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ON SEMI-RIEMANNIAN MANIFOLDS SATISFYING SOME GENERALIZED
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Zafindratafa

Dedicated to the memory of Professor Oldřich Kowalski (1936–2021)

Abstract. The difference tensor R · C − C · R of a semi-Riemannian manifold (M,g), dimM ≥ 4,
formed by its Riemann-Christoffel curvature tensor R and the Weyl conformal curvature tensor C, under
some assumptions, can be expressed as a linear combination of (0, 6)-Tachibana tensors Q(A,T ), where
A is a symmetric (0, 2)-tensor and T a generalized curvature tensor. These conditions form a family of
generalized Einstein metric conditions. In this survey paper we present recent results on manifolds and
submanifolds, and in particular hypersurfaces, satisfying such conditions.1

1. Introduction

Let (M,g) be a semi-Riemannian manifold. We denote by g, ∇, R, S, κ and C, the metric tensor, the
Levi-Civita connection, the Riemann-Christoffel curvature tensor, the Ricci tensor, the scalar curvature
and the Weyl conformal curvature tensor of (M,g), respectively. Now we can define the (0, 2)-tensors
S2 and S3, the (0, 4)-tensors R · S, C · S and Q(A,B), and the (0, 6)-tensors R · R, R · C, C · R, C · C
and Q(A,T ), where A and B are symmetric (0, 2)-tensors and T a generalized curvature tensor. Thus,
in particular, we have the difference tensor R · C − C · R, or C · R− R · C, [67, Section 1]. Furthermore
for A and B we define their Kulkarni-Nomizu product A∧B. For precise definitions of the symbols used,
we refer to Section 2 of this paper, as well as to [50, Section 1], [54, Section 1], [55, Chapter 6] and [67,
Sections 1 and 2].

A semi-Riemannian manifold (M,g), dimM = n ≥ 2, is said to be an Einstein manifold [3], or an
Einstein space, if at every point of M its Ricci tensor S is proportional to g, i.e.,

S =
κ

n
g(1.1)

on M , assuming that the scalar curvature κ is constant when n = 2. According to [3, p. 432] this condition
is called the Einstein metric condition. Einstein manifolds form a natural subclass of several classes of
semi-Riemannian manifolds which are determined by curvature conditions imposed on their Ricci tensor
[3, Table, pp. 432-433]. These conditions are called generalized Einstein metric conditions [3, Chapter
XVI].

Semi-Riemannian manifolds of dimension ≥ 4 and in particular, hypersurfaces in spaces of constant
curvature or Chen ideal submanifolds in Euclidean spaces, satisfying curvature conditions of the form

(∗) the difference tensor R ·C −C ·R and a finite sum of the Tachibana tensors of the form Q(A,T ) are
linearly dependent,

where A = g, A = S, or A = S2, and T = R, T = C, T = g ∧ g, T = g ∧ S, T = g ∧ S2, T = S ∧ S,
T = S ∧S2, or T = S2 ∧S2, were studied in several papers, see, e.g., [2, 15, 47, 48, 50, 53, 54, 58, 62, 67].
Conditions of this form are also generalized Einstein metric conditions, see, e.g., [42, Section 6] or [67,
Section 1]. We refer to [42] for a survey of results on manifolds satisfying conditions of the form (∗).

Precisely, in that paper results obtained to 2010 are presented. In the next years studies on manifolds
and submanifolds, and in particular hypersurfaces, satisfying such conditions are continued. As it was
already mentioned in Abstract, in this paper we present a survey of recent results on that subject.
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On every semi-Riemannian Einstein manifold (M,g), dimM = n ≥ 4, the following identity is satisfied
[62, Theorem 3.1] (see also [67, p. 107])

R · C − C ·R =
κ

(n− 1)n
Q(g,C).

This, by (1.1) and κ
(n−1)n = κ

n−1 − κ
n
, turns into

C ·R−R · C = Q(S,C)− κ

n− 1
Q(g,C).(1.2)

We mention that there are non-Einstein and non-conformally flat semi-Riemannian manifolds satisfying
(1.2). Namely, every Roter space satisfies (1.2) (see Section 4).

Let (M,g) be a semi-Riemannian manifold of dimension n ≥ 3. We define the subsets UR and US of
M by UR = {x ∈ M |R − κ

2(n−1)n g ∧ g 6= 0 at x} and US = {x ∈ M |S − κ
n
g 6= 0 at x}, respectively. If

n ≥ 4 then we define the set UC ⊂M as the set of all points of (M,g) at which C 6= 0. We note that on
any semi-Riemannian manifold (M,g), dimM = n ≥ 4, we have (see, e.g., [39])

US ∪UC = UR.(1.3)

In Section 3 we present a survey on semi-Riemannian manifolds satisfying curvature conditions known
as pseudosymmetry type curvature conditions. In particular, curvature conditions of the form (∗) are
conditions of this kind.

An extension of the class of Einstein manifolds also form quasi-Einstein, 2-quasi-Einstein and partially
Einstein manifolds. These manifolds satisfy some pseudosymmetry type curvature conditions (see Section
4).

In Section 5 we consider warped product manifolds M ×F Ñ with a 2-dimensional semi-Riemannian

manifold (M,g), a warping function F and an (n − 2)-dimensional semi-Riemannian manifold (Ñ , g̃),

n ≥ 4, assuming that (Ñ , g̃) is a space of constant curvature when n ≥ 5. Such manifolds satisfy some
pseudosymmetry type curvature conditions (see Theorems 5.1 and 5.2). We mention that the warped

product manifolds M×F Ñ , with a 2-dimensional Riemannian manifold (M,g) and an (n−2)-dimensional
unit sphere S

n−2, n ≥ 4, where the warping function F is a solution of some second order quasilinear
elliptic partial differential equation in the plane are related to Chen ideal submanifolds (see Section 11
for details).

Section 6 contains results on semi-Riemannian manifolds (M,g) of dimension ≥ 4 satisfying the follow-
ing generalized Einstein metric condition on US ∩ UC ⊂M

R · C − C ·R = LQ(S,C),(1.4)

where L is some function on this set.
Let Nn+1

s (c), n ≥ 4, be a semi-Riemannian space of constant curvature with signature (s, n + 1 − s),

where c = κ̃
n(n+1) and κ̃ is its scalar curvature. Let M be a connected hypersurface isometrically immersed

in Nn+1
s (c). We denote by UH ⊂M the set of all points at which the tensor H2 is not a linear combination

of the metric tensor g and the second fundamental tensor H of M . We can verify that UH ⊂ US∩UC ⊂M
(see, e.g., [80, p. 137]). We note that

H2 = αH + β g(1.5)

on (US ∩ UC) \ UH , where α and β are some functions defined on this set.
As it was stated in [46, Corollary 4.1], for a hypersurface M in Nn+1

s (c), n ≥ 4, if at every point of
UH ⊂M one of the tensors R · C, C ·R or R · C − C ·R is a linear combination of the tensor R ·R and
a finite sum of the Tachibana tensors of the form Q(A,T ), where A is a symmetric (0, 2)-tensor and T a
generalized curvature tensor, then the following equation is satisfied on UH

H3 = tr(H)H2 + ψH + ρ g,(1.6)
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where ψ and ρ are some functions on UH . We also mention that if the condition

R · C − C · R = Q(g, T ),

where T is a generalized curvature tensor, holds on the set UH of a hypersurface M in Nn+1
s (c), n ≥ 4,

then the tensor T is a linear combination of the tensors: R, g ∧ g, g ∧ S, S ∧ S and g ∧ S2 [53, Theorem
5.2 (iii)].

In Section 7 we present results on 2-quasi-umbilical hypersurfaces in Nn+1
s (c), n ≥ 4, contained in

[52]. In particular (see Theorem 7.3), we present curvature properties of a minimal 2-quasi-umbilical
hypersurface M in an Euclidean space E

n+1, n ≥ 4, having exactly three distinct principal curvatures λ1,
λ2 and λ3 satisfying at every point of M : λ1 = 0, λ2 = −(n − 2)λ and λ3 = λ4 = . . . = λn = λ 6= 0,
where λ is a non-zero function on M . It is easy to check that tr(H) = 0 and

H3 = φH2 + ψH(1.7)

on UH ⊂ M , where φ = −(n − 3)λ and ψ = (n − 2)λ2. Because tr(H) 6= φ at every point of UH , (1.6)
is not satisfied on UH . Now, in view of the presented above result (i.e., [46, Corollary 4.1]), we conclude
that the difference tensor R ·C −C ·R of the considered hypersurface M cannot be expressed on UH as a
linear combination of certain Tachibana tensors of the form Q(A,T ), where A is a symmetric (0, 2)-tensor
and T a generalized curvature tensor. The tensor R · C − C · R of that hypersurface we can express, for
instance, by (7.7). In this section we also present results on type number two hypersurfaces in Nn+1

s (c),
n ≥ 3.

Results on hypersurfaces in Nn+1
s (c), n ≥ 4, satisfying some special generalized Einstein metric condi-

tions of the form (∗) are given in Sections 8, 9 and 10. In Section 8 we present results on hypersurfaces
M in a semi-Riemannian space of constant curvature Nn+1

s (c), n ≥ 4, satisfying (1.6) on UH ⊂ M ,
for some functions ψ and ρ on UH . Among other things it was stated that some generalized Einstein
metric condition of the form (∗) is satisfied on UH (see Theorem 8.3). Sections 9 and 10 contain results
on quasi-Einstein and non-quasi-Einstein hypersurfaces in semi-Riemannian spaces of constant curvature
Nn+1

s (c), n ≥ 4, satisfying on US ∩ UC ⊂M the conditions: (1.4) and

R · C − C · R = L1Q(S,C) + L2Q(g,C),(1.8)

where L, L1 and L2 are some functions defined on this set.
In Section 11 we present results on non-Einstein and non-conformally flat Chen ideal submanifolds

satisfying some generalized Einstein metric conditions of the form (∗). For instance, Theorems 11.5, 11.8
and 11.11 (see Theorems 5, 6 and 7 of [67]) contain results on Chen ideal submanifolds M in E

n+m, n ≥ 4,
m ≥ 1, satisfying the following conditions of the form (∗): (1.8),

R · C −C · R = L3Q(g,R) + L4Q(S,R),(1.9)

R · C −C · R = L5Q(g, g ∧ S) + L6Q(S, g ∧ S),(1.10)

respectively, where L3, L4, L5 and L6 are some functions defined on M .

2. Preliminaries.

Throughout this paper, all manifolds are assumed to be connected paracompact manifolds of class C∞.
Let (M,g), dimM = n ≥ 3, be a semi-Riemannian manifold, and let ∇ be its Levi-Civita connection and
Ξ(M) the Lie algebra of vector fields on M . We define on M the endomorphisms X ∧A Y and R(X,Y )
of Ξ(M) by

(X ∧A Y )Z = A(Y,Z)X −A(X,Z)Y,

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,
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respectively, where X,Y,Z ∈ Ξ(M) and A is a symmetric (0, 2)-tensor on M . The Ricci tensor S, the
Ricci operator S and the scalar curvature κ of (M,g) are defined by

S(X,Y ) = tr{Z → R(Z,X)Y }, g(SX,Y ) = S(X,Y ), κ = tr S,

respectively. The endomorphism C(X,Y ) is defined by

C(X,Y )Z = R(X,Y )Z − 1

n− 2
(X ∧g SY + SX ∧g Y − κ

n− 1
X ∧g Y )Z.

Now the (0, 4)-tensor G, the Riemann-Christoffel curvature tensor R and the Weyl conformal curvature
tensor C of (M,g) are defined by

G(X1,X2,X3,X4) = g((X1 ∧g X2)X3,X4),

R(X1,X2,X3,X4) = g(R(X1,X2)X3,X4),

C(X1,X2,X3,X4) = g(C(X1,X2)X3,X4),

respectively, where X1,X2, . . . ∈ Ξ(M). For a symmetric (0, 2)-tensor A we denote by A the endo-
morphism related to A by g(AX,Y ) = A(X,Y ). The (0, 2)-tensors Ap, p = 2, 3, . . ., are defined by
Ap(X,Y ) = Ap−1(AX,Y ), assuming that A1 = A. In this way, for A = S and A = S we get the tensors
Sp, p = 2, 3, . . ., assuming that S1 = S.

Let B be a tensor field sending any X,Y ∈ Ξ(M) to a skew-symmetric endomorphism B(X,Y ), and
let B be the (0, 4)-tensor associated with B by

B(X1,X2,X3,X4) = g(B(X1,X2)X3,X4).(2.1)

The tensor B is said to be a generalized curvature tensor if the following two conditions are fulfilled:

B(X1,X2,X3,X4) = B(X3,X4,X1,X2),

B(X1,X2,X3,X4) +B(X2,X3,X1,X4) +B(X3,X1,X2,X4) = 0.

For B as above, let B be again defined by (2.1). We extend the endomorphism B(X,Y ) to a derivation
B(X,Y )· of the algebra of tensor fields on M , assuming that it commutes with contractions and B(X,Y ) ·
f = 0 for any smooth function f on M . Now for a (0, k)-tensor field T , k ≥ 1, we can define the (0, k+2)-
tensor B · T by

(B · T )(X1, . . . ,Xk,X, Y ) = (B(X,Y ) · T )(X1, . . . ,Xk)

= −T (B(X,Y )X1,X2, . . . ,Xk)− · · · − T (X1, . . . ,Xk−1,B(X,Y )Xk).

If A is a symmetric (0, 2)-tensor then we define the (0, k + 2)-tensor Q(A,T ) by

Q(A,T )(X1, . . . ,Xk,X, Y ) = (X ∧A Y · T )(X1, . . . ,Xk)

= −T ((X ∧A Y )X1,X2, . . . ,Xk)− · · · − T (X1, . . . ,Xk−1, (X ∧A Y )Xk).

In this manner we obtain the (0, 6)-tensors B · B and Q(A,B).
Substituting in the above formulas B = R or B = C, T = R or T = C or T = S, A = g or A = S we

get the tensors R ·R, R ·C, C ·R, C ·C, R ·S, Q(g,R), Q(S,R), Q(g,C), Q(S,C), and Q(g, S), Q(g, S2),
Q(S, S2).

For a symmetric (0, 2)-tensor E and a (0, k)-tensor T , k ≥ 2, we define their Kulkarni-Nomizu tensor
E ∧ T by (see, e.g., [39, Section 2])

(E ∧ T )(X1,X2,X3,X4;Y3, . . . , Yk)

= E(X1,X4)T (X2,X3, Y3, . . . , Yk) + E(X2,X3)T (X1,X4, Y3, . . . , Yk)

−E(X1,X3)T (X2,X4, Y3, . . . , Yk)− E(X2,X4)T (X1,X3, Y3, . . . , Yk).
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It is obvious that the following tensors are generalized curvature tensors: R, C and E ∧ F , where E and
F are symmetric (0, 2)-tensors. We have

C = R− 1

n− 2
g ∧ S +

κ

(n− 2)(n − 1)
G,(2.2)

G =
1

2
g ∧ g,(2.3)

and (see, e.g., [39, Lemma 2.2(i)])

(a) Q(E,E ∧ F ) = −1

2
Q(F,E ∧ E),

(b) E ∧Q(E,F ) = −1

2
Q(F,E ∧ E).(2.4)

By an application of (2.4)(a) we obtain on M the identities

Q(g, g ∧ S) = −Q(S,G), Q(S, g ∧ S) = −1

2
Q(g, S ∧ S).(2.5)

Further, by making use of (2.2), (2.3) and (2.5), we get immediately

Q(g,C) = Q(g,R) − 1

n− 2
Q(g, g ∧ S) + κ

(n− 2)(n − 1)
Q(g,G)

= Q(g,R) − 1

n− 2
Q(g, g ∧ S),

Q(S,C) = Q(S,R)− 1

n− 2
Q(S, g ∧ S) + κ

(n− 2)(n − 1)
Q(S,G)

= Q(S,R) +
1

2(n − 2)
Q(g, S ∧ S)− κ

(n− 2)(n − 1)
Q(g, g ∧ S).

