on Mathematical Foundations of Computer Science, volume 202 of LIPIcs, pages 85:1–
85:21, 2021.

[3] B. Aminof, O. Kupferman, and R. Lampert. Reasoning about online algorithms with weighted
automata. ACM Transactions on Algorithms, 6(2), 2010.

[4] M. Bagnol and D. Kuperberg. Büchi good-for-games automata are efficiently recognizable. In
Proc. 38th Conf. on Foundations of Software Technology and Theoretical Computer Science,
volume 122 of LIPIcs, pages 16:1–16:14, 2018.

[5] B. Boigelot, S. Jodogne, and P. Wolper. On the use of weak automata for deciding linear arith-
metic with integer and real variables. In Proc. Int. Joint Conf. on Automated Reasoning, volume
2083 of Lecture Notes in Computer Science, pages 611–625. Springer, 2001.

[6] U. Boker, D. Kuperberg, O. Kupferman, and M. Skrzypczak. Nondeterminism in the presence of a
diverse or unknown future. In Proc. 40th Int. Colloq. on Automata, Languages, and Programming,
volume 7966 of Lecture Notes in Computer Science, pages 89–100, 2013.

[7] U. Boker and K. Lehtinen. When a little nondeterminism goes a long way: an introduction to
history-determinism. ACM SIGLOG News, 10(1):177–196, 2023.

[8] J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc. Int. Congress
on Logic, Method, and Philosophy of Science. 1960, pages 1–12. Stanford University Press, 1962.

[9] Olivier Carton and Max Michel. Unambiguous büchi automata. Theoretical Computer Science,
297(1):37–81, 2003.

[10] T. Colcombet. The theory of stabilisation monoids and regular cost functions. In Proc. 36th Int.
Colloq. on Automata, Languages, and Programming, volume 5556 of Lecture Notes in Computer
Science, pages 139–150. Springer, 2009.

[11] T. Colcombet, K. Quaas, and M. Skrzypczak. Unambiguity in automata theory (dagstuhl seminar
21452). Dagstuhl Reports, 11(10):57–71, 2021.

[12] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, Th. Michaud, E. Renault, and L. Xu. Spot 2.0 — a
framework for LTL and ω-automata manipulation. In 14th Int. Symp. on Automated Technology
for Verification and Analysis, volume 9938 of Lecture Notes in Computer Science, pages 122–129.
Springer, 2016.

[13] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In Proc. 13th Int. Conf. on
Computer Aided Verification, volume 2102 of Lecture Notes in Computer Science, pages 53–65.
Springer, 2001.

[14] D. Giannakopoulou and F. Lerda. From states to transitions: Improving translation of LTL
formulae to Büchi automata. In Proc. 22nd International Conference on Formal Techniques for
Networked and Distributed Systems, volume 2529 of Lecture Notes in Computer Science, pages
308–326. Springer, 2002.

25

[15] E.M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak. Good-for-MDPs
automata for probabilistic analysis and reinforcement learning. In Proc. 26th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems, volume 12078 of Lecture Notes in
Computer Science, pages 306–323. Springer, 2020.

[16] T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. Information and Computation,
173(1):64–81, 2002.

[17] T.A. Henzinger and N. Piterman. Solving games without determinization. In Proc. 15th Annual
Conf. of the European Association for Computer Science Logic, volume 4207 of Lecture Notes in
Computer Science, pages 394–410. Springer, 2006.

[18] T. Jiang and B. Ravikumar. Minimal NFA problems are hard. SIAM Journal on Computing,
22(6):1117–1141, 1993.

[19] D. Kuperberg and M. Skrzypczak. On determinisation of good-for-games automata. In Proc.
42nd Int. Colloq. on Automata, Languages, and Programming, pages 299–310, 2015.

[20] O. Kupferman. Avoiding determinization. In Proc. 21st IEEE Symp. on Logic in Computer
Science, pages 243–254, 2006.

[21] O. Kupferman. Automata theory and model checking. In Handbook of Model Checking, pages
107–151. Springer, 2018.

[22] O. Kupferman. Using the past for resolving the future. Frontiers in Computer Science, 4, 2023.

