ON SEMI-SYMMETRIC COMPLEX HYPERSURFACES OF A SEMI-DEFINITE COMPLEX SPACE FORM

YOUNG SUK CHOI, JUNG-HWAN KWON AND YOUNG JIN SUH

Abstract

The purpose of this paper is to give a complete classification of semi-symmetric complex hypersurfaces M in an ($n+1$)-dimensional semi-definite complex space form $M_{s+t}^{n+1}(c)$. Moreover, we also give a classification of semisymmetric complex hypersurfaces in a semi-definite complex Euclidean space $C_{t}^{n+1}, t=0$ or 1 when M has no geodesic points.

1. Introduction. Theory of indefinite complex submanifolds of an indefinite complex space form is one of the most interesting topics in differential geometry, and it has been investigated by many geometers from various points of view ([1], [2], [3], [6], [9], [12], [13] and [15], etc.).

Let $M_{t}^{m}(c)$ be an m-dimensional semi-definite complex space form of constant holomorphic sectional curvature c and of index $2 t, 0 \leqq t \leqq m$. As is well known, it globally consists of the following three kinds of complex space forms: the semi-definite complex projective space $C P_{t}^{m}$, the semi-definite complex Euclidean space C_{t}^{m} or the semi-definite complex hyperbolic space $C H_{t}^{m}$, according to whether $c>0, c=0$ or $c<0$.

Now let M be a semi-definite Kaehler manifold. We denote by R the Riemannnian curvature tensor defined on M. Then M is said to be semi-symmetric if it satisfies the condition $R(X, Y) R=0$ for any vector field X and Y on M. Its notion is much wider than the notion of locally symmetric spaces, that is, $\nabla R=0$. The notion of semi-symmetric Riemannian spaces was first introduced by Cartan and

[^0]Szabó [14], who systematically studied this kind of manifold structure in detail.

Now in this paper we give a classification of semi-symmetric semidefinite complex hypersurfaces in a semi-definite complex space form $M_{s+t}^{n+1}(c)$ as follows:

Theorem 1. Let M_{s}^{n} be an n-dimensional semi-symmetric and semidefinite complex hypersurface of index $2 s$ in $M^{\prime}=M_{s+t}^{n+1}(c), 0 \leqq s \leqq n$, $t=0$ or $1, c \neq 0$. Then M is totally geodesic with the scalar curvature $r=n(n+1) c$ or Einstein with the scalar curvature $r=n^{2} c$.

Moreover, for a semi-symmetric complex hypersurface in a semidefinite complex Euclidean space C_{t}^{n+1}, we assert the following.

Theorem 2. Let M be an n-dimensional semi-symmetric complex hypersurface of C_{t}^{n+1}, $t=0$ or 1 . If it has no geodesic points, then for any point x in M there exists a totally geodesic hypersurface $M(x)$ of M through x.
2. Semi-definite Kaehler manifolds. This section is concerned with recalling basic formulas on semi-definite Kaehler manifolds. Let M be a complex $m(\geqq 2)$-dimensional semi-definite Kaehler manifold equipped with semi-definite Kaehler metric tensor g and almost complex structure J. For the semi-definite Kaehler structure $\{g, J\}$, it follows that J is integrable and the index of g is even, say $2 q, 0 \leqq q \leqq m$. In such a case it is denoted by M_{q}^{m}.

When the index q is contained in the range $0<q<m, M$ is said to be an indefinite Kaehler manifold and the structure $\{g, J\}$ is called an indefinite Kaehler structure and in particular, in the case where $q=0$ or m, M is only called a Kaehler manifold, and then the structure $\{g, J\}$ is called a Kaehler structure.

We can choose a local field $\left\{E_{A}, E_{A^{*}}\right\}=\left\{E_{1}, \ldots, E_{m}, E_{1^{*}}, \ldots, E_{m^{*}}\right\}$ of orthonormal frames on a neighborhood of M where $E_{A^{*}}=J E_{A}$ and $A^{*}=m+A$. Here the indices A, B, \ldots run from 1 to m. We set $U_{A}=\left(E_{A}-i E_{A^{*}}\right) / \sqrt{2}$ and $\bar{U}_{A}=\left(E_{A}+i E_{A^{*}}\right) / \sqrt{2}$, where i denotes the imaginary unit. Then $\left\{U_{A}\right\}$ constitutes a local field of unitary frames
on the neighborhood of M. This is a complex linear frame which is orthonormal with respect to the semi-definite Kaehler metric, that is, $g\left(U_{A}, \bar{U}_{B}\right)=\varepsilon_{A} \delta_{A B}$, where
$\varepsilon_{A}=-1$ or $1, \quad$ according to whether $1 \leqq A \leqq q$ or $q+1 \leqq A \leqq m$.
Let $\left\{\omega_{A}\right\}$ be the dual coframe field with respect to the local field $\left\{U_{A}\right\}$ of unitary frames on the neighborhood of M. Then $\left\{\omega_{A}\right\}=$ $\left\{\omega_{1}, \ldots, \omega_{m}\right\}$ consists of complex-valued 1-forms of type $(1,0)$ on M such that $\omega_{A}\left(U_{B}\right)=\varepsilon_{A} \delta_{A B}$ and $\left\{\omega_{A}, \bar{\omega}_{A}\right\}=\left\{\omega_{1}, \ldots, \omega_{m}, \bar{\omega}_{1}, \ldots, \bar{\omega}_{m}\right\}$ are linearly independent.

The semi-definite Kaehler metric g of M can be expressed as $g=$ $2 \sum_{A} \varepsilon_{A} \omega_{A} \otimes \bar{\omega}_{A}$. Associated with the frame field $\left\{U_{A}\right\}$, there exist complex-valued forms $\omega_{A B}$ which are usually called connection forms on M such that they satisfy the structure equations of M :

$$
\begin{gather*}
d \omega_{A}+\sum_{B} \varepsilon_{B} \omega_{A B} \wedge \omega_{B}=0, \quad \omega_{A B}+\bar{\omega}_{B A}=0 \\
d \omega_{A B}+\sum_{C} \varepsilon_{C} \omega_{A C} \wedge \omega_{C B}=\Omega_{A B} \tag{2.1}\\
\Omega_{A B}=\sum_{C, D} \varepsilon_{C} \varepsilon_{D} R_{\bar{A} B C \bar{D}} \omega_{C} \wedge \bar{\omega}_{D}
\end{gather*}
$$

where $\Omega=\left(\Omega_{A B}\right)$, respectively $R_{\bar{A} B C \bar{D}}$, denotes the curvature form, respectively the components of the semi-definite Riemannian curvature tensor R, of M.