Let E1, E2 and F be symmetric (0, 2)-tensors. We have (see, e.g., [15, Lemma 2.1(i)] and references
therein)

E1 ∧Q(E2, F ) + E2 ∧Q(E1, F ) +Q(F,E1 ∧E2) = 0.(2.6)

From (2.6) we get easily (see also [39, Lemma 2.2(iii)] and references therein)

Q(F,E ∧ E1) +Q(E,E1 ∧ F ) +Q(E1, F ∧E) = 0.

We denote by gij , g
ij , Rhijk, Sij, Chijk, (R · S)hklm, Q(g, S)hklm, Q(g,R)hijklm, Q(S,R)hijklm, (R ·

C)hijklm and (C · R)hijklm, the local components of the tensors g, g−1, R, S, C, R · S, Q(g, S), Q(g,R),
Q(S,R), R · C and C · R, respectively. On every semi-Riemannian manifold (M,g), n ≥ 4, the following
identity is satisfied (see, e.g., [42, Section 2])

(n− 2)(R · C − C · R) = Q(S,R)− κ

n− 1
Q(g,R)− g ∧ (R · S) + P,(2.7)

where the (0, 6)-tensor P is defined by

P (X1,X2,X3,X4;X,Y ) = g(X,X1)R(SY,X2,X3,X4)− g(Y,X1)R(SX,X2,X3,X4)

+g(X,X2)R(X1, SY,X3,X4)− g(Y,X2)R(X1, SX,X3,X4)

+g(X,X3)R(X1,X2, SY,X4)− g(Y,X3)R(X1,X2, SX,X4)

+g(X,X4)R(X1,X2,X3, SY )− g(Y,X4)R(X1,X2,X3, SX),
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and X1,X2,X3,X4,X, Y are vector fields on M . The local expression of the identity (2.7) reads

(n − 2)(R · C − C · R)hijklm = Q(S,R)hijklm − κ

n− 1
Q(g,R)hijklm

+ghlAmijk − ghmAlijk − gilAmhjk + gimAlhjk

+gjlAmkhi − gjmAlkhi − gklAmjhi + gkmAljhi

−gij(R · S)hklm − ghk(R · S)ijlm + gik(R · S)hjlm + ghj(R · S)iklm,
where Amijk = grsSmrRsijk and

(R · S)hklm = grs(ShrRsklm + SkrRshlm),

Q(g, S)hklm = ghlSkm + gklShm − ghmSkl − gkmShl,

Q(g,R)hijklm = ghlRmijk + gilRhmjk + gjlRhimk + gklRhijm

−ghmRlijk − gimRhljk − gjmRhilk − gkmRhijl,

Q(S,R)hijklm = ShlRmijk + SilRhmjk + SjlRhimk + SklRhijm

−ShmRlijk − SimRhljk − SjmRhilk − SkmRhijl,

(R · C)hijklm = grs(CrijkRshlm + ChrjkRsilm + ChirkRsjlm + ChijrRsklm),

(C ·R)hijklm = grs(RrijkCshlm +RhrjkCsilm +RhirkCsjlm +RhijrCsklm).

Let A be a symmetric (0, 2)-tensor on a semi-Riemannian manifold (M,g), dimM = n ≥ 3. Let Aij

be the local components of the tensor A. Further, let A2 and A3 be the (0, 2)-tensors with the local
components A2

ij = Airg
rsAsj and A3

ij = A2
irg

rsAsj, respectively. We have trg(A) = tr(A) = grsArs,

trg(A
2) = tr(A2) = grsA2

rs and trg(A
3) = tr(A3) = grsA3

rs. We denote by UA the set of points of M at

which A 6= tr(A)
n

g.

Proposition 2.1. Let A be a symmetric (0, 2)-tensor on a semi-Riemannian manifold (M,g), dimM =
n ≥ 3, such that rankA = 2 on UA ⊂M . Then on this set we have [35, Lemma 2.1; eqs. (2.6) and (2.10)]

A3 = tr(A)A2 +
tr(A2)− (tr(A))2

2
A(2.8)

A ∧A2 =
tr(A)

2
A ∧A.(2.9)

Moreover, the following identity is satisfied on UA

Q(A2,
1

2
A ∧A) = −Q(A,A ∧A2) = −tr(A)

2
Q(A,A ∧A) = 0.(2.10)

Proposition 2.2. Let A be a symmetric (0, 2)-tensor on a semi-Riemannian manifold (M,g), dimM =
n ≥ 4.
(i) ( [43, Lemma 2.1], see also [41, Proposition 2.1 (i)]) If the following condition is satisfied on UA ⊂M

rank(A− α g) = 1

then

g ∧A2 +
n− 2

2
A ∧A− tr(A) g ∧A+

(tr(A))2 − tr(A2)

2(n − 1)
g ∧ g = 0(2.11)

and

A2 − tr(A2)

n
= (tr(A)− (n− 2)α)

(
A− tr(A)

n
g

)
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on UA, where α is some function on UA.
(ii) [41, Proposition 2.1 (ii)] If (2.11) is satisfied on UA ⊂M then

A2 − tr(A2)

n
g = ρ

(
A− tr(A)

n
g

)

and
(
A− tr(A)− ρ

n− 2
g

)
∧
(
A− tr(A)− ρ

n− 2
g

)
= 0

on UA, where ρ is some function on UA.

Let (M,g) be a semi-Riemannian manifold of dimension dimM = n ≥ 3. We set

E = g ∧ S2 +
n− 2

2
S ∧ S − κ g ∧ S +

κ2 − tr(S2)

2(n − 1)
g ∧ g.(2.12)

It is easy to check that the tensor E is a generalized curvature tensor. In the same way, we define the
(0, 4)-tensor E(A) corresponding to a symmetric (0, 2)-tensor A [41, eq. (1.7])

E(A) = g ∧A2 +
n− 2

2
A ∧A− trg(A) g ∧A+

(tr(A))2 − tr(A2)

2(n− 1)
g ∧ g.(2.13)

Let T be a generalized curvature tensor on a semi-Riemannian manifold (M,g), dimM = n ≥ 4. We
denote by Ric(T ), κ(T ) and Weyl(T ) the Ricci tensor, the scalar curvature and the Weyl tensor of the
tensor T , respectively. We refer to [39, Section 2], [40, Section 3] or [47, Section 3] for definitions of the
considered tensors. In particular, we have

Weyl(T ) = T − 1

n− 2
g ∧ Ric(T ) +

κ(T )

2(n− 2)(n − 1)
g ∧ g.

Let A be a symmetric (0, 2)-tensor on a semi-Riemannian manifold (M,g), dimM = n ≥ 3. Let E(A)
be the tensor defined by (2.13). It is easy to check that Ric(E(A)) is a zero tensor. Therefore, we also
have κ(E(A)) = 0. Any generalized curvature tensor T defined on a 3-dimensional semi-Riemannian
manifold (M,g) is expressed by T = g ∧Ric(T )− (κ(T )/4)g ∧ g (see [41, Section 2, p. 383] and references
therein). Thus we see that the tensor T = E(A) on any 3-dimensional semi-Riemannian manifold (M,g)
is a zero tensor. In particular, on any 3-dimensional semi-Riemannian manifold (M,g) we have E = 0.

Proposition 2.3. [41, Proposition 2.2] Let T be a generalized curvature tensor on a semi-Riemannian
manifold (M,g), dimM = n ≥ 4. If the following condition is satisfied at a point x ∈M

T = α1R+
α2

2
S ∧ S + α3 g ∧ S + α4 g ∧ S2 +

α5

2
g ∧ g

then

Weyl(T ) = α1 C +
α2

n− 2
E

at this point, where the tensor E is defined by (2.12) and α1, . . . , α5 ∈ R.

According to [35], a generalized curvature tensor T on a semi-Riemannian manifold (M,g), dimM =
n ≥ 4, is called a Roter type tensor if

T =
φ

2
Ric(T ) ∧Ric(T ) + µ g ∧Ric(T ) + η G(2.14)

on URic(T ) ∩ UWeyl(T ), where φ, µ and η are some functions on this set. Manifolds admitting Roter type
tensors were investigated (e.g.) in [90]. We have
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Proposition 2.4. Let T be a generalized curvature tensor on a semi-Riemannian manifold (M,g),
dimM = n ≥ 4, satisfying (2.14) on URic(T ) ∩ UWeyl(T ) ⊂ M . Then the following relations hold on
this set
(i) [47, Proposition 3.2]

(Ric(T ))2 = α1Ric(T ) + α2 g,

α1 = κ(T ) + φ−1((n− 2)µ − 1), α2 = φ−1(µκ(T ) + (n− 1)η),

(a) T · T = LT Q(g, T ), LT = φ−1
(
(n− 2)(µ2 − φη)− µ

)
,

(b) T ·Weyl(T ) = LT Q(g,Weyl(T )),

(c) T · T = Q(Ric(T ), T ) + (LT + φ−1µ)Q(g,Weyl(T )),

Weyl(T ) · T = LWeyl(T )Q(g, T ), LWeyl(T ) = LT +
1

n− 2

(
κ(T )

n− 1
− α1

)
,(2.15)

Weyl(T ) ·Weyl(T ) = LWeyl(T )Q(g,Weyl(T )),(2.16)

Weyl(T ) · T = Q(Ric(T ),Weyl(T )) +

(
LT − κ(T )

n− 1

)
Q(g,Weyl(T )).

We also have

T ·Weyl(T )−Weyl(T ) · T =

(
(n− 1)µ − 1

(n− 2)φ
+
κ(T )

n− 1

)
Q(g, T )

+
1

n− 2
Q(Ric(T ), T ) +

µ((n− 1)µ − 1)− (n− 1)φη

(n− 2)φ
Q(Ric(T ), G),

and, equivalently,

T ·Weyl(T )−Weyl(T ) · T =

(
φ−1

(
µ− 1

n− 2

)
+
κ(T )

n− 1

)
Q(g, T )

+

(
φ−1µ

(
µ− 1

n− 2

)
− η

)
Q(Ric(T ), G).

(ii) [90, Sections 1 and 4]

Q(Ric(T ),Weyl(T )) = φ−1

(
1

n− 2
− µ

)
Q(g, T )

+
1

n− 2

(
LT − κ(T )

n− 1

)
Q(g, g ∧Ric(T )).

Moreover, if LT = κ(T )
n−1 , resp., κ(T ) = 0, then we have

Q(Ric(T ),Weyl(T )) = LWeyl(T )Q(g, T ),

and

T ·Weyl(T )−Weyl(T ) · T = −Q(Ric(T ),Weyl(T )),

respectively. Moreover, if LWeyl(T ) = 0 at a point of URic(T ) ∩ UWeyl(T ) then at this point we have

φ−1

(
1

n− 2
− µ

)
(T ·Weyl(T )−Weyl(T ) · T )

= (n− 2)

(
φ−1µ

(
µ− 1

n− 2

)
− η

)
Q(Ric(T ),Weyl(T )).
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For further results on generalizing curvature tensors satisfying some conditions we refer to [40, Section
3].

Let A be a symmetric (0, 2)-tensor and T a (0, k)-tensor, k = 2, 3, . . .. The tensor Q(A,T ) is called the
Tachibana tensor of A and T , or the Tachibana tensor for short (see, e.g., [53]). Using the tensors g, R
and S we can define the following (0, 6)-Tachibana tensors: Q(S,R), Q(g,R), Q(g, g∧S) and Q(S, g∧S).
We can check, by making use of (2.4)(a) and (2.5), that other (0, 6)-Tachibana tensors constructed from
g, R and S may be expressed by the four Tachibana tensors mentioned above or vanish identically on M .

According to [50, eq. (1.13), Theorem 3.4 (i)] the following identity is satisfied on any semi-Riemannian
manifold (M,g) of dimension n ≥ 4

C · R+R · C = R · R+ C · C − 1

(n− 2)2
Q

(
g, g ∧ S2 − κ

n− 1
g ∧ S

)
.(2.17)

From (2.17), by a suitable contraction, we get (cf. [52, Lemma 2.3], [60, p. 217])

C · S = R · S − 1

n− 2
Q

(
g, S2 − κ

n− 1
S

)
.

Let (M,g) and (Ñ , g̃), dimM = p, dim Ñ = n− p, 1 ≤ p < n, be semi-Riemannian manifolds covered
by systems of charts {U ;xa} and {V ; yα}, respectively. Let F be a positive smooth function on M . It is

well known that the warped product M ×F Ñ of (M,g) and (Ñ , g̃) is the product manifold M × Ñ with
the metric g = g ×F g̃ defined by (see, e.g., [103, 106])

g ×F g̃ = π∗1g + (F ◦ π1)π∗2 g̃,

where π1 :M×Ñ −→M and π2 :M×Ñ −→ Ñ are the natural projections on M and Ñ , respectively. Let

{U ×V ;x1, . . . , xp, xp+1 = y1, . . . , xn = yn−p} be a product chart for M× Ñ . The local components gij of
the metric g = g×F g̃ with respect to this chart are the following gij = gab if i = a and j = b, gij = F g̃αβ
if i = α and j = β, and gij = 0 otherwise, where a, b, c, d, f ∈ {1, . . . , p}, α, β, γ, δ ∈ {p + 1, . . . , n} and
h, i, j, k, r, s ∈ {1, 2, . . . , n}. We will denote by bars (resp., by tildes) tensors formed from g (resp., g̃).
The local components

Γh
ij =

1

2
ghs(∂igjs + ∂jgis − ∂sgij), ∂j =

∂

∂xj
,

of the Levi-Civita connection ∇ of M ×F Ñ are the following (see, e.g., [103]):

Γa
bc = Γ

a
bc, Γα

βγ = Γ̃α
βγ , Γa

αβ = −1

2
ḡabFbg̃αβ , Γα

aβ =
1

2F
Faδ

α
β ,

Γa
αb = Γα

ab = 0, Fa = ∂aF =
∂F

∂xa
, ∂a =

∂

∂xa
.

The local components

Rhijk = ghsR
s
ijk = ghs(∂kΓ

s
ij − ∂jΓ

s
ik + Γr

ijΓ
s
rk − Γr

ikΓ
s
rj), ∂k =

∂

∂xk
,

of the Riemann-Christoffel curvature tensor R and the local components Sij of the Ricci tensor S of the

warped product M ×F N which may not vanish identically are the following:

Rabcd = Rabcd, Rαabβ = −1

2
Tabg̃αβ , Rαβγδ = FR̃αβγδ −

1

4
∆1F G̃αβγδ ,

Sab = Sab −
n− p

2

1

F
Tab, Sαβ = S̃αβ − 1

2
(tr(T ) +

n− p− 1

2F
∆1F )g̃αβ ,
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where

Tab = ∇bFa −
1

2F
FaFb, tr(T ) = gabTab = ∆F − 1

2F
∆1F,

∆F = ∆gF = gab∇aFb, ∆1F = ∆1gF = gabFaFb ,

and T is the (0, 2)-tensor with the local components Tab. We can express the scalar curvature κ of M×F Ñ
by

κ = κ+
1

F
κ̃− n− p

F
(tr(T ) +

n− p− 1

4F
∆1F ) = κ+

1

F
κ̃− n− p

F
(∆F +

n− p− 3

4F
∆1F ).