[23] O. Kupferman and O. Leshkowitz. On repetition languages. In 45th Int. Symp. on Mathematical
Foundations of Computer Science, Leibniz International Proceedings in Informatics (LIPIcs),
2020.

[24] O. Kupferman, S. Safra, and M.Y. Vardi. Relating word and tree automata. Ann. Pure Appl.
Logic, 138(1-3):126–146, 2006.

[25] O. Kupferman and M.Y. Vardi. Safraless decision procedures. In Proc. 46th IEEE Symp. on
Foundations of Computer Science, pages 531–540, 2005.

[26] R.P. Kurshan. Complementing deterministic Büchi automata in polynomial time. Journal of
Computer and Systems Science, 35:59–71, 1987.

[27] R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton Univ. Press,
1994.

[28] L.H. Landweber. Decision problems for ω–automata. Mathematical Systems Theory, 3:376–384,
1969.

[29] W. Li, Sh. Kan, and Z. Huang. A better translation from LTL to transition-based generalized
Büchi automata. IEEE Access, 5:27081–27090, 2017.

[30] C. Löding. Efficient minimization of deterministic weak ω-automata. Information Processing
Letters, 79(3):105–109, 2001.

[31] S. Miyano and T. Hayashi. Alternating finite automata on ω-words. Theoretical Computer
Science, 32:321–330, 1984.

[32] G. Morgenstern. Expressiveness results at the bottom of the ω-regular hierarchy. M.Sc. Thesis,
The Hebrew University, 2003.

26

[33] D.E. Muller, A. Saoudi, and P. E. Schupp. Weak alternating automata give a simple explanation
of why most temporal and dynamic logics are decidable in exponential time. In Proc. 3rd IEEE
Symp. on Logic in Computer Science, pages 422–427, 1988.

[34] M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of Research
and Development, 3:115–125, 1959.

[35] S. Safra. On the complexity of ω-automata. In Proc. 29th IEEE Symp. on Foundations of
Computer Science, pages 319–327, 1988.

[36] S. Schewe. Beyond Hyper-Minimisation—Minimising DBAs and DPAs is NP-Complete. In Proc.
30th Conf. on Foundations of Software Technology and Theoretical Computer Science, volume 8
of Leibniz International Proceedings in Informatics (LIPIcs), pages 400–411, 2010.

[37] S. Schewe. Minimising good-for-games automata is NP-complete. In Proc. 40th Conf. on Foun-
dations of Software Technology and Theoretical Computer Science, volume 182 of LIPIcs, pages
56:1–56:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[38] S. Schewe, Q. Tang, and T. Zhanabekova. Deciding what is good-for-MDPs. CoRR,
abs/2202.07629, 2022. URL: https://arxiv.org/abs/2202.07629, arXiv:2202.07629.

[39] S. Sickert, J. Esparza, S. Jaax, and J. Křet́ınský. Limit-deterministic Büchi automata for linear
temporal logic. In Proc. 28th Int. Conf. on Computer Aided Verification, volume 9780 of Lecture
Notes in Computer Science, pages 312–332. Springer, 2016.

[40] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computa-
tion, 115(1):1–37, 1994.

A Missing Details

A.1 Missing details in Remark 3.1

Consider the tDBW Dn = ⟨Σn, 2
[n] × {a, c}, ⟨∅, c⟩, δ, α⟩, defined as follows (see Figure 3). The state

space of Dn consists of two copies of subsets of [n]: the a-copy 2[n] × {a}, with “a” standing for
“accumulate”, and the c-copy 2[n]×{c}, with “c” standing for “check”. Essentially, the state ⟨S, a⟩ in
the a-copy remembers that we have read only numbers in [n] after the last $ and also remembers the
set S ⊆ [n] of these numbers. The state ⟨S, c⟩ in the c-copy remmbers, in addition, that we have just
read #. Accordingly, ⟨S, c⟩ checks whether the next letter is in S in order to traverse α. Effectively,
Dn traverses α when a good infix is detected. Formally, for every state ⟨S, o⟩ ∈ 2[n]×{a, c}, and letter
σ ∈ Σn, we define:

δ(⟨S, a⟩, σ) =


⟨S ∪ {σ}, a⟩, if σ ∈ [n]

⟨S, c⟩, if σ = #

⟨∅, a⟩, if σ = $

δ(⟨S, c⟩, σ) =

{
⟨∅, c⟩, if σ ̸= $

⟨∅, a⟩, if σ = $

Also, α = {⟨⟨S, c⟩, σ, ⟨∅, c⟩⟩ : σ ∈ S}.
Note that reading $ from any state we move to ⟨∅, a⟩ to detect a good infix, and if at some point

we read an unexpected letter, we move to ⟨∅, c⟩, where we wait for $ to be read. It is easy to see that
Dn recognizes Ln and has 2n+1 states.

27

https://arxiv.org/abs/2202.07629
http://arxiv.org/abs/2202.07629

Figure 3: The tDBW Dn. For a finite word x ∈ [n]+, we denote the set of numbers that appear in x
by S(x). Dashed transitions are α-transitions.

A.2 Missing details in Remark 4.1

Consider the tDCW Dn = ⟨Σn∪{$}, (2[n]×{a, c})∪{qpass}, ⟨∅, c⟩, δ, α⟩ defined as follows (see Figure 4).
The state space ofDn consists of a state qpass and two copies of subsets of [n]: the a-copy 2[n]×{a}, with
“a” standing for “accumulate”, and the c-copy 2[n] × {c}, with “c” standing for “check”. Essentially,
the state ⟨S, a⟩ in the a-copy remembers that we have read only numbers in [n] after the last $ and also
remembers the set S ⊆ [n] of these numbers. The state ⟨S, c⟩ in the c-copy remembers, in addition,
that we have just read #. Accordingly, the state ⟨S, c⟩, for a nonempty set S, checks whether the
next letter is in S and moves to the state qpass via a transition in α only when the check passes. The
fact that the above transitions are in α, and we can move from qpass back to ⟨∅, a⟩ upon reading $
and without traversing α, imply that qpass can trap runs that do not traverse α on words of the form
z1 · z2 · · · , where for all l ≥ 1 zl is good. Formally, for every state ⟨S, o⟩ ∈ 2[n] × {a, c}, and letter
σ ∈ Σn ∪ {$}, we define:

δ(⟨S, o⟩, σ) =



⟨S ∪ {σ}, a⟩, if o = a and σ ∈ [n]

⟨S, c⟩, if o = a, S ̸= ∅ and σ = #

qpass, if o = c and σ ∈ S

⟨∅, c⟩, if ⟨S, o⟩ = ⟨∅, c⟩ and σ = ¬$
⟨∅, c⟩, if o = c and σ ∈ ([n] ∪ {#}) \ S
⟨∅, a⟩, if σ = $

⟨∅, c⟩, if ⟨S, o⟩ = ⟨∅, a⟩ and σ = #

where all types transitions are in α except for the last three. In addition, by reading a letter σ
from qpass we move to ⟨∅, a⟩ via a transition in α when σ = $, and otherwise, we move to ⟨∅, c⟩ via an
α-transition. Note that by reading $ from any state we move to ⟨∅, a⟩ to detect a suffix of the form
z1 · z2 · · · , where for all l ≥ 1 zl is good, and if at some point we read an unexpected letter, we move
to ⟨∅, c⟩, where we wait for $ to be read.

It is easy to see that Dn recognizes Ln and has 2n+1 + 1 states.

28

Figure 4: The tDCW Dn. For a finite word x ∈ [n]+, we denote the set of numbers that appear in x
by S(x). Dashed transitions are α-transitions.

29

	Introduction
	Preliminaries
	Languages and Automata
	SD and HD Automata

	Semantically Deterministic Büchi Automata
	Succinctness and Complementation
	Decision Problems

	Semantically Deterministic co-Büchi Automata
	Succinctness and Complementation
	Decision Problems

	Semantically Deterministic Weak Automata
	Missing Details
	Missing details in Remark 3.1
	Missing details in Remark 4.1

