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ON SEMI-KAEHLER MANIFOLDS

WHOSE TOTALLY REAL BISECTIONAL

CURVATURE IS BOUNDED FROM BELOW

U-HANG KI AND YOUNG JIN SUH

Introduction

R.L. Bishop and S.L Goldberg [3] introduced the notion of totally
real bisectional curvature B(X, Y) on a Kaehler manifold M. It is
determined by a totally real plane [X, Y] and its image [IX, JY] by
the complex structure J, where [X, Y] denotes the plane spanned by
linealy independent vector fields X, and Y. Moreover the above two
planes [X, Y] and [JX, JY] are orthogonal to each other. And it is
known that two orthonormal vectors X and Y span a totally real plane
if and only if X ,Y and JY are orthonormal.

C.S. Houh [8] showed that (n~3)-dimensionalKaehler manifold with
constant totally real bisectional curvature is congruent to a complex
space form of constant holomorphic sectional curvature H(X) = c,
where H(X) is determined by the holomorphic plane [X,JX]. Also
M.Barros and A.Romero[2] asserted that for a connected indefinite
Kaehler manifold M with complex dimension n~3 to be an indefinite
complex space form with holomorphic sectional curvature c is if and
only if it has constant totally real bisectional curvature ~ at any point.
Thus in section 2 let us recall the notion of totally real bisectional
curvature and calculate the totally real bisectional curvature of the
indefinite complex space form M:(c) and the complex quadric Qn in
a complex hyperbolic space CHn+l(c).
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On the other hand, S.l. Goldberg and S. Kobayashi [6] introduced
the notion of holomorphic bisectional curvature H(X, Y), which is de
termined by two holomorphic planes [X, JX] and [Y, JY]' and asserted
that a complex projective space cpn(c) is the only compact Kaehler
manifold with positive holomorphic bisectional curvature H(X, Y) and
constant scalar curvature. IT we compare the notion of B(X, Y) with
H(X, Y) and H(X), the holomorphic bisectional curvature H(X, Y)
turns out to be totally real bisectional curvature B(X, Y) (resp. holo
morphic sectional curvature H(X)) when two holomorphic planes
[X, JX] and [Y, JY] are orthogonal to each other (resp. coincides with
each other). From this it follows that the positiveness of B(X, Y) is
weaker than the positiveness of H(X, Y), because H(X, Y) > 0 im
plies that both of B(X, Y) and H(X) are positive but we do not know
whether B(X, Y) > 0 implies H(X, Y) > 0 or not.

In section 1 we introduce a local complex exterior derivative for
mula for semi-Kaehler submanifolds of indefinite complex space forms,
which will be used to prove our main result. And in section 2 let us
find a relation between the totally real bisectional curvature and the
sectional curvature of semi-Kaehler manifolds M. Also the further rela
tion between the totally real bisectional curvature and the holomorphic
sectional curvature of M will be treated. Moreover in this section we
calculate the totally real bisectional curvature of the complex quadric
Qn immersed in a complex projective space Cpn+l(c) with the con
stant holomorphic sectional curvature c. In section 3 we will prove
that a complete Kaehler manifold M with positively lower bounded
totally real bisectional curvature B(X, Y)~b > 0 and constant scalar
curvature is congruent to a complex projective space cpn(c). Before
to obtain this result we should verify that a Kaehler manifold M with
B(X, Y)~b > 0 is Einstein. Moreover we also show that the posi
tive constant b in the above estimation is best possible. This means
that the condition of a positive lower bound for the totally real bi
sectional curvature can not be replaced by the non-negativity of this
curvature, because we can find that there is a complete Kaehler man
ifold with non-negative totally real bisectional curvature B(X, Y)~O
but not Einstein.

Although S.I. Goldberg and S. Kobayashi [6] showed that a complete
Kaehler manifold M with positive holomorphic bisectional curvature
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H(X, Y) > 0 is Einstein, in order to get this result they should have
verified that the Ricci tensor of M is positive definite. In that proof
they used the fact that the holomorphic sectional curvature H(X) is
positive, which necessary follows from the condition H(X, Y) > O.
But the condition of B(X, Y) > 0 carries less information than the
condition of H(X, Y) > 0, it gives us no meaning to use S.I. Goldberg
and S. Kobayashi's method to derive the fact that M is Einstein. That
is, we can not use the condition of H(X) > O. However, in spite of
this weaker condition B(X, Y)~b > 0 by making use of generalized
maximal principal due to H. Omori [13] and S.T. Yau [16] we can also
obtain the above result.

It is known that the complete space-like complex submanifold of the
indefinite complex space form Mpn+p(c), c2::0 is totally geodesic. Thus
for a case where c < 0 we [1] have studied the classification problem of
space-like complex submanifolds of indefinite complex hyperbolic space
CH;:+P(c) with bounded scalar curvature. Motivated by this result in
section 4 we also study those classification problems with bounded
totally real bisectional curvature. Finally in section 5 we study the
classification of complex submanifolds Mn of cpn+p(c),c > 0 with
bounded totally real bisectional curvature.

1. Local formulas

This section is concerned with local formula for indefinite com
plex submanifolds of semi-Kaehler manifolds. Let M' be an (n + p)
dimensional connected semi- Kaehler manifold of index 2(8 + t), (n2::2,
O:::;;s:::;;n, O:::;;t:::;;p). And let Mbe an n-dimensional connected semi
Kaehler submanifold of index 28 of M'. Then we can choose a local
unitary frame field {EA} = {El, ... , E n+p } on a neighborhood of M'
in such a way that, restricted to M, El, ... , En are tangent to M and
the others are normal to M. Here and in the sequel the following
convention on the range of indices used throughout this paper, unless
otherwise stated:

A, B, ... = 1, , n, n + 1, ... , n +p,

i,j, '" = 1, , n,

x,y, ... =n+1, ... ,n+p.
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With respect to this frame field, let {WA} = {Wi, wy } be its local dual
frame fields. Then the semi-Kaehler metric tensor g' of M' is given by
g' = 2EAfAWAQS)WA and {fA} = {fi,f:z;} satisfy

fi = g'(Ei,Ei ) = -1 or 1 according to l~i~s or s + l~i~n,

€x=g'(Ex,Ex)=-lor1 accordingto n+1~x~n+t or

n + t + l~x~n +p.

