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ON SEMI-RYAN COMPLEX SUBMANIFOLDS
IN AN INDEFINITE COMPLEX SPACE FORM

YOUNG SUK CHOI, JUNG-HWAN KWON AND YOUNG JIN SUH

ABSTRACT. The purpose of this paper is to study several
classes of an n-dimensional complete space-like complex sub-
manifold of an (n + p)-dimensional indefinite complex space

form Mn+p
0+t (c) of index 2t, and of an n-dimensional space-like

complex hypersurface of a complex Minkowski space Cn+1
1 in

terms of RS = 0.

1. Introduction. The theory of indefinite complex submanifolds of
an indefinite complex space form is one of the most interesting topics in
differential geometry, and it has been investigated by many geometers
from various points of view (see [1], [3], [6], [7], [10] and [14] [17],
etc.).

Let Mm
t (c) be an m-dimensional semi-definite complex space form of

constant holomorphic sectional curvature c and of index 2t, 0 � t � m.
As is well known, it globally consists of three kinds of complex space
forms: the semi-definite complex projective space CPmt (c), the semi-
definite complex Euclidean space Cmt , or the semi-definite complex
hyperbolic space CHm

t (c), according to whether c > 0, c = 0 or c < 0.

Let M be a semi-definite Kaehler manifold, and let us denote by R
and S the Riemannian curvature tensor and the Ricci tensor onM , re-
spectively. Recently, the present authors [5] have given a complete clas-
sification of semi-symmetric complex hypersurfaces in a semi-definite
complex space form Mm

1 (c). Here the notion of semi-symmetric means
R(X,Y )R = 0 for any vector fields X and Y on M . In this paper we
want to introduce another notion of R(X,Y )S = 0, which is said to be
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semi-Ryan. Such a semi-Ryan condition is a much more generalized
notion than the semi-symmetric condition R(X,Y )R = 0 for any vector
fields X,Y on M (see [17], [18] and [19]).

Now the above notion of semi-symmetric and semi-Ryan is just
denoted by RR = 0 or RS = 0, respectively. With such a geometric
condition RS = 0, we give a complete classification of space-like semi-
Ryan Kaehler submanifolds in Mn+p

0+t (c) as follows:

Theorem 1. Let M be an n-dimensional complete space-like semi-
Ryan complex submanifold of an (n+p)-dimensional indefinite complex
space form Mn+p

0+t (c) of index 2t. If its totally real holomorphic bisec-
tional curvature is nonvanishing at all of its points, thenM is Einstein.

Moreover, for a space-like complex hypersurface satisfying RS = 0 in
a complex Minkowski space Cn+1

1 , we proved the following:

Theorem 2. Let M be an n-dimensional space-like semi-Ryan
complex hypersurface of Cn+1

1 . Then M is cylindrical.

2. Semi-definite Kaehler manifolds. This section is concerned
with recalling basic formulas on semi-definite Kaehler manifolds. Let
M be a complex m(� 2)-dimensional semi-definite Kaehler manifold
equipped with semi-definite Kaehler metric tensor g and almost com-
plex structure J . For the semi-definite Kaehler structure {g, J}, it fol-
lows that J is integrable and the index of g is even, say 2t, 0 � t � m.
In the case where t is contained in the range 0 < t < m, M is called an
indefinite Kaehler manifold and the structure {g, J} is called an indef-
inite Kaehler structure and, in particular, in the case where t = 0 or
m, M is only called a Kaehler manifold, and then the structure {g, J}
is called a Kaehler structure.

Now we can choose a local field {Eα} = {EA, EA∗} = {E1, . . . , Em,
E1∗, . . . , Em∗} of orthonormal frames on a neighborhood of M , where
EA∗ = JEA and A∗ = m + A. Here the indices A,B, . . . run from
1 to m and the indices α, β, . . . run from 1 to 2m = m∗. We set
UA = (EA−iEA∗)/

√
2 and UA = (EA+iEA∗)/

√
2, where i denotes the

imaginary unit. Then {UA} constitutes a local field of unitary frames
on the neighborhood of M . This is a complex linear frame which is
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orthonormal with respect to the semi-definite Kaehler metric, that is,
g(UA, UB) = εAδAB, where

εA = 1 or − 1,

according to whether

1 � A � m− t or m− t+ 1 � A � m.

Let {θα} = {θA, θA∗}, {θαβ} and {Θαβ} be the canonical form,
the connection form and the curvature form on M , respectively, with
respect to the local field {Eα} = {EA, EA∗} of orthonormal frames.
Then we have the structure equations
(2.1)

dθα +
∑
β

εβθαβ ∧ θβ = 0, θαβ − θα∗β∗ = 0,

θα∗β + θαβ∗ = 0, θαβ + θβα = 0, θαβ∗ − θβα∗ = 0,

dθαβ +
∑
γ

εγθαγ ∧ θγβ = Θαβ , Θαβ = − 1
2

∑
γ,δ

εγεδKαβγδθγ ∧ θδ,

where Kαβγδ denotes the components of the Riemannian curvature
tensor R of M .

Now let {ωA} be the dual coframe field with respect to the local field
{UA} of unitary frames on the neighborhood of M given by

ωA = (θA + iθA∗)/
√
2.

