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ON SEMI-SYMMETRIC COMPLEX HYPERSURFACES
OF A SEMI-DEFINITE COMPLEX SPACE FORM

YOUNG SUK CHOI, JUNG-HWAN KWON AND YOUNG JIN SUH

ABSTRACT. The purpose of this paper is to give a com-
plete classification of semi-symmetric complex hypersurfaces
M in an (n+ 1)-dimensional semi-definite complex space form

M:ftl (¢). Moreover, we also give a classification of semi-

symmetric complex hypersurfaces in a semi-definite complex
Euclidean space Ct"H, t = 0 or 1 when M has no geodesic
points.

1. Introduction. Theory of indefinite complex submanifolds of an
indefinite complex space form is one of the most interesting topics in
differential geometry, and it has been investigated by many geometers
from various points of view ([1], [2], [3], [6], [9], [12], [13] and [15],
etc.).

Let M]™(c) be an m-dimensional semi-definite complex space form of
constant holomorphic sectional curvature ¢ and of index 2¢, 0 < ¢t < m.
As is well known, it globally consists of the following three kinds of
complex space forms: the semi-definite complex projective space CP;",
the semi-definite complex Euclidean space C}" or the semi-definite
complex hyperbolic space CH}", according to whether ¢ > 0, ¢ = 0
or ¢ < 0.

Now let M be a semi-definite Kaehler manifold. We denote by R
the Riemannnian curvature tensor defined on M. Then M is said
to be semi-symmetric if it satisfies the condition R(X,Y)R = 0 for
any vector field X and Y on M. Its notion is much wider than the
notion of locally symmetric spaces, that is, VR = 0. The notion of
semi-symmetric Riemannian spaces was first introduced by Cartan and
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Szabé [14], who systematically studied this kind of manifold structure
in detail.

Now in this paper we give a classification of semi-symmetric semi-
definite complex hypersurfaces in a semi-definite complex space form
M (c) as follows:

Theorem 1. Let M7 be an n-dimensional semi-symmetric and semi-
definite complex hypersurface of index 2s in M’ = MS"_;';l (¢),0< s <,
t=0o0rl, c#0. Then M is totally geodesic with the scalar curvature

r =n(n + 1)c or Einstein with the scalar curvature r = n’c.

Moreover, for a semi-symmetric complex hypersurface in a semi-
definite complex Euclidean space C’tn‘”'l, we assert the following.

Theorem 2. Let M be an n-dimensional semi-symmetric complex
hypersurface of C{*, t = 0 or 1. If it has no geodesic points, then for
any point x in M there exists a totally geodesic hypersurface M(x) of
M through x.

2. Semi-definite Kaehler manifolds. This section is concerned
with recalling basic formulas on semi-definite Kaehler manifolds. Let
M be a complex m (2 2)-dimensional semi-definite Kaehler manifold
equipped with semi-definite Kaehler metric tensor g and almost com-
plex structure J. For the semi-definite Kaehler structure {g, J}, it fol-
lows that J is integrable and the index of g is even, say 2¢, 0 < ¢ < m.
In such a case it is denoted by M".

When the index ¢ is contained in the range 0 < ¢ < m, M is said to
be an indefinite Kaehler manifold and the structure {g, J} is called an
indefinite Kaehler structure and in particular, in the case where ¢ =0
or m, M is only called a Kaehler manifold, and then the structure
{g, J} is called a Kaehler structure.

We can choose a local field {Ea, Ea} = {E1,... ,Em, E1+,... ,Eps}
of orthonormal frames on a neighborhood of M where F 4« = JE 4 and
A* = m + A. Here the indices A, B,... run from 1 to m. We set
Up= (Esx—iEs-)/V2and Uy = (Ex+iE4-)/v/?2, where i denotes the
imaginary unit. Then {Ua} constitutes a local field of unitary frames
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on the neighborhood of M. This is a complex linear frame which is
orthonormal with respect to the semi-definite Kaehler metric, that is,
g(Ua,Up) = e4dap, where

ea=—1or1l, according to whetherl < A<qorqg+1< A< m.

Let {wa} be the dual coframe field with respect to the local field
{Ua} of unitary frames on the neighborhood of M. Then {wa} =
{wi,... ,wm} consists of complex-valued 1-forms of type (1,0) on M
such that wa(Up) = ec4dap and {wa, 04} ={w1,. . ,Wm,@1,... ,Om}
are linearly independent.

The semi-definite Kaehler metric g of M can be expressed as g =
2> cawa @ wa. Associated with the frame field {U4}, there exist
complex-valued forms w4p which are usually called connection forms
on M such that they satisfy the structure equations of M:

dos+ Y epwap Awp =0,  wap+®pa=0,
B

(2.1) dwap + Y ecwac Awep = Qap,
c

Qup = E EcapRchﬁwc/\@D,
C.D

where 2 = (Qap), respectively R, .75, denotes the curvature form,
respectively the components of the semi-definite Riemannian curvature
tensor R, of M.