The canonical forms WA and the connection forms WAB of the ambient
space M' satisfy the s~ructure equations:

(1.2) dwAB + EfCWACAwCB = nAB,

n'AB = ER'ABCDWC!\WD,

where 0'AB (resp. R'ABCD) denotes the Riemannian curvature form
(resp. the components of the Riemannian curvature tensor R) on M.

The second equation of (1.1) means the skew-hermitian symmetry
of n'AB, which is equivalent to the symmetric conditions

R'ABCD = RhADC'

The Bianchi identities EBfBHAB!\WB = 0 obtained by the exterior
derivative of (1.1) and (1.2) give the further symmetric relations

(1.3) R'ABCD = R'ACBD = R'DBCA = R'DCB.A-

Now, with respect to the frame chosen above, the Ricci-tensor S' of
M' can be expressed as follows;

where S'CD = EBfBRfJBcD = S'DC = S'CD' The scalar curvature K.
is also given by
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The semi-KaeWer manifold M ' is said to be Einstein if the Hicci
tensor S' is given by

KA= ,
2(n + p)

for a constant A, where A is called the Ricci curvature of the Einstein
manifold.

The component R'ABcD and R'ABCDE (resp. SiAliC and SiAliC)
ofthe covariant derivative ofthe Riemannian curvature tensor R'(resp.
the Ricci tensor S') are defined by

+R' AECDWEB + R' ABEDWEC + R' ABCEWED),

"E,€c(S' ABCWC + Si ABCWC) = dS' AB - "E,€C(S' CBwCA + 5'ACWCB).

The second Bianchi formula is given by

(1.4)

and hence we have

R'ABCDE = R' ABEDc,

where dK = "E,c€c(Kcwc + Kcwc). The components S'.ABCD and
S'.ABcD of the covariant derivative of S'.ABC are expressed by

(1.6)

"E,D€D(S'.ABCDwD+S'.ABCDwD) = dS'.ABc - "E,D€D(ShBCWDA

+ S~DCWDB + S~BDwDC).

By the exterior differentiation of the definition of S~BC and by taking
account of (1.6) the Hicci formula for the Ricci tensor S' is given as
follows:
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Restricting the above canonical fonns {w A} = {Wi' Wy } to the sub
manifold M, we have

(1.8) W:z; =0

and the induced semi-Kaehler metric 9 of index 28 of M is given by
9 = 2'EEjWj@Wj. Then {Ej} is a local unitary frame field with re
spect to this metric and {Wj} is a local dual :3.eld of {Ej}, which
consists of complex-valued 1-fonns of type (1,0) on M. Moreover
Wb ... , W n , wb ... , wn are lineary independent, and they are said to be
cannonical1-fonns on M. It follows from (1.8) and the Cartan lemma
that the exterior derivatives of (1.8) give rise to

(1.9)

The quadratic form 'EEiEjhfjWi@Wj@E:z; with values in the normal bun
dle is called the second fundamental form of the submanifold M. Sim
ilarly, from the structure equation of M' it follows that the structure
equations for M are given by

(1.10)

(1.11) dwij + 'EEkwikl\Wjk = nij ,

nij = 'EEkE/R,jk,wkl\wl,

where nij(resp. R,jkl) denotes the Riemannian curvature form (resp.
the components of the Riemannian curvature tensor R) on M. More
over, the following relationships are defined:

(1.12)

For the Riemannian curvature tensors R and R' of M and M' respec
tively from (1.9) and (1.10) the equation of Gauss gives rise to

(1.13)

The components of the Ricci tensor S and the scalar curvature r of M
are given by

(1.14)
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where h~] = 'Jj€k€xhi/"kj and h2 = 'Jj€khiko
Now the components hijk and h:jk of the covariant derivative of the

second fundamental form of M are given by

E€k(hfjkWk + hijkWk) = dhij - E€k(hkjWki + hfkWkj)

+ E€yhfjwxyo

Then substituting dhij into the exterior derivative of (1.4), we have

(1.16)

Similarly the components hijkl and h:jk1 of the covariant derivative of
hijk can be defined by

E€I(hijklWl + h:jk,wl) = dhijk - E€I(hijkW1i + hijkWlj

+ hijkW1k) + E€yhfjkwXY'

and the simple calculation give rise to

(1.17) h~'kl = h~'lkI) I)'

hfjkl- hfjlk ='Jj€r(Rikirh~j + R~kjrhir)

- 'Jj€yRxyklhfjo

A plane section P of the tangent space TxM' of M' at any point x
is said to be non-degenerate, provided that gxlTxM' is non-degenerate
if and only if it has a basis {u, v} such that g(u, u )g(v, v) - g(u, v)2#0,
and a holomorphic plane spanned by u and J u is non-degenerate if and
only if it contains some v with g(v, v)#Oo The sectinal curvature of the
non-degenerate holomorphic plane P spanned by u and J u is called the
holomorphic sectional curvature, which is denoted by H(P) = H(u).
The indefinite Kaehler manifold M' is said to be of constant holomor
phic sectional curvature if its holomorphic sectional curvature H(P) is
constant for all P and for all points of M'. Then M' is called a complex
space form, which is denoted by M:(c), provided that it is of constant
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holomorphic sectional curvature c, of complex dimension n and of index
2s. The standard models of indefinite complex space forms are the fol
lowing three kinds which are given by Barros and Romero [2] and Wolf
[15] : the indefinite complex Euclidean space e:, the indefinite com
plex projective space ep": or the indefinite complex hyperbolic space
CH:, according as c = O,c > 0 or c < O. For an integer s(O < s < n)
it is seen by [2] and [15] that they are only complete, simply connected
and connected indefinite complex space forms of dimension n and of
index 2s.