The second relation of the equation (2.1) means that the skewHermitian symmetry of $\Omega_{A B}$, which is equivalent to the symmetric condition $R_{\bar{A} B C \bar{D}}=\bar{R}_{\bar{B} A D \bar{C}}$. Moreover, the first Bianchi identity $\sum_{B} \varepsilon_{B} \Omega_{A B} \wedge \omega_{B}=0$ is given by the exterior differential of the first and third equations of (2.1), which implies the further symmetric relations

$$
R_{\bar{A} B C \bar{D}}=R_{\bar{A} C B \bar{D}}=R_{\bar{D} C B \bar{A}}=R_{\bar{D} B C \bar{A}} .
$$

Now, relative to the frame field chosen above, the Ricci tensor S of M can be expressed as follows:

$$
S=\sum_{A, B} \varepsilon_{A} \varepsilon_{B}\left(S_{A \bar{B}} \omega_{A} \otimes \bar{\omega}_{B}+S_{\bar{A} B} \bar{\omega}_{A} \otimes \omega_{B}\right)
$$

where $S_{A \bar{B}}=\sum_{C} \varepsilon_{C} R_{\bar{C} C A \bar{B}}=S_{\bar{B} A}=\bar{S}_{\bar{A} B}$. The scalar curvature r is also given by $r=2 \sum_{A} \varepsilon_{A} S_{A \bar{A}}$. An n-dimensional semi-definite Kaehler manifold M is said to be Einstein if the Ricci tensor S is given by $S_{A \bar{B}}=(r / 2 n) \varepsilon_{A} \delta_{A B}$. The components $R_{\bar{A} B C \bar{D}: E}$ and $R_{\bar{A} B C \bar{D}: \bar{E}}$ of the covariant derivative of the Riemannian curvature tensor R are defined by

$$
\begin{aligned}
& \sum_{E} \varepsilon_{E}\left(R_{\bar{A} B C \bar{D}: E} \omega_{E}+R_{\bar{A} B C \bar{D}: \bar{E}_{E}}\right)=d R_{\bar{A} B C \bar{D}} \\
& -\sum_{E} \varepsilon_{E}\left(R_{\bar{E} B C \bar{D}} \bar{\omega}_{E A}+R_{\bar{A} E C \bar{D}} \omega_{E B}+R_{\bar{A} B E \bar{D}} \omega_{E C}+R_{\bar{A} B C \bar{E}} \bar{\omega}_{E D}\right) .
\end{aligned}
$$

The second Bianchi identity is given by $R_{\bar{A} B C \bar{D}: E}=R_{\bar{A} B E \bar{D}: C}$.
Let M be an m-dimensional semi-definite Kaehler manifold of index $2 q, 0 \leqq q \leqq m$. A plane section P of the tangent space $T_{x} M$ of M at any point x is said to be nondegenerate provided that $\left.g_{x}\right|_{T_{x} M}$ is nondegenerate. It is easily seen that P is nondegenerate if and only if it has a basis $\{X, Y\}$ such that

$$
g(X, X) g(Y, Y)-g(X, Y)^{2} \neq 0
$$

If the nondegenerate plane P is invariant by the complex structure J, it is said to be holomorphic. It is also trivial that the plane P is holomorphic if and only if it contains a vector X in P such that $g(X, X) \neq 0$. For the nondegenerate plane P spanned by X and Y in P, the sectional curvature $K(P)$ is usually defined by

$$
K(P)=K(X, Y)=\frac{g(R(X, Y) Y, X)}{g(X, X) g(Y, Y)-g(X, Y)^{2}}
$$

The sectional curvature $K(P)$ of the holomorphic plane P is called the holomorphic sectional curvature, which is denoted by $H(P)$. The semi-definite Kaehler manifold M is said to be of constant holomorphic sectional curvature if its holomorphic sectional curvatures $H(P)$ are constant for all holomorphic planes at all points of M. Then M is called a semi-definite complex space form, which is denoted by $M_{q}^{m}(c)$ provided that it is of constant holomorphic sectional curvature c, of complex dimension m and of index $2 q(\geqq 0)$.

It is seen in Wolf $[\mathbf{1 6}]$ that the standard models of semi-definite complex space forms are the following three kinds: the semi-definite complex projective space $C P_{q}^{m}$, the semi-definite complex Euclidean space C_{q}^{m} and the semi-definite complex hyperbolic space $C H_{q}^{m}$, according to whether $c>0, c=0$ or $c<0$. For any integer $q, 0 \leqq q \leqq m$, it is also seen by [16] that they are completely simply connected and connected semi-definite complex space forms of dimension m and of index $2 q$. The Riemannian curvature tensor $R_{\bar{A} B C \bar{D}}$ of $M_{q}^{m}(c)$ is given by

$$
R_{\bar{A} B C \bar{D}}=\frac{c}{2} \varepsilon_{B} \varepsilon_{C}\left(\delta_{A B} \delta_{C D}+\delta_{A C} \delta_{B D}\right)
$$

3. Semi-definite complex submanifolds. This section is concerned with semi-definite complex submanifolds of an indefinite Kaehler manifold. First of all the basic formulas for the theory of semi-definite complex submanifolds are given.

Now let M^{\prime} be an $(n+p)$-dimensional connected semi-definite Kaehler manifold of index $2(s+t), 0 \leqq s \leqq n, 0 \leqq t \leqq p$, with semi-definite Kaehler structure $\left(g^{\prime}, J^{\prime}\right)$. Let M be an n-dimensional connected semidefinite complex submanifold of M^{\prime}, and let g be the induced semidefinite Kaehler metric tensor of index $2 s$ on M from g^{\prime}. We can choose a local field $\left\{U_{A}\right\}=\left\{U_{j}, U_{x}\right\}=\left\{U_{1}, \ldots, U_{n+p}\right\}$ of unitary frames on a neighborhood of M^{\prime} in such a way that, restricted to M, U_{1}, \ldots, U_{n} are tangent to M and the others are normal to M. Here and in the sequel, the following convention on the range of indices is used throughout this paper unless otherwise stated:

$$
\begin{gathered}
A, B, C, \ldots=1, \ldots, n, n+1, \ldots, n+p \\
i, j, k, l, \ldots=1, \ldots, n ; \quad x, y, z, \ldots=n+1, \ldots, n+p
\end{gathered}
$$

With respect to the frame field, let $\left\{\omega_{A}\right\}=\left\{\omega_{j}, \omega_{y}\right\}$ be its dual frame fields. Then the semi-definite Kaehler metric tensor g^{\prime} of M^{\prime} is given by $g^{\prime}=2 \sum_{A} \varepsilon_{A} \omega_{A} \otimes \bar{\omega}_{A}$ where $\left\{\varepsilon_{A}\right\}=\left\{\varepsilon_{j}, \varepsilon_{y}\right\}, \varepsilon_{A}= \pm 1$. The connection forms on M^{\prime} are denoted by $\left\{\omega_{A B}\right\}$. The canonical forms ω_{A} and the connection forms $\omega_{A B}$ of the ambient space M^{\prime} satisfy the structure
equations

$$
\begin{gather*}
d \omega_{A}+\sum_{B} \varepsilon_{B} \omega_{A B} \wedge \omega_{B}=0, \quad \omega_{A B}+\bar{\omega}_{B A}=0 \\
d \omega_{A B}+\sum_{C} \varepsilon_{C} \omega_{A C} \wedge \omega_{C B}=\Omega_{A B}^{\prime} \tag{3.1}\\
\Omega_{A B}^{\prime}=\sum_{C, D} \varepsilon_{C} \varepsilon_{D} R_{\bar{A} B C}^{\prime} \bar{D}_{C} \omega_{C} \wedge \bar{\omega}_{D}
\end{gather*}
$$

