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Abstract. In this paper we introduce semi-pseudo-ovoids, as generalizations of the semi-ovals and semi-ovoids.
Examples of these objects are particular classes of SPG-reguli and some classes of m-systems of polar spaces.
As an application it is proved that the axioms of pseudo-ovoid O(n, 2n, q) in PG(4n — 1, g) can be considerably
weakened and further a useful and elegant characterization of SPG-reguli with the polar property is given.
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1. Introduction
1.1.  Pseudo-ovals and pseudo-ovoids

In PG(2n 4+ m — 1, q) consider a set O(n, m, g) of g™ + 1 (n — 1)-dimensional subspaces
PG(O)(n - 1,9), PG(l)(n —1,q), ...,PG(‘fm)(n — 1, g), every three of which generate a
PG(3n — 1, g) and such that each element PG”(n — 1, ¢) of O(n, m, q) is contained in
a PG”(n + m — 1, ¢) having no points in common with any PGY(n — 1, ¢) for j # i.
It is easy to check that PG(i)(n + m — 1, g) is uniquely determined, i = 0, ..., g™. The
space PG (n +m — 1, q) is called the tangent space of O(n, m, q) at PGP(n — 1, q),
i=0,...,9" Forn = m such a set O(n, n, q) is called a pseudo-oval or a generalized
oval or an [n — 1]-oval of PG(3n — 1, q); a generalized oval of PG(2, ¢) is just an oval of
PG(2, g). For n # m such a set O(n, m, q) is called a pseudo-ovoid or a generalized ovoid
or an [n — 1]-ovoid or an egg of PG(2n +m — 1, q); a [0]-ovoid of PG(3, ¢) is just an ovoid
of PG(3, gq).

In Payne and Thas [9] (Theorem 8.7.2) it is proved that either ma = n(a 4+ 1) or n = m,
with a an odd natural number, and that for g even we have either n = m or 2n = m. Also,
in Payne and Thas [9] (Chapter 8) many other properties of O(n, m, q) appear. It is still an
open question whether or not for ¢ odd we have m € {n, 2n}.

Pseudo-ovals and pseudo-ovoids play an important role in the theory of finite generalized
quadrangles, as in Payne and Thas [9] (Theorem 8.7.1) it is shown that their study is
equivalent to the study of finite translation generalized quadrangles.
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1.2.  Semi-pseudo-ovoids

A semi-pseudo-ovoid or a semi-egg of PG(h, g) is a non-empty set O of n mutually skew
(n — 1)-dimensional subspaces, denoted PG(i)(n —-1L,q),i=1,....,n,withh > 2n —1,
so that for every i the union of all n-dimensional subspaces containing PG"(n — 1, q)
and disjoint from PGY)(n — 1, q), for every j # i, is an (h — n)-dimensional subspace
PGP (h — n, q) of PG(h, q). The space PG (h — n, q) is called the tangent space, or just
the tangent, of O at PGP (n — 1, g).

For n = 1 semi-pseudo-ovoids are just semi-ovals and semi-ovoids; see Thas [11] and
Buekenhout [2] for motivation, examples and existence.

It is also clear that pseudo-ovals and pseudo-ovoids provide examples of semi-pseudo-
ovoids.

We now describe a method to construct a new semi-pseudo-ovoid from a given one. Let
O be a semi-pseudo-ovoid consisting of (n — 1)-dimensional subspaces of PG(4, q). Let
7 € O and assume that any n-dimensional subspace containing any element y of O — {r}
and any point of 7, has a point in common with at least one element of O — {r, y}. Then
O — {rr} is still a semi-pseudo-ovoid of PG(#, q).

2. The main inequalities
2.1. Main theorem

Theorem 2.1 If O is a semi-pseudo-ovoid consisting of n (n — 1)-dimensional subspaces
of PG(h, q), then

L+g" <p<1+4q7F.

It follows that h < 4n — 1.