Now, the Riemannian curvature tensor RABCD of M:(c) is given
by

e
RABCD = 2EBEc(bABbcD +bACbBD).

In particular, let the ambient space be an indefinite complex space
form M:ttcc') of constant holomorphic sectional curvature c'. Then
we get

(1.18)

(1.19)

(1.20)

(1.21)

I

R,jkl = ~ EjEk(bijbkl + bikbjl) - ~Exhjkhfl'

e'
Si} = (n + l)"2Eibij - h;J'

r = n(n + l)e' - 2hz,
I

h:jk1 = ~ (Ekhfjbkl + Eihjkbi1 + Ejhkibjl)

- ~ErEy(h~ihJk + h~jh~i + h~khrj)h;,.

Let us denote by h4 = ~EiE]·h~"",h~"", and A z = ~ExEyAyXAxY, where
I] ]1

Ayx = ~EiEjhijhrj. Then, by means of (1.18), the Laplacian L::.hz of
the function hz is given by

(1.22)
,

~hz = (n + 2)~ hz - (2h4 + A z) + ~ExEiEjEkhfjk.hfjk·

First of all, let us introduce a fundamental property for the generalized
maximal principal due to H.Omori [13] and S.T.Yau [16].

THEOREM 1.1. Let M be an n-dimensional Riemannian manifold
whose Ricci curvature is bounded from below on M. Let F be a ez_
function bounded from below on M, then for any E > 0, there exists a
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point p such that

IVF(p)l<e, 6F(p»-e and inJF+e>F(p).
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2. Totally real bisectional curvature

Let (M, g) be an n-dimensional semi-Kaehler manifold with almost
complex structure J. In this section, we consider a semi-Kaehler man
ifold with totally real bisectional curvature, which is determined by an
non-degenerate anti-holomorphic plane [u, v] and its image [Ju, J v] by
the complex structure J. That is, the totally real bisectional curvature
is defined by

(2.1) B(u,v) = g(R(u,Ju)Jv,v)/g(u,u)g(v,v).

Then for a semi-Kaehler manifold, using the first Bianchi-identity to
(2.1), we get

(2.2) B(u,v) == g(R(u, Jv)Jv,u) +g(R(u,v)v,u)

== K(u, v) + K(u, Jv),

where K(u, v) means the sectional curvature of the plane spanned by u
and v, and [u, v] the totally real plane section such that g(u, u), g(v, v)
= ±1 and g(u, Ju) = g(v, Jv) = O.

Now if we put u' = 'Ji and v' = J(~v), then it is easily seen that

g(u', u') = ±l,g(v',v') = ±1, and g(u', Jv') = O. Thus B(u', v') =
g(R(u' ,Ju' Jv' ,v'). li th t

9 u',u' 9 v',v' Imp es a

g(u', u')g(v', v')B(u', v') = g(R(u', Ju')Jv', v')
1

= 4g(u, u)g(v, v){H(u) + H(v) + 2B(u, v) - 4K(u, Jv)},

where H(u) = K(u,Ju), and H(v) = K(v,Jv) means the holomor
phic sectional curvatures of the plane [u, Ju] and [v, Jv] respectively
and K(u, Jv) the sectional curvature of the plane [u, Jv]. From this
together with the fact that

g(u', u')g(v', v') = g(u, u)g(v, v) = ±1



1018

it follows

U-Hang Ki and Young Jin Suh

(2.3) 4B(u',v')-2B(u,v) = H(u)+H(v)-4K(u,Jv).

IT we put u" = u±Jv and v" = Ju±v then we get g(u" u")v'2' v'2' ,
±l,g(v", v") = ±1 and g(u", v") = O. Using the similar method as in
(2.3), we get

(2.4) 4B(u", v") - 2B(u,v) = H(u) + H(v) - 4K(u, v).

Summing up (2.3) and (2.4), we obtain

(2.5) 2B(u', v') + 2B(u",v") = H(u) + H(v).

Now we calculate the totally real bisectional curvatures of some
manifolds.

EXAMPLE 2.1. Let M:(c) be a complex space form of constant
holomorphic sectional curvature c and of index 2s(O~s~n)and [u, v]
be a totally real plane section. Then

B(u, v) =g(R(u, Ju )Jv, v)/g(u, u)g(v, v)

=c{g(u, v )g(Ju, Jv) - g(u, Jv)g(Ju, v) + g( Ju, v )g(-u, Jv)

- g(Ju, Jv)g( -u, v) - 2g(Ju, Jv)g( -u, v)}/4g(u, u)g(v, v)
c

2

Thus M:(c) is a space of complex space form of constant totally real
bisectional curvature ;.

As a Kaehler manifold which is not of constant totally real bisec
tional curvature we calculate totally real bisectional curvature of the
complex quadric Qn which is a space-like complex Einstein hypersur
face of indefinite complex hyperbolic space CHf±l(c'), c' < O.

EXAMPLE 2.2. Let Q: be the indefinite complex quadric which is
obtained by projecting N = {zEsi:±31 - zi - zi - ... - z~ + z~±l +
... + Z~±2 = O}. Then in a similar way [9] we can see that it is a
complex Einstein hypersurface of indefinite complex projective space
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cpsn+l(C) and can be idenfied with the Hermitian symmetric space of
non-compact type such that

The canonical decomposition of the Lie algebra of the Lie group SOS(n
+2) is given by

18 = .fj + rot,

where 18 = D(s, n + 2), .fj = D(2) + D(s, n - s) and

VJt=

o (
6 ... es
"11 • • . "Is

o

... -en)

... -"In

The Lie algebra D(s,n - s + 2) of SOS(n + 2) in the subalgebra of
<!5~(n, R) consisting of all S such that

where aEDes), bED(n - s + 2), D(s) is the skew -symmetric matrix
and x is an arbitary sx(n - s + 2)-matrix.