where $\Omega_{A B}^{\prime}$, respectively $R_{\bar{A} B C \bar{D}}^{\prime}$, denotes the curvature form, respectively the components of the Riemannian curvature tensor R^{\prime}, of M^{\prime}. Restricting these forms to the submanifold M, we have

$$
\begin{equation*}
\omega_{x}=0 \tag{3.2}
\end{equation*}
$$

and the induced semi-definite Kaehler metric tensor g of index $2 s$ of M is given by $g=2 \sum_{j} \varepsilon_{j} \omega_{j} \otimes \bar{\omega}_{j}$. Then $\left\{U_{j}\right\}$ is a local unitary frame field with respect to this metric and $\left\{\omega_{j}\right\}$ is a local dual frame field due to $\left\{U_{j}\right\}$ which consists of complex-valued 1-forms of type $(1,0)$ on M. Moreover, $\omega_{1}, \ldots, \omega_{n}, \bar{\omega}_{1}, \ldots, \bar{\omega}_{n}$ are linearly independent and $\left\{\omega_{j}\right\}$ is the canonical form on M. It follows from (3.2) and Cartan's lemma that the exterior derivative of (3.2) gives rise to

$$
\begin{equation*}
\omega_{x i}=\sum_{j} \varepsilon_{j} h_{i j}^{x} \omega_{j}, \quad h_{i j}^{x}=h_{j i}^{x} . \tag{3.3}
\end{equation*}
$$

The quadratic form $\alpha=\sum_{i, j, x} \varepsilon_{i} \varepsilon_{j} \varepsilon_{x} h_{i j}{ }^{x} \omega_{i} \otimes \omega_{j} \otimes U_{x}$ with values in the normal bundle $N M$ on M in M^{\prime} is called the second fundamental form of the submanifold M. The structure equations for M are similarly given by

$$
\begin{align*}
& d \omega_{i}+\sum_{j} \varepsilon_{j} \omega_{i j} \wedge \omega_{j}=0, \quad \omega_{i j}+\bar{\omega}_{j i}=0, \\
& d \omega_{i j}+\sum_{k} \varepsilon_{k} \omega_{i k} \wedge \omega_{k j}=\Omega_{i j}, \quad \Omega_{i j}=\sum_{k, l} \varepsilon_{k} \varepsilon_{l} R_{\bar{i} j k \bar{l}} \omega_{k} \wedge \bar{\omega}_{l} . \tag{3.4}
\end{align*}
$$

Moreover, the following relationships are obtained:

$$
\begin{gather*}
d \omega_{x y}+\sum_{z} \varepsilon_{z} \omega_{x z} \wedge \omega_{z y}=\Omega_{x y} \\
\Omega_{x y}=\sum_{k, l} \varepsilon_{k} \varepsilon_{l} R_{\bar{x} y k l} \omega_{k} \wedge \bar{\omega}_{l} \tag{3.5}
\end{gather*}
$$

where $\Omega_{x y}$ is called the normal curvature form of M. For the Riemannian curvature tensors R and R^{\prime} of M and M^{\prime}, respectively, it follows from (3.1), (3.3) and (3.4) that we have the Gauss equation

$$
\begin{equation*}
R_{\bar{i} j k \bar{l}}=R_{\bar{i} j k \bar{l}}^{\prime}-\sum_{x} \varepsilon_{x} h_{j k}{ }^{x} \bar{h}_{i l}{ }^{x} . \tag{3.6}
\end{equation*}
$$

And by means of (3.3) and (3.5), we have

$$
\begin{equation*}
R_{\bar{x} y k \bar{l}}=R_{\bar{x} y k \bar{l}}^{\prime}+\sum_{r} \varepsilon_{r} h_{k r}{ }^{x} \bar{h}_{r l}{ }^{y} \tag{3.7}
\end{equation*}
$$

The components $S_{i \bar{j}}$ of the Ricci tensor S and the scalar curvature r of M are given by

$$
\begin{gather*}
S_{i \bar{j}}=\sum_{k} \varepsilon_{k} R_{\bar{j} i k \bar{k}}^{\prime}-h_{i \bar{j}}^{2}, \tag{3.8}\\
r=2\left(\sum_{k, j} \varepsilon_{k} \varepsilon_{j} R_{\bar{k} k j \bar{j}}^{\prime}-h_{2}\right), \tag{3.9}
\end{gather*}
$$

where $h_{i \bar{j}}{ }^{2}={h_{\bar{j} i}^{2}}^{2}=\sum_{x, r} \varepsilon_{x} \varepsilon_{r} h_{i r}{ }^{x} \bar{h}_{r j}^{x}$ and $h_{2}=\sum_{j} \varepsilon_{j} h_{j \bar{j}}{ }^{2}$.
Now the components $h_{i j k}^{x}$ and $h_{i j \bar{k}}^{x}$ of the covariant derivative of the second fundamental form on M are given by

$$
\begin{align*}
& \sum_{k} \varepsilon_{k}\left(h_{i j k}^{x} \omega_{k}+h_{i j \bar{k}}{ }^{x} \bar{\omega}_{k}\right) \tag{3.10}\\
& \quad=d h_{i j}^{x}-\sum_{k} \varepsilon_{k}\left(h_{k j}^{x} \omega_{k i}+h_{i k}^{x} \omega_{k j}\right)+\sum_{y} \varepsilon_{y} h_{i j}^{y} \omega_{x y}
\end{align*}
$$

Then, substituting $d h_{i j}{ }^{x}$ in this definition into the exterior derivative of (3.3) and using (3.1)-(3.4) and (3.8), we have

$$
\begin{equation*}
h_{i j k}^{x}=h_{i k j}^{x}, \quad h_{i j \bar{k}}^{x}=-R_{\bar{x} i j \bar{k}}^{\prime} \tag{3.11}
\end{equation*}
$$

Similarly, the components $h_{i j k l}^{x}$ and $h_{i j k l}^{x}$, respectively $h_{i j \overline{k l}}^{x}$ and $h_{i j \bar{k} l}{ }^{x}$, of the covariant derivative of $h_{i j k}^{x}$, respectively $h_{i j \bar{k}}{ }^{x}$, can be defined by
(3.12) $\sum_{l} \varepsilon_{l}\left(h_{i j k l}^{x} \omega_{l}+h_{i j k \bar{l}}^{x} \bar{\omega}_{l}\right)$

$$
=d h_{i j k}^{x}-\sum_{l} \varepsilon_{l}\left(h_{l j k}^{x} \omega_{l i}+h_{i l k}^{x} \omega_{l j}+h_{i j l}^{x} \omega_{l k}\right)+\sum_{y} \varepsilon_{y} h_{i j k}^{y} \omega_{x y} .
$$

$$
\begin{align*}
& \sum_{l} \varepsilon_{l}\left(h_{i j \bar{k} l}^{x} \omega_{l}+h_{i j \bar{k} \bar{l}}^{x} \bar{\omega}_{l}\right)=d h_{i j \bar{k}}^{x} \tag{3.13}\\
& \quad-\sum_{l} \varepsilon_{l}\left(h_{l j \bar{k}}^{x} \omega_{l i}+{h_{i l \bar{k}}^{x}}^{x} \omega_{l j}+h_{i j \bar{l}}^{x} \bar{\omega}_{l k}\right)+\sum_{y} \varepsilon_{y} h_{i j \bar{k}}^{y} \omega_{x y} .
\end{align*}
$$