3. Pseudosymmetry type curvature conditions

It is well-known that if a semi-Riemannian manifold (M,g), dimM = n ≥ 3, is locally symmetric
then ∇R = 0 on M (see, e.g., [104, Chapter 1.5]). This implies the following integrability condition
R(X,Y ) ·R = 0, in short

R ·R = 0.(3.1)

Semi-Riemannian manifold satisfying (3.1) is called semisymmetric [116] (see also [5, Chapter 8.5.3], [9,
Chapter 20.7], [104, Chapter 1.6], [117, 118, 123]).

Semisymmetric manifolds form a subclass of the class of pseudosymmetric manifolds. A semi-Rieman-
nian manifold (M,g), dimM = n ≥ 3, is said to be pseudosymmetric if the tensors R ·R and Q(g,R) are
linearly dependent at every point of M (see, e.g., [5, Chapter 8.5.3], [9, Chapter 20.7], [11, Section 15.1],
[55, Chapter 6], [104, Chapter 12.4], [34, 39, 42, 55, 71, 83, 84, 113, 120, 122, 123, 124] and references
therein). This is equivalent to

R · R = LRQ(g,R)(3.2)

on UR ⊂ M , where LR is some function on UR. Every semisymmetric manifold is pseudosymmetric.
The converse statement is not true (see, e.g., [71]). A non-semisymmetric pseudosymmetric manifold
is called properly pseudosymmetric. A pseudosymmetric manifold (M,g), dimM = n ≥ 3, is called a
pseudosymmetric manifold of constant type if the function LR is constant on UR [98] (see also [85, 87,
99, 100, 101, 102]).

A semi-Riemannian manifold (M,g), dimM = n ≥ 3, is called Ricci-pseudosymmetric if the tensors
R · S and Q(g, S) are linearly dependent at every point of M (see, e.g., [5, Chapter 8.5.3], [11, Section
15.1], [42]). This is equivalent on US ⊂M to

R · S = LS Q(g, S),(3.3)

where LS is some function on US . Every warped product manifold M ×F Ñ with a 1-dimensional

(M,g) manifold and an (n − 1)-dimensional Einstein semi-Riemannian manifold (Ñ , g̃), n ≥ 3, and a
warping function F , is a Ricci-pseudosymmetric manifold, see, e.g., [15, Section 1] and [50, Example 4.1].
According to [82], a Ricci-pseudosymmetric manifold (M,g), dimM = n ≥ 3, is called a Ricci-pseudo-
symmetric manifold of constant type if the function LS is constant on US .

A semi-Riemannian manifold (M,g), dimM = n ≥ 4, is said to be Weyl-pseudosymmetric if the tensors
R · C and Q(g,C) are linearly dependent at every point of M [39, 42]. This is equivalent on UC ⊂M to

R · C = L1Q(g,C),(3.4)

where L1 is some function on UC . We can easily check that on every Einstein manifold (M,g), dimM ≥ 4,
(3.4) turns into

R ·R = L1Q(g,R).
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For a presentation of results on the problem of the equivalence of pseudosymmetry, Ricci-pseudosym-
metry and Weyl-pseudosymmetry we refer to [42, Section 4]. Inclusions between mentioned above semi-
Riemannian manifolds (M,g), i.e., pseudosymmetric, Ricci-pseudosymmetric and Weyl-pseudosymmetric
manifolds, can be presented in the following diagram [42, Section 4]

R · S = LSQ(g, S) ⊃ R · R = LRQ(g,R) ⊂ R · C = LCQ(g,C)

⊂ ⊂ ⊂

R · S = 0 ⊃ R ·R = 0 ⊂ R · C = 0

⊂ ⊂ ⊂

∇S = 0 ⊃ ∇R = 0 ⊂ ∇C = 0

⊂ ⊂ ⊂

S =
κ

n
g ⊃ R =

κ

(n− 1)n
G ⊂ C = 0

All inclusions in the above presentation are strict, provided that dimM = n ≥ 4.
A semi-Riemannian manifold (M,g), dimM = n ≥ 4, is said to be a manifold with pseudosymmetric

Weyl tensor (to have a pseudosymmetric conformal Weyl tensor) if the tensors C · C and Q(g,C) are
linearly dependent at every point of M (see, e.g., [11, Section 15.1], [39, 42, 50]). This is equivalent on
UC ⊂M to

C · C = LC Q(g,C),(3.5)

where LC is some function on UC . Every warped product manifold M ×F Ñ , with dim M = dim Ñ =
2, satisfies (3.5) (see, e.g., [39, 42, 50] and references therein). Thus in particular, the Schwarzschild
spacetime, the Kottler spacetime and the Reissner-Nordström spacetime satisfy (3.5). Semi-Riemannian
manifolds with pseudosymmetric Weyl tensor were investigated among others in [39, 59, 72, 75].

We can show that C ·R = LQ(g,R) implies C ·C = LQ(g,C) (see [105, Proposition 2.1]). Let (M,g),
dimM = n ≥ 4, be a semi-Riemannian manifold satisfying C ·R = LQ(g,R) on UC ⊂M . From this we
get easily C · S = LQ(g, S) on UC . Further, we have

C · C = C ·
(
R− 1

n− 2
g ∧ S +

κ

(n− 2)(n − 1)
G

)

= C ·R− 1

n− 2
g ∧ (C · S) + κ

(n− 2)(n − 1)
C ·G

= LQ(g,R) − L

n− 2
g ∧Q(g, S)

= LQ(g,R) − L

n− 2
Q(g, g ∧ S) = LQ(g,R − 1

n− 2
g ∧ S)

= LQ(g,R − 1

n− 2
g ∧ S +

κ

(n− 2)(n − 1)
G) = LQ(g,C).

We also have the following diagram
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C · S = LSQ(g, S) ⊃ C · R = LRQ(g,R) ⊂ C · C = LCQ(g,C)

⊂ ⊂ ⊂

C · S = 0 ⊃ C · R = 0 ⊂ C · C = 0

⊂ ⊂ ⊂

S =
κ

n
g ⊃ R =

κ

(n− 1)n
G ⊂ C = 0

All inclusions in the above presentation are strict, provided that dimM = n ≥ 4.

Warped product manifolds M ×F Ñ , of dimension ≥ 4, satisfying on UC ⊂M ×F Ñ , the condition

R ·R−Q(S,R) = LQ(g,C),(3.6)

where L is some function on UC , were studied among others in [20]. In that paper necessary and sufficient

conditions for M ×F Ñ to be a manifold satisfying (3.6) are given. Moreover, in that paper it was proved

that any 4-dimensional warped product manifold M ×F Ñ , with a 1-dimensional base (M,g), satisfies
(3.6) [20, Theorem 4.1].

We refer to [15, 39, 42, 47, 50, 55, 59, 113] for details on semi-Riemannian manifolds satisfying (3.2) and
(3.3)-(3.6), as well other conditions of this kind, named pseudosymmetry type curvature conditions. We
also refer to [59, Section 3] for a recent survey on manifolds satisfying such curvature conditions. It seems
that the condition (3.2) is the most important condition of that family of curvature conditions (see, e.g.,
[50]). The Schwarzschild spacetime, the Kottler spacetime, the Reissner-Nordström spacetime, as well
as the Friedmann-Lemaître-Robertson-Walker spacetimes are the “oldest” examples of pseudosymmetric
warped product manifolds (see, e.g., [50, 55, 71, 113]).

4. Quasi-Einstein, 2-quasi-Einstein and partially Einstein manifolds

A semi-Riemannian manifold (M,g), dimM = n ≥ 3, is said to be a quasi-Einstein manifold if

rank (S − α g) = 1(4.1)

on US ⊂ M , where α is some function on US. It is known that every non-Einstein warped product

manifold M ×F Ñ with a 1-dimensional (M,g) base manifold and a 2-dimensional manifold (Ñ , g̃) or

an (n − 1)-dimensional Einstein manifold (Ñ , g̃) and a warping function F , n ≥ 4, is a quasi-Einstein
manifold (see, e.g., [15, 50]). A Riemannian manifold (M,g), dimM = n ≥ 3, whose Ricci tensor has
an eigenvalue of multiplicity n − 1 is a quasi-Einstein manifold (cf. [36, Introduction]). Evidently, the
converse statement is also true. We mention that quasi-Einstein manifolds arose during the study of
exact solutions of the Einstein field equations and the investigation on quasi-umbilical hypersurfaces of
conformally flat spaces (see, e.g., [42, 50] and references therein). Quasi-Einstein hypersurfaces in semi-
Riemannian spaces of constant curvature were studied among others in [44, 57, 63, 82] (see also [42] and
references therein). Quasi-Einstein manifolds satisfying some pseudosymmetry type curvature conditions
were investigated recently in [2, 15, 39, 47, 59]. We mention that an example of a non-semisymmetric
(R ·R 6= 0) Ricci-semisymmetric (R · S = 0) quasi-Einstein hypersurface M in an Euclidean space E

n+1,
n ≥ 5, was constructed in [1].

A semi-Riemannian manifold (M,g), dimM = n ≥ 3, is called a 2-quasi-Einstein manifold if

rank (S − α g) ≤ 2(4.2)
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on US ⊂ M and rank (S − αg) = 2 on some open non-empty subset of US , where α is some function on
US (see, e.g., [52]).

Every non-Einstein and non-quasi-Einstein warped product manifold M ×F Ñ with a 2-dimensional

base manifold (M,g) and a 2-dimensional manifold (Ñ , g̃) or an (n − 2)-dimensional Einstein semi-

Riemannian manifold (Ñ , g̃), when n ≥ 5, and a warping function F satisfies (4.2) (see, e.g., [50, Theorem
6.1]). Thus some exact solutions of the Einstein field equations are non-conformally flat 2-quasi-Einstein
manifolds. For instance, the Reissner-Nordström spacetime, as well as the Reissner-Nordström-de Sitter
type spacetimes are such manifolds (see, e.g., [90]). It seems that the Reissner-Nordström spacetime
is the "oldest" example of a non-conformally flat 2-quasi-Einstein warped product manifold. It is easy
to see that every 2-quasi-umbilical hypersurface in a semi-Riemannian space of constant curvature is a
2-quasi-Einstein manifold (see, e.g., [52]).

We mention that Einstein warped product manifolds M ×F Ñ , with dimM = 1, 2, were studied in [3,
Chapter 9.J] (see also [3, Chapter 3.F]).

The semi-Riemannian manifold (M,g), dimM = n ≥ 3, will be called a partially Einstein manifold,
or a partially Einstein space (cf. [10, Foreword], [121, p. 20]), if at every point x ∈ US ⊂ M its Ricci
operator S satisfies S2 = λS+ µIdx, or equivalently,

S2 = λS + µ g,(4.3)

where λ, µ ∈ R and Idx is the identity transformation of TxM . Thus every quasi-Einstein manifold is
a partially Einstein manifold. The converse statement is not true. Contracting (4.3) we get tr(S2) =
λκ+ nµ. This together with (4.3) yields (cf. [40, Section 5])

S2 − tr(S2)

n
g = λ

(
S − κ

n
g
)
.(4.4)

In particular, a Riemannian manifold (M,g), dimM = n ≥ 3, is a partially Einstein space if at every
point x ∈ US ⊂ M its Ricci operator S has exactly two distinct eigenvalues (principal Ricci curvatures)
ρ1 = ρ2 = . . . = ρp and ρp+1 = ρp+2 = . . . = ρn with multiplicities p and n − p, respectively, where
1 ≤ p ≤ n− 1. Now (4.3) and (4.4) yield

S2 = (ρ1 + ρp+1)S − ρ1ρp+1 g and S2 − tr(S2)

n
g = (ρ1 + ρp+1)

(
S − κ

n
g
)
,(4.5)

respectively. Evidently, if p = 1, or p = n− 1, then (M,g) is a quasi-Einstein manifold.

Remark 4.1. (i) Let (M,g), n = dimM ≥ 3, be a semi-Riemannian manifold. In addition, let (M,g)
be a conformally flat manifold when n ≥ 4. Thus the set UC ⊂ M is an empty set. Now, by (1.3), the
subsets US and UR of M satisfy US = UR. In view of [21, Lemma 1.2] (see also [65, Lemma 2.1]) we
can state that on US any of the following three conditions is equivalent to each other: R ·R = ρQ(g,R),
R · S = ρQ(g, S) and

S2 − tr(S2)

n
g =

(
κ

n− 1
+ (n− 2)ρ

)(
S − κ

n
g
)
.(4.6)

where ρ is some function on US.
(ii) Let (M,g), n = dimM ≥ 3, be a Riemannian manifold with vanishing Weyl conformal curvature
tensor C such that its Ricci operator S has at every point of M exactly two Ricci principal curvatures ρ1
and ρp+1 with multiplicities p and n − p, respectively, where 1 ≤ p < n. Using (4.5) and (4.6) we can
easily check that (M,g) is a pseudosymmetric manifold satisfying (3.2) with

LR = ρ =
1

(n− 2)(n − 1)
((n− 1)(ρ1 + ρp+1)− κ).(4.7)
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Evidently, if p = 1 then (4.7) turns into

LR = ρ =
1

n− 1
ρ1.

(iii) As an immediate consequence of the above presented results we obtain [123, Foreword, p. xviii]:
Riemannian spaces of dimensions ≥ 3 with wanishing Weyl conformal curvature tensor are Deszcz sym-
metric if and only if they are Einstein or "partially Einstein", - partially Einstein spaces being defined by
the condition that their Ricci tensor has precisely two distinct eigenvalues -.
(iv) (cf. [82, Proposition 2.1]) Let (M,g), dimM = n ≥ 3, be a semi-Riemannian manifold. We note that
(4.1) holds at a point x ∈ US ⊂M if and only if (S − α g) ∧ (S − α g) = 0 at x, i.e.,

1

2
S ∧ S − αg ∧ S +

α2

2
g ∧ g = 0.(4.8)

From (4.8), by a suitable contraction, we get immediately

S2 = (κ− (n− 2)α)S + α((n − 1)α− κ) g.(4.9)

Evidently, (4.9) is a special case of (4.3).
(v) Let ρ1, ρ2 and ρ3 be principal Ricci curvatures of a 3-dimensional Riemannian manifold (M,g).
Moreover, let the condition

ρ1 = ρ2 6= ρ3(4.10)

be satisfied at every point of the set US = UR ⊂M . Thus

R ·R =
ρ3
2
Q(g,R)

on UR. Evidently, if ρ3 = 0 on UR then (M,g) is semisymmetric.
(vi) 3-dimensional Riemannian manifolds satisfying (4.10) were studied, among others, in the follow-
ing papers: [94, 96, 97, 98, 99, 100, 101]. We mention that an explicit classification of 3-dimensional
semisymmetric Riemannian manifolds is given in [95].

Example 4.2. The warped product manifold M ×F Ñ with a 1-dimensional manifold (M,g), g11 = ±1,

and an (n − 1)-dimensional semi-Riemannian Einstein manifold (Ñ , g̃), n ≥ 5, assumed that it is not of

constant curvature, and a warping function F , satisfies on US ∩ UC ⊂M ×F Ñ [15, Theorem 4.1]

rank(S − αg) = 1, R · S = LS Q(g, S),

(n− 2) (R · C − C ·R) = Q(S,R)− LS Q(g,R),

α =
κ

n− 1
− LS , LS = −trT

2F
.

Furthermore, using

Q(g,R) = Q(g,C)− 1

n− 2
Q(S,G),

Q(S,R) = Q(S,C) +
1

n− 2

(
α− κ

n− 1

)
Q(S,G),

we obtain [50, Example 4.1]

(n− 2) (R · C − C ·R) = Q(S,C)− LS Q(g,C).

