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ON SEMI-RYAN COMPLEX SUBMANIFOLDS
IN AN INDEFINITE COMPLEX SPACE FORM

YOUNG SUK CHOI, JUNG-HWAN KWON AND YOUNG JIN SUH

ABSTRACT. The purpose of this paper is to study several
classes of an n-dimensional complete space-like complex sub-
manifold of an (n + p)-dimensional indefinite complex space

form ngtp (c) of index 2t, and of an n-dimensional space-like

complex hypersurface of a complex Minkowski space C’f Tin
terms of RS = 0.

1. Introduction. The theory of indefinite complex submanifolds of
an indefinite complex space form is one of the most interesting topics in
differential geometry, and it has been investigated by many geometers
from various points of view (see [1], [3], [6], [7], [10] and [14]-[17],
etc.).

Let M{™(c) be an m-dimensional semi-definite complex space form of
constant holomorphic sectional curvature ¢ and of index 2¢, 0 £ ¢t < m.
As is well known, it globally consists of three kinds of complex space
forms: the semi-definite complex projective space CP™(c), the semi-
definite complex Euclidean space C}", or the semi-definite complex
hyperbolic space CH["(c), according to whether ¢ > 0, ¢ =0 or ¢ < 0.

Let M be a semi-definite Kaehler manifold, and let us denote by R
and S the Riemannian curvature tensor and the Ricci tensor on M, re-
spectively. Recently, the present authors [5] have given a complete clas-
sification of semi-symmetric complex hypersurfaces in a semi-definite
complex space form M{"(c). Here the notion of semi-symmetric means
R(X,Y)R = 0 for any vector fields X and Y on M. In this paper we
want to introduce another notion of R(X,Y)S = 0, which is said to be
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semi-Ryan. Such a semi-Ryan condition is a much more generalized
notion than the semi-symmetric condition R(X,Y )R = 0 for any vector
fields X,Y on M (see [17], [18] and [19]).

Now the above notion of semi-symmetric and semi-Ryan is just
denoted by RR = 0 or RS = 0, respectively. With such a geometric
condition RS = 0, we give a complete classification of space-like semi-
Ryan Kaehler submanifolds in M7 (c) as follows:

Theorem 1. Let M be an n-dimensional complete space-like semi-
Ryan complex submanifold of an (n+p)-dimensional indefinite complex
space form Mgftp(c) of index 2t. If its totally real holomorphic bisec-
tional curvature is nonvanishing at all of its points, then M is Einstein.

Moreover, for a space-like complex hypersurface satisfying RS = 0 in
a complex Minkowski space Cf“, we proved the following:

Theorem 2. Let M be an n-dimensional space-like semi-Ryan
complex hypersurface of C’f"'l. Then M s cylindrical.

2. Semi-definite Kaehler manifolds. This section is concerned
with recalling basic formulas on semi-definite Kaehler manifolds. Let
M be a complex m(2 2)-dimensional semi-definite Kaehler manifold
equipped with semi-definite Kaehler metric tensor g and almost com-
plex structure J. For the semi-definite Kaehler structure {g, J}, it fol-
lows that J is integrable and the index of g is even, say 2t, 0 < t < m.
In the case where ¢ is contained in the range 0 < t < m, M is called an
indefinite Kaehler manifold and the structure {g, J} is called an indef-
inite Kaehler structure and, in particular, in the case where ¢ = 0 or
m, M is only called a Kaehler manifold, and then the structure {g, J}
is called a Kaehler structure.

Now we can choose a local field {E,} = {FEa,Ea«} = {E1,..., En,

Ei.,...,Eny} of orthonormal frames on a neighborhood of M, where
Ea« = JE4 and A* = m + A. Here the indices A, B,... run from
1 to m and the indices «,3,... run from 1 to 2m = m*. We set

Ua = (Ea—iEs)/vV2and Ug = (Es+iEa+)/V/2, where i denotes the
imaginary unit. Then {U4} constitutes a local field of unitary frames
on the neighborhood of M. This is a complex linear frame which is
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orthonormal with respect to the semi-definite Kaehler metric, that is,
g(Ua,Up) = e4dap, where

ea=1 or -— 17
according to whether

1£A<m—-t or m—t+1< A< m.

Let {0,} = {04,04-}, {0u5} and {O,s3} be the canonical form,
the connection form and the curvature form on M, respectively, with
respect to the local field {E,} = {E4, Fa~} of orthonormal frames.
Then we have the structure equations
(2.1)

0o+ cplap N5 =0,  Oop —Oaep- =0,
B
Ha*,@ + 9(15* =0, eaﬁ + Hﬁa =0, eaﬁ* — Hga* =0,

1
d@aﬁ + Z 8790(7 A 9%3 = @alg, @ag = — B Z 57€5Ka57597 A Os,

v 7,0

where K,g,5 denotes the components of the Riemannian curvature
tensor R of M.

Now let {wa} be the dual coframe field with respect to the local field
{U4} of unitary frames on the neighborhood of M given by

wa = (04 +1i04-)/V2.