Then {ωA} = {ω1, . . . , ωm} consists of complex-valued 1-forms of
type (1, 0) on M such that ωA(UB) = εAδAB and {ωA, ω̄A} =
{ω1, . . . , ωm, ω̄1, . . . , ω̄m} are linearly independent. The semi-definite
Kaehler metric g of M can be expressed as g = 2

∑
A εAωA ⊗ ω̄A. As-

sociated with the frame field {UA}, there exist complex-valued forms
ωAB given by

ωAB = θAB + iθA∗B,
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which are usually called connection forms on M such that they satisfy
the structure equations of M ;

(2.2)

dωA +
∑
B

εBωAB ∧ ωB = 0, ωAB + ω̄BA = 0,

dωAB +
∑
C

εCωAC ∧ ωCB = ΩAB,

ΩAB =
∑
C,D

εCεDRABCDωC ∧ ω̄D,

where Ω = (ΩAB), ΩAB = ΘAB+iΘA∗B (respectively RABCD) denotes
the curvature form (respectively the components of the semi-definite
Riemannian curvature tensor R) of M . So, by (2.1) and (2.2), we
obtain

(2.3) RABCD = −{(KABCD +KA∗BC∗D) + i (KA∗BCD −KABC∗D)}.

The second relation of equation (2.2) means that the skew-Hermitian
symmetry of ΩAB, which is equivalent to the symmetric condition
RABCD = RBADC . Moreover, the first Bianchi identity

∑
B εBΩAB ∧

ωB = 0 is given by the exterior differential of the first and third
equations of (2.2), which implies the further symmetric relations

RABCD = RACBD = RDCBA = RDBCA.

Now, relative to the frame field chosen above, the Ricci tensor S of
M can be expressed as follows:

S =
∑
A,B

εAεB(SABωA ⊗ ω̄B + SABω̄A ⊗ ωB),

where SAB =
∑

C εCRCCAB = SBA = SAB. The scalar curvature
r is also given by r = 2

∑
A εASAA. An n-dimensional semi-definite

Kaehler manifoldM is said to be Einstein if the Ricci tensor S is given
by

SAB =
r

2n
εAδAB.
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The components RABCD;E and RABCD;E of the covariant derivative of
the Riemannian curvature tensor R are defined by

∑
E

εE(RABCD;EωE +RABCD;Eω̄E)

= dRABCD −
∑
E

εE(REBCDω̄EA +RAECDωEB

+RABEDωEC +RABCEω̄ED).

The second Bianchi identity is given by

RABCD;E = RABED;C .

Let M be an m-dimensional semi-definite Kaehler manifold of index
2t, 0 � t � m. A plane section P of the tangent space TxM of
M at any point x is said to be nondegenerate provided that gx|P is
nondedgenerate. It is easily seen that P is nondegenerate if and only
if it has a basis {X,Y } such that

g(X,X) g(Y, Y )− g(X,Y )2 �= 0.

If the nondegenerate plane P is invariant by the complex structure
J , it is said to be holomorphic. It is also trivial that the plane P
is holomorphic if and only if it contains a vector X in P such that
g(X,X) �= 0. For the nondegenerate plane P spanned by X and Y in
P , the sectional curvature K(P ) is usually defined by

K(P ) = K(X,Y ) =
g(R(X,Y )Y,X)

g(X,X)g(Y, Y )− g(X,Y )2 .

The holomorphic plane spanned by a space-like or time-like vector X
and JX is said to be space-like or time-like, respectively. The sectional
curvature K(P ) of the holomorphic plane P is called the holomorphic
sectional curvature, which is denoted by H(P ). The semi-definite
Kaehler manifold M is said to be of constant holomorphic sectional
curvatuare if its holomorphic sectional curvatures H(P ) are constant
for all holomorphic planes at all points of M . Then M is called a
semi-definite complex space form, which is denoted byMm

t (c) provided
that it is of constant holomorphic sectional curvature c, of complex
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dimension m and of index 2t(� 0). It is seen in Wolf [20] that the
standard models of semi-definite complex space forms are the following
three kinds: the semi-definite complex projective space CPmt (c), the
semi-definite complex Euclidean space Cmt or the semi-definite complex
hyperbolic space CHm

t (c), according to whether c > 0, c = 0 or
c < 0. For any integer q(0 � t � m), it is also seen by [20] that
they are complete simply connected semi-definite complex space forms
of dimension m and of index 2t. The Riemannian curvature tensor
RABCD of Mm

t (c) is given by

(2.4) RABCD =
c

2
εBεC(δABδCD + δACδBD).

Now let M be an m-dimensional semi-definite Kaehler manifold of an
index 2t equipped with semi-definite Kaehler structure {g, J}. We can
choose a local field of {Eα} = {EA, EA∗} of orthonormal frames on
the neighborhood of M such that g(EA, EB) = εAδAB. Let {UA} be a
local field of unitary frames associated with the orthonormal frames
{EA, EA∗} on the neighborhood of M stated above in the first of
this section. This is a complex linear frame, which is orthonormal
with respect to the semi-definite Kaehler metric, that is, g(UA, UB) =
εAδAB.