By changing the metric tensor 9 of Q~ in Cp:+l(e) to its negative,
we can also embedd Q:-s into CH:tLs(c'), e' = -e < O. Before to ob
tain our results we now calculate the totally real bisectional curvature
of Q: = son(n + 2)jSO(2)xSOn(n) in Cp::+I(e).

Identifying (E, 7])ER:E9R: with the above matrix in rot for the case
s = n, we define an inner product 9 on rot x rot by

g((E, 7]), (e, 7]')) = ~{< E, e>n + < 7],7]' >n},
C

where < e, e >n is the indefinite inner product in Rn. We also define
a complex structure J on rot by

J(E,7]) = (-7], e).
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The curvature tensor R at the origin is given by the following

o
B

), BEO(n),

where .A = t"1'e - t"1e' and B = HeAe' + "1 A77'} , in which Ais defined
by (e A e')"1 = ~{ee'''1 - ette"1}' Thus for unit time-like elements
u = (e,"1),v = (e',"1') in rot, the holomorphic bisectional curvature is
given by

(2.6)
H(u, v) = g(R(u, Ju)Jv, v)

= ~{< -B"1',e' >n + < Be', "1' >n} - ~g(v,v)

8{' , c' c' } c= ~ < e,e >n< "1,"1 >n - < .","1 >n<'" ,"1 >n + 2"

And the holomorphic sectional curvature H (u) is given by

8 2 2 2) C C
(2.7) H(u) = g(R(u,Ju)Ju,u) = ~(Iel 1"11 - < e,"1 >n + 2~2'

where lel2 =< e, e>~ .
Now we consider the totally real bisectional curvature of the indefi

nite complex quadric Q: in Cp;:+l(c). Let [u,v] be a totally real plane
section such that u = (e,"1),v = Ce',"1'), and Jv = (-"1',e'). Then
u, v, Juand Jv become orthonormal unit elements in rot. That is

g(u,v) = ~{< e,e' > + < "1,"1' >} = 0,
c

2
g(u,Jv) = -{< e,-"1' > + < "1,e' >} = O.

c

From these together with (2.6) the totally real bisectional curvature is
given by

(2.8) B(u,v) = -~{< e,e' >~ + < e,"1' >~} +~.
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As we have already seen, if we change the metric tensor 9 of Q: in
Cp::+l(c) to its negative, we can embedd the complex quadric Qn into
CH;,,+l(c'), c' = -c. Thus a metric tensor g' of Qn in CHf+l(c') can
be given by

g'«~,"l),(e,rl)= 2,{< ~,e >n + < "l,"l >n},
c

for a u = (~, "l), v = (e', "l') in rot for the case s = n. Thus by changing
c into c' of the equations (2.6),(2.7) and (2.8) we can obtain the holo
morphic bisectional curvature, holomorphic sectional curvature, and
the totally real bisectional curvature of Qn embedded in CHf+l(c')
respectively as follows:
(2.9)

'( ) 8{' , , '} c'H u,V = c' < ~,~ >n< "l,"l >n - < ~,"l >n< "l,~ >n + 2'

(2.10)

(2.11)

'() 8 { 2} c'H u = C' < e, e>n< "l, "l >n - < ~,"l >n + 2'

'( ) 8 { , 2 , 2 } c'B U,V = - c' < e,e >n + < ~,"l >n + 2·

Now we set ~ = (Xj), e= (Yj), and "l' = (Zj)ER:. To get an upper
bound of B' (u, v) by using the Lagrange multiplier rule let us calculate
the maximal value of the following function

under the condition such that gl = f - ~xJ2':O, and g2 = ~yJ + ~zJ 
~ = o. The multiplier Al and A2 is yet to be determined. From the
multiplier rule we get three equations

fXk = 2Yk~XjYj + 2Zk~XjZj = - 2A IXk,

f Yk = 2Xk~XjYj = 2A2Yk,

fZk = 2Zk~XjZj = 2A2Zk,
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for k = 1,2, ... , n, where IXk' IYk and IZk means the partial derivative of
I with respect to Xk,Yk and Zk respectively. Thus the above equation
can be represented by the following vector notation

(2.12)

(2.13)

(2.14)

From (2.13) and (2.14) it follows that < e, e' >~ -A21e12 = °and
< e, rl' >~ -A21171 2 = 0. Thus

(2.15)

where 1e'12 =< e,e >~, and 117'12 =< 17',17' >~. Taking the inner
product (2.12) with e, then we get

(2.16) 1=< e,e >~ + < e,17' >~= -AlleI2
•

Multiplying A2 to (2.12) and using (2.13) and (2.14), we have that

(2.17)

Thus for a case of e= 0, by (2.16) I = °that is, minimum value of
I. For a case of ff:O, by (2.17) I = -AtA2. From this and (2.16)
and (2.17) it follows that I = fA2 = -AtA2 = -Atlel2 > 0. Since
AIA2iO, At = -f, A2 = lel 2

• Also Atgl = °gives that A2 = lel2 = f
because of the fact AliO. Hence the maximal value of I is (f)2, where

c = -c'. Thus ~ ~B'(u, v)~ - tc'.
On the other hand, from (2.5) and (2.10) it follows that

2B'(u', v') + c'~2B'(u',v') + 2B'(u",v") = H'(u) + H'(v)~c'.

Thus B'(u', v')~O. Together with this fact, consequently we get

c'
2~B'(u,v)~0.
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3. Complete Kaehler manifolds with positive totally real
bisectional curvature

Let M be an n-dimensional Kaehler manifold with the complex
structure J. We can choose a local field of orthonormal frames Ul, ... ,

Un, U1* = JUl, ... , Un* = JU n on a neighborhood on M. With respect
to this frame field, let 91 , ... , 9n ,{}1*, ... , 9n* be the field of dual frames.