Differentiating (3.10) exteriorly and using the properties $d^{2}=0,(3.4)$, (3.5), (3.8), (3.10) and (3.11), we have the following Ricci formula for the second fundamental form:

$$
\begin{equation*}
h_{i j k l}^{x}=h_{i j l k}^{x}, \quad h_{i j \bar{k} \bar{l}}^{x}=h_{i j \overline{l k}^{x}} \tag{3.14}
\end{equation*}
$$

$$
\begin{equation*}
h_{i j k \bar{l}}^{x}-h_{i j \bar{l} k}^{x}=\sum_{r} \varepsilon_{r}\left(R_{\bar{l} k i \bar{r}} h_{r j}^{x}+R_{\bar{l} k j \bar{r}} h_{i r}^{x}\right)-\sum_{y} \varepsilon_{y} R_{\bar{x} y k \bar{l}} h_{i j}^{y} . \tag{3.15}
\end{equation*}
$$

In particular, let the ambient space M^{\prime} be an $(n+p)$-dimensional semi-definite complex space form $M_{s+t}^{n+p}(c)$ of constant holomorphic sectional curvature c and of index $2(s+t), 0 \leqq s \leqq n, 0 \leqq t \leqq p$. Then we get

$$
\begin{align*}
R_{\bar{i} j k \bar{l}}= & \frac{c}{2} \varepsilon_{j} \varepsilon_{k}\left(\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}\right)-\sum_{x} \varepsilon_{x} h_{j k}^{x} \bar{h}_{i l}^{x}, \tag{3.16}\\
S_{i \bar{j}}= & \frac{(n+1) c}{2} \varepsilon_{i} \delta_{i j}-{h_{i \bar{j}}{ }^{2},}^{r=} \begin{aligned}
& \\
& h_{i j \bar{k}}^{x}= 0 \\
& h_{i j k \bar{l}}^{x}= \frac{c}{2}\left(\varepsilon_{k} h_{i j}^{x} \delta_{k l}+\varepsilon_{i} h_{j k}^{x} \delta_{i l}+\varepsilon_{j} h_{k i}^{x} \delta_{j l}\right) \\
&-\sum_{r, y} \varepsilon_{r} \varepsilon_{y}\left(h_{r i}^{x} h_{j k}^{y}+h_{r j}^{x} h_{k i}^{y}+h_{r k}^{x} h_{i j}^{y}\right) \bar{h}_{r l}^{y} .
\end{aligned} . \tag{3.17}
\end{align*}
$$

For the sake of brevity, a tensor $h_{i \bar{j}}{ }^{2 m}$ and a function $h_{2 m}$ on M for
any integer $m(\geqq 2)$ are introduced as follows:

$$
\begin{gathered}
h_{i \bar{j}}^{-2 m}=\sum_{i_{1}, \ldots, i_{m-1}} \varepsilon_{i_{1}} \cdots \varepsilon_{i_{m-1}} h_{i \bar{i}_{1}}^{2} h_{i_{1} \bar{i}_{2}}^{2} \cdots h_{i_{m-1} \bar{j}} \\
h_{2 m}=\sum_{i} \varepsilon_{i} h_{i \bar{i}}^{-2 m} .
\end{gathered}
$$

In particular, if M is a hypersurface, then a tensor $h_{i j}{ }^{2 m+1}$ on M is introduced as follows:

$$
h_{i j}^{2 m+1}=\sum_{k} \varepsilon_{k} h_{i \bar{k}}^{2 m} h_{k j} .
$$

4. Semi-symmetric and semi-definite complex hypersurfaces. This section is concerned with semi-symmetric and semi-definite complex hypersurfaces in a semi-definite complex space form. Let M be an n-dimensional semi-definite complex hypersurface of index $2 s$ of an $(n+1)$-dimensional semi-definite complex space form $M^{\prime}=M_{s+t}^{n+1}(c)$, $0 \leqq s \leqq n, t=0$ or 1 , of index $2(s+t)$ and of constant holomorphic sectional curvature c.

Let us denote by R the Riemannian curvature tensor on M. Assume that the hypersurface M satisfies the Nomizu condition

$$
\begin{equation*}
R(X, Y) R=0, \quad X, Y \in T M \tag{4.1}
\end{equation*}
$$

It is equivalent to

$$
\begin{equation*}
R_{\bar{h} i j \bar{k} l \bar{n}}-R_{\bar{h} i j \bar{k} \bar{n} l}=0 \tag{4.2}
\end{equation*}
$$

By the twice exterior differentiation of the Riemannian curvature tensor R, the Ricci formula for R is as follows:

$$
\begin{aligned}
R_{\bar{h} i j \bar{k} l \bar{n}}-R_{\bar{h} i j \bar{k} \bar{n} l}=\sum_{r} \varepsilon_{r}\left(-R_{\bar{n} l r \bar{h}} R_{\bar{r} i j \bar{k}}\right. & +R_{\bar{n} l i \bar{r}} R_{\bar{h} r j \bar{k}} \\
& \left.+R_{\bar{n} l j \bar{r}} R_{\bar{h} i r \bar{k}}-R_{\bar{n} l r \bar{k}} R_{\bar{h} i j \bar{r}}\right)
\end{aligned}
$$

In fact (4.2) is derived from (4.1). For the unitary frame $\left\{U_{j}\right\}$ on M, the components $R_{\bar{h} i j \bar{k}}$ of the Riemannian curvature tensor R is given
by

$$
\begin{aligned}
& R\left(U_{i}, \bar{U}_{j}\right) U_{k}=\sum_{r} \varepsilon_{r} R_{\bar{r} k i \bar{j}} U_{r}, \\
& R\left(U_{i}, \bar{U}_{j}\right) \bar{U}_{k}=\sum_{r} \varepsilon_{r} R_{r \bar{k} \bar{j} \bar{j}} \bar{U}_{r} .
\end{aligned}
$$