Given two holomorphic planes P and Q in TxM at any point x inM ,
the holomorphic bisectional curvature H(P,Q) determined by the two
planes P and Q of M is defined by

(2.5) H(P,Q) =
g(R(X, JX)JY, Y )

g(X,X)g(Y, Y )− g(X,Y )2 ,

where X, respectively Y , is a nonzero vector in P , respectively Q. In
particular, the holomorphic bisectional curvature H(P,Q) is said to be
space-like or time-like if P and Q are both space-like or either P or Q is
time-like. It is a simple matter to verify that the righthand side in (2.5)
depends only on P and Q and so it is well defined. It may be denoted
by H(P,Q) = H(X,Y ). It is easily seen that H(P, P ) = H(P ) =
H(X,X) =: H(X) is the holomorphic sectional curvature determined
by the holomorphic plane P , where X is a nonzero vector in P . We
denote by PA the holomorphic plane [EA, JEA] spanned by EA and
JEA = EA∗ . We set

H(PA, PB) = HAB(A �= B), H(PA, PA) = H(PA) = HAA = HA.
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The holomorphic bisectional curvature HAB(A �= B) and the holomor-
phic sectional curvature HA are given by

HAB =
g(R(EA, JEA)JEB, EB)
g(EA, EA)g(EB, EB)

= − εAεBKAA∗BB∗(A �= B),

HA =
g(R(EA, JEA)JEA, EA)
g(EA, EA)g(EA, EA)

= −KAA∗AA∗ .

By (2.3) we have

(2.6) HAB = εAεBRAABB(A �= B), HA = RAAAA.

3. Space-like complex submanifolds. This section is concerned
with space-like complex submanifolds of an indefinite Kaehler manifold.
First of all, the basic formulas for the theory of space-like complex
submanifolds are prepared.

LetM ′ be an (n+p)-dimensional connected indefinite Kaehler mani-
fold of index 2p with indefinite Kaehler structure (g′, J ′). Let M be an
n-dimensional connected space-like complex submanifold ofM ′, and let
g be the induced Kaehler metric tensor of index 2p on M from g′. We
can choose a local field {UA} = {Uj , Ux} = {U1, . . . , Un+p} of unitary
frames on a neighborhood of M ′ in such a way that, restricted to M ,
U1, . . . , Un are tangent to M and the others are normal to M . Here
and in the sequel, the following convention on the range of indices is
used throughout this paper, unless otherwise stated:

A,B,C, . . . = 1, . . . , n, n+ 1, . . . , n+ p;
i, j, k, . . . = 1, . . . , n; x, y, z, . . . = n+ 1, . . . , n+ p.

With respect to the frame field, let {ωA} = {ωj , ωy} be its dual frame
fields. Then the indefinite Kaehler metric tensor g′ of M ′ is given by
g′ = 2

∑
A εAωA⊗ω̄A, where {εA} = {εj , εy}. The connection forms on

M ′ are denoted by {ωAB}. The canonical forms ωA and the connection
forms ωAB of the ambient space M ′ satisfy the structure equations

(3.1)

dωA +
∑
B

εBωAB ∧ ωB = 0, ωAB + ω̄BA = 0,

dωAB +
∑
C

εCωAC ∧ ωCB = Ω′
AB,

Ω′
AB =

∑
C,D

εCεDR
′
ĀBCD̄ωC ∧ ω̄D,
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where Ω′
AB (respectively R′

ĀBCD̄
) denotes the curvature form (respec-

tively the components of the indefinite Riemannian curvature tensor
R′) of M ′.

Restricting these forms to the submanifold M , we have

(3.2) ωx = 0,

and the induced Kaehler metric tensor g of M is given by g =
2

∑
j εjωj ⊗ ω̄j . Then {Uj} is a local unitary frame field with respect

to the induced metric and {ωj} is a local dual frame field due to
{Uj}, which consists of complex-valued 1-forms of type (1, 0) on M .
Moreover, ω1, . . . , ωn, ω̄1, . . . , ω̄n are linearly independent, and {ωj}
is the canonical form on M . It follows from (3.2) and Cartan’s lemma
that the exterior derivative of (3.2) gives rise to

(3.3) ωxi =
∑
j

εjhij
xωj , hij

x = hjix.

The quadratic form α =
∑

i,j,x εiεjεxhij
xωi ⊗ ωj ⊗ Ux with values in

the normal bundle NM on M in M ′ is called the second fundamental
form of the submanifold M . Therefore, the structure equations for M
are similarly given by

(3.4)

dωi +
∑
j

εjωij ∧ ωj = 0, ωij + ω̄ji = 0,

dωij +
∑
k

εkωik ∧ ωkj = Ωij ,

Ωij =
∑
k,m

εkεmRījkm̄ωk ∧ ω̄m.

Moreover, the following relationships are obtained:

(3.5)

dωxy +
∑
z

εzωxz ∧ ωzy = Ωxy,

Ωxy =
∑
k,m

εkεmRx̄ykm̄ωk ∧ ω̄m,

where Ωxy is called the normal curvature form of M . For the Rieman-
nian curvature tensors R and R′ of M and M ′, respectively, it follows
from (3.1), (3.3) and (3.4) that we have the Gauss equation

(3.6) Rījkm̄ = R′̄
ijkm̄ −

∑
x

εxhjk
xh̄im

x.
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And, by means of (3.3) and (3.5), we have

(3.7) Rx̄ykm̄ = R′
x̄ykm̄ +

∑
r

εrhkr
xh̄rm

y.

The components Sij̄ of the Ricci tensor S and the scalar curvature r
of M are given by

(3.8) Sij̄ =
∑
K

εkR
′̄
jikk̄ − hij̄2, r = 2

( ∑
k,j

εkεjR
′̄
kkjj̄ − h2

)
,

where hij̄2 = hj̄i2 =
∑

x,r εxεrhir
xh̄rj

x and h2 =
∑

j εjhjj̄
2.

Now the components hijkx and hijk̄x of the covariant derivative of
the second fundamental form on M are given by

(3.9)

∑
k

εk(hijkxωk + hijk̄
xω̄k)

= dhijx −
∑
k

εk(hkjxωki + hikxωkj) +
∑
y

εyhij
yωxy.

