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Abstract. In this paper we introduce semi-pseudo-ovoids, as generalizations of the semi-ovals and semi-ovoids.
Examples of these objects are particular classes of SPG-reguli and some classes of m-systems of polar spaces.
As an application it is proved that the axioms of pseudo-ovoid O(n, 2n, q) in PG(4n − 1, q) can be considerably
weakened and further a useful and elegant characterization of SPG-reguli with the polar property is given.
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1. Introduction

1.1. Pseudo-ovals and pseudo-ovoids

In PG(2n + m − 1, q) consider a set O(n, m, q) of qm + 1 (n − 1)-dimensional subspaces
PG(0)(n − 1, q), PG(1)(n − 1, q), . . . , PG(qm )(n − 1, q), every three of which generate a
PG(3n − 1, q) and such that each element PG(i)(n − 1, q) of O(n, m, q) is contained in
a PG(i)(n + m − 1, q) having no points in common with any PG( j)(n − 1, q) for j �= i .
It is easy to check that PG(i)(n + m − 1, q) is uniquely determined, i = 0, . . . , qm . The
space PG(i)(n + m − 1, q) is called the tangent space of O(n, m, q) at PG(i)(n − 1, q),
i = 0, . . . , qm . For n = m such a set O(n, n, q) is called a pseudo-oval or a generalized
oval or an [n − 1]-oval of PG(3n − 1, q); a generalized oval of PG(2, q) is just an oval of
PG(2, q). For n �= m such a set O(n, m, q) is called a pseudo-ovoid or a generalized ovoid
or an [n − 1]-ovoid or an egg of PG(2n + m − 1, q); a [0]-ovoid of PG(3, q) is just an ovoid
of PG(3, q).

In Payne and Thas [9] (Theorem 8.7.2) it is proved that either ma = n(a + 1) or n = m,
with a an odd natural number, and that for q even we have either n = m or 2n = m. Also,
in Payne and Thas [9] (Chapter 8) many other properties of O(n, m, q) appear. It is still an
open question whether or not for q odd we have m ∈ {n, 2n}.

Pseudo-ovals and pseudo-ovoids play an important role in the theory of finite generalized
quadrangles, as in Payne and Thas [9] (Theorem 8.7.1) it is shown that their study is
equivalent to the study of finite translation generalized quadrangles.
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1.2. Semi-pseudo-ovoids

A semi-pseudo-ovoid or a semi-egg of PG(h, q) is a non-empty set O of η mutually skew
(n − 1)-dimensional subspaces, denoted PG(i)(n − 1, q), i = 1, . . . , η, with h > 2n − 1,
so that for every i the union of all n-dimensional subspaces containing PG(i)(n − 1, q)
and disjoint from PG( j)(n − 1, q), for every j �= i , is an (h − n)-dimensional subspace
PG(i)(h − n, q) of PG(h, q). The space PG(i)(h − n, q) is called the tangent space, or just
the tangent, of O at PG(i)(n − 1, q).

For n = 1 semi-pseudo-ovoids are just semi-ovals and semi-ovoids; see Thas [11] and
Buekenhout [2] for motivation, examples and existence.

It is also clear that pseudo-ovals and pseudo-ovoids provide examples of semi-pseudo-
ovoids.

We now describe a method to construct a new semi-pseudo-ovoid from a given one. Let
O be a semi-pseudo-ovoid consisting of (n − 1)-dimensional subspaces of PG(h, q). Let
π ∈ O and assume that any n-dimensional subspace containing any element γ of O − {π}
and any point of π , has a point in common with at least one element of O − {π, γ }. Then
O − {π} is still a semi-pseudo-ovoid of PG(h, q).

2. The main inequalities

2.1. Main theorem

Theorem 2.1 If O is a semi-pseudo-ovoid consisting of η (n − 1)-dimensional subspaces
of PG(h, q), then

1 + qh−2n+1 ≤ η ≤ 1 + q
h+1

2 .

It follows that h ≤ 4n − 1.

Proof: Let O = {π1, π2, . . . , πη} be a semi-pseudo-ovoid in PG(h, q) consisting of η

(n − 1)-dimensional subspaces. The tangent space of O at πi will be denoted by τi , with
i = 1, 2, . . . , η. Further, let Õ = π1 ∪ π2 ∪ · · · ∪ πη.