Example 4.3. Let M be an open connected non-empty subset of R
5 endowed with the metric g of the

form [91, 92, 93]

ds2 = gijdx
idxj = dx2 + dy2 + du2 + dv2 + ρ2 (xdu− ydv + dz)2 , ρ = const. 6= 0 .
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The manifold (M,g) is a non-conformally flat manifold satisfying the following conditions [113]:

∇XS(Y,Z) +∇Y S(Z,X) +∇ZS(X,Y ) = 0,

S =
κ

2
g − 3κ

2
η ⊗ η, η = (0, 0,−ρ,−xρ, yρ), κ = ρ2, S2 = −κ

2
S +

κ2

2
g,

S ·R = 2κR − κ

2
g ∧ S +

κ2

4
g ∧ g, C · S = 0, R · S = −κ

4
Q(g, S),

R ·R = −κ
4
Q(g,R), R · C = −κ

4
Q(g,C),

C · R = −1

3
Q(S,C)− κ

3
Q(g,C), C · C = C ·R,

R · C + C · R = −1

3
Q(S,C)− 7κ

12
Q(g,C)

and the condition of the form (∗)

R · C − C ·R =
1

3
Q(S,C) +

κ

12
Q(g,C).

The (0, 4)-tensor S · R is defined by

(S ·R)(X,Y,W,Z) = R(SX,Y,W,Z) +R(X, SY,W,Z) +R(X,Y, SW,Z) +R(X,Y,W, SZ).

An important subclass of the class of partially Einstein manifolds, of dimension ≥ 4, form some non-
conformally flat and non-quasi-Einstein manifolds called Roter spaces. A semi-Riemannian manifold
(M,g), dimM = n ≥ 4, satisfying on US ∩ UC ⊂M the following equation

R =
φ

2
S ∧ S + µ g ∧ S +

η

2
g ∧ g,(4.11)

where φ, µ and η are some functions on this set, is called a Roter type manifold, or a Roter manifold, or
a Roter space (see, e.g., [11, Section 15.5], [35, 50, 52, 55]). Equation (4.11) is called a Roter equation
(see, e.g., [43, Section 1]). Roter spaces and in particular Roter hypersurfaces in semi-Riemannian spaces
of constant curvature were studied in: [17, 35, 39, 47, 56, 57, 64, 68, 69, 78, 81, 89, 90]. We only mention
that every Roter space (M,g), dimM = n ≥ 4, satisfies on US ∩ UC ⊂ M among others the following
conditions: (1.2), (3.2) and (3.3)-(3.6) (see, e.g., [42, 50] and references therein). We also refer to [41,
Section 4] for a more detailed presentation of results on Roter spaces.

Let (M,g), n ≥ 4, be a non-partially-Einstein and non-conformally flat semi-Riemannian manifold.
If its Riemann-Christoffel curvature R is at every point of US ∩ UC ⊂ M a linear combination of the
Kulkarni-Nomizu products formed by the tensors S0 = g and S1 = S, S2, . . . , Sp−1, Sp, where p is some
natural number ≥ 2, then (M,g) is called a generalized Roter type manifold, or a generalized Roter
manifold, or a generalized Roter type space, or a generalized Roter space. For instance, when p = 2, we
have

R =
φ2
2
S2 ∧ S2 + φ1 S ∧ S2 +

φ

2
S ∧ S + µ1 g ∧ S2 + µ g ∧ S +

η

2
g ∧ g,(4.12)

where φ, φ1, φ2, µ1, µ and η are functions on US∩UC . Because (M,g) is a non-partially Einstein manifold,
at least one of the functions µ1, φ1 and φ2 is a non-zero function. Equation (4.12) is called a Roter type
equation (see, e.g., [43, Section 1]). We refer to [43, 49, 50, 52, 59, 110, 112, 113, 114, 115] for results on
manifolds (hypersurfaces) satisfying (4.12).

If (M,g), dimM = n ≥ 4, is a semi-Riemannian manifold satisfying (3.5) on UC ⊂ M , i.e., C · C =
LC Q(g,C), then (2.17) yields

C · R+R · C = R · R+ LQ(g,C)− 1

(n− 2)2
Q
(
g, g ∧ S2 − κ g ∧ S

)
(4.13)
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on UC . In addition, if (3.6) is satisfied on UC , i.e., R · R − Q(S,R) = LQ(g,C), then (4.13) turns into
[50, Theorem 3.4 (ii)-(iii)]

C ·R+R · C = Q(S,C) + (L+ LC)Q(g,C)

− 1

(n− 2)2
Q

(
g, g ∧ S2 +

n− 2

2
S ∧ S − κ g ∧ S

)
.(4.14)

Evidently, (4.14), by making use of (2.12) and the identity Q(g, 12 g ∧ g) = Q(g,G) = 0 takes the form

C ·R+R · C = Q(S,C) + (L+ LC)Q(g,C) − 1

(n− 2)2
Q(g,E).

We also have (cf. [50, Theorem 3.4 (iv)-(v)]): if (M,g), dimM = n ≥ 4, is a quasi-Einstein semi-
Riemannian manifold satisfying rank (S −α g) = 1 (i.e. (4.1)), (3.5) and (3.6) then (4.14), by making use
of (4.8) and (4.9), yields

C · R+R · C = Q(S,C) + (L+ LC)Q(g,C).(4.15)

In particular, if (M,g) is the Gödel spacetime then (4.15) turns into

C ·R+R · C = Q(S,C) +
κ

6
Q(g,C).

Theorem 4.4. (cf. [39, Proposition 3.2, Theorem 3.3, Theorem 4.4]) If (M,g), dimM = n ≥ 4, is a
semi-Riemannian manifold satisfying on US ∩UC ⊂M conditions (3.5), (3.6) and

R · S = Q(g,D),(4.16)

where D is a symmetric (0, 2)-tensor, then R ·R = LRQ(g,R) on this set, where LR is some function on
this set. Moreover, at every point of US ∩ UC we have

(i) rank (S − α1 g) = 1 and α1 =
1
2

(
κ

n−1 − L+ LC

)
, or

(ii) rank (S − α1 g) ≥ 2 and α1 =
1
2

(
κ

n−1 − L+ LC

)
and (4.11).

Corollary 4.5. [50, Corollary 3.6] If (M,g), dimM = n ≥ 4, is a semi-Riemannian manifold satisfying
on US ∩ UC ⊂M conditions (3.5), (3.6) and (4.16) then

C ·R+R · C = Q(S,C) + L2Q(g,C)

on US ∩ UC , where L2 is some function on this set.

Theorem 4.6. [50, Theorem 3.1] If (M,g), dimM = n ≥ 4, is a pseudosymmetric Einstein semi-
Riemannian manifold satisfying R · R = LRQ(g,R) (i.e. (3.2)) on UR ⊂M , then on this set

R · R−Q(S,R) =
(
LR − κ

n

)
Q(g,C),

C · C =

(
LR − κ

(n− 1)n

)
Q(g,C),

C · R+R · C = Q(S,C) +

(
2LR − κ

n− 1

)
Q(g,C).

Theorem 4.7. [50, Theorem 4.1] Let M×F Ñ be the warped product manifold with a 1-dimensional man-

ifold (M,g), g11 = ±1, and a 3-dimensional semi-Riemannian manifold (Ñ , g̃), and a warping function

F . If (Ñ , g̃) is not a space of constant curvature then (3.6) and (4.13) hold on UC ⊂M ×F Ñ . Moreover,

if (Ñ , g̃) is a quasi-Einstein manifold then (3.5) and (4.14) hold on US ∩ UC ⊂M ×F Ñ .

The last theorem leads to the following results.
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Theorem 4.8. [50, Theorem 4.3] Let M ×F Ñ be the warped product manifold with a 1-dimensional

manifold (M,g), g11 = ±1, and an (n−1)-dimensional quasi-Einstein semi-Riemannian manifold (Ñ , g̃),

n ≥ 4, and a warping function F , and let (Ñ , g̃) be a conformally flat manifold, when n ≥ 5. Then

conditions (3.5), (3.6) and (4.14) are satisfied on US ∩ UC ⊂M ×F Ñ .

Theorem 4.9. [50, Theorem 4.4] Let M × Ñ be the product manifold with a 1-dimensional manifold

(M,g), g11 = ±1, and an (n − 1)-dimensional quasi-Einstein semi-Riemannian manifold (Ñ , g̃), n ≥ 4,

satisfying rank (S̃−ρ g̃) = 1 on U
S̃
⊂ M̃ , where ρ is some function on U

S̃
, and let (Ñ , g̃) be a conformally

flat manifold, when n ≥ 5. Then on US ∩ UC ⊂M × Ñ we have

(n − 3)(n − 2)ρC = g ∧ S2 +
n− 2

2
S ∧ S − κ g ∧ S + (n− 2)ρ

(
2κ

n− 1
− ρ

)
G,

C ·R+R · C = Q(S,C) +

(
κ

(n− 2)(n − 1)
− ρ

)
Q(g,C).

We present now the following results on Einstein and quasi-Einstein manifolds. Using (1.1) we can
easily check that equation

g ∧ S2 +
n− 2

2
S ∧ S − κ g ∧ S +

κ2 − tr(S2)

2(n− 1)
g ∧ g = 0(4.17)

is satisfied on any Einstein manifold (M,g). Moreover, we also have

Theorem 4.10. [43, Lemma 2.1] If (M,g), n ≥ 4, is a quasi-Einstein manifold satisfying (4.1) on
US ∩ UC ⊂M then (4.17) holds on this set.

We finish this section with the following results.

Theorem 4.11. [43, Lemma 2.2] If (M,g), n ≥ 4, is a Roter space satisfying (4.11) on US ∩ UC ⊂ M
then

C =
φ

n− 2

(
g ∧ S2 +

n− 2

2
S ∧ S − κ g ∧ S +

κ2 − tr(S2)

2(n − 1)
g ∧ g

)

on this set.

Remark 4.12. (i) In view of [34, Lemma 3.2 (ii)], we can state that the following identity is satisfied
on every semi-Riemannian manifold (M,g), n = dimM ≥ 3, with vanishing Weyl conformal curvature
tensor C

R ·R−Q(S,R) =
1

(n− 2)2
Q(g, g ∧ S2 +

n− 2

2
S ∧ S − κ g ∧ S).(4.18)

(ii) On every 3-dimensional semi-Riemannian manifold (M,g) the identity R · R = Q(S,R) is satisfied
[34, Theorem 3.1]. Thus (4.18) reduces to

Q(g, g ∧ S2 +
n− 2

2
S ∧ S − κ g ∧ S) = 0.

From this, by suitable contractions we easily get (4.17).
(iii) From (i) we easily deduce that on every semi-Riemannian conformally flat manifold (M,g), n =
dimM ≥ 4, conditions: R · R = Q(S,R) and (4.17) are equivalent.

Remark 4.13. Warped product manifolds M×F Ñ , with a 1-dimensional base manifold (M,g), g11 = ±1,

and an (n− 1)-dimensional Einsteinian or non-Einsteinian fiber (Ñ , g̃), n ≥ 4, satisfying the condition

R · C − C · R = LQ(S,R),

were studied in [2].
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5. Warped product manifolds with 2-dimensional base manifold

Let M ×F Ñ be the warped product manifold with a 2-dimensional semi-Riemannian manifold (M,g)

and an (n − 2)-dimensional semi-Riemannian manifold (Ñ , g̃), n ≥ 4, and a warping function F , and let

(Ñ , g̃) be a space of constant curvature when n ≥ 5.
Let Shk and Chijk be the local components of the Ricci tensor S and the Weyl conformal curvature

tensor C of M ×F Ñ , respectively. We have

Sad =
κ

2
gab −

n− 2

2F
Tab, Sαβ = τ1 gαβ , Saα = 0,(5.1)

τ1 =
κ̃

(n− 2)F
− tr(T )

2F
− (n− 3)

∆1F

4F 2
, ∆1F = ∆1 gF = gabFaFb,(5.2)

Tab = ∇aFb −
1

2F
FaFb, tr(T ) = gabTab,

where T is the (0, 2)-tensor with the local components Tab. We also have [50, eqs. (5.10)-(5.14)]

Cabcd =
n− 3

n− 1
ρ1Gabcd =

n− 3

n− 1
ρ1 (gadgbc − gacgbd),(5.3)

Cαbcβ = − n− 3

(n− 2)(n − 1)
ρ1Gαbcβ = − n− 3

(n− 2)(n − 1)ρ1
ρ1 gbcgαβ ,(5.4)

Cαβγδ =
2ρ1

(n − 2)(n − 1)
Gαβγδ =

2ρ1
(n− 2)(n − 1)

(gαδgβγ − gαγgβδ),(5.5)

Cabcδ = Cabαβ = Caαβγ = 0,(5.6)

where Ghijk = ghkgij − ghjgik and

ρ1 =
κ

2
+

κ̃

(n− 3)(n − 2)F
+

1

2F

(
∆F − ∆1F

F

)
, ∆F = gab∇aFb .

If we set [50, eqs. (5.13)]

ρ =
2(n − 3)

n− 1
ρ1 =

2(n− 3)

n− 1

(
κ

2
+

κ̃

(n − 3)(n− 2)F
+

1

2F

(
∆F − ∆1F

F

))
(5.7)

then (5.3)-(5.6) turn into [50, eqs. (5.14)]

Cabcd =
ρ

2
Gabcd, Cαbcβ = − ρ

2(n− 2)
Gαbcβ ,

Cαβγδ =
ρ

(n− 3)(n − 2)
Gαβγδ , Cabcδ = Cabαβ = Caαβγ = 0.

Further, by making use of the formulas for the local components (C · C)hijklm and Q(g,C)hijklm of the
tensors C · C and Q(g,C), i.e.

(C · C)hijklm = grs(CrijkCshlm + ChrjkCsilm + ChirkCsjlm + ChijrCsklm),

Q(g,C)hijklm = ghlCmijk + gilChmjk + gjlChimk + gklChijm

−ghmClijk − gimChljk − gjmChilk − gkmChijl,

we obtain [50, eqs. (7.7)-(7.8)]

(C · C)αabcdβ = −(n− 1)ρ2

4(n− 2)2
gαβGdabc, (C · C)aαβγdδ =

(n− 1)ρ2

4(n− 2)2(n− 3)
gadGδαβγ ,

Q(g,C)αabcdβ =
(n− 1)ρ

2(n − 2)
gαβGdabc, Q(g,C)aαβγdδ = − (n− 1)ρ

2(n− 2)(n − 3)
gadGδαβγ .
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Theorem 5.1. [50, Theorem 7.1 (i)] Let M ×F Ñ be the warped product manifold with a 2-dimensional

semi-Riemannian manifold (M,g) and an (n− 2)-dimensional semi-Riemannian manifold (Ñ , g̃), n ≥ 4,

and a warping function F , and let (Ñ , g̃) be a space of constant curvature, when n ≥ 5.

(i) The following equation is satisfied on UC ⊂M ×F Ñ

C · C = LC Q(g,C) ,

LC = − ρ

2(n − 2)
= − n− 3

(n− 2)(n − 1)

(
κ

2
+

κ̃

(n− 3)(n − 2)F
+

1

2F

(
∆F − ∆1F

F

))
,(5.8)

where the function ρ is defined by (5.7).

(ii) Equation (3.6) is satisfied on UC ⊂M ×F Ñ , where the functions τ1 and L are defined by (5.2) and

L = − n− 2

(n− 1)ρ

(
κ

(
τ1 +

tr(T )

2F

)
+
n− 3

4F 2

(
tr(T 2)− (tr(T ))2

))
,(5.9)

T is the (0, 2)-tensor with the local components Tab = ∇aFb − 1
2F FaFb, tr(T ) = gabTab, T

2
ad = Tacg

cdTdb
and tr(T 2) = gabT 2

ab.