Then, substituting dhijx in this definition into the exterior derivative
of (3.3) and using (3.1) (3.4) and (3.8), we have

(3.10) hijk
x = hikjx, hijk̄

x = −R′
x̄ijk̄.

Similarly, the components hijkmx and hijkm̄x, respectively hijk̄mx

and hijk̄m̄x, of the covariant derivative of hijkx, respectively hijk̄x, can
be defined by∑

m

εm(hijkmxωm + hijkm̄xω̄m)

= dhijkx −
∑
m

εm(hmjkxωmi + himkxωmj + hijmxωmk)

+
∑
y

εyhijk
yωxy,

∑
m

εm(hijk̄m
xωm + hijk̄m̄

xω̄m)

= dhijk̄
x −

∑
m

εm(hmjk̄
xωmi + himk̄

xωmj + hijm̄xω̄mk)

+
∑
y

εyhijk̄
yωxy.
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Differentiating (3.9) exteriorly and using the properties d2 = 0, (3.4),
(3.5), (3.8), (3.9) and (3.10), we have the following Ricci formula for
the second fundamental form

hijkm
x = hijmkx, hijk̄m̄

x = hijm̄k̄
x,

hijkm̄
x − hijm̄kx =

∑
n

εn(Rm̄kin̄hnjx +Rm̄kjn̄hinx)

−
∑
y

εyRx̄ykm̄hij
y.

In particular, let the ambient space M ′ be an (n + p)-dimensional
semi-definite complex space form Mn+p

s+t (c) of constant holomorphic
sectional curvature c and of index 2(s+ t), 0 � s � n, 0 � t � p. Then
we get

(3.11) Rījkm̄ =
c

2
εjεk(δijδkm + δikδjm)−

∑
x

εxhjk
xh̄im

x,

(3.12) Sij̄ =
(n+ 1)c

2
εiδij − hij̄2,

(3.13) r = n(n+ 1)c− 2h2,

(3.14) hijk̄
x = 0,

hijkm̄
x =

c

2
(εkhijxδkm − εihjkxδim + εjhkixδjm)

(3.15) −
∑
n,y

εnεy(hnixhjky+hnjxhkiy+hnkxhijy)h̄nmy.

For the sake of brevity, a tensor hij̄2m and a function h2m on M for
any integer m(� 2) are introduced as follows:

hij̄
2m =

∑
i1,...,im−1

εi1 · · · εim−1hīi1
2hi1 ī2

2 · · ·him−1 j̄
2,

h2m =
∑
i

εihīi
2m.
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In particular, if M is a hypersurface, then a tensor hij2m+1 on M is
introduced as follows:

hij
2m+1 =

∑
k

εkhik̄
2mhkj .

4. Examples of indefinite Einstein complex submanifolds.
We give here some examples of indefinite Einstein submanifolds of an
indefinite complex space form.

Example 4.1. The indefinite Euclidean space Cns of index 2s is a
totally geodesic complex hypersurface of Cn+1

s or Cn+1
s+1 in a natural

way.

Example 4.2. For an indefinite complex projective space CPn+1
s (c)

of index 2s and of constant holomorphic sectional curvature c, if
{z1, . . . , zs, zs+1, . . . , zn+2} is the usual homogeneous coordinate system
of CPn+1

s (c), then for each j fixed, the equation zj = 0 defines a totally
geodesic complex hypersurface identifiable with CPns (c) or CP

n
s−1(c)

according to whether s + 1 � j � n + 2 or 1 � j � s. By taking
into account that CHn

s (−c) is obtained from CPnn−s(c) by reversing
the sign of its indefinite Kaehler metric, the previous discussion shows
that CHn

s (−c) is a totally geodesic complex hypersurface of both
CHn+1

s (−c) and CHn+1
s+1 (−c).

Example 4.3. Let Qns be an indefinite complex hypersurface of
CPn+1

s (c) defined by the equation

−
s∑

j=1

zj
2 +

n+2∑
k=s+1

zk
2 = 0

in the homogeneous coordinate system of CPn+1
s (c). Then Qns is a

complete indefinite complex hypersurface of index 2s and, moreover, in
a similar way to Kobayashi and Nomizu [8, Chapter 11, Example 10.6]
it is Einstein, and then the Ricci tensor S satisfies S = ncg/2. This is
called an indefinite complex quadric.
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Note that Qns can also be constructed as an indefinite Einstein
complex hypersurface of CHn+1

s+1 (−c).

Remark 4.1. Szabó [18] showed that a complete Einstein complex
hypersurface of a complex space form Mn+1(c) is totally geodesic or
c > 0. In the latter case, M is locally congruent to the complex
quadricQn. Example 4.3 means that the situation of indefinite Einstein
complex hypersurfaces is quietly different from those of the definite
cases.

Remark 4.2. An indefinite Einstein complex hypersurface of an
indefinite complex space form is investigated in detail by Montiel and
Romero [10] (cf. Romero’s survey [14]).

Example 4.4 ([10]). Let us consider an indefinite complex hyper-
surface of CP 2n+1

n+1 (c) defined by the equation

n+1∑
j=1

zjzn+1+j = 0

in the homogeneous coordinate system of CP 2n+1
n+1 (c). It is a complete

complex hypersurface of index 2n, which is denoted by Q2n∗
n . It is

easily seen that the Ricci tensor S satisfies S = (n+1)cg, and hence it
is Einstein.

A similar discussion as in Example 4.3 shows that Q2n∗
n is also an

indefinite complete Einstein complex hypersurface of CH2n+1
n+1 (−c).