Consider an n-dimensional subspace β with π1 ⊂ β ⊂ τ1 and let γ be an (n + 1)-
dimensional subspace with β ⊂ γ , γ �⊂ τ1. Each n-dimensional subspace δ of γ containing
π1, with δ �= β, contains a point of Õ − π1. Hence

|(Õ ∩ γ ) − π1| ≥ q.

There are exactly qh−n−1
q−1 − qh−2n−1

q−1 spaces γ . It follows that

|Õ| ≥ qn − 1

q − 1
+ q

qh−n − qh−2n

q − 1
,
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that is,

|Õ| ≥ qn − 1

q − 1
(1 + qh−2n+1).

Consequently,

|O| ≥ 1 + qh−2n+1. (1)

Next, let xi be any point of PG(h, q) − Õ , and let ti be the number of n-dimensional
subspaces ξ on xi with π j ⊂ ξ ⊂ τ j for some j . First we count the number of pairs (xi , ξ ),
with xi ∈ ξ , ξ n-dimensional, and π j ⊂ ξ ⊂ τ j for some j . We obtain

∑
i

ti = ηqn qh−2n+1 − 1

q − 1
. (2)

Next, we count the number of ordered triples (xi , ξ, ξ ′), with xi ∈ ξ , xi ∈ ξ ′, ξ �= ξ ′, ξ and
ξ ′ n-dimensional, π j ⊂ ξ ⊂ τ j for some j , and π j ′ ⊂ ξ ′ ⊂ τ j ′ for some j ′. We obtain

∑
i

ti (ti − 1) = η(η − 1)
qh−2n+1 − 1

q − 1
. (3)

Hence

∑
i

t2
i = η(η + qn − 1)

qh−2n+1 − 1

q − 1
. (4)

The number of points xi is equal to

d = |PG(h, q) − Õ| = qh+1 − 1

q − 1
− η

qn − 1

q − 1
. (5)

Now we have d
∑

i t2
i − (

∑
i ti )2 ≥ 0, and so, by (2), (4) and (5)

(
qh+1 − 1

q − 1
− η

qn − 1

q − 1

)
η(η + qn − 1)

qh−2n+1 − 1

q − 1
−

(
ηqn qh−2n+1 − 1

q − 1

)2

≥ 0,

that is, η2 − 2η − (qh+1 − 1) ≤ 0, and so,

η ≤ 1 + q
h+1

2 . (6)



142 DE WINTER AND THAS

Finally, from (1) and (6) follows that 1 + qh−2n+1 ≤ 1 + q
h+1

2 , and so

h ≤ 4n − 1.

2.2. Pseudo-ovoids

In this section we will show that by Theorem 2.1 the original definition of pseudo-ovoid
O(n, 2n, q) can be considerably weakened.

Theorem 2.2 If for a semi-pseudo-ovoid O consisting of η (n−1)-dimensional subspaces
of PG(h, q) we have h = 4n − 1, then η = 1 + q2n and so O is a pseudo-ovoid.

Proof: Assume that h = 4n − 1 for the semi-pseudo-ovoid O . Then h − 2n + 1 =
(h +1)/2, and so by Theorem 2.1 we have η = 1+qh−2n+1 = 1+q2n . As we have equality
in (6), we also have d

∑
i t2

i − (
∑

i ti )2 = 0, with the notation of the proof of Theorem 2.1.
So ti is a constant. Hence

ti =
∑

i ti
d

= qn + 1

for all i . As η = 1 + qh−2n+1, each n-dimensional subspace containing πi ∈ O , but not
contained in the tangent space of O at πi , contains exactly one point of Õ − πi , where
Õ is the set of all points in all elements of O , with i = 1, 2, . . . , q2n + 1. It follows that
any three distinct elements of O generate a (3n − 1)-dimensional subspace of PG(h, q).
Consequently O is a pseudo-ovoid of PG(4n − 1, q).