Let us denote by 9 = (9AB,9A*B,9AB*,9A*B*),A,B = 1, ... ,n the
connection form of M. Then we have
(3.1)

9AB = 9A*B*,9AB* = -9A*B,9AB = -9BA ,and 9AB* = 9BA*·

Now we set eA = 1(UA - iUA), eA = 1(uA + iUA). Then {eA, eA}

constitute a local field of unitary frames. And let us denote by W A =
9A + i9A* and WA = 9A - i9A* its dual frame fields respectively. Then
the components of Kaehler metric 9 = 2~AWA0wA and the metric com
ponents of the Riemannian curvature tensor are given by the following
respectively

(3.2) 9BC = 9BC + i9BC*,

where RABCD = 9AER E BCD. Thus for the case of A = B, C = D,
B=J.C in (3.3), the totally real bisectional curvature is given by

For the case of A = B = C = D in (3.3), the holomorphic sectional
curvature is given by

REMARK 3.1. From (1.8) and (3.4) we ,·:lOW that for any totally
real plane section [u, v] the totally real bisectiUL.aJ curvature E(u, v) of
a complex space form Mn(c) is ~ which is the same ·'"c "'''":ll Example
2.1.
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On the other hand, S.L Goldberg and S. Kobayashi [6] showed that a
Kaehler manifold with positive holomorphic bisectional curvature and
constant scalar curvature is Einstein. It is well known that the Ricci
2-form is harmonic if and only if the scalar curvature is constant. In
order to prove that the second Betti number of a compact connected
Kaehler manifold M with positive holomorphic bisectional curvature
H(X, Y) > 0 is one they have used the fact that H(X) > o. Thus the
Ricci 2-form is propotional to the Kaehler 2-form , so that M becomes
to an Einstein manifold.

But from the condition B(X, Y) > 0 we do not know whether H(X)
is positive or not, because the condition B(X, Y) > 0 is weaker than
that of H(X, Y) > o. Thus in order to get the above result it is
impossible for us to use H(X) > 0 with the condition of B(X, Y) >
o. From this point of view due to H.Omori [13] and S.T. Yau's [16]
maximal principal we can obtain the following.

THEOREM 3.1. Let M be a complete n-dimensional Kaebler mani
fold with constant scalar curvature. Assume that the totally real bisec
tional curvature is lower bounded for some positive constant b. Then
M is Einstein.

Proof. Since (SBC) is a Hermitian matrix, it can be diagonalizable.
Thus SBC = ABDBC, where AB is a real valued function. From this it
follows that r = 2EBS BB = 2EBAB. Now we put S2 = 'EB,cSBCSCB.
Then it yields easily that

()
r2 2 ('EAB)2 1 2

3.6 S2 - 4n = 'EAB - n = 2n 'EB,c(AB - AC) .

Since we have assumed that the scalar curvature r of M is constant,
from (1.5) it follows 'EBSBBC = 'EBScBB = O. Together with this fact
using (1.5) and the Ricci formula (1.7) we have that

~SBC = 'EVSBcVD = 'EVSvcBD

= EE,V(RDBVESEC - RDBECSVE),

from which, if we use the first Bianchi-identity (1.3) to the final term,
we have

~SBC = 'EE(SBESEC - 'EvRDEBCSVE)

= ABSBC - 'EAAARAABC·
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where IV'81 2 = 2r:,8AfJCSAfJC' Since the second term of the right hand
side is reduced to

r:,A,B(A~RA.ABfJ- AAABRA.ABB) = ~r:,A,B(AA - AB)2RA.ABfJ,

we get the following inequality by (3.7)

(3.8)

where the above equality holds if and only if the Ricci tensor 8 is
parallel on M.

Now let us consider a non-negative function f = 82 - ~:. Then from
(3.6),(3.8) and the assumption it follows that

(3.9) 6f?2nbf,

where the above equality holds if and only if the Ricci tensor 8 is
parallel on M. In order to prove this theorem, we need the following
lemma.

LEMMA 3.2. Under the same assumption as stated in Theorem 3.1
the Ricci-curvature is bounded from below.

Proof. From the assumption and (2.5) it follows that

H(u) + H(v)?4b.

Using (3.5) to the above equation for u = UA, V = UB, A=/:B, then we
can rewritten the above inequality as the following

(3.10) (A=/:B).
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Thus ~A<B(RA+ RB):2:2n(n - l)b implies that

(3.11)

where the equality holds if and only if RA = 2b for any A.
On the other hand, from the fact that

r = 2~ASAA = 2~A,BRAABB = 2(~ARA + ~A#BRAABB)

:2:2~ARA + 2n(n -l)b

it follows

(3.12)

where the equality holds if and only if RAABB = b for any i,j (ifj). In
this case due to C.S.Houh [8] M is congruent to M n (2b). From (3.11)
and (3.12) we know that r~2n(n+ l)b. Thus from the assumption the
scalar curvature r is positive constant. Also (3.10) gives ~B=2(Rl +
RB):2:4(n - l)b, so that

(3.13) (n - 2)R1 + ~pRB:2:4(n -l)b.

From this and (3.12) it follows

r
(n - 2)Rl~4(n - l)b - ~BRB:2:4(n -l)b - {"2 - n(n -l)b}.

Thus if we use the similar method to the other index, we can assert
the following

r
(n - 2)RB:2:(n -l)(n + 4)b - '2

for any index B, so that R B is bounded from below for n:2:3. Moreover
the above equality holds for some index B if and only if M is congruent
to Mn(2b). Accordingly the Ricci-curvature is given by

(3.14) AA = SAA = ~BRAABB = RA + ~A#BRAABB

>RA+(n-1)b.
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Thus the Ricci-curvature is bounded from below. Now Lemma 3.2 is
proved. 0

Now we will complete the proof of Theorem 3.1. For a constant
a > 0, we consider a smooth positive function F = (f + a)-t. Thus,
from Lemma 3.2 we can apply Theorem 1.1(H.Omori [13] and S.T.Yau
[16]) to the function F = (f +a)-t for the given f. Given any positive
number E> 0, there exists a point P such that

(3.15) IVFI(p) < E, i::.F(p) > -E, F(p) < infF + E.