The second relation of the equation (2.1) means that the skew-
Hermitian symmetry of 245, which is equivalent to the symmetric
condition Rzp-p5 = EE apo- Moreover, the first Bianchi identity
Y peQapAwp = 0is given by the exterior differential of the first and
third equations of (2.1), which implies the further symmetric relations

Rapep = Racsp = Boepa = Bopoa

Now, relative to the frame field chosen above, the Ricci tensor S of
M can be expressed as follows:

S = ZeAaB(SAEWA Rwp + SZB@A ®w3),
A.B
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where S,5 = Y cecRgoas = Sga = Sap. The scalar curvature
r is also given by r = 23" ,£45,%. An n-dimensional semi-definite
Kaehler manifold M is said to be Finstein if the Ricci tensor S is given
by S,5 = (r/2n)eadap. The components Ry 5.5 and Ryp 5%
of the covariant derivative of the Riemannian curvature tensor R are

defined by

Z ee(Ripcp.pwE + Rapop.s@E) = dR3pc5
E
— > en(Rppep@pa + Ripepwes + Ripppwee + Rapcs@nn)-
E

The second Bianchi identity is given by Rzp-p.5 = Rappp.o-

Let M be an m-dimensional semi-definite Kaehler manifold of index
2q, 0 < ¢ £ m. A plane section P of the tangent space T, M of M
at any point z is said to be nondegenerate provided that g.|r, ar is
nondegenerate. It is easily seen that P is nondegenerate if and only if
it has a basis {X,Y} such that

9(X, X)g(Y,Y) = g(X,Y)? #0.

If the nondegenerate plane P is invariant by the complex structure
J, it is said to be holomorphic. It is also trivial that the plane P
is holomorphic if and only if it contains a vector X in P such that
g(X, X) # 0. For the nondegenerate plane P spanned by X and Y in
P, the sectional curvature K (P) is usually defined by

J(R(X, Y)Y, X)

KT = R = X X g(v.7) — g (X7

The sectional curvature K (P) of the holomorphic plane P is called
the holomorphic sectional curvature, which is denoted by H(P). The
semi-definite Kaehler manifold M is said to be of constant holomorphic
sectional curvature if its holomorphic sectional curvatures H(P) are
constant for all holomorphic planes at all points of M. Then M is
called a semi-definite complex space form, which is denoted by M;"(c)
provided that it is of constant holomorphic sectional curvature ¢, of
complex dimension m and of index 2¢ (2 0).
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It is seen in Wolf [16] that the standard models of semi-definite com-
plex space forms are the following three kinds: the semi-definite com-
plex projective space C'P;", the semi-definite complex Euclidean space
Cy" and the semi-definite complex hyperbolic space CH", according to
whether ¢ > 0, ¢ = 0 or ¢ < 0. For any integer ¢, 0 < ¢ < m, it is also
seen by [16] that they are completely simply connected and connected
semi-definite complex space forms of dimension m and of index 2¢q. The
Riemannian curvature tensor Ry g5 of M;"(c) is given by

C
Ripep = B epec(0apdcp +04cdpD)-

3. Semi-definite complex submanifolds. This section is con-
cerned with semi-definite complex submanifolds of an indefinite Kaehler
manifold. First of all the basic formulas for the theory of semi-definite
complex submanifolds are given.

Now let M’ be an (n+p)-dimensional connected semi-definite Kaehler
manifold of index 2(s +1t), 0 £ s < n, 0 £ ¢t < p, with semi-definite
Kaehler structure (¢, J'). Let M be an n-dimensional connected semi-
definite complex submanifold of M’, and let g be the induced semi-
definite Kaehler metric tensor of index 2s on M from g’. We can choose
alocal field {Ua} = {U;, Uy} = {Un,... ,Unyp} of unitary frames on a
neighborhood of M’ in such a way that, restricted to M, Uy, ... ,U, are
tangent to M and the others are normal to M. Here and in the sequel,
the following convention on the range of indices is used throughout this
paper unless otherwise stated:

ABC,...=1,... ,n,n+1,... , n+p;
Lkl ... =1,...,n; =y, z,...=n+1,... n+p.