Remark

(a) It follows that an egg O(n, 2n, q) is a set of (n − 1)-dimensional subspaces of PG(4n −
1, q), such that for each πi ∈ O(n, 2n, q) the union of all n-dimensional subspaces
containing πi but skew to all elements of O(n, 2n, q) − {πi } is a (3n − 1)-dimensional
subspace of PG(4n − 1, q).

(b) A weak egg of PG(4n − 1, q) is a set of 1 + q2n (n − 1)-dimensional subspaces of
PG(4n − 1, q), every three of which generate a (3n − 1)-dimensional subspace. It is an
open question whether or not each weak egg is an egg; see Lavrauw [5].

3. Interpretation of the equalities

We will use the notation introduced in Section 2.

Theorem 3.1 For a semi-pseudo-ovoid O we have η = 1 + q
h+1

2 if and only if each point
not in an element of O is on a constant number of tangent spaces. This constant equals
1 + q

h−2n+1
2 .
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Proof: Each point not in an element of O is on a constant number of tangent spaces if and
only if ti is a constant in the proof of Theorem 2.1, if and only if d

∑
i t2

i − (
∑

i ti )2 = 0, if
and only if η = 1 + q

h+1
2 . In such a case

ti =
∑

i ti
d

= 1 + q
h−2n+1

2 .

Theorem 3.2 For a semi-pseudo-ovoid O we have η = 1 + q
h+1

2 if and only if each
hyperplane not containing a tangent space of O, contains a constant number of elements
of O. This constant equals 1 + q

h−2n+1
2 .

Proof: Let γi be any hyperplane not containing a tangent space of the semi-pseudo-ovoid
O . The number of elements of O in γi will be denoted by ui . Now we count the number of
pairs (γi , π ), with π ∈ O in γi . We obtain

∑
i

ui = ηqn qh−2n+1 − 1

q − 1
. (7)

Next we count the number of ordered triples (γi , π, π ′), with π �= π ′, π ∈ O , π ′ ∈ O and
π, π ′ in γi . We obtain

∑
i

ui (ui − 1) = η(η − 1)
qh−2n+1 − 1

q − 1
. (8)

From (7) and (8) it follows that

∑
i

u2
i = η(η + qn − 1)

qh−2n+1 − 1

q − 1
. (9)

The number of hyperplanes of PG(h, q) not containing a tangent space τ j equals qh+1−1
q−1 −

η
qn−1
q−1 = g. As g

∑
i u2

i − (
∑

i ui )2 ≥ 0, we obtain

(
qh+1 − 1

q − 1
− η

qn − 1

q − 1

)
η(η + qn − 1)

qh−2n+1 − 1

q − 1
−

(
ηqn qh−2n+1 − 1

q − 1

)2

≥ 0,

that is, η2 − 2η − (qh+1 − 1) ≤ 0, or equivalently,

η ≤ 1 + q
h+1

2 . (10)



144 DE WINTER AND THAS

We have equality in (10) if and only if ui is a constant. In such a case this constant equals

ui =
∑

i ui

g
= 1 + q

h−2n+1
2 .

The theorem is proved.

Corollary 3.3 If for a semi-pseudo-ovoid O we have η = 1+q
h+1

2 , then Õ (Õ is the union
of the elements of O) has two intersection numbers with respect to hyperplanes. Hence Õ
defines a projective linear two-weight code and a strongly regular graph.

Proof: If the hyperplane γ contains a tangent space of O , then γ ∩ Õ is the disjoint
union of one element of O and q

h+1
2 (n − 2)-dimensional subspaces; if γ does not contain

a tangent space of O , then γ ∩ Õ is the disjoint union of 1 + q h−2n+1
2 elements of O and

q
h+1

2 − q
h−2n+1

2 (n − 2)-dimensional subspaces. The fact that Õ defines a projective linear
two-weight code and a strongly regular graph now follows from Calderbank and Kantor
[3].

Theorem 3.4 A semi-pseudo-ovoid O is either a pseudo-oval or a pseudo-ovoid if and
only if η = 1 + qh−2n+1.

Proof: Let O = {π1, π2, . . . , πη} be a semi-pseudo-ovoid. Then, by the proof of
Theorem 2.1, η = 1 + qh−2n+1 if and only if any n-dimensional subspace containing
πi , but not contained in the tangent space of O at πi , has exactly one point in common
with Õ − πi , for all i = 1, 2, . . . , η, that is, if and only if any three distinct elements of O
generate a (3n − 1)-dimensional subspace, that is, if and only if O is either a pseudo-oval
or a pseudo-ovoid.