Then {wa} = {w1,...,wm} consists of complex-valued 1-forms of
type (1,0) on M such that wa(Ug) = eadap and {wa,wa} =
{wi,...,Wm,@1,...,0m} are linearly independent. The semi-definite

Kaehler metric g of M can be expressed as g =2 , eawa ® wa. As-
sociated with the frame field {U,}, there exist complex-valued forms
wap given by

wap = 0aB +184+B,
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which are usually called connection forms on M such that they satisfy
the structure equations of M;

dWA+Z€BOJAB Nwp =0, wap +wpa =0,

B
(2.2) dwap + Y ecwac Awep = Qap,
c
Qup = Z aCEDRZBCBWC Nwp,
C.D

where Q = (Qap), Qap = ©ap+i0 4-p (respectively R 75) denotes
the curvature form (respectively the components of the semi-definite
Riemannian curvature tensor R) of M. So, by (2.1) and (2.2), we
obtain

(2.3) Rypep = —{(Kapop + Ka-po+p) +i(Ka-pop — Kapc+p)}-

The second relation of equation (2.2) means that the skew-Hermitian
symmetry of 4p, which is equivalent to the symmetric condition
Rzpep = READ@' Moreover, the first Bianchi identity > 5epQap A
wp = 0 is given by the exterior differential of the first and third
equations of (2.2), which implies the further symmetric relations

Rapep = Bacep = Bposa = Bopea

Now, relative to the frame field chosen above, the Ricci tensor S of
M can be expressed as follows:

S = ZeSAEB(SAEwA X wp —|—SZBQ_}A ®w3),
A,B

where S, 5 = Y cecRsou5 = Sga = S4p- The scalar curvature
r is also given by 7 = 23 ,£45,7. An n-dimensional semi-definite
Kaehler manifold M is said to be Einstein if the Ricci tensor S is given
by

r
SAEZ %EA(SAB.
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The components R4 5.y and Ryp-p.5 of the covariant derivative of
the Riemannian curvature tensor R are defined by

§ :5E(RZBCB;EWE + Rapcppen)
B

=dRzpcp — Z ee(RgpcpWEa + Ripcpwes

E
+ Rapppwec + Rapos@EeD).

The second Bianchi identity is given by

RZBCB;E

ABED;C"

Let M be an m-dimensional semi-definite Kaehler manifold of index
2t, 0 £ t < m. A plane section P of the tangent space T, M of
M at any point z is said to be nondegenerate provided that g.|p is

nondedgenerate. It is easily seen that P is nondegenerate if and only
if it has a basis {X, Y} such that

9(X, X) g(Y,Y) = g(X,Y)? # 0.

If the nondegenerate plane P is invariant by the complex structure
J, it is said to be holomorphic. It is also trivial that the plane P
is holomorphic if and only if it contains a vector X in P such that
9(X, X) # 0. For the nondegenerate plane P spanned by X and Y in
P, the sectional curvature K (P) is usually defined by

g(R(X,Y)Y, X)
g(X,X)g(Y, Y) - g(X, Y)2'

K(P)=K(X,Y) =

The holomorphic plane spanned by a space-like or time-like vector X
and JX is said to be space-like or time-like, respectively. The sectional
curvature K (P) of the holomorphic plane P is called the holomorphic
sectional curvature, which is denoted by H(P). The semi-definite
Kaehler manifold M is said to be of constant holomorphic sectional
curvatuare if its holomorphic sectional curvatures H(P) are constant
for all holomorphic planes at all points of M. Then M is called a
semi-definite complex space form, which is denoted by M]"(c) provided
that it is of constant holomorphic sectional curvature ¢, of complex
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dimension m and of index 2¢(= 0). It is seen in Wolf [20] that the
standard models of semi-definite complex space forms are the following
three kinds: the semi-definite complex projective space C'P/™(c), the
semi-definite complex Euclidean space C{" or the semi-definite complex
hyperbolic space CH{"(c), according to whether ¢ > 0, ¢ = 0 or
¢ < 0. For any integer ¢(0 = ¢ < m), it is also seen by [20] that
they are complete simply connected semi-definite complex space forms
of dimension m and of index 2t. The Riemannian curvature tensor
Ry pop of M{"(c) is given by

C
(2.4) RZBCB = 56360(5,4350[) +dacdBD).

Now let M be an m-dimensional semi-definite Kaehler manifold of an
index 2t equipped with semi-definite Kaehler structure {g, J}. We can
choose a local field of {E,} = {E4, Fa~} of orthonormal frames on
the neighborhood of M such that g(E4, Ep) = 40ap. Let {Ua} be a
local field of unitary frames associated with the orthonormal frames
{Ea,E4~} on the neighborhood of M stated above in the first of
this section. This is a complex linear frame, which is orthonormal
with respect to the semi-definite Kaehler metric, that is, g(Ua,Up) =
€A 5,43.