(iii) The following equation is satisfied on UC ⊂M ×F Ñ

C ·R+R · C = Q(S,C) + (LC + L)Q(g,C)− 1

(n− 2)2
Q

(
g, g ∧ S2 +

n− 2

2
S ∧ S − κ g ∧ S

)
,

where LC and L are functions defined by (5.8) and (5.9).

We have (see, eq. (5.1))

Sad =
κ

2
gab −

n− 2

2F
Tab, Sαβ = τ1 gαβ , Saα = 0,

where τ1 is defined by (5.2).

We define now on US ⊂M ×F Ñ the (0, 2)-tensor A by A = S − τ1 g. We can check that rank(A) = 2
at a point of US if and only if tr(A2)− (tr(A))2 6= 0 at this point [50, Section 6]. At all points of US, at
which rank(A) = 2, we set

τ2 = (tr(A2)− (tr(A))2)−1 .(5.10)

Let V be the set of all points of US ∩ UC at which: rank(A) = 2 and Sad is not proportional to gad.

Theorem 5.2. [50, Theorem 7.1 (ii)] Let M ×F Ñ be the warped product manifold with a 2-dimensional

semi-Riemannian manifold (M,g) and an (n− 2)-dimensional semi-Riemannian manifold (Ñ , g̃), n ≥ 4,

and a warping function F , and let (Ñ , g̃) be a space of constant curvature when n ≥ 5. Then on the set
V ⊂ US ∩ UC (defined above) we have:

C = − (n− 1)ρτ2
(n− 3)(n − 2)

(
g ∧ S2 +

n− 2

2
S ∧ S − κg ∧ S +

κ2 − tr(S2)

n− 1
G

)
,

R · C + C ·R = Q(S,C) +

(
L− ρ

2(n − 2)
+

n− 3

(n− 2)(n − 1)ρτ2

)
Q(g,C),

where ρ, τ1 and τ2 are defined by (5.7), (5.2) and (5.10), respectively.

Theorem 5.3. [50, Theorem 6.2] Let M ×F Ñ be the warped product manifold with a 2-dimensional

semi-Riemannian manifold (M,g) and an (n− 2)-dimensional semi-Riemannian manifold (Ñ , g̃), n ≥ 4,
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and a warping function F , and let (Ñ , g̃) be an Einstein space, when n ≥ 5. On the set V ⊂ US ∩UC we
have

R · S = (φ1 − 2τ1φ2 + τ21φ3)Q(g, S) + (φ2 − τ1φ3)Q(g, S2) + φ3Q(S, S2),

φ1 =
2τ1 − κ

2(n − 2)
, φ2 =

1

n− 2
, φ3 =

τ2(2κ− κ− 2(n − 1)τ1)

n− 2
,

where τ1 is defined by (5.2).

Theorems 4.10 and 4.11 imply

Theorem 5.4. [43, Proposition 2.3] If (M,g), n ≥ 4, is a semi-Riemannian manifold satisfying (4.1) or
(4.11) at every point of US ∩ UC ⊂M then the following equation is satisfied on this set

τ C = g ∧ S2 +
n− 2

2
S ∧ S − κ g ∧ S +

κ2 − tr(S2)

2(n − 1)
g ∧ g,(5.11)

where τ is some function on US ∩UC .

Theorem 5.4, [50, Theorem 7.1 (ii)] and [64, Theorem 4.1] imply

Theorem 5.5. [43, Theorem 2.4] Let M ×F Ñ be the warped product manifold with a 2-dimensional

semi-Riemannian manifold (M,g), an (n − 2)-dimensional semi-Riemannian manifold (Ñ , g̃), n ≥ 4, a

warping function F , and let (Ñ , g̃) be a space of constant curvature when n ≥ 5. Then (5.11) holds on

US ∩ UC ⊂M ×F Ñ .

Remark 5.6. Let M ×F Ñ be the warped product manifold with a 2-dimensional semi-Riemannian mani-

fold (M,g) and an (n− 2)-dimensional semi-Riemannian manifold (Ñ , g̃), n ≥ 4, and a warping function

F , and let (Ñ , g̃) be a space of constant curvature when n ≥ 5.
(i) From [64, Theorem 4.1] it follows that at all points of the set US ∩UC , at which Sad is proportional to
gad and rank(A) = 2, the Riemann-Christoffel curvature tensor R is a linear combination of the Kulkarni-
Nomizu products S ∧ S, g ∧ S and g ∧ g, i.e., (4.11) is satisfied. Thus, in view of [42, Theorem 6.7] (see
also [50, Theorem 3.2]), we have R · R = LRQ(g,R) and in a consequence R · S = LRQ(g, S), for some
function LR.
(ii) On the set V ⊂ US ∩UC we also have [50, Section 7]

R · C = Q(S,C) +

(
L+

n− 3

(n− 2)(n − 1)ρτ2

)
Q(g,C) +

(n− 1) ρτ2
(n− 2)2

g ∧Q(S, S2)

+
1

(n− 2)2
Q
((ρ

2
+ (n − 1) ρτ21 τ2

)
S − (n− 1) ρτ1τ2 S

2, G
)
,

C ·R = − ρ

2(n− 2)
Q(g,C)− (n− 1) ρτ2

(n− 2)2
g ∧Q(S, S2)

− 1

(n− 2)2
Q
((ρ

2
+ (n − 1) ρτ21 τ2

)
S − (n− 1) ρτ1τ2 S

2, G
)
,

and in a consequence

R · C −C · R = Q(S,C) +

(
L+

n− 3

(n − 2)(n − 1)ρτ2
+

ρ

2(n − 2)

)
Q(g,C)

+
2

(n− 2)2
Q
((ρ

2
+ (n− 1) ρτ21 τ2

)
S − (n− 1) ρτ1τ2 S

2, G
)

+
2(n− 1) ρτ2
(n − 2)2

g ∧Q(S, S2),
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where ρ, τ1 and τ2 are defined by (5.7), (5.2) and (5.10), respectively.
(iii) A short presentation on quasi-Einstein and 2-quasi-Einstein warped product manifolds satisfying
conditions of the form (∗) is given in [45] (see also [38]).

6. Semi-Riemannian manifolds satisfying the condition R · C − C · R = LQ(S,C)

We can check that on any Einstein manifold (M,g), dimM = n ≥ 4, the tensors Q(g,R), Q(S,R),
Q(g,C) and Q(S,C) satisfy

κ

n
Q(g,R) = Q(S,R) = Q(S,C) =

κ

n
Q(g,C).(6.1)

Further, in [62, Theorem 3.1] it was stated that on every Einstein manifold (M,g), dimM = n ≥ 4, the
following identity is satisfied

R · C − C ·R =
κ

(n− 1)n
Q(g,R).(6.2)

The remarks above lead to the problem of investigation of curvature properties of non-Einstein and non-
conformally flat semi-Riemannian manifolds (M,g), dimM = n ≥ 4, satisfying at every point of M
the curvature condition of the following form: the difference tensor R · C − C · R is proportional to
Q(g,R), Q(S,R), Q(g,C) and Q(S,C). Such conditions are strongly related to some pseudosymmetry
type curvature conditions, see, e.g., [42] and references therein.

Semi-Riemannian manifolds (M,g), dimM = n ≥ 4, satisfying at every point of M the following
condition

the tensors R · C − C ·R and Q(S,C) are linearly dependent,(6.3)

were investigated in [47]. It is obvious that (6.3) is satisfied at every point of M at which C vanishes. It
is also clear that (6.1) and (6.2) imply that

R · C − C · R =
1

n− 1
Q(S,C)

holds on any Einstein manifold (M,g), dimM = n ≥ 4. Therefore we will restrict our considerations to
manifolds (M,g), dimM = n ≥ 4, satisfying (6.3) on the set US ∩ UC ⊂ M . Thus on US ∩ UC we have
(1.4), i.e., R ·C −C ·R = LQ(S,C), where L is some function on this set. We mention that if the tensor
R · C − C ·R vanishes on US ∩ UC then on this set [62, Theorem 4.1]:

R · C = C ·R = 0,(6.4)

Q(S,C) = 0.

On the other hand, if Q(S,C) vanishes on US ∩ UC then at every point x ∈ US ∩ UC we have:
(i) if rankS = 1 at x then κ = 0 and (6.4) hold at x [47, Section 3], or
(ii) if rankS > 1 at x then C ·R = 0 and R · C = κ

n−1 Q(g,C) hold at x [47, Section 4].

Thus we see that in the case (ii), if a manifold satisfies (1.4) then its scalar curvature must vanish on
US ∩ UC .

The main result of [47, Section 3] states that pseudosymmetric manifolds satisfying some additional
curvature conditions are quasi-Einstein manifolds satisfying the conditions: C · C = 0, C · R = 0, and
(1.4) with L = 1

n−1 . Precisely we have
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Theorem 6.1. [47, Theorem 3.4] Let (M,g), dimM = n ≥ 4, be a semi-Riemannian manifold. If the
following conditions:

R · R =
κ

(n− 1)n
Q(g,R),

R ·R−Q(S,R) = − (n− 2)κ

(n− 1)n
Q(g,C),

R · C =
1

n− 1
Q(S,C)

are satisfied on US ∩ UC ⊂M , then on this set we have:

C · C = 0,

rank (S − κ

n
g) = 1,

C · R = 0,

(n− 1) (R · C − C ·R) = Q(S,C).

Theorem 6.2. [47, Proposition 3.9] Let T be a generalized curvature tensor on a semi-Riemannian
manifold (M,g), dimM = n ≥ 4.
(i) If the conditions

Q(Ric(T ), T ) = 0,

rank (Ric(T )) = 1(6.5)

are satisfied on URic(T ) ∩ UWeyl(T ) ⊂M , then on this set we have

κ(T ) = 0,(6.6)

T ·Weyl(T ) = Weyl(T ) · T = Q(Ric(T ),Weyl(T )) = 0.

(ii) If the conditions (6.5) and

Q(Ric(T ),Weyl(T )) = 0

are satisfied on URic(T ) ∩ UWeyl(T ) ⊂M , then on this set we have (6.6) and

T ·Weyl(T ) = Weyl(T ) · T = 0.

In [47, Section 3] an example of warped product manifolds satisfying assumptions of [47, Theorem 3.4]
is also given.

Let (M,g), dimM = n ≥ 4, be a semi-Riemannian manifold with parallel Weyl conformal curvature
tensor, i.e. ∇C = 0 on M . It is obvious that the last condition implies R · C = 0. Moreover, let the
manifold (M,g) be neither conformally flat nor locally symmetric. Such manifolds are called essentially
conformally symmetric manifolds, e.c.s. manifolds/metrics, or ECS manifolds/metrics, in short (see, e.g.,
[22, 23, 25, 29, 30]). E.c.s. manifolds are semisymmetric manifolds (R ·R = 0 [22, Theorem 9]) satisfying
κ = 0 and Q(S,C) = 0 ([22, Theorems 7 and 8]). In addition,

F C =
1

2
S ∧ S(6.7)

holds on M , where F is some function on M , called the fundamental function [23]. At every point of
M we also have rankS ≤ 2 [23, Theorem 5]. We mention that the local structure of e.c.s. manifolds is
already determined. We refer to [24, 27] for results related to this subject. We also mention that certain
e.c.s. metrics are realized on compact manifolds [26, 28, 29, 30, 31, 32, 33].
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Equation (6.7), by suitable contraction, leads immediately to S2 = κS, which by κ = 0, reduces to
S2 = 0. Evidently, trg(S

2) = 0. Now using (6.7) we get

F C =
n− 2

2(n− 2)
S ∧ S =

1

n− 2

(
g ∧ S2 +

n− 2

2
S ∧ S − κ g ∧ S +

κ2 − tr(S2)

2(n − 1)
g ∧ g

)
.

Thus we have

Theorem 6.3. [41, Theorem 6.1] Condition (5.11), with τ = (n − 2)F , is satisfied on every essentially
conformally symmetric manifold (M,g).

We assume that F = 0 at x ∈M . Now (6.7) implies rankS ≤ 1 at x. It is clear that if S vanishes then

R · C = C · R = Q(S,C) = 0(6.8)

holds at x. If rankS = 1 then in view of [47, Proposition 3.9(ii)] we also have (6.8) at x. Next, we assume
that F is non-zero at x ∈M . Thus rankS = 2 at x. Now (6.7) turns into (2.14) with T = R, Ric(T ) = S,
φ = F−1, µ = 1

n−2 and η = 0. Therefore (2.15) and (2.16) reduce to C ·R = 0 and C ·C = 0, respectively.

Consequently, (6.8) holds at x. Thus we have

Theorem 6.4. [47, Theorem 4.1] Condition (6.8) is satisfied on every essentially conformally symmetric
manifold (M,g).

Thus we see that e.c.s. manifolds satisfy (1.4). We also mention that the tensor C · C of every e.c.s.
manifold is the zero tensor ([47, Remark 4.2(ii)]).

E.c.s. warped product manifolds were investigated in [88]. In that paper examples of such manifolds
are given [47, Remark 4.2(i)].

In [47, Section 5] Roter type manifolds satisfying (1.4) are investigated. In [47, Theorem 5.2] it was
stated that if (M,g), dimM = n ≥ 4, is a Roter type manifold with vanishing scalar curvature κ on
U ⊂M then (1.4), with L = −1, holds on this set.

Theorem 6.5. [47, Theorem 5.2] Let (M,g), dimM = n ≥ 4, be a a semi-Riemannian manifold satisfying
(4.11) on US ∩ UC ⊂M . If κ = 0 on US ∩ UC then (1.4), with L = −1, holds on this set.

This result is also an immediate consequence of the fact that every Roter space (M,g) satisfies (1.2)
on US ∩UC ⊂M (see Section 4). However in the proof of the last theorem formula (1.2) was not applied.

We also have

Theorem 6.6. [47, Theorem 5.3] Let (M,g), dimM = n ≥ 4, be a semi-Riemannian manifold satisfying
(4.11) and (1.4) on US ∩UC ⊂M , and let U1 ⊂ US ∩UC be the set of all points at which the functions L
and LC , defined by (1.4), (2.15) and (2.16) (for T = R), respectively, are nowhere zero on this set. Then
we have on U1: L = −1 and κ = 0.

In [47, Example 5.4] it was shown that under some conditions the Cartesian product of two semi-
Riemannian spaces of constant curvature satisfies assumptions of Theorem 6.6 (i.e., [47, Theorem 5.3]).

7. 2-quasi-umbilical hypersurfaces

Let Nn+1
s (c), n ≥ 3, be a semi-Riemannian space of constant curvature c = κ̃

n(n+1) with signature

(s, n+1− s), where κ̃ is its scalar curvature. Let M be a connected hypersurface isometrically immersed
in Nn+1

s (c). We have (see, e.g., [46])

Rhijk = ε (HhkHij −HhjHik) +
κ̃

n(n+ 1)
Ghijk , ε = ±1,(7.1)
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where Rhijk, Ghijk and Hhk, respectively, are the local components of the curvature tensor R of M ,

the tensor G and the second fundamental tensor H, respectively. Contracting (7.1) with gij and gkh,
respectively, we obtain

Shk = ε (tr(H)Hhk −H2
hk) +

(n− 1)κ̃

n(n+ 1)
ghk,

κ

n− 1
=

ε

n− 1
((tr(H))2 − tr(H2)) +

κ̃

n+ 1
,

respectively, where tr(H) = ghkHhk, tr(H2) = ghkH2
hk and Shk are the local components of the Ricci

tensor S of M and κ is the scalar curvature of M . It is known that (3.6) holds on M . Precisely,

R ·R−Q(S,R) = − (n− 2)κ̃

n(n+ 1)
Q(g,C)(7.2)

on M [70, Lemma 2.1] (see also [18, Lemma 2.1 (ii)]). Evidently, if n = 3 then (7.2) turns into

R · R = Q(S,R).(7.3)

If the ambient space is a semi-Euclidean space E
n+1
s , n ≥ 3, then (7.2) also reduces to (7.3). As it was

proved in [19, Lemma 4.1], we also have the following identity on M in Nn+1
s (c), n ≥ 3,

R ·R− κ̃

n(n+ 1)
Q(g,R) = −Q(H2,

1

2
H ∧H).(7.4)

Further we have

Theorem 7.1. [50, Theorem 3.7] Let M be a hypersurface isometrically immersed in Nn+1
s (c), n ≥ 4.