Proof: Let O = {m, m, ..., m,} be a semi-pseudo-ovoid in PG(%, g) consisting of n
(n — 1)-dimensional subspaces. The tangent space of O at 7; will be denoted by 7;, with
i=1,2,...,n Further,let O =mUmp U ... Um,.

Consider an n-dimensional subspace 8 with 7y C B C 1 and let y be an (n + 1)-
dimensional subspace with 8 C y, ¥ ¢ 1. Each n-dimensional subspace § of y containing
7y, with 6 # B, contains a point of O — ;. Hence

0Ny)—ml=q.

There are exactly qh;l_l - qh:jl_ L spaces y. It follows that
B n_ 1 h—n _ _h—2n
01> L — 40—

qg—1 g—1
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that is,
~ qg"—1 h—2n+1
10125 = (144",
Consequently,
0] = 144" (1)

Next, let x; be any point of PG(k, g) — 0, and let #; be the number of n-dimensional
subspaces & on x; with 7; C & C 7; for some j. First we count the number of pairs (x;, §),
with x; € &, & n-dimensional, and 7; C § C t; for some j. We obtain

h—2n+1 __ 1

DI e — @)
i q—1

Next, we count the number of ordered triples (x;, &, &), withx; € £, x; € §',& # &', & and
&' n-dimensional, 7; C & C 1; for some j, and 7;; C &' C 1; for some j'. We obtain

qh72n+1 -1
Y oult = 1) =30 — H—— 3)
i g—1
Hence
h—2n+1
PN —1
Y2 =nm+q" - DF—— @)
i q—1
The number of points x; is equal to
h+1 n
~ q" —1 q" —1
d =|PG(h,q)— O] = — &)

-1 Tq-1

Now we have d Y, 17 — (3", 1;)* > 0, and so, by (2), (4) and (5)

h+1 n h—2n+1 h—2n+1 2

q -1 qg — 1 n q -1 nq —1

-7 nm+q" —-D—— = |\n¢g"— | =0,
g—1 qg—1 g—1 q—1

that is, n> — 2 — (¢"*' — 1) < 0, and so,

h+1
2

n<1l+gq (6)
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Finally, from (1) and (6) follows that 1 4+ ¢"~2"*! < 1+ ¢+, and so

h<4n—1.

2.2.  Pseudo-ovoids

In this section we will show that by Theorem 2.1 the original definition of pseudo-ovoid
O(n,2n, q) can be considerably weakened.

Theorem 2.2  [f for a semi-pseudo-ovoid O consisting of n (n — 1)-dimensional subspaces
of PG(h, g) we have h = 4n — 1, then n = 1 4+ ¢*" and so O is a pseudo-ovoid.

Proof: Assume that # = 4n — 1 for the semi-pseudo-ovoid O. Then h — 2n + 1 =
(h+1)/2, and so by Theorem 2.1 we have n = 14¢"~2"*! = 14 ¢". As we have equality
in (6), we also have d ), tl.z - t;)*> = 0, with the notation of the proof of Theorem 2.1.
So ¢; is a constant. Hence

for all i. As n = 1 + ¢"~2"*!, each n-dimensional subspace containing 7; € O, but not
contained in the tangent space of O at m;, contains exactly one point of O — m;, where

O is the set of all points in all elements of O, withi = 1,2, ..., qz" + 1. It follows that
any three distinct elements of O generate a (3n — 1)-dimensional subspace of PG(#4, q).
Consequently O is a pseudo-ovoid of PG(4n — 1, g). O
Remark

(a) Itfollows that anegg O(n, 2n, q) is a set of (n — 1)-dimensional subspaces of PG(4n —
1, @), such that for each 7; € O(n, 2n, q) the union of all n-dimensional subspaces
containing m; but skew to all elements of O(n, 2n, g) — {m;} is a (3n — 1)-dimensional
subspace of PG(4n — 1, q).