Example 4.5. For the homogeneous coordinate systems {z1, . . . , zs,
zs+1, . . . , zn+1} of CPns (c) and {w1, . . . , wt, wt+1, . . . , wm+1} of CPmt (c),
a mapping f of CPns (c)× CPmt (c) into CPN(n,m)

R(n,m,s,t)(c) with

N(n,m) = n+m+ nm, R(n,m, s, t) = s(m−t) + t(n−s) + s+ t
is defined by

f(z, w) = (zawu, zrwx, zbwy, zswv),

where
a, b, . . . = 1, . . . , s; r, s, . . . = s+ 1, . . . , n+ 1,
x, y, . . . = 1, . . . , t; u, v, . . . = t+ 1, . . . ,m+ 1.
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Then f is a well-defined holomorphic mapping, and it is seen that
f is also an isometric imbedding which is called an indefinite Segre
imbedding. In the case of n = m, it is Einstein and the Ricci tensor S
satisfies S = (n+1)cg/2. In particular, if s = t = 0, then f is a classical
Segre imbedding (cf. Nakagawa and Takagi [11]). This example is due
to Ikawa, Nakagawa and Romero [6].

As the simplest case in the definite product ones, CP 1(c)×CP 1(c) is
the complex quadric Q2 in CP 3(c). In the indefinite case, however, we
can consider two product manifolds, CP 1

1 (c) × CP 1
1 (c) and CP

1
1 (c) ×

CP 1(c), which are mutually different complex quadric in CP 3
2 (c). In

fact, it is seen in Montiel and Romero [10] that they are denoted by
Q2

2 and Q
2∗
2 , respectively.

By using that an indefinite complex hyperbolic space CHn
s (−c) is

obtained from CPnn−s(c) by changing the metric by its negative, another
indefinite Segre imbedding

f : CHn
s (−c)× CHm

t (−c) −→ CH
N(n,m)
S(n,m,s,t)(−c)

is given, where S(n,m, s, t) = (n−s)(m−t)+st+s+t. In the case where
n = m, it is Einstein, and the Ricci tensor S satisfies S = −(n+1)cg/2.
In particular, for s = t = 0, we have a holomorphic isometric imbedding
f of CHn(−c)× CHm(−c) into CHN(n,m)

nm (−c).

Example 4.6. Let hj be holomorphic functions of C. The range of
indices are given as follows:

i, j, . . . = 1, . . . , n; a, b, . . . = 1, . . . , s;
x, y, . . . = s+ 1, . . . , n; A,B, . . . = 1, . . . , 2n.

In a (2n+1)-dimensional complex manifold C2n+1 with the standard
basis, a Hermitian form F is defined by

F (z, w) = −
∑
a

zawa +
∑
x

zxwx +
∑
j∗
zj∗wj∗ + z2n+1w2n+1,

where j∗ = n + j and z = (za, zx, zj∗ , z2n+1) = (zA, z2n+1), w =
(wA, w2n+1) are in C2n+1. The scalar product defined by the real part
ReF is an indefinite Riemannian metric of index 2s on C2n+1 and
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(C2n+1,ReF ) is a flat indefinite complex space form, which is denoted
by C2n+1

s . Let hj be holomorphic functions of C into C. For the
complex coordinate system (zA, z2n+1) of C2n+1

s , let M =M2n
s (hj , cj)

be the complex hypersurface in C2n+1
s , given by the equation

z2n+1 =
∑
j

hj(zj + cjzj∗)

for any complex number cj . Then M2n
2 (hj , cj) is a family of complete

connected hypersurfaces of index 2s in C2n+1
s if |ca| � 1 for any a.

Furthermore, it is diffeomorphic to C2n. If all functions hx are linear
and if |ca| = 1, then M2n

s (hj , cj) is Ricci flat. In particular, it is
not flat provided that there is an index a such that ha is not linear.
M2n
n (hj , 1) is also a complete connected complex hypersurface of index

2n in C2n+1
n , which is Ricci flat. These examples are due to Aiyama,

Ikawa, Kwon and Nakagawa [1].

In particular, M2n
n (zp, 1) for any integer p(� 2) is a complete con-

nected complex hypersurface of index 2n in C2n+1
n , which are Ricci flat

but not flat. This is due to Romero [15].

5. Normal curvature tensor. In this section we introduce the
concept of the normal curvature tensor on the space-like complex
submanifold in an indefinite Kaehler manifold.

LetM ′ be an (n+p)-dimensional indefinite Kaehler manifold of index
2p equipped with indefinite Kaehler structure {g′, J ′}, and let M be
an n-dimensional space-like complex submanifold of M ′ endowed with
induced Kaehler structure {g, J} from the indefinite Kaehler structure
{g′, J ′}. Let us denote by ∇⊥ the normal connection on M , namely, it
is the mapping of TM ×NM into NM defined by

∇⊥(X,V ) = ∇⊥
XV = the normal part of ∇′

XV

for any tangent vector field X in TM and any normal vector field V
in NM , where ∇′ is the Kaehler connection on M ′ and TM and NM
are the tangent bundle and the normal bundle of M , respectively [14].
The normal curvature tensor R⊥ on M is defined by

R⊥(X,Y )V = (∇⊥X∇⊥Y −∇⊥
Y∇⊥

X −∇⊥
[X,Y ])V,
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where X,Y ∈ TM and V ∈ NM . If it satisfies

R⊥(X,Y )V = f g(X, JY )J ′V,

where f is any function on M , then the normal connection ∇⊥ is said
to be proper. In particular, if f is a nonzero constant or 0 on M , then
it is said to be semi-flat or flat, respectively.