4. Translation duals

If O is a pseudo-ovoid consisting of q2n +1 (n−1)-dimensional subspaces of PG(4n−1, q),
then the tangent spaces of O form a pseudo-ovoid O∗ in the dual space of PG(4n − 1, q);
see Payne and Thas [9] (Theorem 8.7.2). The pseudo-ovoid O∗ is called the translation
dual of O . If q is even, then for every known pseudo-ovoid O we have O ∼= O∗; for q
odd, there are examples with O �∼= O∗, see e.g. Payne [8]. Now we extend the notion of
translation dual to semi-pseudo-ovoids.

Lemma 4.1 Let O = {π1, π2, . . . , πη}, with η = 1 + q
h+1

2 , be a semi-pseudo-ovoid in
PG(h, q) and let τi be the tangent space of O at πi , i = 1, 2, . . . , η. If γ is a hyperplane
of τi not containing πi , with i ∈ {1, 2, . . . ,η}, then there is at least one τ j , with j �= i , for
which τ j ∩ γ is (h − 2n)-dimensional, that is, for which τ j ∩ γ = τi ∩ τ j .

Proof: Assume, by way of contradiction, that for any j �= i we have that τ j ∩ γ is
(h − 2n − 1)-dimensional. Now we count in two ways the number of pairs (z, τ j ), with
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z ∈ γ − πi , z ∈ τ j , and j �= i . We obtain

qh−n − qn−1

q − 1
· q

h−2n+1
2 = q

h+1
2 · qh−2n − 1

q − 1
,

clearly a contradiction.

Theorem 4.2 Let O be a semi-pseudo-ovoid in PG(h, q), with |O| = 1 + q
h+1

2 . Then the
tangent spaces of O form a semi-pseudo-ovoid O∗ in the dual space of PG(h, q).

Proof: Let O = {π1, π2, . . . , πη}, with η = 1 + q
h+1

2 , and let τi be the tangent space of
O at πi , i = 1, 2, . . . , η. By Lemma 4.1 the space πi is the intersection of all hyperplanes
γ of τi , for which the space 〈γ, τ j 〉 generated by γ and τ j is PG(h, q), for all j �= i . It
follows that the tangent spaces of O form a semi-pseudo-ovoid O∗ in the dual space of
PG(h, q).

The semi-pseudo-ovoid O∗ will be called the translation dual of the semi-pseudo-
ovoid O .

5. Particular semi-pseudo-ovoids

5.1. α-Regular semi-pseudo-ovoids

A semi-pseudo-ovoid O in PG(h, q) is called α-regular if any n-dimensional subspace
containing any element π ∈ O but not contained in the tangent space of O at π , has a
point in common with exactly α elements of O − {π}. Any pseudo-oval and pseudo-ovoid
is 1-regular. α-Regular semi-ovals were studied in Blokhuis and Szönyi [1].

It is easily deduced, by considering all n-dimensional subspaces containing a given
π ∈ O , that if the semi-pseudo-ovoid O is α-regular, then |O| − 1 = αqh−2n+1.

Further Theorem 2.1 has an immediate corollary bounding α.

Corollary 5.1 If O is an α-regular semi-pseudo-ovoid consisting of PG(n − 1, q) in
PG(h, q), then α ≤ q2n− h+1

2 .

Proof: Since |O| − 1 = αqh−2n+1, and |O| − 1 ≤ q
h+1

2 by Theorem 2.1, we obtain
α ≤ q2n− h+1

2 .

5.2. SPG-reguli satisfying the polar property

An SPG-regulus is a setR of (n−1)-dimensional subspaces π1, . . . , πr , r > 1, of PG(h, q),
satisfying:

(a) πi ∩ π j = ∅ for all i �= j .
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(b) If PG(n, q) contains πi , then it has a point in common with 0 or α (α > 0) spaces in
R\{πi }. If PG(n, q) contains πi and has no point in common with π j for all j �= i, then
it is called a tangent of R at πi .