It follows from these properties that we have

(3.16) E(3E + 2F(p)) > F(p)4i::.f(p)?0.

Thus for a convergent sequence {Em} such that Em > 0 and Em -+0 as
m-+oo, there is a point sequence {Pm} so that the sequence {F(Pm)}
satisfies (3.15) and converges to Fa, by taking a subsequence, if nec
essary, because the sequence {F(Pm)} is bounded. From the def
inition of the infimum and (3.15) we have Fa = infF and hence
f(Pm)-+ fa = supf· It follows from (3.16) that we have

and the left hand side converges to 0 because the function F is bounded.
Thus we get

As is already seen, the Ricci-curvature is bounded from below i.e., so
is any AB. Since r = 2~BAB is constant, AB is bounded from above.
Hence F = (f + a)-t is bounded from below by a positive constant.
From (3.17) it follows that 6f(Pm)-+0 as m-+oo. Taking b > 0, by
(3.9) we have that

i::.f(Pm)?2nbf(Pm)?'0.

Thus we have f(Pm)-+O = inff. Since f(Pm)-+supf, supf = inff = O.
Hence f = 0 on M. That is, M is Einstein or b~O. This completes the
above proof of Theorem 3.1. 0
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REMARK 3.2. The positive constant b> 0 in Theorem 3.1 is best
possible. This means that the condition of a positive lower bound for
the totally real bisectional curvature can not be replaced by the non
negativity of this curvature, because there is a complete Kaehler mani
fold with non-negative totally real bisectional curvature B(u, v)~O but
not Einstein as follows: Consider a product manifold M = Cpn1 ( Cl)
xcpn

2
(C2). Then from (3.8) we know that its totally real bisectional

curvature is given by

{

R --£J..aabb - 2

RAABB = 0 c

R frss = T

if A = a,B = b,

if A = a,B = s,

if A = r,B = s,

where indices A,B(A#B), ...; 1, ... , nI, nl +1, ... ,n2, and a, b, .. ; 1, ... , nl,
r, S, •• ; nl + 1, ... , n2.

And its Ricci-tensor is given by the following

SAB = Y:.CRBACC = Y:.aRBAaa + ~rRBArf

{

nlllclbbc ~f B = c, A = b,

= 0 If B = s, A = b,

n 2:}I C26ts if B = s, A = t.

Thus for case where (nl + 1)cI#(n2 + 1)c2' M = cpn
1
(ct}xcpn

2
(C2)

is not Einstein.

Since a complete Kaehler manifold M with the assumption in The
orem 3.1 is known to be Einstein and its scalar curvature r is positive
constant, its Ricci-tensor is positive definite. Thus by using a theorem
of Myers we can assert that M is compact [9]. Now let us introduce a
theorem of S.1. Goldberg and S. Kobayashi [6], which is slight different
from the original one.

THEOREM A. An n-dimensional compact connected Kaebler man
ifold with an Einstein metric of positive totally real bisectional curva
ture is globally isometric to C pn with the Fubini-Study metric.

Though the original theorem in [6J are assumed with positive holo
morphic bisectional curvature, it can be easily cheked that the result
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in Theorem A also holds if we assume with positive totally real bisec
tional curvature. Thus combining Theorem A and Theorem 3.1 we can
assert the following.

THEOREM 3.3. Let M be a complete n(~3)-dimensional Kaehler
manifold with constant scalar curvature. Assume that the totally real
bisectional curvature is lower bounded for some positive constant b.
Then M is globally isometric to cpn with the Fubini-Study metric.

4. Space-like complex submanifolds

Let M t = CH;+P(c) be an (n +p)-dimensional indefinite complex
hyperbolic space of index 2p(> 0), and M be an n(~3)-dimensional

space-like complex submanifold of CH;+P(c), (c < 0). Then by the
equation of Gauss

(4.1) R C" hX -h x C
'ijj = '2 - L../xEx ij ij~2'

where we have used the fact that Ex = -1, because the normal space
of M is time-like. Thus from (4.1) we know that there is a totally real
bisectional plane section [u,v] such that B(u, v);::: I'

Now we will give here some remarks of the totally real bisectional
curvature of semi-Kaehler submanifolds of indefinite complex space
forms.

REMARK 4.1. For the complex submanifold M of a complex space
form M t = Mn+p(c) we have

R~··~ = ~ - I: h~.h~.<~un 2 x ZJ ZJ - 2 .

Thus its totally real bisectional curvature is upper bounded such that
B(u, v )::; ~. For this example let M be a complex quadric Q n embedded
in cpn+l(c). Since Qn is known to be Hermitian symmetric space of
compact type, its sectional curvature is non-negative(cf. [9]). Thus from
(2.2) and the above inequality we know that the totally real bisectional
curvature B(u, v) is given by O::;B(u, v)::;~. Moreover, in the paper [12]
the holomorphic sectional curvature H (u) of Q n is holomorphically
pinched as j::;H(u)::;c.
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REMARK 4.2. ([1]) Let M be a complete space-like complex sub
manifold of an indefinite complex space form M;+P(c) with c~O. Then
M is totally geodesic. Thus B(u, v) = f.

REMARK 4.3. ([1]) Let M = M:(c) be an n-dimensional indefinite
complex space form immersed in M' = M:t:(c'), d = 0, and t = p.

If c'#O, then c' = kc and n +p~ (nt k
) - 1 for some positive integer

k.
If c' =°if and only if c = 0.
In particular for the case t = p, c' fO,
If c' > 0, then c' = c. Thus M is totally geodesic and B(u, v) = f.
If c' < 0, then c' = c or 2c, the first case arising only when M is

totally geodesic and the other arising only when s =°and B(u, v) = f.
REMARK 4.4; LetQn be a space-like complex quadric of a complex

hyperbolic space CH;+l(c' ) of index 2, which is defined by -zi +
'I:.j!izJ =°in the homogeneous coordinate system of CHf+l(c'), c' <
0. Then Qn is Einstein, and it satisfies f::;B(u,v)::;O for any totally
real bisectional plane [u,v].