Remark 5.1. The concept of the semi-flatness of the normal con-
nection of the complex submanifold in a complex projective space is
introduced, and the justification of the concept is given by Yano and
Kon [21].

On the other hand, the proper case is treated by Ki and Nakagawa
[7].

Remark 5.2. In the semi-Riemannian geometry, the shape operator
A on the indefinite Einstein hypersurface M of index 2s in Mn+1

s+1 (c)
cannot be necessarily diagonalized. By the classification of the self-
adjoint endomorphisms of a scalar product, we have the following
properties:

(1) A is diagonalizable,

(2) A is not diagonalizable, but either εn+1h2 < 0 or h2 = 0 and not
totally geodesic.

An indefinite Einstein hypersurface is said to be proper if the shape
operator A is diagonalizable (see [3], [7]). The terminology “proper”
of the normal connection is named after the concept.

Now, in order to consider the normal curvature transformation,
we see the local version of the normal curvature tensor. Let M
be an n-dimensional space-like complex submanifold of an (n + p)-
dimensional indefinite Kaehler manifold M ′ of index 2p with almost
complex structure J ′. We can choose a local field {EA, EA∗} =
{E1, . . . , Em, E1∗ , . . . , Em∗}, m = n + p, of orthonormal frames on a
neighborhood of M ′ in such a way that, restricted to M , E1, . . . , En,
E1∗ , . . . , En∗ are tangent to M and the others are normal to M , where
EA∗ = J ′EA. Let {UA} = {Uj , Uy} be the local field of unitary frames
associated with the orthonormal frame. With respect to the frame
field, let {ωA} = {ωj , ωy} be its canonical form on the ambient space.
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Restricting these forms to the submanifold M , we have ωx = 0. Then
Uj is a local unitary frame field with respect to this induced metric and
{ωj} is the canonical form on M . From the structure equations of the
ambient space, it follows that the structure equations for M and the
equation on the normal bundle NM on M are expressed as

dωxy +
∑
z

εzωxz ∧ ωzy = Ωxy,

Ωxy =
∑
k,m

εkεmRx̄ykm̄ωk ∧ ω̄m,

where Ωxy is called the normal curvature form ofM and Rx̄ykm̄ denotes
the components of the normal curvature form Ωxy on M . It is seen
that its components are given as the ones of the extension of complex
linearity of the normal curvature tensor R⊥ on M . By means of (3.3)
and (3.5), we have

(5.1) Rx̄ykm̄ = R′
x̄ykm̄ +

∑
j

εjh
x
kjh̄jm

y.

By the property of (5.1) of the normal curvature tensor, we can define a
linear transformation TN on the np-dimensional complex vector space
Ξnp consisting of tensors (ξxk) at each point on M by

TN (ξxk) = (ηxk), ηxk =
∑
y,m

εyεmRx̄ykm̄ξym.

We denote by (Rymxk) the matrix of the linear transformation TN .
The linear operator defined by the np×np Hermitian matrix (Rymxk) is
called the normal curvature operator onM . Then TN is the self-adjoint
operator with respect to the definite metric canonically defined on Ξnp.
We assume that the matrix (Rymxk) is diagonalizable. In this case, we
can suitably choose an indefinite unitary frame field {UA} = {Uj , Uy}
in such a way that it satisfies

(5.2) Rx̄ykm̄ = εxεkfxkδymxk = εxεkfxkδxyδkm,

where every eigenvalue fxk of TN is a real valued function on M . By
(5.1) and (5.2), we have

R′
x̄ykm̄ = εxεkfxkδxyδkm −

∑
j

εjhkj
xh̄jm

y.
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Remark 5.3. In the space-like complex hypersurface M , the normal
connection is always proper.

6. Semi-definite complex submanifolds with RS = 0. This sec-
tion is concerned with indefinite complex submanifolds in an indefinite
complex space form satisfying the semi-Ryan condition R(X,Y )S = 0
for any tangent vectors X and Y on M . Let M be an n-dimensional
semi-definite complex submanifold of index 2s of a semi-definite com-
plex space form M ′ = Mn+p

s+t (c), 0 � s � n, 0 � t � p. We denote
by R or S the Riemannian curvature tensor or the Ricci tensor on M ,
respectively. Assume that the submanifold M satisfies the condition

R(X,Y )S = 0, X, Y ∈ TM.

It is equivalent to

(6.1)
∑
r

εr(Rījrk̄Smr̄ −Rījmr̄Srk̄) = 0 or Sījkm̄ − Sījm̄k = 0.

By (3.11) and (3.12), we have

(6.2)
c(εjδjmhkī

2 − εiδikhjm̄2)

+ 2
∑
x,n

εxεn(h̄inxhnm̄2hjk
x − h̄imxhkn̄

2hjn
x) = 0.

Putting j = m in (6.2), multiplying εj and summing up with respect
to the index j, we have

(6.3)

c(nhij̄
2−h2εjδij)

+ 2
( ∑
x,k,m

εxεkεmhik
xhmk̄

2h̄mj
x − hij̄4

)
= 0.

Theorem 6.1. Let M be an n-dimensional semi-definite complex
submanifold of index 2s in Mn+p

s+t (c), c �= 0. If M satisfies RS = 0 and
if the Ricci tensor commutes with any shape operator in the direction
of any unit normal field, then M is Einstein.
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Proof. Since M satisfies the condition RS = 0, the equation (6.3)
holds. Now, let Ax be the shape operator associated with any unit
normal field Ex. Under the assumption about any shape operator, we
see SAx −AxS = 0. According to (3.12), we have

(6.4)
∑
j

εjhij̄
2hjk

x =
∑
j

εjhij
xhkj̄

2.