Given two holomorphic planes P and @) in T, M at any point x in M,
the holomorphic bisectional curvature H(P, Q) determined by the two
planes P and @Q of M is defined by

9(R(X, JX)JY,Y)
(X,X)g(KY) —g(X, Y)2,

(2.5) H(P,Q) = p

where X, respectively Y, is a nonzero vector in P, respectively Q). In
particular, the holomorphic bisectional curvature H (P, Q) is said to be
space-like or time-like if P and @ are both space-like or either P or @ is
time-like. It is a simple matter to verify that the righthand side in (2.5)
depends only on P and @ and so it is well defined. It may be denoted
by H(P,Q) = H(X,Y). It is easily seen that H(P,P) = H(P) =
H(X,X) =: H(X) is the holomorphic sectional curvature determined
by the holomorphic plane P, where X is a nonzero vector in P. We
denote by P4 the holomorphic plane [E4, JE4| spanned by E4 and
JEA = Ep«. We set

H(Pa,Pp) = Hap(A # B), H(Pa,Pa) = H(Pa)=Haa = Ha.
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The holomorphic bisectional curvature Hap(A # B) and the holomor-
phic sectional curvature Hp are given by
g(R(EA, JEA)JEB, EB)
9(Ea, E4)9(EB, EB)
HA _ g(R(EA,JEA)JEA,EA) _ —KAA*AA*.
9(Ea, Ea)g(Ea, Ea)
By (2.3) we have

(2.6) Hap = eacpRy,g5(A # B), Ha = Rz 447

Hyp = = —caepKaa-pp-(A # B),

3. Space-like complex submanifolds. This section is concerned
with space-like complex submanifolds of an indefinite Kaehler manifold.
First of all, the basic formulas for the theory of space-like complex
submanifolds are prepared.

Let M’ be an (n+ p)-dimensional connected indefinite Kaehler mani-
fold of index 2p with indefinite Kaehler structure (¢’, J’). Let M be an
n-dimensional connected space-like complex submanifold of M’, and let
g be the induced Kaehler metric tensor of index 2p on M from ¢'. We
can choose a local field {Ua} = {U;,U,} = {Ux,... ,Upqp} of unitary
frames on a neighborhood of M’ in such a way that, restricted to M,
Uy,...,U, are tangent to M and the others are normal to M. Here
and in the sequel, the following convention on the range of indices is
used throughout this paper, unless otherwise stated:

ABC,...=1,....n,n+1,...,n+p;
o k,...=1,....n; x,y,2,...=n+1,...,n+Dp.
With respect to the frame field, let {wa} = {wj,wy} be its dual frame
fields. Then the indefinite Kaehler metric tensor ¢’ of M’ is given by
g =2 ,eawa®wa, where {ea} = {¢;,¢,}. The connection forms on
M’ are denoted by {wap}. The canonical forms w4 and the connection
forms wp of the ambient space M’ satisfy the structure equations

dWA+Z€BOJAB Nwp =0, wap +wpa =0,
B

(3.1) dwap + Y _ecwac Awep = Uyp,
c

! / —.
AB = E ccepRzpcpwo Nwp,
C,D
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where Q' p (respectively R';,.5) denotes the curvature form (respec-
tively the components of the indefinite Riemannian curvature tensor

R’) of M’.
Restricting these forms to the submanifold M, we have
(3.2) wy = 0,

and the induced Kaehler metric tensor g of M is given by g =
2> ,ejwj ®w;. Then {U;} is a local unitary frame field with respect
to the induced metric and {w;} is a local dual frame field due to
{U,}, which consists of complex-valued 1-forms of type (1,0) on M.
Moreover, wi, ... ,wy, @1,...,w, are linearly independent, and {w;}
is the canonical form on M. It follows from (3.2) and Cartan’s lemma
that the exterior derivative of (3.2) gives rise to

(3.3) Wi = ZEjhijwwja hijx — hjix.
J

The quadratic form o = E”I gi€jeghi;"w; ® wy ® U, with values in
the normal bundle NM on M in M’ is called the second fundamental
form of the submanifold M. Therefore, the structure equations for M
are similarly given by

dw; + Zijij Nwj = 0, wij + Wi = 0,
J

(3.4) dwij + Zskwik Nwgj; = Qij,
k

Qi = E Ekngijkmwk N Wy

k.m

Moreover, the following relationships are obtained:

dwa;y + E ExWgz N Wey = wa7
z

(3.5)
Q;Ey = Z EkamRiykﬁzwk N Wy,

k.m
where €1, is called the normal curvature form of M. For the Rieman-
nian curvature tensors R and R’ of M and M’, respectively, it follows
from (3.1), (3.3) and (3.4) that we have the Gauss equation

(3.6) Riikm = R%jk;m - Z exhjk"him™.