(b) A weak egg of PG(4n — 1, q) is a set of 1 + g?" (n — 1)-dimensional subspaces of
PG(4n — 1, q), every three of which generate a (3n — 1)-dimensional subspace. It is an
open question whether or not each weak egg is an egg; see Lavrauw [5].

3. Interpretation of the equalities

We will use the notation introduced in Section 2.

h+1
2

Theorem 3.1 For a semi-pseudo-ovoid O we have n = 1+ q = if and only if each point

not in an element of O is on a constant number of tangent spaces. This constant equals
h—2n+1

1+qg
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Proof: Each point not in an element of O is on a constant number of tangent spaces if and
only if #; is a constant in the proof of Theorem 2.1, if and only if d Y, 1> — (3, t;)* = 0, if
andonlyif n =1+ q%. In such a case

. Zi t; h=2n+1
== .

t; :1+q 2

|

Theorem 3.2 For a semi-pseudo-ovoid O we have n = 1 + qh%] if and only if each
hyperplane not containing a tangent space of O, contains a constant number of elements
h—2n+1

of O. This constant equals 1 + q 2

Proof: Let y; be any hyperplane not containing a tangent space of the semi-pseudo-ovoid
O. The number of elements of O in y; will be denoted by u;. Now we count the number of
pairs (y;, ), with m € O in y;. We obtain

h—2n+1 __ 1

nd
E up=nqg" ———. @)
i g—1

Next we count the number of ordered triples (y;, 7, n’), withmw # 7/, m € O, 7’ € O and
7, 7’ in y;. We obtain

qh72n+1 -1
D uiui = 1) =3 — H—— ®)
i q—1
From (7) and (8) it follows that
h—2n+1 __ 1
Y =nm+q" - DT — ©)
- qg—1

L

h+1_q

g
g—1

The number of hyperplanes of PG(#, ¢) not containing a tangent space t; equals
r’({;%ll =g. Asgy ,u; — (3 u;)* = 0, we obtain

h+1 n h—2n+1 h—2n+1 2

g =1 gq"—1 n q —1 nd -1

< -n )Mn+q—4%——————<w-—————- >0,
g—1 g—1 qg—1

h+1

that is, r;2 —-2n—(q — 1) <0, or equivalently,

h+1

n<l+q'7. (10)
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We have equality in (10) if and only if u; is a constant. In such a case this constant equals

Zi u; h=2n+1
U = —— = .
8

14q

The theorem is proved. O

Corollary 3.3 [ffor a semi-pseudo-ovoid O we haven = 14q 5 then O (O is the union
of the elements of O) has two intersection numbers with respect to hyperplanes. Hence O
defines a projective linear two-weight code and a strongly regular graph.

Proof: If the hyperplane y contains a tangent space of O, then y N O is the disjoint
h+1
union of one element of O and ¢ T (n — 2)-dimensional subspaces; if y does not contain

a tangent space of O, then y N O is the disjoint union of 1 + q% elements of O and
h+1 h—2n+1

gz —q 2 (n—2)-dimensional subspaces. The fact that O defines a projective linear
two-weight code and a strongly regular graph now follows from Calderbank and Kantor
[3]. O

Theorem 3.4 A semi-pseudo-ovoid O is either a pseudo-oval or a pseudo-ovoid if and
only ifn = 1+ g"=2+1,

Proof: Let O = {m,m, ..., m,} be a semi-pseudo-ovoid. Then, by the proof of
Theorem 2.1, n = 1 + ¢"~?"*! if and only if any n-dimensional subspace containing
7;, but not contained in the tangent space of O at m;, has exactly one point in common

with O — m;, foralli = 1,2, ..., n, thatis, if and only if any three distinct elements of O
generate a (3n — 1)-dimensional subspace, that is, if and only if O is either a pseudo-oval
or a pseudo-ovoid. O

4. Translation duals

If O is a pseudo-ovoid consisting of 2" + 1 (n — 1)-dimensional subspaces of PG(4n—1, ),
then the tangent spaces of O form a pseudo-ovoid O* in the dual space of PG(4n — 1, g);
see Payne and Thas [9] (Theorem 8.7.2). The pseudo-ovoid O* is called the translation
dual of O. If g is even, then for every known pseudo-ovoid O we have O = O*; for ¢
odd, there are examples with O Z O*, see e.g. Payne [8]. Now we extend the notion of
translation dual to semi-pseudo-ovoids.