(c) If the point x of PG(h, q) is not contained in an element ofR it is contained in a constant
number θ (θ ≥ 0) of tangents of R.

SPG-reguli were introduced by Thas in [12] and give rise to semipartial geometries.
An SPG-regulus satisfies the polar property if h > 2n − 1 and the union of tangents

at each element πi of R is a PG(i)(h − n, q) =: τi (i ∈ {1, . . . , r}) which will be called
the tangent space of R at πi ; see De Winter and Thas [4]. Clearly SPG-reguli satisfying
the polar property are exactly α-regular semi-pseudo-ovoids O, such that the number of
tangent spaces on any point not in an element of O, is a constant.

Theorem 5.2 A semi-pseudo-ovoid O is an SPG-regulus satisfying the polar property if
and only if |O| = 1 + q

h+1
2 .

Proof: First, suppose that O is an SPG-regulus satisfying the polar property. Then |O| =
1 + q

h+1
2 by Thas [12].

Next, suppose that O is a semi-pseudo-ovoid satisfying |O| = 1 + q
h+1

2 . Let O =
{π1, π2, . . . , πη} and let τi be the tangent space of O at πi , i = 1, 2, . . . , η. Further, let
PG(n, q) contain πi , with PG(n, q) �⊂ τi . Let α be the number of elements of O − {πi }
intersecting PG(n, q). Now we count in two ways the number of pairs (π j , φ), with π j ⊂ φ,

j �= i, φ a hyperplane containing PG(n, q). We obtain

α
qh−2n+1 − 1

q − 1
+ (q

h+1
2 − α)

qh−2n − 1

q − 1
= qh−n − qn−1

q − 1
· q

h−2n+1
2 .

Hence α = q2n− h+1
2 . As α is independent from i and the choice of PG(n, q), it follows that

O is an SPG-regulus.

The problem on weak eggs in PG(4n − 1, q) mentioned in Section 2.2 now generalizes
in a natural way to the following problem. Suppose O = {π1, π2, . . . , πη} is a set of
η = 1 + q

h+1
2 mutually disjoint (n − 1)-dimensional spaces in PG(h, q). Further suppose

that every n-dimensional space containing πi , with i = 1, 2, . . . , η, intersects either 0 or
α = q2n− h+1

2 elements of O −{πi }. It is an open problem whether or not O is a semi-pseudo-
ovoid (and hence an SPG-regulus). Notice that for h = 4n − 1 this problem is exactly the
problem for weak eggs mentioned before.

Theorem 5.3 If O is a semi-pseudo-ovoid with |O| = 1 + q
h+1

2 , then the translation dual
O∗ of O is also an SPG-regulus satisfying the polar property.

Proof: Immediate from Theorems 4.2 and 5.2.

A generalized semi-pseudo-ovoid O = {π1, π2, . . . , πη} in PG(h, q) is a set of η mutually
disjoint (n −1)-dimensional spaces in PG(h, q), with h > 2n −1, such that the union of the
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n-dimensional subspaces containing πi , i = 1, 2, . . . , η, and disjoint from all π j , j �= i,
contains an (h − n)-dimensional space.

There is a variant of Theorem 5.2 for generalized semi-pseudo-ovoids that can be useful,
as it is sometimes easy to check that on any πi there is an (h − n)-dimensional space τi

disjoint from π j , for every j �= i, but difficult to check that every n-dimensional space
containing πi , but not contained in τi , has non-empty intersection with Õ − πi .

Theorem 5.4 Let O be a generalized semi-pseudo-ovoid in PG(h, q), with |O| = 1+q
h+1

2 .
Then O is an SPG-regulus satisfying the polar property.

Proof: Let O = {π1, π2, . . . , πη} with η = 1 + q
h+1

2 , and let τi be a fixed (h − n)-
dimensional space containing πi and disjoint from π j , j �= i, for i = 1, 2, . . . , η. Following
the proof of Theorem 3.2 we see that every hyperplane containing no τi , i = 1, 2, . . . , η,

contains exactly 1 + q
h−2n+1

2 elements of O . Now let PG(n, q) be any n-dimensional
space containing πi and having non-empty intersection with Õ − π . As in the proof of
Theorem 5.2 we find that PG(n, q) intersects exactly α = q2n− h+1

2 elements of O − {πi }.
We now easily obtain that there are exactly qh−2n+1−1

q−1 n-dimensional spaces containing πi and

having empty intersection with Õ −πi . We conclude that τi is the union of all n-dimensional
spaces containing πi and having empty intersection with Õ − πi , i = 1, 2, . . . , η, that is,
O is a semi-pseudo-ovoid. Applying Theorem 5.2 finishes the proof.