Then

C ·R+R · C = Q(S,C)− (n − 2)κ̃

n(n+ 1)
Q(g,C) + C · C

− 1

(n− 2)2
Q

(
g, g ∧ S2 +

n− 2

2
S ∧ S − κ g ∧ S

)

holds on M . Moreover, if the condition C ·C = LCQ(g,C) (i.e., (3.5)) is satisfied on US ∩UC ⊂M then
on this set we have

C ·R+R · C = Q(S,C) +

(
LC − (n− 2)κ̃

n(n+ 1)

)
Q(g,C)

− 1

(n− 2)2
Q

(
g, g ∧ S2 +

n− 2

2
S ∧ S − κ g ∧ S

)
,(7.5)

and in addition, if M is a quasi-Einstein hypersurface satisfying the condition rank (S − α g) = 1 (i.e.,
(4.1)), on US ∩ UC then on this set we have

C ·R+R · C = Q(S,C) +

(
LC − (n− 2)κ̃

n(n+ 1)

)
Q(g,C).

It is known that every 2-quasi-umbilical hypersurface in a semi-Riemannian space of constant curvature
Nn+1

s (c), n ≥ 4, satisfies (3.5) (see, e.g., [50, Theorem 3.8]). We have

Theorem 7.2. [50, Theorem 3.8] If M is a 2-quasi-umbilical hypersurface isometrically immersed in
Nn+1

s (c), n ≥ 4, then (7.5) holds on US ∩UC ⊂M .

Theorem 7.3. [52, Proposition 4.2] Let M be a hypersurface in an Euclidean space E
n+1, n ≥ 4, having

exactly three distinct principal curvatures λ1, λ2 and λ3 satisfying at every point of M : λ1 = 0, λ2 =
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−(n−2)λ and λ3 = λ4 = . . . = λn = λ 6= 0. Then M is a minimal, 2-quasi-umbilical and 2-quasi-Einstein
hypersurface satisfying: (1.7), (7.3) and

rank

(
S − κ

(n− 2)(n − 1)
g

)
= 2,

S = −H2, κ = −tr(H2) = −(n− 2)(n − 1)λ2,

S2 = −(φ2 + ψ)S + φψH,

S3 = −(φ2 + 2ψ)S2 − ψ2S,

R =
1

2(φψ)2
(
S2 + (φ2 + ψ)S

)
∧
(
S2 + (φ2 + ψ)S

)
,(7.6)

R · S = φQ(H,S) =
n− 1

κ
Q(S, S2),

C · S = φQ(H,S) +
φ2

n− 2
Q(g, S) − φψ

n− 2
Q(g,H)

=
κ

(n− 2)(n − 1)
Q(g, S) − 1

n− 2
Q(g, S2) +

n− 1

κ
Q(S, S2),

(n− 2)R · C = (n− 2)Q(S,R)− φ g ∧Q(H,S),

(n− 2)C ·R = (n− 3)Q(S,R)− φH ∧Q(g, S),

C · C = 0,

where φ = −(n− 3)λ and ψ = (n− 2)λ2. Moreover, we have

(n− 2)(R · C − C ·R) = Q(S,R) + φ (H ∧Q(g, S) − g ∧Q(H,S)).(7.7)

We note that (7.6) is a particular form of the Roter type equation (4.12).
Biharmonic hypersurfaces with three distinct principal curvatures in an Euclidean 5-space E

5 were
investigated in [77]. The main result of [77, Theorem 3.2] states that every biharmonic hypersurface M
with three distinct principal curvatures in E

5 is minimal. The principal curvatures of M are the following:
λ1 = 0, λ2 = −2λ and λ3 = λ4 = λ 6= 0, where λ is some function on M . Curvature properties of such
hypersurfaces are expressed in the last theorem, provided that n = 4 (see also [52, Theorem 4.3]).

We refer to [107] for a survey of results on biharmonic hypersurfaces.
Let now M be a type number two hypersurface in Nn+1

s (c), n ≥ 3, i.e., let rank(H) = 2 at every point
of M (see, e.g., [13]). Using (2.8), (2.9), (2.10) and (7.4) we obtain on M (cf. [19, Theoem 4.2])

H3 = tr(H)H2 +
tr(H2)− (tr(H))2

2
H,(7.8)

Q(H,H ∧H2) = 0,(7.9)

R ·R =
κ̃

n(n+ 1)
Q(g,R).(7.10)

Thus we have

Theorem 7.4. (cf. [19, Theorem 4.2]) Every type number two hypersurface M in Nn+1
s (c), n ≥ 3, is a

pseudosymmetric manifold of constant type satisfying (7.8), (7.9) and (7.10).

We mention that type number two hypersurfaces in 4-dimensional Riemannian space of constant cur-
vature were investigated in [85]. We also note that in [73, Section 5] it was stated that the Cartan
hypersurface in a 4-dimensional sphere is a pseudosymmetric manifold of constant type. Evidently, (7.8)
is a special form of the equation

H3 = tr(H)H2 + ψH,(7.11)
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where ψ is a function on M . We refer to Remark 8.7 (ii) of this paper for results on hypersurfaces in
Nn+1

s (c), n ≥ 4, satisfying (7.11).
As an immediate consequence of Proposition 2.1 and [41, Remark 7.1 (iii)] we obtain the following

Theorem 7.5. If M , dimM = n ≥ 4, is a type number two hypersurface isometrically immersed in a
semi-Riemannian conformally flat manifold N , dimN = n+1, then C ·C = LCQ(g,C) (i.e., (3.5)) holds
on UC ⊂M , where LC is some function on this set.

Let M be a type number two hypersurface in Nn+1
s (c), n ≥ 4. Thus, in view of the last theorem, (3.5)

holds on UC ⊂M . Moreover, in view of Theorem 7.1, (7.5) is satisfied on US ∩UC ⊂M . In addition, we
note that (7.10) implies

R · C =
κ̃

n(n+ 1)
Q(g,C).(7.12)

Now using Theorem 7.1, Theorem 7.5 and (7.12) we get easily the following result.

Theorem 7.6. Let M be a type number two hypersurface in Nn+1
s (c), n ≥ 4. Then the following condition

of the form (∗) is satisfied on US ∩ UC

C · R−R · C = Q(S,C) + L1Q(g,C) − 1

(n − 2)2
Q

(
g, g ∧ S2 +

n− 2

2
S ∧ S − κ g ∧ S

)
,(7.13)

where L1 is some function on this set. Moreover, if M is a quasi-Einstein hypersurface satisfying the
condition rank (S − αg) = 1 (i.e., (4.1)) on US ∩ UC then on this set we have

C · R−R · C = Q(S,C) + L1Q(g,C).(7.14)

We refer to [57, Section 5] for further results on type number two hypersurfaces in Nn+1
s (c), n ≥ 4,

satisfying curvatures conditions of pseudosymmetry type.

8. The condition H3 = tr(H)H2 + ψH + ρ g

Let M be a hypersurface isometrically immersed in Nn+1
s (c), n ≥ 4, satisfying on UH ⊂M a curvature

condition of the kind: the tensor R ·C, C ·R or R · C −R · C is a linear combination of the tensor R ·R
and of a finite sum of the Tachibana tensors of the form Q(A,T ), where A is a symmetric (0, 2)-tensor
and T a generalized curvature tensor. As it was mentioned in Introduction, if such condition is satisfied
on UH then (1.6) holds on this set. We present now the following results on hypersurfaces M in Nn+1

s (c),
n ≥ 4, satisfying (1.6) on UH ⊂M .

Theorem 8.1. [109, Proposition 5.1, eq. (29)] If M is a hypersurface in a semi-Riemannian space of
constant curvature Nn+1

s (c), n ≥ 4, satisfying (1.6) on UH ⊂ M , for some functions ψ and ρ on UH ,
then on UH we have

R · C = Q(S,R)− (n − 2)κ̃

n(n+ 1)
Q(g,R) + α2Q(S,G) +

ρ

n− 2
Q(H,G),

C ·R =
n− 3

n− 2
Q(S,R) + α1Q(g,R) + α2Q(S,G),

(n− 2) (R · C − C · R) = Q(S,R) + ρQ(H,G) +

(
(n− 1)κ̃

n(n+ 1)
− κ

n− 1
− εψ

)
Q(g,R),(8.1)

(n− 2)C · C = (n− 3)Q(S,R) + (n − 2)α1Q(g,R)

+(α1 − α2)Q(S,G) +
n− 3

n− 2
ρQ(H,G),
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R · S =
κ̃

n(n+ 1)
Q(g, S) + ρQ(g,H),

α1 =
1

n− 2

(
κ

n− 1
+ εψ − (n2 − 3n+ 3)κ̃

n(n+ 1)

)
,(8.2)

α2 = − (n− 3)κ̃

(n− 2)n(n+ 1)
.(8.3)

Theorem 8.2. [54, Proposition 4.2] Let M be a hypersurface in a semi-Riemannian space of constant
curvature Nn+1

s (c), n ≥ 4, satisfying (1.6) on UH ⊂M , for some functions ψ and ρ on UH .
(i) The following conditions are satisfied on UH :

Q(ρH − α3 S − S2, G) = 0,

ρH = S2 + α3 S +
λ

n
g, λ = ρ tr(H)− κα3 − tr(S2),(8.4)

α3 = (n − 2)2
(

1

n− 2
(α1 − α2)− 2α2 −

κ̃

n(n+ 1)

)
− κ

n− 1
= εψ − 2(n − 1)κ̃

n(n+ 1)
,(8.5)

where α1 and α2 are defined by (8.2) and (8.3), respectively. Moreover,

R · S = Q(g, S2) +

(
εψ − (2n − 3)κ̃

n(n+ 1)

)
Q(g, S),

R · S2 = Q(S, S2) + ρ1Q(g, S2) + ρ2Q(g, S),

S3 =

(
−2εψ +

3(n − 1)κ̃

n(n+ 1)

)
S2 + ρ2 S + ρ3 g,

hold on UH , where the functions ρ1, ρ2 and ρ3 are defined by

ρ1 = − (n− 2)κ̃

n(n+ 1)
− α3,

ρ2 = −λ
n
−

(
(n− 1)κ̃

n(n+ 1)
+ α3

)
α3,

ρ3 =
1

n

(
tr(S3) +

(
2εψ − 3(n − 1)κ̃

n(n+ 1)

)
tr(S2)− κρ2

)
.

(ii) If at a point x ∈ UH we have S2 = β1 S + β2 g, for some β1, β2 ∈ R, then ρ = 0, β1 = α3 and
β2 = −(λ/n) at this point.

Theorems 8.1 and 8.2 (precisely, (8.1), (8.4) and (8.5)) lead to the following result.

Theorem 8.3. If M is a hypersurface in a semi-Riemannian space of constant curvature Nn+1
s (c), n ≥ 4,

satisfying (1.6) on UH ⊂M , for some functions ψ and ρ on UH then

(n− 2) (R · C − C ·R) = Q(S,R) +

(
(n− 1)κ̃

n(n+ 1)
− κ

n− 1
− εψ

)
Q(g,R)

+Q(S2, G) +

(
εψ − 2(n− 1)κ̃

n(n+ 1)

)
Q(S,G)

on UH .

Theorem 8.4. [54, Theorem 4.5] Let M be a hypersurface in a semi-Riemannian space of constant
curvature Nn+1

s (c), n ≥ 4, satisfying (1.6) on UH ⊂M , for some functions ψ and ρ on UH . If the tensor
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C · C and a generalized curvature tensor T satisfy C · C = Q(g, T ) on UH , then on this set we have

T =

(
κ

n− 1
+

2εψ

n− 1
− κ̃

n+ 1

)
C + λG− n− 3

(n− 2)2(n− 1)

(
g ∧ S2 +

n− 2

2
S ∧ S − κ g ∧ S

)
,

where λ is some function on UH .

Further, we also have the following results obtained in [54, Section 4].

Theorem 8.5. Let M be a hypersurface isometrically immersed in Nn+1
s (c), n ≥ 4, satisfying (1.6) on

UH ⊂M .
(i) [54, Theorem 4.6] If on UH the tensor Q(S,R) is equal to the Tachibana tensor Q(g, T1), where T1 is
a generalized curvature tensor, then any of the tensors: R · R, R · C, C · R, R · C − C · R and C · C is
equal to some Tachibana tensor Q(g, T2), where T2 is a linear combination of the tensors R, g ∧ g, g ∧ S,
g ∧ S2 and S ∧ S.
(ii) [54, Theorem 4.7] The following conditions are satisfied on UH

C · C =
n− 3

n− 2
R · C +

1

n− 2

(
κ

n− 1
+ εψ − (2n− 3)κ̃

n(n+ 1)

)
Q(g,C),

(n− 2)C · R+R · C = (n− 2)Q(S,C) +

(
κ

n− 1
+ εψ − (n− 1)2κ̃

n(n+ 1)

)
Q(g,C)

− 1

(n− 2)
Q

(
g, g ∧ S2 +

n− 2

2
S ∧ S − κ g ∧ S

)
.

Theorem 8.6. [54, Theorem 4.8] Let M be a hypersurface isometrically immersed in Nn+1
s (c), n ≥ 4,

such that (4.1) and (7.11) are satisfied on UH ⊂ M , where ψ is a function on this set. Then (1.2) holds
on UH if and only if the following two conditions hold on this set

(a)
κ

n− 1
=

κ̃

n+ 1
and (b) Q

(
S − κ

n
g,C

)
= 0.(8.6)

For further results related to Theorem 8.5 (i) we refer to [41, Section 8].

Remark 8.7. (i) Let M be a hypersurface in Nn+1
s (c), n ≥ 4. As it was proved in [19, Proposition 3.1

(ii), Proposition 3.2] the conditions (7.11) and

R · S =
κ̃

n(n+ 1)
Q(g, S)(8.7)

are equivalent on the set UH ⊂ M . If (7.11) holds on UH ⊂ M then on this set we have [37, Theorem
3.1)]

(n− 2)(R · C − C · R) = Q(S,R) +

(
(n− 1)κ̃

n(n+ 1)
− κ

n− 1
− εψ

)
Q(g,R).(8.8)

(ii) Let now M be a hypersurface in a Riemannian space of constant curvature Nn+1(c), n ≥ 4, such
that at every point of M there are principal curvatures 0, . . . , 0, λ, . . . , λ,−λ, . . . ,−λ, with the same
multiplicity of λ and −λ, and λ is a positive function on M . Thus we have on M : tr(H) = 0 and
H3 = λ2H, and, in a consequence, we also have (8.7) and (8.8). We mention that the Cartan hypersur-
faces, as well as generalized Cartan hypersurfaces [7, Section 6] have at every point principal curvatures
0, . . . , 0, λ, . . . , λ,−λ, . . . ,−λ, with the same multiplicity of λ and −λ, and λ is a positive function on
M . Curvature properties of pseudosymmetry type of Cartan hypersurfaces (see, e.g., [5, Chapter 3], [107,
Chapter 7.5]) are given in [37, 73, 74]. Both classes of the considered hypersurfaces are austere hypersur-
faces [4].
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9. Hypersurfaces satisfying the condition R · C − C ·R = LQ(S,C)

In [42] a survey on some family of generalized Einstein metric conditions was given. Those curvature
conditions are strongly related to pseudosymmetry. In particular, [42, Section 6] contains results of non-
Einstein and non-conformally flat semi-Riemannian manifolds (M,g), of dimension n ≥ 4, satisfying
conditions of the form: the tensor R ·C−C ·R is proportional to the Tachibana tensor: Q(g,R), Q(S,R),
Q(g,C) or Q(S,C). More precisely, those conditions are considered on US∩UC ⊂M . Among other results
in that section it was shown that some hypersurfaces M isometrically immersed in a semi-Riemannian
space of constant curvature Nn+1

s (c), n ≥ 4, satisfy (1.4) on US ∩ UC ⊂ M . We recall that an example
of a hypersurface having mentioned properties was constructed in [57, Section 5]. We also mention that
semi-Riemannian manifolds satisfying (1.4) were investigated in [47].