Lemma 4.1 Let O = {ny,m, ..., m,}, withn =1+ qh%], be a semi-pseudo-ovoid in
PG(h, q) and let t; be the tangent space of O at i, i = 1,2, ..., n. If y is a hyperplane
of T; not containing w;, with i € {1,2, ... ,n}, then there is at least one t;, with j # i, for

which T; Ny is (h — 2n)-dimensional, that is, for which t; Ny = t; N 1;.

Proof: Assume, by way of contradiction, that for any j # i we have that t; Ny is
(h — 2n — 1)-dimensional. Now we count in two ways the number of pairs (z, ;), with
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€y —m,z €1j,and j # i. We obtain

thn _ qnfl a1 el qh72n -1
—_— . q 2 — q 0] S
g—1 g—1
clearly a contradiction. .

h+1
2

Theorem 4.2 Let O be a semi-pseudo-ovoid in PG(h, q), with |O| = 1+ q 2 . Then the
tangent spaces of O form a semi-pseudo-ovoid O* in the dual space of PG(h, q).

Proof: Let O = {m|,m, ..., my}, withn =1+ q%, and let 7; be the tangent space of
Oatm;,i=1,2,...,n. By Lemma 4.1 the space m; is the intersection of all hyperplanes
y of 7;, for which the space (y, 7;) generated by y and t; is PG(h, q), for all j # i. It
follows that the tangent spaces of O form a semi-pseudo-ovoid O* in the dual space of
PG(h, q). O

The semi-pseudo-ovoid O* will be called the translation dual of the semi-pseudo-
ovoid O.

5. Particular semi-pseudo-ovoids
5.1.  «-Regular semi-pseudo-ovoids

A semi-pseudo-ovoid O in PG(h, g) is called «a-regular if any n-dimensional subspace
containing any element 7 € O but not contained in the tangent space of O at m, has a
point in common with exactly « elements of O — {r}. Any pseudo-oval and pseudo-ovoid
is 1-regular. «-Regular semi-ovals were studied in Blokhuis and Szonyi [1].

It is easily deduced, by considering all n-dimensional subspaces containing a given
7 € O, that if the semi-pseudo-ovoid O is a-regular, then [O] — 1 = aqh’z’l“.

Further Theorem 2.1 has an immediate corollary bounding c.

Corollary 5.1 If O is an a-regular semi-pseudo-ovoid consisting of PG(n — 1, q) in
h+1
PG(h, g), then a < q2n—7.

Proof: Since |O| — 1 = ag"~2"*!, and |0| — 1 < q% by Theorem 2.1, we obtain
a < qz"’%. O

5.2.  SPG-reguli satisfying the polar property

An SPG-regulusis aset R of (n —1)-dimensional subspaces 7y, . .., m,, r > 1, of PG(h, q),
satisfying:

(@) mi Nmw; =P foralli # j.
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(b) If PG(n, q) contains m;, then it has a point in common with 0 or « (o > 0) spaces in
R\{m;}. If PG(n, q) contains 7r; and has no point in common with 7 ; for all j # i, then
it is called a tangent of R at m;.

(c) Ifthe point x of PG(#, ¢) is not contained in an element of R it is contained in a constant
number 8 (6 > 0) of tangents of R.

SPG-reguli were introduced by Thas in [12] and give rise to semipartial geometries.