As an application we give a very short proof of a theorem of Luyckx [6] and provide a
variant on Theorem 2.2, but first we give the definition of an m-system.

An m-system M of a finite (non-singular) classical polar space P is a set, of maximal
possible size, of mutually disjoint totally singular m-dimensional subspaces of P with the
property that no generator (that is, a maximal totally singular subspace) of P that contains
an element of M intersects any other element of M. We have |M| = |P|/|generator|, as
is shown in Shult and Thas [10] where m-systems were introduced.

Each m-system M of the polar space P, for which any (m + 1)-dimensional subspace
containing any π ∈ M and not contained in π⊥ if P is defined by a polarity, or not
contained in the tangent space of P at π if P is a quadric in even dimension over a field
with characteristic two, has a point in common with at least one element of M − {π},
provides an example of a semi-pseudo-ovoid.

Corollary 5.5 (Luyckx [6]) Let O be an m-system of the polar space P ∈ {Q−(2n +
1, q), W2n+1(q), H (2n, q)}, but not a spread of W2n+1(q). Then O is an SPG-regulus of the
ambient space of P satisfying the polar property.

Proof: If we denote the ambient space of P as PG(h, q) then in each case there holds
|O| = 1 + q

h+1
2 . Furthermore, the definition of an m-system implies immediately that O is

a generalized semi-pseudo-ovoid. The result now follows from Theorem 5.4.
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The following variant of Theorem 2.2 shows that in the original definition of pseudo-
ovoid O(n, 2n, q) the restriction that every three distinct elements of O(n, 2n, q) should
generate a PG(3n − 1, q) is superfluous.

Corollary 5.6 Let O be a generalized semi-pseudo-ovoid consisting of 1 + q2n mutually
disjoint (n − 1)-dimensional spaces in PG(4n − 1, q). Then O is a pseudo-ovoid.

Proof: Theorem 5.4 implies that O is an SPG-regulus with α = 1. Hence every three
distinct elements of O generate a (3n − 1)-dimensional space, that is, O is a pseudo-ovoid.

6. Derivation of semi-pseudo-ovoids

In this final section we show how new semi-pseudo-ovoids can be constructed from old
ones without changing the size of the semi-pseudo-ovoid.

Theorem 6.1 Let O = {π1, π2, . . . , πη} be a semi-pseudo-ovoid consisting of (n − 1)-
dimensional spaces in PG(h, q), with η = 1 + q

h+1
2 . Let τi be the tangent space of O at πi .

Suppose that the tangent spaces τ1, τ2, . . . , τs have a PG(h − 2n, q) =: � in common. If
{π1, π2, . . . , πs} is a set of mutually disjoint (n − 1)-dimensional spaces covering exactly
the same point set as π1∪π2∪· · ·∪πs, then O = (O ∪{π1, π2, . . . , πs})−{π1, π2, . . . , πs}
is also a semi-pseudo-ovoid and hence an SPG-regulus satisfying the polar property.

Proof: Clearly τi has empty intersection with the elements of O − {πi }, if i /∈ {1, 2, . . . , s}.
Furthermore it is obvious that the (h − n)-dimensional space 〈π̄ j , �〉 has empty intersec-
tion with the elements of O − {π j }, j = 1, 2, . . . , s. We conclude that O is a generalized
semi-pseudo-ovoid with |O| = 1 + q

h+1
2 . Theorem 5.4 finishes the proof.

This theorem generalizes a result from De Winter and Thas [4], where this is shown to
be true if O is a set of 1 + q3 lines in PG(5, q) arising from a Buekenhout-Metz unital in
PG(2, q2). It is also not so difficult to see that it is a generalization of a result of Luyckx
and Thas [7] on derivation of m-systems as well.
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