ON SEMI-RYAN COMPLEX SUBMANIFOLDS 881

And, by means of (3.3) and (3.5), we have
(37) R:f:yk:m = R;Z’ykm + ZErhkrwhrmy.
s

The components S;; of the Ricci tensor S and the scalar curvature r
of M are given by

(38)  Sy= ngRgikl% = hi?, "= 2<25k5jR;ckjj B h2>’
K k,j

where hif = h;f = ZJW Ex€rhirhy;® and ho = Zj 5jhj32'

Now the components h;;;” and h,;;* of the covariant derivative of

the second fundamental form on M are given by

Z ex(hijr"wr + hyp"or)
k
= dhijz — ka(hkjrwki + hikzwkj) + Z 5yhiijmy~
k Y

(3.9)

Then, substituting dh;;* in this definition into the exterior derivative

of (3.3) and using (3.1)—(3.4) and (3.8), we have
(3.10) hije” = hi;", hiiz" = — R,

zTijk®

Similarly, the components hjjrm® and hijrm®, respectively h;g,,”

and h;;z, ", of the covariant derivative of h;;,”, respectively h;;;”, can

be defined by

Z 5m(hijkmzwm + hijkmza)m)
m

= dhi;i" — ng(hmjlczwmi + Pimnk“ Wiy + Rijm wmk)

m
+ Zeyhijkywwyv
Y

Z Em(Pijhm @i + Rijim”Om)
m

= dhijfcm — ng(hmjfczwmi + Ry wmj + hijmm@mk)

m
5 Y
Y
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Differentiating (3.9) exteriorly and using the properties d> = 0, (3.4),
(3.5), (3.8), (3.9) and (3.10), we have the following Ricci formula for
the second fundamental form

Pijiem™ = hijmi” hiirm” = hijmg”

hijim™ — hijmi” = Z%(Rmkmhnf + Rikjnhin®)

n
- E 5yRikunhijy-
Y

In particular, let the ambient space M’ be an (n + p)-dimensional
semi-definite complex space form M. (c) of constant holomorphic
sectional curvature ¢ and of index 2(s+t),0< s <n,0 <t < p. Then
we get

c _
(3.11) iikm = 5 €56k (0ijOkm + OikGjm) — > enhikhim®,
(n+1)c
(3.12) Si3 = 9 5i5ij - hijza
(3.13) r=n(n+1)c— 2hy,
(3.14) hii" =0,

hijem” = g (ekhii®Okm — €ihjk" Sim + €jh1i "0 jm)
(315) _Z Ensy(hnixhjky+hnjxhkiy+hnkxhijy)ﬁnmy~

n,y

For the sake of brevity, a tensor hi32m and a function hs,, on M for
any integer m(2 2) are introduced as follows:

2m __ e S 2p - 2. -2
hiz™" = Z €iy " iy Ny Ny, hi, 55

T1seestm—1

§ : 2m
th = Ei hﬁ .
i
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In particular, if M is a hypersurface, then a tensor hl-ij“ on M is
introduced as follows:

2m—+1 _ _2
hi =T = kahik "R
%

4. Examples of indefinite Einstein complex submanifolds.
We give here some examples of indefinite Einstein submanifolds of an
indefinite complex space form.

Example 4.1. The indefinite Euclidean space C?' of index 2s is a
totally geodesic complex hypersurface of C**! or C:j_rll in a natural
way.

Example 4.2. For an indefinite complex projective space C P™*1(c)
of index 2s and of constant holomorphic sectional curvature c, if
{21,125y Zs41, - - -, Znt2} is the usual homogeneous coordinate system
of CP™*1(c), then for each j fixed, the equation z; = 0 defines a totally
geodesic complex hypersurface identifiable with CP?(c) or CPI 4(c)
according to whether s+ 1 < j <n+2o0r 1 = j < s By taking
into account that CH?(—c) is obtained from CP_ (c) by reversing
the sign of its indefinite Kaehler metric, the previous discussion shows
that CHI'(—c) is a totally geodesic complex hypersurface of both
CH™*'(—c) and CH (=)

Example 4.3. Let Q7 be an indefinite complex hypersurface of
CP"1(c) defined by the equation

s n+2
2 2
— E zi" + E 2z =0
j=1 k=s41

in the homogeneous coordinate system of CP"!(c). Then Q" is a
complete indefinite complex hypersurface of index 2s and, moreover, in
a similar way to Kobayashi and Nomizu [8, Chapter 11, Example 10.6]
it is Einstein, and then the Ricci tensor S satisfies S = ncg/2. This is
called an indefinite complex quadric.
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Note that Q7 can also be constructed as an indefinite Einstein
complex hypersurface of CH:fll(—c).

Remark 4.1. Szabé [18] showed that a complete Einstein complex
hypersurface of a complex space form M™"!(c) is totally geodesic or
¢ > 0. In the latter case, M is locally congruent to the complex
quadric Q™. Example 4.3 means that the situation of indefinite Einstein
complex hypersurfaces is quietly different from those of the definite
cases.

Remark 4.2. An indefinite Einstein complex hypersurface of an
indefinite complex space form is investigated in detail by Montiel and
Romero [10] (cf. Romero’s survey [14]).

Example 4.4 ([10]). Let us consider an indefinite complex hyper-

surface of C P27 (c) defined by the equation

n+1
E Zjin4145 = 0
j=1

in the homogeneous coordinate system of C’Pg_’ﬂ'l(c). It is a complete

complex hypersurface of index 2n, which is denoted by Q%”*. It is
easily seen that the Ricci tensor S satisfies S = (n 4+ 1)cg, and hence it
is Einstein.