With respect to the frame field, let {wa} = {wj,wy} be its dual frame
fields. Then the semi-definite Kaehler metric tensor ¢’ of M’ is given by
g =2 ,eawa®@wa where {4} = {€j,e}, €4 = £1. The connection
forms on M’ are denoted by {wap}. The canonical forms w, and the
connection forms wyp of the ambient space M’ satisfy the structure
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equations
dwa + Z5BwAB ANwp =0, wap +wpa =0,
B
(3.1) dwap + Z5chc ANwop = Uy p,
c
s = )_coepRpepwe Aop,
c,D

where Y, 5, respectively R denotes the curvature form, respec-

ABCD’
tively the components of the Riemannian curvature tensor R, of M’.
Restricting these forms to the submanifold M, we have

(3.2) wy =0,

and the induced semi-definite Kaehler metric tensor g of index 2s of
M is given by g =23, ejw; ® wj. Then {U;} is a local unitary frame
field with respect to this metric and {w;} is a local dual frame field due
to {U; } which consists of complex-valued 1-forms of type (1,0) on M.
Moreover, w1, ... ,wn,®1,... ,&p are linearly independent and {w,} is
the canonical form on M. It follows from (3.2) and Cartan’s lemma
that the exterior derivative of (3.2) gives rise to

J

The quadratic form o = Z”I €i€56.hi;"w; @w; ®U, with values in the
normal bundle NM on M in M’ is called the second fundamental form
of the submanifold M. The structure equations for M are similarly
given by

dw; + Zajwij ANwj = 0, wij +wj; = 0,
J

dwij + E EpWik N\ Wij = Qij, Qij = E €k€lejk[wk A wy.
3 Tl

(3.4)

Moreover, the following relationships are obtained:

dwzy + Z ExWgz N\ Way = Qay,

z

me = E 5k51R5yk[wk N wy,
k1

(3.5)
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where €, is called the normal curvature form of M. For the Rieman-
nian curvature tensors R and R’ of M and M’, respectively, it follows
from (3.1), (3.3) and (3.4) that we have the Gauss equation

(3.6) R = ”kl Z&p ik hi®
And by means of (3.3) and (3.5), we have

(3.7) Ryt = Riyr+ > erhier“hrt?

The components S;; of the Ricci tensor S and the scalar curvature r
of M are given by

(3.8) Z enRir — hiz”s
(3.9) r= 2<ZskajR;€W —~ hQ),
kg

where h»-'2 = h*‘-2 = Z Emgrhirmhrjx and hy = Ej 5jhj32

Now the components hza k" and h;;;" of the covariant derivative of
the second fundamental form on M are given by

(3.10) > ex(hijr"wi + by @r)
k

= dhijz — Z 5k(hkawki + hikmwk]’) + Z 5yhiijzy-
k Yy

Then, substituting dh;;* in this definition into the exterior derivative
of (3.3) and using (3.1)—(3.4) and (3.8), we have

(3.11) hije® = hik;", hiip* = R,

zTijk®

Similarly, the components h;;x;” and h” v, respectively h”,;l‘” and
hij", of the covariant derivative of h;;", respectively h can be
defined by

(3.12) Z e1(hijrwi + hyjr @)
.
= dh;;" — Z er(hujnwi + hak®wi; + hijiwik) + nyhijkywxy-
7 y

zgk ’
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(3.13) > erlhyp wi + hygg" @) = dhyi"
l

=Y el e + hagwiy + hii"ow) + ) ey wry.
l Y

Differentiating (3.10) exteriorly and using the properties d? = 0, (3.4),
(3.5), (3.8), (3.10) and (3.11), we have the following Ricci formula for
the second fundamental form:

(3.14) hijri® = hiju”, hijri® = hijie"
(3.15)

hz‘jkl’m - hijfkm = Z ET(RfkiFthm + Rfkjfhirm) - Z EyRiykihijy~
T Yy

In particular, let the ambient space M’ be an (n + p)-dimensional
semi-definite complex space form M.'P(c) of constant holomorphic
sectional curvature ¢ and of index 2(s+¢),0 < s <n,0 <t < p. Then
we get

C _
(3.16) Ry = 5 &jen(0ij0m + 0indjt) — Y eahji™ha”
xr

2

n+1)c
(317) Slj = % 57;51']' — hi32,
(3.18) r=n(n+1)c— 2hs,

(3.19) k" =0,

C
(3.20)  hy" = 3 (exhij Ot + €ihji™ 0 + €jhri“05)

- Z grsy(hrimhjky + hrjmhkiy + hrkmhijy)ﬁrly-

™Y

For the sake of brevity, a tensor hl—fm and a function hs,, on M for
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any integer m (= 2) are introduced as follows:

2m __ e S 2p - 2. -2
hiz™" = Z Eiy " Cigy 1 ity Ny, hi, 5%

L1y ytm—1

§ : 2m
th = Ei hﬁ .
i

In particular, if M is a hypersurface, then a tensor hl-ij“ on M is
introduced as follows:

2m+1 _ 2
hi =T = Z5khik "Ry
k

4. Semi-symmetric and semi-definite complex hypersur-
faces. This section is concerned with semi-symmetric and semi-definite
complex hypersurfaces in a semi-definite complex space form. Let M be
an n-dimensional semi-definite complex hypersurface of index 2s of an
(n + 1)-dimensional semi-definite complex space form M’ = M}, (c),
0<s<n,t=0o0r1, of index 2(s + t) and of constant holomorphic
sectional curvature c.