Let M be a hypersurface isometrically immersed in Nn+1
s (c), n ≥ 4, satisfying (1.4) on (US ∩UC)\UH .

We recall that (1.5) holds on (US ∩ UC) \ UH , where α and β are some functions defined on this set.
According to [80, Proposition 3.3], the Riemann-Christoffel curvature tensor R of M is expressed on

(US ∩ UC) \ UH by a linear combination of the Kulkarni-Nomizu products S ∧ S, g ∧ S and G = 1
2 g ∧ g

formed by the Ricci tensor S and the metric tensor g of M . Precisely, we have (4.11), i.e.,

R =
φ

2
S ∧ S + µ g ∧ S + η G,

where φ, µ and η are some functions on (US ∩ UC) \ UH (see [48, eqs. (5.2)]). We also can express the
tensors C · C, Q(g,C) and Q(S,C) by some linear combinations of the Tachibana tensors formed by the
tensors g and H. In [48, Theorem 5.1] it was stated that if the scalar curvature κ of a hypersurface M in
Nn+1

s (c), n ≥ 4, vanishes on (US ∩UC) \ UH ⊂M then

R · C −C · R = −Q(S,C)(9.1)

on this set. From that theorem it follows immediately [48, Corollary 5.3] that if M is a hypersurface in
a Riemannian space of constant curvature Nn+1(c), n ≥ 4, having at every point exactly two distinct
principal curvatures, and if its scalar curvature κ vanishes on (US∩UC)\UH ⊂M then (9.1) holds on this
set. In [48, Examples 5.4, 5.5 and 5.7] examples of non-conformally flat and non-Einstein hypersurfaces,
with κ = 0, having at every point exactly two distinct principal curvatures are presented.

As it was mentioned in Introduction, if at every point of UH of a hypersurface M in Nn+1
s (c), n ≥ 4,

one of the tensors R ·C, C ·R or R ·C −C ·R is a linear combination of the tensor R ·R and a finite sum
of the Tachibana tensors of the form Q(A,T ), where A is a symmetric (0, 2)-tensor and T a generalized
curvature tensor, then (1.6) holds on UH [46, Corollary 4.1]. Thus in particular, if (1.4) is satisfied on
UH then (1.6) holds on this set. Hypersurfaces in Nn+1

s (c), n ≥ 4, satisfying (1.6), or in particular (1.6)
with ρ = 0, i.e., (7.11), were studied in several papers: [19, 37, 44, 46, 53, 57, 61, 63, 64, 69, 73, 79,
82, 108, 109, 110, 111, 112]. Section 6 of [48] contains some results on hypersurfaces satisfying (1.6). In
Section 7 of [48] hypersurfaces M in Nn+1

s (c), n ≥ 4, satisfying (1.4) on UH ⊂M were investigated. The
main result of this section (see, [48, Theorem 7.3]) states that if M is a hypersurface in Nn+1

s (c), n ≥ 4,
satisfying on UH ⊂M the equalities: (7.11) and

rank (S − α g) = 1,(9.2)

for some function α on UH , then on this set

rank

(
S −

(
κ

n− 1
− κ̃

n(n+ 1)

)
g

)
= 1,(9.3)

(n− 2) (R · C −C · R) = Q(S,C)− κ̃

n(n+ 1)
Q(g,C).(9.4)
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In particular, if the ambient space is a semi-Euclidean space E
n+1
s , n ≥ 4, then (9.3) and (9.4) turn into

rank

(
S − κ

n− 1
g

)
= 1,(9.5)

(n − 2) (R · C − C · R) = Q(S,C)(9.6)

respectively.
Let M be a hypersurface in an Euclidean space E

n+1, n = 2p + 1, p ≥ 2, having at every point three
principal curvatures λ1 = λ 6= 0, λ2 = −λ and λ3 = 0, provided that the multiplicity of λ1, as well as
of λ2 is p. Clearly, M is an austere hypersurface [86, p. 102]. Evidently, M = UH and (7.11), (9.5) and
(9.6) hold on M (see, [48, Example 7.5(i)] for details). We recall that in [1] it was stated that M is a
non-semisymmetric (R ·R 6= 0) Ricci-symmetric (R ·S = 0) hypersurface. Further results on hypersurfaces
M in Nn+1

s (c), n ≥ 4, satisfying (1.4) on UH ⊂ M , with L 6= −1, are given in [48, Proposition 7.1] and
[48, Example 7.5(ii)-(iv)]. We also have

Theorem 9.1. [48, Theorem 7.4] If M is a hypersurface in Nn+1
s (c), n ≥ 4, satisfying (1.4) with L = −1

on UH then on this set we have: κ = 0 and

(n− 1) (R · C − C · R)

= Q

(
g,

(
(n− 1)κ̃

n(n+ 1)
− εψ

)
R+

(
2(n − 1)κ̃

n(n+ 1)
− εψ

)
g ∧ S − 1

2(n − 2)
S ∧ S − g ∧ S2

)
,

where κ̃ is the scalar curvature of Nn+1
s (c), κ the scalar curvature of M and the function ψ is defined by

(1.6).

In [48, Example 7.6] it was stated that some tubular hypersurfaces with vanishing scalar curvature
satisfy (1.4) with L = −1.

10. The condition R · C − C ·R = L1Q(S,C) + L2Q(g,C)

In Section 5 of [54] we consider hypersurfaces M in Nn+1
s (c), n ≥ 4, satisfying (1.8) on UH ⊂M .

We recall that a semi-Riemannian manifold (M,g), n ≥ 3, is said to be a quasi-Einstein manifold (see
Section 4) if (4.1) holds on US ⊂ M , where α is some function on this set. Let M be a quasi-Einstein
hypersurface in Nn+1

s (c), n ≥ 4, satysfying (1.8). We have

Theorem 10.1. [54, Theorem 5.1] If M be a hypersurface in a semi-Riemannian space of constant
curvature Nn+1

s (c), n ≥ 4, satisfying (1.8) and (4.1) on UH ⊂M , for some functions α, L1 and L2, then
on this set we have (7.11) and

(n− 2) (R · C − C · R) = Q(S,C)− κ̃

n(n+ 1)
Q(g,C),

α =
κ

n− 1
− κ̃

n(n+ 1)
,

R · C − C ·R =
κ

n− 1
Q(g,C)−Q(S,C) +B,

where ψ is some function on UH , and the function α and the (0, 6)-tensor B are defined by (4.1) and

B = Q

(
S − 1

n− 1

(
(n− 2)κ

n− 1
+

κ̃

n(n+ 1)

)
g,C

)
,

respectively. Moreover, (1.2) is satisfied on UH if and only if (8.6) holds on this set.

We consider non-quasi-Einstein hypersurfaces satisfying (1.8). Precisely, we consider (1.8) at all points
of UH at which the following condition is satisfied

rank(S − αg) > 1, for any α ∈ R.(10.1)
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We have

Theorem 10.2. [54, Theorem 5.2] Let M be a hypersurface in a semi-Riemannian space of constant
curvature Nn+1

s (c), n ≥ 4, satisfying (1.8) on UH ⊂ M . If at a point x ∈ UH (10.1) is satisfied then at
this point we have (1.2) and

(n− 1)Q(S,R) = Q

(
g,

(
εψ + κ− (n− 1)κ̃

n(n+ 1)

))
R+

(
εψ − 2(n − 1)κ̃

n(n+ 1)

)
g ∧ S + g ∧ S2 − 1

2
S ∧ S .

Theorem 10.3. [54, Theorem 5.4] If at every point of a non-quasi-Einstein hypersurface M in a semi-
Riemannian space of constant curvature Nn+1

s (c), n ≥ 4, the difference tensor R · C − C · R is a linear
combination of the Tachibana tensors Q(g,C) and Q(S,C), then (1.2) holds on M .

11. Chen ideal submanifolds

Let M be a submanifold of dimension n in the Euclidean space E
n+m, n ≥ 2, m ≥ 1. Let g be the

Riemannian metric induced on M from the standard metric on E
n+m, ∇ the corresponding Levi-Civita

connection on M , and R, S, τ and C, the Riemann-Christoffel curvature tensor, the Ricci tensor, the
scalar curvature and the Weyl conformal curvature tensor of g, respectively. For the scalar curvature τ
of (M,g) we use the calibration

τ(p) =
∑

i<j

K (p, ei(p) ∧ ej(p))

where K (p, π) denotes the Riemannian sectional curvature of (M,g) at the point p for a plane section π
in the tangent space TpM . For each point p in M , considering the number

(infK) (p) := inf {K(p, π)|π is a plane section in TpM} ,
B.-Y. Chen (see [6, 9]) introduced the δ(2)-curvature by

(δ(2)) (p) = δ(p) := τ(p)− (infK) (p).

This δ(2)-, for short, δ-curvature of Chen thus is a well defined real function on M which clearly is a
Riemannian invariant of (M,g).

From [9] (see also [6, 8, 12]), we have the following basic result which, in particular, answered a question
raised by S.S. Chern [14] long before, concerning intrinsic obstructions on Riemannian manifolds in view
of minimal immersibility in Euclidean spaces.

Theorem 11.1. [6] (see also [67, Theorem 1]) For any submanifold M of dimension n in the Euclidean
space E

n+m, n ≥ 2, m ≥ 1,

δ ≤ n2(n− 2)

2(n− 1)
H2,(11.1)

and in (11.1) equality holds at a point p ∈ M if and only if, with respect to some suitable adapted
orthonormal frame {ei, ξα} around p on M in E

n+m, the shape operators are given by

A1 =




a 0 0 · · · 0
0 b 0 · · · 0
0 0 z · · · 0
...

...
...

. . .
...

0 0 0 · · · z



, Aβ =




cβ dβ 0 · · · 0
dβ −cβ 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0



, β > 1,

where z = a+ b and infK = ab−∑
β>1

(
c2β + d2β

)
:M −→ R.
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Evidently, if m = 1 then infK = ab.
With respect to the above theorem, one has the following definition [6, 8, 51, 66, 119], also see [67,

Definition 1]. Let M be a submanifold of dimension n in the Euclidean space E
n+m, n ≥ 2, m ≥ 1. It is

called a Chen ideal submanifold if, at each of its points, the Chen’s basic inequality (11.1) in the Theorem
11.1 is actually an equality.

Let M be a Chen ideal submanifold of dimension n in the Euclidean space E
n+m, n ≥ 4, m ≥ 1. We

use the notations as in Theorem 11.1. The Riemann-Christoffel curvature tensor R satisfies:

(11.2)





R (e1, e2, e2, e1) = infK = ab−
m∑

β=2

(
c2β + d2β

)
;

R (e1, ei, ei, e1) = az for i ≥ 3;

R (e2, ei, ei, e2) = bz for i ≥ 3;

R (ei, ej , ej , ei) = z2 for 3 ≤ i < j ≤ n.

The other values of R (eu, ev , ew, et) are null. The Ricci tensor S satisfies:

(11.3)





S (e1, e1) = infK + (n− 2)az;

S (e2, e2) = infK + (n− 2)bz;

S (ei, ei) = (n− 2)z2 for 3 ≤ i ≤ n;

S (eu, ev) = 0 for 1 ≤ u < v ≤ n.

The scalar curvature τ is given by

(11.4) τ =

n∑

i=1

S(ei, ei) = 2 infK + (n− 1)(n − 2)z2.

The Weyl conformal curvature tensor C of M is determined by the following relations:

(11.5)





C (e1, e2, e2, e1) =
(n − 3) infK

n− 1
;

C (e1, ei, ei, e1) = − (n− 3) inf K

(n− 1)(n − 2)
for ≥ 3

C (e2, ei, ei, e2) = − (n− 3) inf K

(n− 1)(n − 2)
for ≥ 3

C (ei, ej , ej , ei) =
2 inf K

(n − 1)(n− 2)
for 3 ≤ i < j ≤ n.

From (11.5) it follows (cf. [51], [66, Theorem F]) that every Chen ideal submanifold M of dimension n
in the Euclidean space E

n+m, n ≥ 4, m ≥ 1, has a pseudosymmetric Weyl conformal curvature C, i.e., it
satisfies the identity

C · C = LC Q(g,C), LC = − (n− 3) inf K

(n− 1)(n − 2)
.(11.6)

As it was mentioned in Section 8, at every point of a hypersurface M in a space form Ñn+1(c), n ≥ 4,
the tensors R · R − Q(S,R) and Q(g,C) are linearly dependent. Precisely, (7.2) holds on M . Thus, in
particular, R · R−Q(S,R) = 0 on every Chen ideal hypersurface M in E

n+1, n ≥ 4.
Now let us compute the difference R · R −Q(S,R) on the Chen ideal submanifold M of codimension m
in E

n+m, n ≥ 4, m ≥ 1. With respect to the notations in Theorem 11.1 and from the equalities (11.2),
(11.3) and (11.5), we can prove the following
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Theorem 11.2. [67, Theorem 2] The identity

R ·R−Q(S,R) =
ab− infK

infK
(n− 2)z2Q(g,C)

holds on the subset UC of every Chen ideal submanifold M of dimension n in the Euclidean space E
n+m,

n ≥ 4, m ≥ 1. In addition, at each point p ∈ M where C vanishes (infK = 0), the following equalities
hold:





(R ·R−Q(S,R)) (e1, e2, Z,W ; e1, ei) = (n− 3)abz2 〈(e2 ∧g ei) (Z),W 〉 ,
(R ·R−Q(S,R)) (e1, ej , Z,W ; e1, ei) = −abz2 〈(ej ∧g ei) (Z),W 〉 ,
(R ·R−Q(S,R)) (e1, e2, Z,W ; e2, ei) = −(n− 3)abz2 〈(e1 ∧g ei) (Z),W 〉 ,
(R ·R−Q(S,R)) (e2, ej , Z,W ; e2, ei) = −abz2 〈(ej ∧g ei) (Z),W 〉 ,

and the other values of (R ·R−Q(S,R)) (eu, ev , Z,W ; ew, et) being null.

As it was proved in [50], every warped product manifold M ×F Ñ of a 2-dimensional base manifold

(M,g) and an (n − 2)-dimensional fibre, which is a space of constant curvature (Ñ , g̃), n ≥ 4, with the
warping function F , satisfies

(11.7) C · C = − (n− 3)ρ

(n− 2)(n − 1)
Q(g,C), ρ =

τ

2
+

τ̃

(n− 3)(n− 2)F
+

∆F

2F
− ∆1F

2F 2
,

where ∆F = gab∇bFa, ∆1F = gabFaFb, and τ , τ̃ are the scalar curvatures of the base and the fibre,
respectively, see to [50] for details.