A similar discussion as in Example 4.3 shows that Qi” is also an

indefinite complete Einstein complex hypersurface of CHZT_HJ(—C).

Example 4.5. For the homogeneous coordinate systems {z1, ..., 25,
Zs41s -3 2n41 )t Of CP?(c) and {w1, ..., we, Wig1, - . ., Wint1 ) of CP™(c),
a mapping f of CP"(c) x CP™(c) into CPI]%\,((nn;ﬂ t)(c) with

N(n,m) =n+m+ nm, R(n,m,s,t) =s(m—t)+t(n—s)+s+t
is defined by
f(Z, U)) = (Zawu, ZrWy, ZpWy, stv),

where
a,b,...=1,...,8; rs...=s+1,...,n+1,

z,Y,...=1,....t wv,...=t+1,... m+1.
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Then f is a well-defined holomorphic mapping, and it is seen that
f is also an isometric imbedding which is called an indefinite Segre
imbedding. In the case of n = m, it is Einstein and the Ricci tensor S
satisfies S = (n+1)cg/2. In particular, if s =t = 0, then f is a classical
Segre imbedding (cf. Nakagawa and Takagi [11]). This example is due
to Ikawa, Nakagawa and Romero [6].

As the simplest case in the definite product ones, CP'(c) x CP(c) is
the complex quadric @? in CP3(c). In the indefinite case, however, we
can consider two product manifolds, CPl(c) x CP{(c) and CP{(c) x
CP!(c), which are mutually different complex quadric in CPs(c). In
fact, it is seen in Montiel and Romero [10] that they are denoted by
Q3 and Qg*, respectively.

By using that an indefinite complex hyperbolic space CH"(—c) is
obtained from C'P__(c) by changing the metric by its negative, another
indefinite Segre imbedding

f:CHP (—¢) x CHJ™(—¢) — CHg"™) | (—c)
is given, where S(n,m, s,t) = (n—s)(m—t)+st+s+t. In the case where
n = m, it is Einstein, and the Ricci tensor S satisfies S = —(n+1)cg/2.
In particular, for s = ¢ = 0, we have a holomorphic isometric imbedding
fof CH"(—c) x CH™(—c) into CH,]yng"’m)(—c).

Example 4.6. Let h; be holomorphic functions of C'. The range of
indices are given as follows:
i ...=1,...,n; a,b,...=1,...,8;

z,Y,...=s+1,...,n; AB,...=1,...,2n.

In a (2n+ 1)-dimensional complex manifold C?"*! with the standard
basis, a Hermitian form F' is defined by

F(z,w) = — E 2qWq + E 2 Wz + E Zj Wi + Zopy1Wan 1,
a x J*

where j* = n+j and z = (24, 22, 2j+, 22n41) = (24, 22n41), W =
(wa,wap1) are in C?nt1. The scalar product defined by the real part
Re F is an indefinite Riemannian metric of index 2s on C?"*! and
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(C?"+1 Re F) is a flat indefinite complex space form, which is denoted
by C2"F1. Let h; be holomorphic functions of C into C. For the
complex coordinate system (za, zon41) of C2"F1 let M = M?2?"(h;, c;)
be the complex hypersurface in C2"*1, given by the equation

ant1 = Y hy(z5 + ¢iz0)
j

for any complex number ¢;. Then M3"(h;,c;) is a family of complete
connected hypersurfaces of index 2s in C2"*! if |c,| = 1 for any a.
Furthermore, it is diffeomorphic to C?". If all functions h, are linear
and if |c,| = 1, then M?"(h;,c;) is Ricci flat. In particular, it is
not flat provided that there is an index a such that h, is not linear.
Mﬁ”(hj, 1) is also a complete connected complex hypersurface of index
2n in C2"*1 which is Ricci flat. These examples are due to Aiyama,
Ikawa, Kwon and Nakagawa [1].

In particular, M2"(2P,1) for any integer p(= 2) is a complete con-
nected complex hypersurface of index 2n in C2"*!, which are Ricci flat
but not flat. This is due to Romero [15].

5. Normal curvature tensor. In this section we introduce the
concept of the normal curvature tensor on the space-like complex
submanifold in an indefinite Kaehler manifold.

Let M’ be an (n+p)-dimensional indefinite Kaehler manifold of index
2p equipped with indefinite Kaehler structure {¢’, J'}, and let M be
an n-dimensional space-like complex submanifold of M’ endowed with
induced Kaehler structure {g, J} from the indefinite Kaehler structure
{g',J'}. Let us denote by V= the normal connection on M, namely, it
is the mapping of TM x NM into NM defined by

VH(X,V) = V5V = the normal part of ViV

for any tangent vector field X in T'M and any normal vector field V
in NM, where V' is the Kaehler connection on M’ and TM and NM
are the tangent bundle and the normal bundle of M, respectively [14].
The normal curvature tensor R+ on M is defined by

RY(X,Y)V = (V*XVYY - Vi Vi — VvV,
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where X, Y € TM and V € NM. If it satisfies
R (X,Y)V = f g(X,JY)J'V,

where f is any function on M, then the normal connection V+ is said
to be proper. In particular, if f is a nonzero constant or 0 on M, then
it is said to be semi-flat or flat, respectively.