Accordingly we have

$$
\begin{aligned}
& \left(R\left(U_{l}, \bar{U}_{n}\right) R\right)\left(U_{j}, \bar{U}_{k}, U_{i}\right) \\
& \quad=R\left(U_{l}, \bar{U}_{n}\right) R\left(U_{j}, \bar{U}_{k}\right) U_{i}-R\left(R\left(U_{l}, \bar{U}_{n}\right) U_{j}, \bar{U}_{k}\right) U_{i} \\
& \quad-R\left(U_{j}, R\left(U_{l}, \bar{U}_{n}\right) \bar{U}_{k}\right) U_{i}-R\left(U_{j}, \bar{U}_{k}\right) R\left(U_{l} \bar{U}_{n}\right) U_{i} \\
& =\sum_{r} \varepsilon_{r}\left\{R_{\bar{r} i j \bar{k}} R\left(U_{l}, \bar{U}_{n}\right) U_{r}-R_{\bar{r} j l \bar{n}} R\left(U_{r}, \bar{U}_{k}\right) U_{i}\right. \\
& \left.\quad+R_{\bar{k} r l \bar{n}} R\left(U_{J}, \bar{U}_{r}\right) U_{i}-R_{\bar{r} i l \bar{n}} R\left(U_{j}, \bar{U}_{k}\right) U_{r}\right\} \\
& \quad=\sum_{r, h} \varepsilon_{r} \varepsilon_{h}\left(R_{\bar{r} i j \bar{k}} R_{\bar{h} r l \bar{n}}-R_{\bar{r} j l \bar{n}} R_{\bar{h} i r \bar{k}}+R_{\bar{k} r l \bar{n}} R_{\bar{h} i j \bar{r}}-R_{\bar{r} i l \bar{n}} R_{\bar{h} r j \bar{k}}\right) U_{h} .
\end{aligned}
$$

So the condition (4.1) is equivalent to
(4.3) $\sum_{r} \varepsilon_{r}\left(R_{\bar{r} i j \bar{k}} R_{\bar{h} r l \bar{n}}-R_{\bar{r} j l \bar{n}} R_{\bar{h} i r \bar{k}}+R_{\bar{k} r l \bar{n}} R_{\bar{h} i \bar{j} \bar{r}}-R_{\bar{r} i l \bar{n}} R_{\bar{h} r j \bar{k}}\right)=0$.

It means that (4.1) is equivalent to (4.3). By (3.16) and (4.3) we have

$$
\begin{align*}
& 2\left(h_{l \bar{k}}{ }^{2} \bar{h}_{n h}+h_{l \bar{h}}{ }^{2} \bar{h}_{n k}\right) h_{i j}-2\left(h_{j \bar{n}}{ }^{2} h_{l i}+h_{i \bar{n}}{ }^{2} h_{l j}\right) \bar{h}_{h k} \tag{4.4}\\
& \quad-c\left(\varepsilon_{l} \delta_{l h} h_{i j} \bar{h}_{n k}-\varepsilon_{i} \delta_{i n} h_{j l} \bar{h}_{h k}-\varepsilon_{j} \delta_{j n} h_{l i} \bar{h}_{h k}+\varepsilon_{l} \delta_{l k} h_{i j} h_{n}\right)=0 .
\end{align*}
$$

Transvecting $\varepsilon_{k} \varepsilon_{r} h_{k r}$ to (4.4) and summing up with respect to indices k and r, we have

$$
\begin{align*}
& 2\left(h_{l \bar{h}^{4}+h_{2} h_{l \bar{h}}}{ }^{2}\right) h_{i j}-2\left(h_{j \bar{h}^{4}}^{4} h_{l i}+h_{i \bar{h}}^{4} h_{l j}\right) \tag{4.5}\\
& \quad-c\left(\varepsilon_{l} \delta_{l h} h_{2} h_{i j}-h_{l j} h_{i \bar{h}}{ }^{2}-h_{i l} h_{j \bar{h}}^{2}+h_{i j} h_{l \bar{h}}{ }^{2}\right)=0 .
\end{align*}
$$

Then, putting $h=l$ in (4.5), multiplying ε_{l} and summing up with respect to the index l, we have

$$
\begin{equation*}
4 h_{i j}^{5}-2 c h_{i j}^{3}-\left\{2\left(h_{4}+h_{2}^{2}\right)-(n+1) c h_{2}\right\} h_{i j}=0 \tag{4.6}
\end{equation*}
$$

On the other hand, putting $l=n$ in (4.4), multiplying ε_{l} and summing up with respect to the index l, and then putting $j=h$ in (4.5), multiplying ε_{j} and summing up with respect to the index j, we have

$$
\begin{equation*}
h_{i j}{ }^{3} \bar{h}_{h k}=\bar{h}_{h k}{ }^{3} h_{i j}, \quad h_{2} h_{i k}^{3}=h_{4} h_{i k}, \tag{4.7}
\end{equation*}
$$

respectively. Multiplying $h_{2}{ }^{2}$ to (4.6) and making use of (4.7), we have

$$
\begin{equation*}
\left[4 h_{4}^{2}-2 c h_{2} h_{4}-h_{2}^{2}\left\{2\left(h_{4}+h_{2}^{2}\right)-(n+1) c h_{2}\right\}\right] h_{i j}=0 \tag{4.8}
\end{equation*}
$$

and hence we get

$$
\begin{equation*}
h_{2}\left[4 h^{2} 4-2 c h_{2} h_{4}-h_{2}^{2}\left\{2\left(h_{4}+h_{2}^{2}\right)-(n+1) c h_{2}\right\}\right]=0 \tag{4.9}
\end{equation*}
$$

Theorem 4.1. Let $M=M_{s}^{n}$ be an n-dimensional semi-symmetric and semi-definite complex hypersurface of index $2 s$ in $M^{\prime}=M_{s+t}^{n+1}(c)$, $0 \leqq s \leqq n, t=0$ or $1, c \neq 0$. Then M is totally geodesic with $r=n(n+1) c$ or Einstein with $r=n^{2} c$, where r denotes the scalar curvature.

Proof. Since it satisfies the condition $R R=0$, equation (4.4) holds. Putting $l=k$ in (4.4), transvecting ε_{l} to the equation and summing up with respect to the index l, we get

$$
\begin{align*}
& 2\left(h_{2} \bar{h}_{n h}+\bar{h}_{n h}^{3}\right) h_{i j}-2\left(h_{j \bar{n}}^{2} h_{i \bar{h}}{ }^{2}+{h_{i \bar{n}}}^{2} h_{j \bar{h}^{2}}^{2}\right) \tag{4.10}\\
& \quad-c\left\{(n+1) h_{i j} \bar{h}_{h n}-\varepsilon_{i} \delta_{i n} h_{j \bar{h}}{ }^{2}-\varepsilon_{j} \delta_{j n} h_{i \bar{h}}{ }^{2}\right\}=0 .
\end{align*}
$$

Furthermore, putting $h=i$ in (4.10), transvecting ε_{h} to the equation and summing up with respect to the index h, we get

$$
c\left(n h_{j \bar{i}}^{2}-h_{2} \varepsilon_{j} \delta_{j i}\right)=0
$$

which implies that M is Einstein because of $c \neq 0$ and (3.17).
Next we investigate the scalar curvature r on M. Since $h_{j \bar{h}}{ }^{2}=$ $\left(h_{2} / n\right) \varepsilon_{j} \delta_{j h}$, the equation (4.10) is reduced to

$$
\begin{equation*}
\left(2 h_{2}-n c\right)\left\{n(n+1) h_{i j} \bar{h}_{l h}-h_{2} \varepsilon_{i} \varepsilon_{j}\left(\delta_{i l} \delta_{j h}+\delta_{j l} \delta_{i h}\right)\right\}=0 \tag{4.11}
\end{equation*}
$$

Since M is Einstein, h_{2} is a constant. So first of all let us consider the case where $2 h_{2}-n c \neq 0$ on M; then (4.11) gives

$$
\begin{equation*}
n(n+1) h_{i j} \bar{h}_{l h}-h_{2} \varepsilon_{i} \varepsilon_{j}\left(\delta_{i l} \delta_{j h}+\delta_{j l} \delta_{i h}\right)=0 \tag{4.12}
\end{equation*}
$$

Transvecting $\varepsilon_{h} h_{h k}$ to (4.12) and summing up with respect to the index h and using $h_{k l}^{2}=\left(h_{2} / n\right) \varepsilon_{k} \delta_{k l}$, we have

$$
h_{2}\left\{(n+1) \varepsilon_{k} \delta_{k l} h_{i j}-\left(\varepsilon_{i} \delta_{i l} h_{j k}+\varepsilon_{j} \delta_{j l} h_{i k}\right)\right\}=0
$$

from which it follows that we have $(n+2)(n-1) h_{2} h_{i j}=0$. Thus we get $h_{2}=0$ on M, from which together with (4.12) it follows that we have $h_{i j}=0$ on M. It means that M is totally geodesic.