From (6.3) and (6.4), it follows that we have c(nhij̄2 − h2εiδij) = 0,
which means that M is Einstein. This completes the proof.

In the case where M is a hypersurface, it is easily seen that the
Ricci tensor commutes with the shape operator. Thus, as a direct
consequence of Theorem 6.1, we can prove

Corollary 6.2. Let M be a semi-definite complex hypersurface of
index 2s in Mn+1

s+t (c), 0 � s � n, t = 0 or 1, c �= 0. If M satisfies the
condition RS = 0, then M is Einstein.

Remark 6.1. Corollary 6.2 is already proved by Aiyama, Ikawa, Kwon
and Nakagawa [1].

Corollary 6.3. Let M be an n-dimensional space-like complex
submanifold of Mn+p

p (c), c �= 0. If M satisfies the condition RS = 0,
and if the normal connection is proper, then M is Einstein.

Proof. Let (M ′, g′) be an (n + p)-dimensional indefinite Kaehler
manifold of index 2p, and letM be an n-dimensional space-like complex
submanifold ofM ′. For the normal curvature tensor R⊥ = {Rx̄ykm̄} on
M , the normal curvature operator TN on the np-dimensional complex
vector space Ξnpo = NoMC × ToMC at any point x on M is defined by

TN (ξxk) = (ηxk), ηxk =
∑
y,m

εyεmRx̄ykm̄ξym,

where NoM is the normal space at o to M in the tangent space
ToM

′ and V C denotes the complexification of a real vector space V .
We denote by (Rynxk) the matrix of the linear transformation TN .
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By the assumption that the normal connection is proper, the linear
transformation TN is diagonalizable, and it satisfies

Rx̄ykm̄ = εxεkfxkδxyδkm.

Since TN is self-adjoint, every eigenvalue fxk of TN is a real-valued
function on M . So we have by (5.1)

R′
x̄ykm̄ = εxεkfxkδxyδkm −

∑
j

εjhkj
xh̄jm

y.

From this, together with (2.4), it follows that

(6.5)
∑
j

εjhij
xh̄jk

y = εxεi

(
fxi − c2

)
δxyδik.

Transvecting (6.5) with εkεyhkmy or εiεxh̄mix, and summing up with
respect to m and y or i and x, respectively, we have

∑
j

εjhij
xhkj̄

2 =
(
fxi − c2

)
hik

x,

∑
j

εjhjm̄
2h̄jk

y =
(
fym − c

2

)
h̄mk

y,

which implies that the Ricci tensor commutes with any shape operator.
So, by Theorem 6.1, M is Einstein. This completes the proof.

Now letM be an n-dimensional space-like complex submanifold of an
(n+p)-dimensional indefinite complex space form Mn+p

t (c), 0 < t � p.
Then the matrix (hij̄2) is a Hermitian one, whose eigenvalues µj ’s are
real value functions on M , say hij̄2 = µiδij . Therefore, (6.3) is given
by

c(nhij̄
2 − h2δij) + 2

( ∑
x,k,m

εxhik
xhmk̄

2h̄mj
x − hij̄4

)
= 0.

Accordingly, we have

c(nh4 − h2
2) + 2

( ∑
x,i,j,k,m

εxhik
xhmk̄

2h̄mj
xhjī

2 − h6

)
= 0.
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The second term on the righthand side of the above equation is given
by

2
( ∑
x,i,j,k,m

εxhik
xhmk̄

2h̄mj
xhjī

2 − h6

)

= 2
( ∑
x,i,k

εxµiµkhik
xh̄ik

x −
∑
x,i,k

εxµi
2hik

xh̄ik
x)

= 2
∑
x,i,k

εx(µiµk − µ2
k)hik

xh̄ik
x

= −
∑
x,i,k

εx(µi − µk)2hikxh̄ikx.

On the other hand, it is easily seen that we have

nh4 − h2
2 =

1
2

∑
i �=k

(µi − µk)2.

Thus (6.3) is reformed as
( ∑
i �=k
c− 2

∑
x,i �=k

εxhik
xh̄ik

x

)
(µi − µk)2 = 0,

from which together with (3.6) it follows that we have

(6.6)
∑
i �=k
Rīikk̄(µi − µk)2 = 0.

Now a nondegenerate totally real plane [X,Y ] is defined by a non-
degenerate plane {X,Y } of the orthonormal pair X and Y , and its
image {JX, JY } by the almost complex structure J on M . For two
holomorphic planes P = [X, JX] and Q = [Y, JY ] where X and Y are
orthonormal vectors, the totally real bisectional curvature H(P,Q) is
defined by

H(P,Q) = H(X,Y ) = g (R(X, JX)JY, Y ).

Accordingly, we have by (2.6)

(6.7) H(Ei, Ek) = Rīikk̄, i �= k.
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By (6.6) and (6.7) we can prove the main theorem in Section 1.

Theorem 6.4. Let M be an n-dimensional complete space-like
complex submanifold of an (n+p)-dimensional indefinite complex space
form Mn+p

0+t (c), 0 < t � p. If M satisfies the condition RS = 0, and if
its totally real bisectional curvature is nonvanishing at all of its points,
then M is Einstein.