An SPG-regulus satisfies the polar property if h > 2n — 1 and the union of tangents
at each element 7r; of R is a PGV (h —n,q) =: t; (i € {1,...,r}) which will be called
the tangent space of R at 7;; see De Winter and Thas [4]. Clearly SPG-reguli satisfying
the polar property are exactly «-regular semi-pseudo-ovoids O, such that the number of
tangent spaces on any point not in an element of O, is a constant.

Theorem 5.2 A semi—&Sfudo—ovoid O is an SPG-regulus satisfying the polar property if
andonly if 0| =1+¢'7 .

Proof: First, suppose that O is an SPG-regulus satisfying the polar property. Then |O] =
144> by Thas [12].

Next, suppose that O is a semi-pseudo-ovoid satisfying |0 = 1 + qh%l. Let O =
{1, 72, ..., my} and let 7; be the tangent space of O at 7;, i = 1,2, ..., n. Further, let
PG(n, q) contain r;, with PG(n, q) ¢ 7;. Let @ be the number of elements of O — {;}
intersecting PG(n, g). Now we count in two ways the number of pairs (;, ¢), with7; C ¢,
Jj # i, ¢ ahyperplane containing PG(n, g). We obtain

qh—2n+l —1 il qh—2n —1 qh—n _ qn—l &;H

L +@* - P e —

Hence o = qz"’%. As « is independent from i and the choice of PG(n, ¢), it follows that
O is an SPG-regulus. O

The problem on weak eggs in PG(4n — 1, ¢) mentioned in Section 2.2 now generalizes
in a natural way to the following problem. Suppose O = {7, 72, ..., m,;} is a set of
n=1+ q% mutually disjoint (n — 1)-dimensional spaces in PG(%, ¢g). Further suppose
that every n-dimensional space containing 7;, withi = 1, 2, ..., n, intersects either O or
o= qz"_% elements of O — {m;}. It is an open problem whether or not O is a semi-pseudo-
ovoid (and hence an SPG-regulus). Notice that for 4 = 4n — 1 this problem is exactly the
problem for weak eggs mentioned before.

Theorem 5.3  If O is a semi-pseudo-ovoid with |0 = 1+¢q %, then the translation dual
O* of O is also an SPG-regulus satisfying the polar property.

Proof: Immediate from Theorems 4.2 and 5.2. O

A generalized semi-pseudo-ovoid O = {my, 7, ..., m,}inPG(h, q)isasetof n mutually
disjoint (n — 1)-dimensional spaces in PG(%, ¢g), with & > 2n — 1, such that the union of the
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n-dimensional subspaces containing 7;, i = 1,2, ..., n, and disjoint from all 7r;, j # i,
contains an (h — n)-dimensional space.

There is a variant of Theorem 5.2 for generalized semi-pseudo-ovoids that can be useful,
as it is sometimes easy to check that on any 7; there is an (h — n)-dimensional space T;
disjoint from 7;, for every j # i, but difficult to check that every n-dimensional space
containing 77;, but not contained in 7;, has non-empty intersection with O — ;.

Theorem 5.4 Let O be a generalized semi-pseudo-ovoid inPG(h, q), with|0| = 1+q -
Then O is an SPG-regulus satisfying the polar property.

Proof: Let O = {my,m, ..., m,} withn =1+ q%, and let 7; be a fixed (h — n)-
dimensional space containing 7z; and disjoint from;, j # i, fori = 1,2, ..., n.Following
the proof of Theorem 3.2 we see that every hyperplane containingno 7;, i = 1,2, ..., 7,
contains exactly 1 + q% elements of O. Now let PG(n, g) be any n-dimensional
space containing 7r; and having non-empty intersection with O — 7. As in the proof of

Theorem 5.2 we find that PG(n, ¢) intersects exactly o = qz”’% elements of O — {m;}.
g
~ q_l

having empty intersection with O — ;. We conclude that 7; is the union of all n-dimensional
spaces containing 7r; and having empty intersection with O — m;, i = 1,2, ..., n, thatis,
O is a semi-pseudo-ovoid. Applying Theorem 5.2 finishes the proof. O

We now easily obtain that there are exactly

n-dimensional spaces containing 7r; and

As an application we give a very short proof of a theorem of Luyckx [6] and provide a
variant on Theorem 2.2, but first we give the definition of an m-system.