Remark 5.1. The concept of the semi-flatness of the normal con-
nection of the complex submanifold in a complex projective space is
introduced, and the justification of the concept is given by Yano and
Kon [21].

On the other hand, the proper case is treated by Ki and Nakagawa
[7].

Remark 5.2. In the semi-Riemannian geometry, the shape operator
A on the indefinite Einstein hypersurface M of index 2s in M5 (c)
cannot be necessarily diagonalized. By the classification of the self-
adjoint endomorphisms of a scalar product, we have the following

properties:
(1) A is diagonalizable,

(2) A is not diagonalizable, but either &,,41h2 < 0 or he = 0 and not
totally geodesic.

An indefinite Einstein hypersurface is said to be proper if the shape
operator A is diagonalizable (see [3], [7]). The terminology “proper”
of the normal connection is named after the concept.

Now, in order to consider the normal curvature transformation,
we see the local version of the normal curvature tensor. Let M
be an n-dimensional space-like complex submanifold of an (n + p)-
dimensional indefinite Kaehler manifold M’ of index 2p with almost
complex structure J'. We can choose a local field {E4, Ea+} =

{E1,...,Em,E1~,...,Ep+}, m = n+ p, of orthonormal frames on a
neighborhood of M’ in such a way that, restricted to M, E1,..., E,,
FEq+, ..., E,« are tangent to M and the others are normal to M, where

Ea« = J'Ey. Let {Ua} = {U;,U,} be the local field of unitary frames
associated with the orthonormal frame. With respect to the frame
field, let {wa} = {w;,wy} be its canonical form on the ambient space.
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Restricting these forms to the submanifold M, we have w, = 0. Then
Uj is a local unitary frame field with respect to this induced metric and
{w;} is the canonical form on M. From the structure equations of the
ambient space, it follows that the structure equations for M and the
equation on the normal bundle NM on M are expressed as

dwmy + § ExWgz N Wey = sz>
z

me = § 6k5771}ziykr’nwk N W,

k,m

where (1, is called the normal curvature form of M and Rzykm denotes
the components of the normal curvature form €, on M. It is seen
that its components are given as the ones of the extension of complex
linearity of the normal curvature tensor R+ on M. By means of (3.3)
and (3.5), we have

(5.1) Rk = Ry + > £5hihjm”.
j

By the property of (5.1) of the normal curvature tensor, we can define a
linear transformation T on the np-dimensional complex vector space
="P consisting of tensors () at each point on M by

TN(gxk) = (nzk)7 Nek = ZEyEmRiykﬁlé-ym~

y,m

We denote by (R,,**) the matrix of the linear transformation Tl.
The linear operator defined by the np x np Hermitian matrix (R,,,**) is
called the normal curvature operator on M. Then T is the self-adjoint
operator with respect to the definite metric canonically defined on ="?.
We assume that the matrix (Ry,,*") is diagonalizable. In this case, we
can suitably choose an indefinite unitary frame field {Ua} = {U;,U,}
in such a way that it satisfies

(52) Rjyk;m = Em&'kfmkéymwk = sxskkaémyékm,

where every eigenvalue f,; of Ty is a real valued function on M. By
(5.1) and (5.2), we have

/ z7,
Riykm = Erskfrk(szy(skm - E Ejhkj hjmy~
J
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Remark 5.3. In the space-like complex hypersurface M, the normal
connection is always proper.

6. Semi-definite complex submanifolds with RS = 0. This sec-
tion is concerned with indefinite complex submanifolds in an indefinite
complex space form satisfying the semi-Ryan condition R(X,Y)S =0
for any tangent vectors X and Y on M. Let M be an n-dimensional
semi-definite complex submanifold of index 2s of a semi-definite com-
plex space form M’ = M_F(c), 0 £ s <n, 0 <t < p. We denote
by R or S the Riemannian curvature tensor or the Ricci tensor on M,
respectively. Assume that the submanifold M satisfies the condition

R(X,Y)S=0, X,YeTM.

It is equivalent to
(6.1) Zfr(Rijrchmf = RijmeSrr) =0 or  Sijpm — Sijmr = 0.
T

By (3.11) and (3.12), we have
(6.2)
c(ej0jmhiz” — eibirhjm®)
+23 " entn(hin®hnm k" = him " hin*hjn®) = 0.

x,n

Putting j = m in (6.2), multiplying ¢; and summing up with respect
to the index j, we have

C(nhﬁQ—hgajéij)

+ 2< Z 5x5k5mhikmhmk27lmjm — h’ij4) = O

x,k,m

(6.3)