Secondly, let us consider the case where $2 h_{2}=n c$. That is, the square norm h_{2} of the second fundamental form is given by $(n / 2) c$. Then in this case by (3.18) we know that M is Einstein with the constant scalar curvature $r=n^{2} c$. This completes the proof.

Now let us introduce the following theorem due to Nakagawa and Takagi [8].

Theorem A. Let M be a complete Kaehler submanifold imbedded into $C P^{N}$ with parallel second fundamental form. If M is irreducible, then M is congruent to one of the following Kaehler submanifolds imbedded into $C P^{N}, N=n+p$, with parallel second fundamental form:

$$
\begin{gathered}
C P^{n}=S U(n+1) / S(U(n) \times U(1)), \\
Q^{n}=S O(n+2) / S(O(n) \times S O(2)), \\
S U(r+2) / S(U(r) \times U(2)), \quad r \geqq 3, \\
S O(10) / U(5), \quad E_{6} / \operatorname{Spin}(10) \times T, \quad E_{7} / E_{6} \times T,
\end{gathered}
$$

where $U(n)$, $S U(n)$ and $S O(n)$ denote the unitary group, the special unitary group and the special orthogonal group of order n, respectively, and E_{6}, Spin (10) and T denote the exceptional group, the spin group and the torus group, respectively. If M is reducible then M is congruent to $\left(C P^{n_{1}} \times C P^{n_{2}}, f\right)$ for some n_{1} and n_{2} with $\operatorname{dim} M=n_{1}+n_{2}$, where $f: C P^{n_{1}} \times C P^{n_{2}} \rightarrow C P^{n_{1}+n_{2}+n_{1} n_{2}}$ is the Kaehler imbedding. The corresponding local version is also true.

In general, the Kaehler submanifold with parallel second fundamental form is known to be locally symmetric. So it naturally is semisymmetric. Now let us consider only a complex hypersurface in $C P^{n+1}$ and give a complete classification of semi-symmetric hypersurfaces. Then, as an application of Theorem 4.1 and Theorem A, we assert the following:

Theorem 4.2. Let M be an n-dimensional complex hypersurface of an $(n+1)$-dimensional complex projective space $C P^{n+1}$. If it is semisymmetric, then M is locally congruent to a complex quadric Q^{n} or a complex projective space $C P^{n}$.

Proof. Let M be an n-dimensional complex hypersurface of an $(n+1)$-dimensional complex space form $M^{n+1}(c), c \neq 0$. We assume that it is semi-symmetric. Then we have $h_{i \bar{j}}{ }^{2}=h_{2} \delta_{i \bar{j}} / n$ where h_{2} is constant, and so M is Einstein by Theorem 4.1. Since M is a hypersurface, we see that $h_{i \bar{j}}{ }^{2}=\sum_{r} h_{i r} \bar{h}_{r j}$. Differentiating this relation covariantly, by (3.11), (3.19) and the fact that h_{2} is constant, we obtain $\sum_{r} h_{i k r} \bar{h}_{r j}=0$. Since $h_{2}=n c / 2$ if M is not totally geodesic, we see that $h_{i j k}=0$, which means that the second fundamental form of M is parallel. Combining this result with Theorem A, we have the results of the main theorem. This completes the proof.

Remark. By using a method quite different from ours, Ryan [12] also has verified that complex hypersurfaces in $P^{n+1} C$ satisfying $R \cdot R=0$ is Einstein. Moreover, Smith [13] has classified the class of Kaehler Einstein hypersurfaces in $C P^{n+1}$ and showed that they are congruent to $C P^{n}$ or Q^{n}.

Also, in the proof of Theorem 4.1, if we compare both cases concerned with the length of the second fundamental form h_{2}, we can easily verify the following:

Corollary 4.3. Let $M=M^{n}$ be an n-dimensional complex hypersurface of $M^{\prime}=M^{n+1}(c), c<0$. If it is semi-symmetric, then M is totally geodesic.

Corollary 4.4. Let $M=M^{n}$ be an n-dimensional complex hypersurface of $M^{\prime}=M_{0+1}^{n+1}(c), c>0$. If it is semi-symmetric, then M is totally geodesic.
5. Semi-symmetric complex hypersurface in $M_{0+t}^{n+1}(0)$. In the paper [2], Aiyama, et al., studied an n-dimensional semi-definite complex hypersurface M of index $2 s$ in $M_{s+t}^{n+1}(0)$ of index $2(s+t)$, $0 \leqq s \leqq n, t=0$ or 1 , and proved that (4.1) implies $h_{i \bar{j}}{ }^{2}=0$ or

$$
\begin{equation*}
h_{i j} h_{k l}=h_{i l} h_{j k} \quad \text { on } M \tag{5.1}
\end{equation*}
$$

As a direct consequence of (3.17), $h_{i \bar{j}}^{2}=0$ is equivalent to the fact that the Ricci tensor is flat, but in their paper the geometric meaning of the second one was not stated. In this section we are concerned with the geometric meaning of semi-symmetric complex hypersurfaces in a semi-definite complex space form $M_{0+t}^{n+1}(0), t=0$ or 1 ; namely, we will discuss the different case from the topics treated in the previous sections.

We prove the following theorem.

Theorem 5.1. Let $M=M^{n}$ be an n-dimensional semi-symmetric complex hypersurface of $M^{\prime}=M_{0+t}^{n+1}(0), t=0$ or 1 . If it has no geodesic points, then, for any point x in M, there exists a totally geodesic hypersurface $M(x)$ of M through x.

In order to prove this theorem, we establish some steps. We remark here that the equations (4.4)-(4.9) hold under the assumption of Theorem 5.1. First of all, we require the relation between the functions h_{2} and h_{4}.