As we noted in Section 1, some warped product manifolds M ×F Ñ with a 2-dimensional Riemannian
manifold (M,g) and an (n − 2)-dimensional unit sphere S

n−2, are related to Chen ideal submanifolds.
Namely, according to [16], every non-trivial and non-minimal Chen ideal submanifold M of dimension n
in the Euclidean space E

n+m, n ≥ 4, m ≥ 1 is isometric to an open subset of a warped product M×F S
n−2

of a 2-dimensional base manifold (M,g) and an (n− 2)-dimensional unit sphere S
n−2, where the warping

function F is a solution of some second order quasilinear elliptic partial differential equation in the plane.
Thus we see that (11.7) holds on M . Furthermore, from (11.6) and (11.7) it follows that infK is expressed
on M by

infK =
τ

2
+

1

F
+

∆F

2F
− ∆1F

2F 2
.

Since the scalar curvature τ of M is given by (11.4) and satisfies (see, e.g., [50])

τ = τ +
(n− 3)(n − 2)

F
− (n− 2)∆F

F
− (n − 2)(n − 5)∆1F

4F 2
,

we get

(n− 2)z2 =
n− 4

F
− ∆F

F
− (n− 6)∆1F

4F 2
.

In [50], among other things, it was shown that the Hessian of the function f =
√
F is proportional to the

metric g on M .
We mention that Chen ideal submanifolds which are semisymmetric were classified in [76]. We have

Theorem 11.3. [76] (see also [67, Theorem 3]) A Chen ideal submanifold M of dimension n in the
Euclidean space E

n+m, n ≥ 3, m ≥ 1, is semisymmetric if and only if M is minimal (in which case M is
(n− 2)-ruled) or M is a round hypercone in some totally geodesic subspace E

n+1 of En+m.

Chen ideal pseudosymmetric submanifolds were classified in [51, 66]. We have
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Theorem 11.4. [51, 66] (see also [67, Theorem 4]) A Chen ideal submanifold M of codimension m in
E
n+m (n ≥ 3, m ≥ 1) is pseudosymmetric if and only if

(i) either M is semisymmetric (see Theorem 11.3),
(ii) or at every point p of M where R · R 6= 0, the 2D normal section Σ2

π̃ ⊂ E
2+m of Mn at p in the

direction of the tangent plane π̃ ⊂ TpM
n for which the sectional curvature function K(p, π) at p attains

its minimal value (infK) (p) is pseudo-umbilical at p, or equivalently, if p is a spherical point of the

projection Σ
2
π̃ ⊂ E

3 of this 2D normal section Σ
2
π̃ on the space E

3 spanned by π̃ and the mean curvature

vector
→

H (p) of Mn in E
n+m at p (and in this case LR =

n2

2(n − 1)2
H2, where H is the mean curvature

of Mn in E
n+m).

The above presented part of this section based on [67, Section 3]) and the remains part of this section on
[67, Section 5]. We present now results on Chen ideal submanifolds in Euclidean spaces whose difference
tensor R ·C−C ·R can be expressed in terms of some of the Tachibana tensors Q(g,R), Q(S,R), Q(g,C),
Q(S,C), Q(g, g ∧ S), Q(S, g ∧ S).
Theorem 11.5. [67, Theorem 6] Let M be a non-conformally flat Chen ideal submanifold of dimension
n in the Euclidean space E

n+m, n ≥ 4, m ≥ 1. Then there exist two real valued functions L1 and L2 on
M such that (1.8), i.e.,

R · C − C ·R = L1Q(S,C) + L2Q(g,C),

if and only if there exists an orthonormal tangent framefield {e1, · · · , en} and an orthonormal normal
framefield {ξ1, · · · , ξm} such that the shape operators Aα := Aξα , 1 ≤ α ≤ m, are given by:

A1 =




a 0 0 · · · 0
0 ǫa 0 · · · 0
0 0 (1 + ǫ)a · · · 0
...

...
...

. . .
...

0 0 0 · · · (1 + ǫ)a



, Aβ =




cβ dβ 0 · · · 0
dβ −cβ 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0



, β ≥ 2,

where ǫ = ±1, a, cβ , dβ (for 2 ≤ β ≤ m) are real functions on M such that

m∑

β=2

(
c2β + d2β

)
= ǫa2 − infK, L1 = −1, L2 = −2 infK + 2(n− 1)(n − 2)(1 + ǫ)a2

n− 1
.

In this case, M is a Roter space. In addition one has one of the following two cases:
(i) either ǫ = −1 and M is a semisymmetric and minimal submanifold (see Theorem 11.3) such that

R · C − C · R =
2 infK

n− 1
Q(g,C)−Q(S,C),

(ii) or ǫ = +1 and M is a properly pseudosymmetric and non-minimal submanifold (see Theorem 11.4)
such that

R · C − C · R = −2 infK + 4(n− 1)(n − 2)a2

n− 1
Q(g,C)−Q(S,C).

Corollary 11.6. [67, Corollary 3] Let M be a Chen ideal submanifold of dimension n in the Euclidean
space E

n+m, n ≥ 4, m ≥ 1. Then the difference tensor R · C − C · R and the Tachibana tensor Q(g,C)
are linearly dependent if and only if M is conformally flat.

Corollary 11.7. [67, Corollary 4] Let M be a non-conformally flat Chen ideal submanifold of dimension
n in the Euclidean space E

n+m, n ≥ 4, m ≥ 1. Then there exists a real valued function L on M such that

R · C − C · R = LQ(S,C),
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if and only if M is not minimal, and there exists an orthonormal tangent framefield {e1, · · · , en} and an
orthonormal normal framefield {ξ1, · · · , ξm} such that the shape operators Aα := Aξα , 1 ≤ α ≤ m, are
given by

A1 =




a 0 0 · · · 0
0 a 0 · · · 0
0 0 2a · · · 0
...

...
...

. . .
...

0 0 0 · · · 2a



, Aβ =




cβ dβ 0 · · · 0
dβ −cβ 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0



, β ≥ 2,

where a, cβ , dβ (for 2 ≤ β ≤ m) are real functions on M such that

m∑

β=2

(
c2β + d2β

)
=

(
2n2 − 6n+ 5

)
a2 > 0

and L = −1. In this case, Mn is properly pseudosymmetric (see Theorem 11.4).

Theorem 11.8. [67, Theorem 5] Let M be a non-conformally flat Chen ideal submanifold of codimension
m in the Euclidean space E

n+m, n ≥ 4, m ≥ 1. Then there exist two real valued functions L3 and
L4 on M such that (1.9) is satisfied on M if and only if there exists an orthonormal tangent framefield
{e1, · · · , en} and an orthonormal normal framefield {ξ1, · · · , ξm} such that the shape operators Aα := Aξα,
1 ≤ α ≤ m are given by:

A1 =




a 0 0 · · · 0
0 ǫa 0 · · · 0
0 0 (1 + ǫ)a · · · 0
...

...
...

. . .
...

0 0 0 · · · (1 + ǫ)a



, Aβ =




cβ dβ 0 · · · 0
dβ −cβ 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0



, β ≥ 2,

where ǫ = ±1, a, cβ , dβ (for 2 ≤ β ≤ m) are real functions on M such that

m∑

β=2

(
c2β + d2β

)
= ǫa2 − infK, 2 infK − (1 + ǫ)a2 6= 0, infK 6= (n − 2)(1 + ǫ)a2

and

L3 =
(n− 3) infK − (n− 2)(1 + ǫ)a2

(n− 1)(n − 2)

2 infK

2 infK − (1 + ǫ)a2
,

(1 + ǫ)a2
(
L4 −

1

(n− 2)

infK

2 infK − (1 + ǫ)a2

)
= 0.

In this case, M is a Roter space. In addition one has one of the following two cases:
(i) either ǫ = −1 and M is a semisymmetric and minimal submanifold (see Theorem 11.3) such that

R · C − C · R =
(n− 3) infK

(n− 1)(n − 2)
Q(g,R),

(ii) or ǫ = +1 and M is a properly pseudosymmetric and non minimal submanifold (see Theorem 11.4)
such that

R · C − C ·R =
(n− 3) infK − 2(n − 2)a2

(n− 1)(n − 2)

infK

infK − a2
Q(g,R) +

1

2(n − 2)

infK

infK − a2
Q(S,R).

Corollary 11.9. [67, Corollary 1] Let M be a non-conformally flat Chen ideal submanifold of dimension
n in the Euclidean space E

n+m, n ≥ 4, m ≥ 1. Then there exists a real valued function L on M such that

R · C − C ·R = LQ(g,R)
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if and only if M is minimal and there exists an orthonormal tangent framefield {e1, · · · , en} and an
orthonormal normal framefield {ξ1, · · · , ξm} such that the shape operators Aα := Aξα , 1 ≤ α ≤ m, are
given by:

A1 =




a 0 0 · · · 0
0 −a 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0



, Aβ =




cβ dβ 0 · · · 0
dβ −cβ 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0



, β ≥ 2,

where a, cβ , dβ (for 2 ≤ β ≤ m) are real functions on M such that

m∑

β=2

(
c2β + d2β

)
= −a2 − infK, L =

(n − 3) infK

(n− 1)(n − 2)
.

In this case, M is semisymmetric (see Theorem 11.3).

Corollary 11.10. [67, Corollary 2] Let M be a Chen ideal submanifold of dimension n in the Euclidean
space En+m, n ≥ 4, m ≥ 1. Then the difference tensor R · C − C · R and the Tachibana tensor Q(S,R)
are linearly dependent if and only if M is conformally flat (infK = 0).

Theorem 11.11. [67, Theorem 7] Let M be a non-conformally flat Chen ideal submanifold of dimension
n in the Euclidean space E

n+m, n ≥ 4, m ≥ 1. Then there exist two real valued functions L5 and L6 on M
such that (1.10) is satisfied on M if and only if there exists an orthonormal tangent framefield {e1, · · · , en}
and an orthonormal normal framefield {ξ1, · · · , ξm} such that the shape operators Aα := Aξα , 1 ≤ α ≤
m, are given by:

A1 =




a 0 0 · · · 0
0 ǫa 0 · · · 0
0 0 (1 + ǫ)a · · · 0
...

...
...

. . .
...

0 0 0 · · · (1 + ǫ)a



, Aβ =




cβ dβ 0 · · · 0
dβ −cβ 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0



, β ≥ 2,

where ǫ = ±1, a, cβ , dβ (for 2 ≤ β ≤ m) are real functions on M such that

m∑

β=2

(
c2β + d2β

)
= ǫa2 − infK, infK 6= (n− 2)(1 + ǫ)a2

and moreover

L5 = −2(n− 2)(1 + ǫ)a2

n− 1

infK
(
infK + (n− 2)(1 + ǫ)a2

)

(infK − (n− 2)(1 + ǫ)a2)2
,

L6 = − 1

(n− 1)(n − 2)

infK
[
(n− 3) inf K + (n− 1)(n− 2)(1 + ǫ)a2

]

(infK − (n− 2)(1 + ǫ)a2)2
.

In this case, M is a Roter space. In addition one has one of the following two cases:
(i) either ǫ = −1 and M is a semisymmetric and minimal submanifold (see Theorem 11.3) such that

R · C − C · R = − n− 3

(n− 1)(n − 2)
Q(S, g ∧ S),
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(ii) or ǫ = +1 and M is a properly pseudosymmetric and non-minimal submanifold (see Theorem 11.4)
such that

R · C − C ·R = −4(n− 2)a2

n− 1

infK
(
infK + 2(n − 2)a2

)

(infK − 2(n − 2)a2)2
Q(g, g ∧ S)

− 1

(n− 1)(n − 2)

infK
(
(n− 3) infK + 2(n− 1)(n − 2)a2

)

(infK − 2(n − 2)a2)2
Q(S, g ∧ S).

Corollary 11.12. [67, Corollary 5] Let M be a non-conformally Chen ideal submanifold of dimension n
in the Euclidean space E

n+m, n ≥ 4, m ≥ 1. Then there exists a real valued function L on M such that

R · C − C ·R = LQ(g, g ∧ S),

if and only if M is not minimal, and there exists an orthonormal tangent framefield {e1, · · · , en} and an
orthonormal normal framefield {ξ1, · · · , ξm} such that the shape operators Aα := Aξα , 1 ≤ α ≤ m, are
given by

A1 =




a 0 0 · · · 0
0 a 0 · · · 0
0 0 2a · · · 0
...

...
...

. . .
...

0 0 0 · · · 2a



, Aβ =




cβ dβ 0 · · · 0
dβ −cβ 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0



, β ≥ 2,

where a, cβ , dβ (for 2 ≤ β ≤ m) are real functions on M such that

m∑

β=2

(
c2β + d2β

)
=

2n2 − 5n+ 1

n− 1
a2 > 0, L = − 2a2

n− 2
.

In this case, M is a properly pseudosymmetric manifold (see Theorem 11.4).

Corollary 11.13. [67, Corollary 6] Let M be a non-conformally flat Chen ideal submanifold of dimension
n in the Euclidean space E

n+m, n ≥ 4, m ≥ 1. Then there exists a real valued function L on M such that

R · C −C · R = LQ(S, g ∧ S),

if and only if one has one of the two cases which follow:
(i) either M is minimal, and there exists an orthonormal tangent framefield {e1, · · · , en} and an orthonor-
mal normal framefield {ξ1, · · · , ξm} such that the shape operators Aα := Aξα , 1 ≤ α ≤ m, are given
by:

A1 =




a 0 0 · · · 0
0 −a 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0



, Aβ =




cβ dβ 0 · · · 0
dβ −cβ 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0



, β ≥ 2,

where a, cβ , dβ (for 2 ≤ β ≤ m) are real functions on M such that

m∑

β=2

(
c2β + d2β

)
= −a2 − infK, L = − n− 3

(n− 1)(n − 2)
,

(ii) or M is not minimal, and there exists an orthonormal tangent framefield {e1, · · · , en} and an or-
thonormal normal framefield {ξ1, · · · , ξm} such that the shape operators Aα := Aξα , 1 ≤ α ≤ m, are
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given by

A1 =




a 0 0 · · · 0
0 a 0 · · · 0
0 0 2a · · · 0
...

...
...

. . .
...

0 0 0 · · · 2a



, Aβ =




cβ dβ 0 · · · 0
dβ −cβ 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0



, β ≥ 2,

where a, cβ , dβ (for 2 ≤ β ≤ m) are real functions on M such that
m∑

β=2

(
c2β + d2β

)
= (2n − 3)a2, L =

1

2 (n− 1) (n− 2)
.

In the first case, M is a semisymmetric manifold (see Theorem 11.3). In the second case, M is a properly
pseudosymmetric manifold (see Theorem 11.4).

Corollary 11.14. [67, Corollary 7] Let M be a non-conformally flat Chen ideal submanifold of dimension
n in the Euclidean space E

n+m, n ≥ 4, m ≥ 1. If M is minimal, then

R · C − C · R = − n− 3

(n− 1)(n − 2)
Q(S, g ∧ S).

Corollary 11.15. [67, Corollary 8] A Chen ideal submanifold M of dimension n ≥ 4 in the Euclidean
space E

n+m satisfies the curvature condition R · C − C · R = 0 if and only if M is conformally flat.

According to [67, eq. (28)] (see also [41, Theorem 4.1]), as an immediate consequence of Theorem
11.11, for Chen ideal and Roter submanifolds, we express the difference tensor R · C − C · R as a linear
combination of the Tachibana tensors Q(g, g ∧S), Q(S, g ∧S), in terms of infK and the scalar curvature
τ .

Corollary 11.16. [67, Corollary 9] Let M be a non-conformally flat Chen ideal submanifold of dimension
n in the Euclidean space E

n+m, n ≥ 4, m ≥ 1. If M is a Roter space, then

R · C − C ·R = −2 (τ − 2 infK) (τ + 2(n− 2) infK)

(n− 1) (τ − 2n infK)2
Q(g, g ∧ S)

−2(n− 1) infK (τ + 2(n − 4) infK)

(n− 2) (τ − 2n infK)2
Q(S, g ∧ S).
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