Theorem 6.1. Let M be an n-dimensional semi-definite complex
submanifold of index 2s in ML (c), c # 0. If M satisfies RS = 0 and
if the Ricci tensor commutes with any shape operator in the direction
of any unit normal field, then M is Finstein.
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Proof. Since M satisfies the condition RS = 0, the equation (6.3)
holds. Now, let A® be the shape operator associated with any unit
normal field E,. Under the assumption about any shape operator, we
see SA* — A*S = 0. According to (3.12), we have

(6.4) ijhz’j%g‘kr = Zﬁjhijrhka-
J J

From (6.3) and (6.4), it follows that we have c(nh;;* — hagids;) = 0,
which means that M is Einstein. This completes the proof. ]

In the case where M is a hypersurface, it is easily seen that the
Ricci tensor commutes with the shape operator. Thus, as a direct
consequence of Theorem 6.1, we can prove

Corollary 6.2. Let M be a semi-definite complex hypersurface of
index 2s in M:_:'tl(c), 0<s<n,t=0o0r1, c#0. If M satisfies the
condition RS =0, then M is Finstein.

Remark 6.1. Corollary 6.2 is already proved by Aiyama, Ikawa, Kwon
and Nakagawa [1].

Corollary 6.3. Let M be an n-dimensional space-like complex
submanifold of M}*P(c), ¢ # 0. If M satisfies the condition RS = 0,
and if the normal connection is proper, then M is Einstein.

Proof. Let (M’,g') be an (n + p)-dimensional indefinite Kaehler
manifold of index 2p, and let M be an n-dimensional space-like complex
submanifold of M’. For the normal curvature tensor R+ = { Rzyrm } on
M, the normal curvature operator T on the np-dimensional complex
vector space =P = N,M¢ x T,M® at any point 2 on M is defined by

TN(fzk) = (nzk); Nek = Zgystikungymv

y,m

where N,M is the normal space at o to M in the tangent space
T,M’' and V¢ denotes the complexification of a real vector space V.
We denote by (R,,**) the matrix of the linear transformation Tl .
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By the assumption that the normal connection is proper, the linear
transformation Ty is diagonalizable, and it satisfies

R;Eykm = 5;c5kf;ck5;cy5km-

Since Ty is self-adjoint, every eigenvalue f,r of Ty is a real-valued
function on M. So we have by (5.1)

/ Ty
Tykm — 515kfzk(szy5km - E 6jhkj hgmu
J

From this, together with (2.4), it follows that

. c
(6.5) Zgjhijxhjky = €,&; (fzi - 5)5:137461']@'
J

Transvecting (6.5) with exeyhpm? or €;64hm;”, and summing up with
respect to m and y or ¢ and x, respectively, we have

c
ijhijxhkf = (fm‘ - §)hikx7
J
Z 2B Y = _\pow
Ejljm ik~ = fym 9 mk”
J

which implies that the Ricci tensor commutes with any shape operator.
So, by Theorem 6.1, M is Einstein. This completes the proof. ]

Now let M be an n-dimensional space-like complex submanifold of an
(n + p)-dimensional indefinite complex space form M;" tP (¢),0<t<p.
Then the matrix (h;;%) is a Hermitian one, whose eigenvalues 11;’s are
real value functions on M, say h;;? = p;6;;. Therefore, (6.3) is given
by

z,k,m

Accordingly, we have

c(nha—ho®) +2( D exhir By i hyi® — h6> =0.

z,4,4,k,m
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The second term on the righthand side of the above equation is given
by

2( Z Exhikthkzl_lmjxhjf—h@)

z,i,5,k,m

= 2( Z Extbifiihinhi”™ — Z ot ik hik™)

z,i,k z,i,k

=2 e (g — pp)hin"hig”
x,i,k
== ea(pi — pw)*hin"ha”.

I3

On the other hand, it is easily seen that we have

1
nhy — hy® = ) Z(Hz - /Lk)Q-
i#k

Thus (6.3) is reformed as
(Te-2 X cohaha s —u)? = 0,
i#k itk
from which together with (3.6) it follows that we have
(6.6) ZRRM}(M‘ - Mk)2 = 0.
i#k

Now a nondegenerate totally real plane [X,Y] is defined by a non-
degenerate plane {X,Y} of the orthonormal pair X and Y, and its
image {JX,JY} by the almost complex structure J on M. For two
holomorphic planes P = [X, JX] and @ = [V, JY] where X and Y are
orthonormal vectors, the totally real bisectional curvature H(P, Q) is
defined by

H(P,Q) = H(X,Y) = g (R(X, JX).J,Y).
Accordingly, we have by (2.6)

(6.7) H(E;,Ey) = Rypp, ©# k.
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By (6.6) and (6.7) we can prove the main theorem in Section 1.

Theorem 6.4. Let M be an n-dimensional complete space-like
complex submanifold of an (n+p)-dimensional indefinite complex space
form Mgftp(c), 0 <t <p. If M satisfies the condition RS =0, and if
its totally real bisectional curvature is nonvanishing at all of its points,
then M s Einstein.

As a direct consequence of Theorem 6.4, the following corollaries are
derived. In fact, by the Gauss equation (3.6), we have

Rk = Riypr — Zgzhikwﬁikx, 1 #£ k.