An m-system M of a finite (non-singular) classical polar space P is a set, of maximal
possible size, of mutually disjoint totally singular m-dimensional subspaces of P with the
property that no generator (that is, a maximal totally singular subspace) of P that contains
an element of M intersects any other element of M. We have | M| = | P|/|generator|, as
is shown in Shult and Thas [10] where m-systems were introduced.

Each m-system M of the polar space P, for which any (:m + 1)-dimensional subspace
containing any 7 € M and not contained in 7+ if P is defined by a polarity, or not
contained in the tangent space of P at & if P is a quadric in even dimension over a field
with characteristic two, has a point in common with at least one element of M — {7},
provides an example of a semi-pseudo-ovoid.

Corollary 5.5 (Luyckx [6]) Let O be an m-system of the polar space P € {Q~(2n +
1, q), Want1(q), H2n, q)}, but not a spread of Wy, +1(q). Then O is an SPG-regulus of the
ambient space of P satisfying the polar property.

Proof: If we denote the ambient space of P as PG(k, ¢) then in each case there holds
h+1 .. . . . . .

|O| =1+ g 2 . Furthermore, the definition of an m-system implies immediately that O is

a generalized semi-pseudo-ovoid. The result now follows from Theorem 5.4. O
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The following variant of Theorem 2.2 shows that in the original definition of pseudo-
ovoid O(n, 2n, q) the restriction that every three distinct elements of O(n, 2n, g¢) should
generate a PG(3n — 1, g) is superfluous.

Corollary 5.6 Let O be a generalized semi-pseudo-ovoid consisting of 1 + q*" mutually
disjoint (n — 1)-dimensional spaces in PG(4n — 1, q). Then O is a pseudo-ovoid.

Proof: Theorem 5.4 implies that O is an SPG-regulus with « = 1. Hence every three
distinct elements of O generate a (3n — 1)-dimensional space, that is, O is a pseudo-ovoid.
O

6. Derivation of semi-pseudo-ovoids

In this final section we show how new semi-pseudo-ovoids can be constructed from old
ones without changing the size of the semi-pseudo-ovoid.

Theorem 6.1 Let O = {m, 7, ..., my} be a semi-pseudo-ovoid consisting of (n — 1)-
dimensional spaces in PG(h, q), withn = 1+q . Let T; be the tangent space of O at ;.
Suppose that the tangent spaces 11, Tz, ..., Ty have a PG(h — 2n, q) =: Il in common. If
{71, T2, ..., 7} is a set of mutually disjoint (n — 1)-dimensional spaces covering exactly
the same point set as myUmpU- - -Umg, then O = (OU{my, 3, ..., ) —{m, mo, ..., T}
is also a semi-pseudo-ovoid and hence an SPG-regulus satisfying the polar property.

Proof: Clearly 7; has empty intersection with the elements of O — {r;},ifi ¢ {1,2, ..., s).
Furthermore it is obvious that the (h — n)-dimensional space (77;, IT) has empty intersec-
tion with the elements of O — {7;}, j = 1,2, ..., s. We conclude that O is a generalized

semi-pseudo-ovoid with |0 = 1+ ¢ “T". Theorem 5.4 finishes the proof. O

This theorem generalizes a result from De Winter and Thas [4], where this is shown to
be true if O is a set of 1 + ¢ lines in PG(5, ¢) arising from a Buekenhout-Metz unital in
PG(2, ¢?). It is also not so difficult to see that it is a generalization of a result of Luyckx
and Thas [7] on derivation of m-systems as well.
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