From the above Remark 4.2 we know that a complete space-like
complex submanifold of M' = M;+P(c),c~O, is totally geodesic. It
gives us no meaning to consider the complete space-like submanifold of
M;+P(c),c~O,with lower bounded totally real bisectional curvature.
Thus in this section we consider the classification problem of the com
plete space-like submanifold of CH;+P(c),c < 0, with lower bounded
totally real bisectional curvature.

Now suppose that there exist a lower bound bER such that

(4.2) Raii3~b for any i,j (ifj).

From this and together with (4.1) it follows that

By (1.20),(3.11),(3.12) and (3.5) we have

2nb::;~jRj::;n(n+ 1)c/2 - h2 - n(n -l)b.
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Thus we have the following
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(4.4) 2h2:Sn(n + l)(c - 2b),

where the above equality holds if and only if R j = 2b for any j. That
is, M = Mn(2b).

On the other hand, by (3.14) and (1.20) we have that

(4.5) (n - 2)Rj?(n - l)(n +4)b - n(n + 1)c/2 + h2 •

Using (1.18), the holomorphic sectional curvature is given by R j 

R;jjJ = c - ~x€xhj//'jjX, from which it follows that

With these estimations of the above inequalities we prove here the
following.

THEOREM 4.1. Let M be an n(?3)-dimensional complete complex
submanifold ofCH;+P(c),p > 0, with totally real bisectional curvature
?b. Then the following holds

(1) b is smaller than or equal to f.
(2) H b = f, then M is a complex space fonn CHn( ~), p? n(n2+l).

(3) H b = 2(:~~;)rn~cl)' then M is a complex space form CHn(I)'
_ n(n+l}

p- 2 .

Proof. Since M is space-like, the normal space of M can be regarded
as a time-like space. Thus the matrix (h~A) given in section 1 is a
negative semi-definite Hermitian one, whose eigenvalue fJ/ are non
positive real valued function on M. The matrix (A~) is also by the
definition positive semi-definite Hermitian one and its eigenvalues fJx'
are non-negative real valued functions on M. Then it is easily [1] seen
that

(4.7)
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Also from the estimating of the norm of ~x{Exhjkhfl-n(:tl) (6ij6kl+
b'ikbjl)} it follows that

(4.8)

(4.9)

(4.10)

where the above equality holds if and only if M is a space of constant
holomorphic sectional curvature.

By (1.22) and (4.7) we have

n+2 n+2 2 2
D.h2~-2-ch2 - 2h4 - A2~-2-ch2 - ;h2 - A2.

From this and (4.8) it follows that

n+2
D.h2~2 ( )h2{n(n+1)c-4h2},

nn+1

where the above equality holds if and only if M is a space of constant
curvature.

On the other hand, by the hypothesis of the Theorem and using
(1.20) and r~2n(n+ l)b we have

(4.11) n(n + l)c - 4h2~n(n + 1)(4b - c),

(4.12)

from this and (4.10) it follows that

n+2
D.h2~-2-(4b - c)h2.

Now we are in a position to prove the first assertion. In fact let us
suppose that b> f. Set f = -h2 • Then for given any positive number
a, a function F which is defined by (f + a)-t is smooth bounded
function. Since Pj is known to be non-positive, the Ricci-curvature
SiJ = nt1c - Pj is lower bounded. The function f = -h2 is also
bounded by (4.11). By using the similar method to that of Theorem
3.1 we can prove that f = 0, that is, M is totally geodesic. From this
fact and (4.11) it follows that

0> n(n + l)c~n(n + 1)(4b - c) > o.
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Thus this makes a contradiction. Hence b:::;'i. We have proved the first
assertion.

For the second assertion we put b = {. Noticing h2$0, by (4.11)
and (4.12) we get

I::,.h <2(n+2)h {n(n+1)c_h }<O.
2 - n(n + 1) 2 4 2 -

From this, taking a smooth no-negative function F such that F =
n(~+l) C - h2 , we have

1::,.( -F)< 2(n + 2) {n(n + 1) c _ F}F< _ 2(n + 2) F2.
- n(n + 1) 4 - n(n + 1)

Thus we get f::,F? ~t:~i~F2. Since the Ricci-curvature is bounded from
below, we can apply a theorem due to Nishikawa [11) to the function
F. Then we get F = 0 on M. That is, h2 = n(~+l)c. Thus by (4.10)
M is a space of constant holomorphic sectional curvature. Moreover
by (4.4) its holomorphic sectional curvature is Rj = 2b for any j. That
is M is congruent to Mn(2b) = CHn(~). Thus the second assertion is
now verified.

Now we will prove the last assertion. By (1.20) and (4.4),(4.7) we
get

(4.13)
f::,h2 :::;{np(n + 2)ch2 - 2(n +2p)hn/2np

h2:::;-{np(n + 2)c - (n + 2p)n(n + l)(c - 2p)}
2np
h2

:::;2p {2(n + 1)(n + 2p)b - n(n + p + l)c}.