Lemma 1. Let M be as in Theorem 5.1. Then we have

$$
\begin{equation*}
h_{4}=h_{2}^{2} \quad \text { or } \quad-\frac{h_{2}^{2}}{2} . \tag{5.2}
\end{equation*}
$$

Proof. In (4.7) we have

$$
\begin{equation*}
\bar{h}_{i j} h_{k l}{ }^{3}=\bar{h}_{i j}{ }^{3} h_{k l} \tag{5.3}
\end{equation*}
$$

On the other hand, by (4.6) we get

$$
\begin{equation*}
2 h_{i j}^{5}-\left(h_{4}+h_{2}^{2}\right) h_{i j}=0 \tag{5.4}
\end{equation*}
$$

because of $c=0$. From (5.3) and (5.4), we have

$$
2 \bar{h}_{i j} h_{k l}{ }^{5}=2 \bar{h}_{i j}{ }^{3} h_{k l}{ }^{3}=\left(h_{4}+h_{2}{ }^{2}\right) \bar{h}_{i j} h_{k l}
$$

From the second equality it follows that we have $2 h_{4} h_{i j}{ }^{3}=\left(h_{4}+\right.$ $\left.h_{2}{ }^{2}\right) h_{2} h_{i j}$. Thus we obtain $2 h_{4}^{2}=\left(h_{4}+h_{2}^{2}\right) h_{2}{ }^{2}$, which yields that the conclusion of this lemma is derived.

Lemma 2. Let M be as in Theorem 5.1. If $h_{4}=-h_{2}{ }^{2} / 2$, then we have $h_{2}=h_{4}=0$.

Proof. Putting $i=h$ in (4.5) and summing up with respect to the index h, we have

$$
\begin{equation*}
h_{2}\left(2 h_{i j}^{3}+h_{2} h_{i j}\right)=0 \tag{5.5}
\end{equation*}
$$

On the other hand, from (4.4) we get

$$
h_{2}\left(h_{l \bar{k}}^{2} \bar{h}_{n h}+h_{l \bar{h}}^{2} \bar{h}_{n k}\right) h_{i j}=h_{2}\left(h_{l i} h_{j \bar{n}}^{2}+h_{l j} h_{i \bar{n}}^{2}\right) \bar{h}_{h k}
$$

Transvecting $h_{k p}$ to the above equation, summing up with respect to the index k, and then replacing the index p with k, we can obtain

$$
h_{2}\left(h_{l k}^{3} \bar{h}_{n h}+h_{l \bar{h}}^{2} h_{k \bar{n}}^{2}\right) h_{i j}=h_{2}\left(h_{l i} h_{j \bar{n}}^{2}+h_{l j} h_{i \bar{n}}{ }^{2}\right) h_{k \bar{h}}{ }^{2} .
$$

Repeating the similar discussion, we get

$$
h_{2}\left(h_{l k}^{3} h_{n h}{ }^{3}+h_{l h}{ }^{3} h_{n k}^{3}\right) h_{i j}=h_{2}\left(h_{l i} h_{n j}^{3}+h_{l j} h_{n i}^{3}\right) h_{k h}^{3},
$$

from which together with (5.5) it follows that we have

$$
h_{2}\left(h_{l k} h_{n h}+h_{l h} h_{k n}\right) h_{i j}=h_{2}\left(h_{l i} h_{n j}+h_{l j} h_{n i}\right) h_{k h}
$$

Transvecting $\bar{h}_{h k}$ to the above equation, summing up with respect to the indices h and k, we have

$$
2 h_{2} h_{n l}^{3} h_{i j}=h_{2}^{2}\left(h_{l i} h_{n j}+h_{l j} h_{n i}\right),
$$

i.e.,

$$
h_{2}{ }^{2}\left(h_{l n} h_{i j}+h_{l i} h_{n j} h_{l j} h_{n j}\right)=0,
$$

with the help of (5.5). Putting $i=j=l=n$, we get $h_{2}{ }^{2} h_{j j} h_{j j}=0$ and then putting $i=l \neq j=n$, we have $h_{2}{ }^{2} h_{i j} h_{i j}=0$. It means that we have $h_{2}{ }^{2} h_{i j}=0$. This completes the proof.

Lemma 3. Let M be as in Theorem 5.1. If $h_{4}=h_{2}{ }^{2} \neq 0$, then M satisfies condition (5.1).

Proof. By the second equation of (4.7), we have

$$
h_{i j}{ }^{3}-h_{2} h_{i j}=0 \quad \text { and } \quad h_{i \bar{j}}^{4}-h_{2} h_{i \bar{j}}^{2}=0 .
$$

By (4.5) and the above equation, we have $2 h_{l \bar{h}}{ }^{2} h_{i j}=h_{l i} h_{j \bar{h}}{ }^{2}+h_{l j} h_{i \bar{h}}{ }^{2}$, and hence $2 h_{l h} h_{i j}=h_{l i} h_{j h}+h_{l j} h_{i h}$. Interchanging cyclically the indices i, j and h and then summing up the two equations, we have condition (5.1). This completes the proof.

With these preparations now complete, we are able to give a geometric meaning of condition (5.1).

Proposition 5.2. Let M be as in Theorem 5.1. If $h_{2} \neq 0$, then condition (5.1) is equivalent to $S^{2}=r S / 2$, where r denotes the scalar curvature of M and S the matrix of the Ricci tensor.

Proof. Under the condition (5.1) we have $h_{i j}{ }^{3}=h_{2} h_{i j}$ and so $h_{i \bar{j}}{ }^{4}=h_{2} h_{i \bar{j}}{ }^{2}$. Since the Ricci tensor $S_{i \bar{j}}$ is given by $S_{i \bar{j}}=-h_{i \bar{j}}{ }^{2}$, the equation $h_{i \bar{j}}{ }^{4}=h_{2} h_{i \bar{j}}{ }^{2}$ is equivalent to $S^{2}=r S / 2$. On the other hand, the condition implies $h_{4}=h_{2}{ }^{2}$. By Lemma 3, we get (5.1). This completes the proof.

Proof of Theorem 5.1. Since M has no geodesic points, we have $h_{2} \neq 0$ on M. Then it turns out by Lemmas 1 and 2 that we have $h_{4}=h_{2}{ }^{2}$. Accordingly, we get by Lemma 3 and Proposition 5.2 that it satisfies condition (5.1) and so $h_{i \bar{j}}{ }^{4}=h_{2} h_{i \bar{j}}{ }^{2}$. We can regard $\left(h_{i \bar{j}}{ }^{2}\right)$ as a semi-definite Hermitian matrix of order n. If $t=0$, that is, if the ambient space is complex Euclidean, then it is positive semi-definite;
and if $t=1$, that is, if the ambient space is complex Minkowski, then it is negative semi-definite. We denote by λ_{i} an eigenvalue of the Hermitian matrix $\left(h_{i j}{ }^{2}\right)$. It is a nonnegative or nonpositive realvalued function on M. For the unitary frame $\left\{U_{j}, U_{0}\right\}$ the matrix $\left(h_{i \bar{j}}{ }^{2}\right)$ can be diagonalized as follows: $h_{i \bar{j}}{ }^{2}=\lambda_{i} \delta_{i j}$. Because of $h_{4}=\sum_{i} \lambda_{i}{ }^{2}$ and $h_{2}=\sum_{i} \lambda_{i}$, we see that $0=h_{4}-h_{2}^{2}=-\sum_{i \neq j} \lambda_{i} \lambda_{j} \leqq 0$. This yields that there exist at most two distinct eigenvalues, one of which is equal to 0 and of multiplicity $n-1$. Without loss of generality, we can interchange the number and we may suppose that $\lambda_{1}=\lambda \neq 0$ and $\lambda_{r}=0, r \geqq 2$. Since it satisfies that $\lambda_{r}=\sum_{j} h_{r j} \bar{h}_{r j}=0$, we have that $h_{r j}=0$ for any index j. Accordingly, $\lambda=h_{11} \bar{h}_{11} \neq 0$ because M has no geodesic points on M. Let D be the distribution defined by $\omega_{0}=0$ and $\omega_{1}=0$. For the unitary frame $\left\{U_{j}, U_{0}\right\}$, the connection form $\left\{\omega_{0 j}\right\}$ satisfies

$$
\begin{aligned}
& \omega_{01}=\sum_{j} h_{1 j} \omega_{j}=h_{11} \omega_{1} \\
& \omega_{0 r}=\sum_{j} h_{r j} \omega_{j}=0, \quad r \geqq 2
\end{aligned}
$$