Since the ambient space is the semi-definite complex space form, it is
reformed as

2Ry = ¢ — 2 exhahi”, i F k.
x
So we can prove

Corollary 6.5. Let M be an n-dimensional complex submanifold
of M"*P(c), ¢ < 0. If M satisfies the condition RS = 0, then M is
Finstein.

Corollary 6.6. Let M be an n-dimensional space-like complex
submanifold of MJ}*P(c), ¢ > 0. If M satisfies the condition RS = 0,
then M is Finstein.

Remark 6.3. Corollary 6.6 was already proved by Aiyama, Nakagawa
and the second author [2]. For Corollary 6.5 in the case where ¢ > 0,
there exists a counter example (see Example 4.5). On the other hand,
for Corollary 6.6 in the case where ¢ < 0 we also have a counter example.
See also Example 4.5.

Under such a situation it seems to be interesting if we consider the
case where the ambient space is indefinite complex Euclidean. This
will be discussed in much more detail in the last section.
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7. Complex Minkowski spaces. In this section, let M be an n-
dimensional space-like complex hypersurface of an (n + 1)-dimensional
indefinite complex Euclidean space C’f“ of index 2. It is said to be
p-cylindrical if it contains a p-dimensional totally geodesic submanifold
through any point on M in C"**, which is not contained in a (p + 1)-
dimensional totally geodesic submanifold.

An (n—1)-cylindrical complex hypersurface M in C?H is simply said
to be a cylinder. 1t is evident that a cylinder M satisfies the condition
RS =0, but not Einstein (see [1]).

Theorem 7.1. Let M be an n-dimensional space-like complex
hypersurface of C{LH. If M satisfies the condition RS =0, then M is
cylindrical.

Proof. From (6.2) we have BimShjk iﬁimhjk?’ = 0 because of ¢ = 0.
Transvecting the above equation with hihn.,° and putting i = h and
7 =1, and summing up with respect to ¢ and j, we have

hahg — ha® = 0.
Let 11; be an eigenvalue of the Hermitian matrix Hy = (hif) which are
real valued functions on M. By the straightforward calculation, we get

1
hohg — hy® = 3 Z#iﬂj(lh‘ - 1)°.
i#£j

Since all eigenvalues are nonpositive, the righthand side of the above
equation is nonnegative and therefore we have

it (i — p5) =0, @ # j.

For any indices ¢ and j, the above equation means that there exist at
most two distinct eigenvalues 0 and p(# 0) of the Hermitian matrix
H,. At any point z in M, we denote by p(z) the multiplicity of the
eigenvalue 0. Then we have

ha(z) = (n —p)(@)p(@).

Since the function hs is smooth and the eigenvalue p is continuous on
M, p(z) must be continuous, which implies that the multiplicity of 0 is
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constant on M. We denote by {w;} the canonical form associated with
the frame {U;} and let {w;;} be the connection form. Without loss of

generality, we may suppose that u; = hﬁz, where the range of indices

a,b,... run from 1 to p and the indices r,s,... run from p + 1 to n.
Let T be a p-dimensional distribution on M defined by w, = w,4+1 = 0.
Then we have

n = ha?z2 = Oa

which implies that we get h,; = 0 for any indices @ and j. Thus the
connection form w415 is given by

(71) Wn41la = Z haij' = 0, Wn41r = Z hrjwj = Z hrsws
- ; S

J

with the help of (3.3). By the structure equation we have
D wni1aAwaa = i = 0,
A

because the ambient space is a complex Minkowski one, and due to
equation (7.1). Hence, we have by (7.1) > wniir A wpe = 0, from
which together with (7.1), it follows that we have ZT’S Rrsws Awrq = 0,
and hence we have

Zws A (Zhsrwra) = 0,
s r

which along with Cartan’s lemma yields

(72) Z hsrwrq = Z fstawta fsta = ftsa>
T t

where fs; are smooth functions. Because of hrs? = Do Rpthis = p6ys,
transvecting h, s with (7.2) and summing up with respect to s, we have

HWta = Z Btsfsrawr~

T8

Thus we have

=

(73) Wrq = Zkraswsa kras =

Z }_Lrtftsa~
t
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We denote by V the Riemannian connection on M. Then we have
VEA = ZWjan
J
= Z wpa By + Z wra By
b r
= Z weaEe + Z kraswsEr;

which implies that [E,, E,] for any indices a and b are also contained
in the distribution 7. Namely, it is integrable. Along its integral
submanifold N we see by (7.1) and (7.3)

Wrq = 0= Wn+las

which implies that N is the p-dimensional totally geodesic submanifold
in M and in C}"™'. Tt is easily seen that there does not exist a (p+ 1)-
dimensional totally geodesic submanifold of M which contains V. This
completes the proof. i

Remark 7.1. In his paper [19], Takahashi proved a complex hyper-
surface M satisfying the condition RS = 0 in a complex Euclidean
space C™*1 is a cylinder if it is not totally geodesic. Theorem 7.1 is
the complex version of this property.
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