From this and the assumption it follows that

I::,.h2 $0,

where the above equality holds if and only if h2 = 0 or h2 = n(n:l) (c

2b) by virtue of (4.4). That is, Rj = c for any j and R"lij"j = ~ for any
i,j(ii=j) or Rj = 2b for any j and R'ijJ = b for any i,j(ii=j).
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Now we put F = -h2 + ;(~~~:~c = a- h2 , a < o. By (4.11) and
the assumption (3) we have np(n + 2)c - 2(n + 2p)h2~0. From this we
know that the function F is non-negative. Thus by (4.13) we have

(4.14) l::.(-F)~ n + 2p h2(a _ h2) = n + 2p(a _ F)F~ _ n + 2p F2.
np np np

That is, l::.F~ n~:pF 2. From this we can apply a theorem of Nishikawa

[11]. Thus we have F=O on M. That is, h2 = a = ;f£~;:~ c. Thus
R j = 2b for any j and Rain = b for any i, j (i=l=j). Hence M is congruent
to CHn(2b) and p~ n(n2+1). By Remark 4.3, 2b = cor~. Thus we
conclude that b = i. From this and together with the assumption (3)

we have that p = n(
n
2+l). Thus the proof of Theorem 4.1 is completely

verified. 0

5. Complex submanifold

In this section we study an n-dimensional complex submanifold M
of (n + p) -dimensional complex projective space cpn+p(c),c > 0,
with bounded totally real bisectional curvature. In this case both the
tangent space and the normal space of M in C pn(c) are space-like.
Thus the signs Ei and Ex given in section 1 will be denoted by l.

For a complex submanifold M of C pn+p(c) let us denote the func
tion h2 by h2 = 'Ei,j,xhi//'ij. Thus by using (1.21) and the fact that
h~·k- = 0 we have

I)

(5.1)

(h2h, ='Ehijkhfjl +'E{~(hijbkl+hjkbil + hkibjl)hfj

- (h~ihJk + h~jhti + h~khfj)h~,hfj}·

Also the function h4 is given by h4 = 'Eh~Jh;a = 'Ehf//'jkh~,hf,. Thus
from this and also (1.21) it follows that

(5.2)

l::.h4 =2'E [{ n; 2ch~ - (hirh;r + hjrh7r + A z Xhii)}hjkh~,hri

+ hfimhjkmh~1 + hfimhjkhi,hYim]·

By using these formulas we have the following Theorem.
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THEOREM 5.1. Let M be an n("23)-dimensional complex subman
ifold of a complex projective space cpn+p ( c). H there exist a positive

constant b such that b > ;:1;~.+i;~3) c and the totally real bisectional
curvature of M is greater than or equal to b, then M is congruent to a
complex projective space cpn(c).

Proof. Since in this case the matrix (h;) and (A;) defined in section
1 are positive semi-definite Hermitian ones, their eigenvalues, say Ilj
and Ily, are all real valued non-negative function on M. Now we choose
a local field {eA} = {ej,e y} of unitary frames such that h;] = lli8ij,
Ayx = Ilx8xy. Then by using this frame to (5.2) and noticing that the
second and the third term of the right hand side are non-negative we
have

On the other hand, by using the equation of Gauss (4.1) to the
assumption and (4.6) we have the following inequality

(5.4)

EJ.LiJ.Ljhi//,ij =Ex,iJ.LrhiJ/,ii +Ex,i:#jJ.LiJ.Ljhi//,ij

:S;{(n -1)(n + 4)(c - 2b) - 2h2 }EJ.Lr /2(n - 2)

1+ '2(c - 2b)EJ.Li(h2 - Ili)

={(n -1)(n +4) - (n - 2)}(c - 2b)h4 /2(n - 2)

1 c - 2b 2
- --h2 h4 + --h2 ,

n -2 2

where we have used h 2 = EiJ.Li and h4 = EJ.L~' Moreover, we know that
the above inequality holds if and only if M=cpn(2b) or M=cpn(c).

Since Ilx"20, it follows

where the equality holds if and only if J.Ly = 0 for any y=j=x. Using this



1036 U-Hang Ki and Young Jin Suh

fact and also (4.1),(4.3) and (4.6), we have the following inequality

(5.5)

l:.PiPxhijhij~h2l:.Pihij hij

=h2{~Pihiihii + l:.x,i#jPihi/tij }

<h [(n-l)(n+4)(c-2b)- 2h2 l:. .
- 2 2(n _ 2) pz

c- 2b
+ -2-l:.i;=jiPi]

h2

-2(n ~ 2) [{(n2+ 3n - 4) + (n2
- 3n + 2)}(c - 2b) - 2h2]

_(n2-1)(c-2b)-h~h2

- n - 2 2'

where we have used

I:.i#jipi = (n -l)I:.Pi = (n - 1)h2.

Moreover the above equality of (5.5) holds if and only if Ay x = 0, that
is, h2 = O. Thus M=.cpn(c).

Substituting (5.4) and (5.5) into (5.3), we have

n2+2n-2
.6h42:(n + 2)ch4 - 2hs - n _ 2 (c - 2b)h4

2 2n2 + n - 4 2 2 3+ --h2h4 - (c - 2b)h2+--h2n-2 n-2 n-2

2:(n + 2)ch4 _ 2(n - 3) h2h4 + _2_h~
n-2 n-2

c - 2b 2 2 2}
- n _ 2 {en + 2n - 2)h4 + (2n + n - 4)h2

n +2 h2 2(n - 4)h3 3n
2+ 3n - 6( 2b)h22:--c 2 - 2 - • C - 2

n n-2 n-2

(h~ ) [(n2 _ 4)c _ 2n(n - 4)h2 - 3n(n2 + n - 2)(c - 2b)],
n n-2

where we have used hs5,h2h4 to the second inequality and h~~h4~¥
to the third inequality respectively. From this, using (4.4), it follows
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h~ { 2 3
6h4~ ( ) (n -4)c-n(n -n-6)(c-2b)}

nn-2

h2

=2{2n(n2 + 2n + 3)b - (n 3 + 2n2 + 2n - 2)c}.
n

1037

Thus 6h4~Bh4 for a positive constant B = {2(n2 + 2n + 3)b - (n 2 +
2n + 2 - ~)c}/ n. By (4.4) the function h2 is bounded from above and
h4~h~. Hence h4 is also bounded from above. For a constant a > 0
let us take a function F such that F = (f + a)-t, where we have put
f = h4 • Then by using a similar method as the proof of Theorem 3.1
we get Supf = Inff = O. Thus f=.O, i.e., h2 = O. Hence M is totally
geodesic and congruent to a complex projective space cpn(c). Thus
we completed the proof of Theorem 5.1. 0
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