From the structure equation (3.1) of M^{\prime} we have

$$
\begin{aligned}
d \omega_{0} & =-\sum_{A} \omega_{0 A} \wedge \omega_{A}=-\omega_{00} \wedge \omega_{0}-\omega_{01} \wedge \omega_{1} \\
& \equiv 0\left(\bmod \omega_{0} \text { and } \omega_{1}\right)
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
d_{\omega_{01}} & =-\sum_{A} \omega_{0 A} \wedge \omega_{A 1}+\Omega_{01}^{\prime} \\
& =-\omega_{00} \wedge \omega_{01}-\omega_{01} \wedge \omega_{11} \\
& \equiv 0\left(\bmod \omega_{0} \text { and } \omega_{1}\right)
\end{aligned}
$$

because the ambient space is complex Euclidean. On the other hand, it satisfies

$$
d \omega_{01}=d h_{11} \wedge \omega_{1}+h_{11} d \omega_{1}
$$

from which together with the property $d \omega_{01} \equiv 0\left(\bmod \omega_{0}\right.$ and $\left.\omega_{1}\right)$ it follows that we have

$$
\begin{equation*}
d \omega_{1} \equiv 0 \quad\left(\bmod \omega_{0} \text { and } \omega_{1}\right) \tag{5.6}
\end{equation*}
$$

where the fact that h_{11} has no zero points is used. Thus the distribution D is completely integrable and, for any point x in M, the maximal integral submanifold $M(x)$ through x is of $(n-1)$-dimension. So it is the hypersurface of M. By the structure equation on M, we have

$$
\begin{aligned}
d \omega_{1} & =-\sum_{A} \omega_{1, A} \wedge \omega_{A} \\
& =-\omega_{10} \wedge \omega_{0}-\omega_{11} \wedge \omega_{1}-\sum_{r \geqq 2} \omega_{1 r} \wedge \omega_{r} \\
& \equiv-\sum_{r \geqq 2} \omega_{1 r} \wedge \omega_{r}\left(\bmod \omega_{0} \text { and } \omega_{1}\right) .
\end{aligned}
$$

By (5.6) we have

$$
\sum_{r \geqq 2} \omega_{1 r} \wedge \omega_{r} \equiv 0 \quad\left(\bmod \omega_{0} \text { and } \omega_{1}\right)
$$

Similarly, we have

$$
\sum_{r \geqq 2} \omega_{0 r} \wedge \omega_{r} \equiv 0 \quad\left(\bmod \omega_{0} \text { and } \omega_{1}\right)
$$

These yield that the connection forms $\omega_{1 r}$ and $\omega_{0 r}$ can be expressed as the linear combination of the 1 -forms ω_{0} and ω_{1}. Thus, restricted to the maximal integral submanifold $M(x)$, the connection forms $\omega_{1 r}$ and $\omega_{0 r}$ satisfy $\omega_{1 r}=0$ and $\omega_{0 r}=0$. This means that $M(x)$ is totally geodesic on M^{\prime}. It turns out that so is $M(x)$ in M. This completes the proof.

REFERENCES

1. R. Aiyama, T. Ikawa, J.-H. Kwon and H. Nakagawa, Complex hypersurfaces in an indefinite complex space form, Tokyo J. Math. 10 (1987), 349-361.
2. R. Aiyama, H. Nakagawa and Y.J. Suh, Semi-Kaehlerian submanifolds of an indefinite complex space form, Kodai Math. J. 11 (1988), 325-343.
3. M. Barros and A. Romero, Indefinite Kaehler manifolds, Math. Ann. 261 (1982), 55-62.
4. C.S. Houh, On totally real bisectional curvatures, Proc. Amer. Math. Soc. 56 (1976), 261-263.
5. T. Ikawa, H. Nakagawa and A. Romero, Product complex submanifolds of indefinite complex space forms, Rocky Mountain J. Math. 18 (1988), 601-615.
6. S. Kobayashi, Hypersurfaces of complex projective space with constant scalar curvature, J. Differential Geom. 1 (1967), 369-370.
7. S. Montiel and A. Romero, Complex Einstein hypersurfaces of an indefinite complex space form, Math. Proc. Camb. Philos. Soc. 94 (1983), 495-508.
8. H. Nakagawa and R. Takagi, On locally symmetric Kaehler submanifolds in a complex space form, J. Math. Soc. Japan 28 (1976), 638-667.
9. A Romero, Differential geometry of complex hypersurfaces in an indefinite complex space form, Univ. de Granada, 1986.
10. - On a certain class of complex Einstein hypersurfaces in indefinite complex space forms, Math. Z. 192 (1986), 627-635.
11. -, Some examples of indefinite complex Einstein hypersurfaces not locally symmetric, Proc. Amer. Math. J. 98 (1986), 283-286.
12. P.J. Ryan, A class of complex hypersurfaces, Colloq. Math. 26 (1972), 175-182.
13. B. Smith, Differential geometry of complex hypersurfaces, Ann. of Math. $\mathbf{8 5}$ (1967), 246-256.
14. Z.I. Szabó, Structure theorems on Riemannian spaces satisfying $R(X, Y) R=$ 0, I, The local version, J. Differential Geom. 17 (1982), 531-582.
15. T. Takahashi, Complex hypersurfaces with $R S=0$ in C^{n+1}, Tôhoku Math. J. 25 (1973), 527-533.
16. J.A. Wolf, Spaces of constant curvature, McGraw-Hill, New York, 1967.

Department of Mathematics, Kyungpook National University, Taegu 702-701, Korea

Department of Mathematics Education, Taegu University, Taegu 705-
714, Korea
E-mail address: jhkwon@biho.taegu.ac.kr
Department of Mathematics, Kyungpook National University, Taegu 702-701, Korea
E-mail address: yjsuh@bh.knu.ac.kr

[^0]: 1991 AMS Mathematics Subject Classification. Primary 53C50, Secondary 53C40.

 Key words and phrases. Semi-definite Kaehler manifold, semi-definite complex space form, semi-symmetric, totally geodesic, second fundamental form.

 The first and third authors were financially supported by the Korea Research Foundation KRF-99-015-DI0009, Korea 1999.

 Received by the editors on December 1, 1999.