As a direct consequence of Theorem 6.4, the following corollaries are
derived. In fact, by the Gauss equation (3.6), we have

Rīikk̄ = R′̄
iikk̄ −

∑
x

εxhik
xh̄ik

x, i �= k.

Since the ambient space is the semi-definite complex space form, it is
reformed as

2Rīikk̄ = c− 2
∑
x

εxhik
xh̄ik

x, i �= k.

So we can prove

Corollary 6.5. Let M be an n-dimensional complex submanifold
of Mn+p(c), c < 0. If M satisfies the condition RS = 0, then M is
Einstein.

Corollary 6.6. Let M be an n-dimensional space-like complex
submanifold of Mn+p

p (c), c > 0. If M satisfies the condition RS = 0,
then M is Einstein.

Remark 6.3. Corollary 6.6 was already proved by Aiyama, Nakagawa
and the second author [2]. For Corollary 6.5 in the case where c > 0,
there exists a counter example (see Example 4.5). On the other hand,
for Corollary 6.6 in the case where c < 0 we also have a counter example.
See also Example 4.5.

Under such a situation it seems to be interesting if we consider the
case where the ambient space is indefinite complex Euclidean. This
will be discussed in much more detail in the last section.
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7. Complex Minkowski spaces. In this section, let M be an n-
dimensional space-like complex hypersurface of an (n+1)-dimensional
indefinite complex Euclidean space Cn+1

1 of index 2. It is said to be
p-cylindrical if it contains a p-dimensional totally geodesic submanifold
through any point on M in Cm+1

1 , which is not contained in a (p+ 1)-
dimensional totally geodesic submanifold.

An (n−1)-cylindrical complex hypersurfaceM in Cn+1
1 is simply said

to be a cylinder. It is evident that a cylinder M satisfies the condition
RS = 0, but not Einstein (see [1]).

Theorem 7.1. Let M be an n-dimensional space-like complex
hypersurface of Cn+1

1 . If M satisfies the condition RS = 0, then M is
cylindrical.

Proof. From (6.2) we have h̄im3hjk − h̄imhjk3 = 0 because of c = 0.
Transvecting the above equation with h̄klhhm3 and putting i = h and
j = l, and summing up with respect to i and j, we have

h2h6 − h4
2 = 0.

Let µj be an eigenvalue of the Hermitian matrix H2 = (hij̄2) which are
real valued functions onM . By the straightforward calculation, we get

h2h6 − h4
2 =

1
2

∑
i �=j
µiµj(µi − µj)2.

Since all eigenvalues are nonpositive, the righthand side of the above
equation is nonnegative and therefore we have

µiµj(µi − µj) = 0, i �= j.
For any indices i and j, the above equation means that there exist at
most two distinct eigenvalues 0 and µ( �= 0) of the Hermitian matrix
H2. At any point x in M , we denote by p(x) the multiplicity of the
eigenvalue 0. Then we have

h2(x) = (n− p)(x)µ(x).
Since the function h2 is smooth and the eigenvalue µ is continuous on
M , p(x) must be continuous, which implies that the multiplicity of 0 is
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constant on M . We denote by {ωj} the canonical form associated with
the frame {Uj} and let {ωij} be the connection form. Without loss of
generality, we may suppose that µj = hjj̄2, where the range of indices
a, b, . . . run from 1 to p and the indices r, s, . . . run from p + 1 to n.
Let T be a p-dimensional distribution onM defined by ωr = ωn+1 = 0.
Then we have

µ = haā2 = 0,

which implies that we get haj = 0 for any indices a and j. Thus the
connection form ωn+1j is given by

(7.1) ωn+1a =
∑
j

hajωj = 0, ωn+1r =
∑
j

hrjωj =
∑
s

hrsωs

with the help of (3.3). By the structure equation we have
∑
A

ωn+1A ∧ ωAa = Ω′
n+1a = 0,

because the ambient space is a complex Minkowski one, and due to
equation (7.1). Hence, we have by (7.1)

∑
r ωn+1r ∧ ωra = 0, from

which together with (7.1), it follows that we have
∑

r,s hrsωs∧ωra = 0,
and hence we have

∑
s

ωs ∧
( ∑

r

hsrωra

)
= 0,

which along with Cartan’s lemma yields

(7.2)
∑
r

hsrωra =
∑
t

fstaωt, fsta = ftsa,

where fst are smooth functions. Because of hrs̄2 =
∑

t hrth̄ts = µδrs,
transvecting h̄us with (7.2) and summing up with respect to s, we have

µωta =
∑
r,s

h̄tsfsraωr.

Thus we have

(7.3) ωra =
∑
s

krasωs, kras =
1
µ

∑
t

h̄rtftsa.
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We denote by ∇ the Riemannian connection on M . Then we have

∇EA =
∑
j

ωjaEj

=
∑
b

ωbaEb +
∑
r

ωraEr

=
∑
c

ωcaEc +
∑
r,s

krasωsEr,

which implies that [Ea, Eb] for any indices a and b are also contained
in the distribution T . Namely, it is integrable. Along its integral
submanifold N we see by (7.1) and (7.3)

ωra = 0 = ωn+1a,

which implies that N is the p-dimensional totally geodesic submanifold
in M and in Cn+1

1 . It is easily seen that there does not exist a (p+1)-
dimensional totally geodesic submanifold ofM which contains N . This
completes the proof.

Remark 7.1. In his paper [19], Takahashi proved a complex hyper-
surface M satisfying the condition RS = 0 in a complex Euclidean
space Cn+1 is a cylinder if it is not totally geodesic. Theorem 7.1 is
the complex version of this property.
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