Let us denote by R the Riemannian curvature tensor on M. Assume
that the hypersurface M satisfies the Nomizu condition

(4.1) R(X,Y)R=0, X, Y eTM.
It is equivalent to
(4-2) Rﬁijfclﬁ - Ri’zijl%ﬁl =0.

By the twice exterior differentiation of the Riemannian curvature tensor
R, the Ricci formula for R is as follows:

Riyiitin — Rhijint = Y er(= Rty Rriji + Ruvir Ry i
T
+ RarjrRpivk — RariBhijr)-

In fact (4.2) is derived from (4.1). For the unitary frame {U;} on M,
the components Rj,;; of the Riemannian curvature tensor R is given
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by
R(U;, U;)Uy, = Z&«RWEUT,

R(U; U)Uk = _erRyi5Ur-
Accordingly we have

(R(U Un )R)(Ujﬁk, Ui)
(U, Uy)R(U;, Uy)Ui — R(R(Ui, Un)Uj, U)U;
R( R(U, U U)U; — R(U;, Ug)R(U, U,)U;
= Zs,«{RmkR U, Un)Uy, — Rejin R(U,, U)U;
+ RiinR(U;, U )U; — Rean R(U;, Uk)U,
Z m;thrln - RfjlﬁRFLiT‘iC + erlﬁRﬁijf - RfilﬁRﬁrjfc)Uh'
rh

So the condition (4.1) is equivalent to
(4.3) Y er(Rpiji Rivin — Rrjin Rhivi + Riin Rhijr — Rritn Riji) = 0.

It means that (4.1) is equivalent to (4.3). By (3.16) and (4.3) we have

(4.4)
2(hyz P + Py 2B ) iy — 2(hgnhai + hin®hag ) g
— c(etbinhijhnk — €i0inhjihng — €30;nhihng + €i8ikhijhn) = 0

Transvecting exe,-hg, to (4.4) and summing up with respect to indices
k and r, we have

(4.5)  2(hyp* + hahyp®)hij — 2(hy5 hei + g *hag)
— C(€lélhh2hij — hljhi;LQ — hilhﬂ’ﬁ + hijhlhz) =0

Then, putting A = [ in (4.5), multiplying ; and summing up with
respect to the index [, we have

(46) 4hij5 — QChijg — {2(h4 —+ h22) — (’ﬂ + ].)Chg}hij = 0
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On the other hand, putting I = n in (4.4), multiplying &; and summing
up with respect to the index [, and then putting j = h in (4.5),
multiplying ¢; and summing up with respect to the index j, we have

(4.7) hii*hig = hui>hig, hohi® = hahik,

respectively. Multiplying 22 to (4.6) and making use of (4.7), we have
(4.8)  [4h4® — 2chohy — ho?®{2(hy + ho?) — (n + 1)cha}]hsj = 0,

and hence we get

(4.9) ho[4h?4 — 2chohy — ho?{2(hg + ho®) — (n + 1)cha}] = 0.

Theorem 4.1. Let M = M be an n-dimensional semi-symmetric
and semi-definite complex hypersurface of index 2s in M' = M;ﬁ:el (¢),
0L s<n t=0o0rl c#0. Then M is totally geodesic with
r = n(n + 1)c or Einstein with r = n’c, where r denotes the scalar
curvature.

Proof. Since it satisfies the condition RR = 0, equation (4.4) holds.
Putting [ = k in (4.4), transvecting &; to the equation and summing up
with respect to the index [, we get
(4.10)  2(hghpn + hun®Yhij — 2(hjahig? + hinhs?)

— C{(?’L + 1)hijh}m — Eiémhjﬁ2 — Ej(sjnhiEQ} =0.

Furthermore, putting h = i in (4.10), transvecting &5, to the equation
and summing up with respect to the index h, we get

c(nh;® — hae;jdji) = 0,

Jt

which implies that M is Einstein because of ¢ # 0 and (3.17).

Next we investigate the scalar curvature r on M. Since hj;;* =
(ha/n)e;0;n, the equation (4.10) is reduced to

(411) (2h2 — nc){n(n + 1)hijhlh — h2€i€j (5il5jh + 5]'1(51']1)} =0.
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Since M is Einstein, ho is a constant. So first of all let us consider the
case where 2hs — nc # 0 on M; then (4.11) gives

(4.12) n(n + 1)hijiLlh — thiEj (5il5jh + 5]'151'}1) =0.

Transvecting e, hpi to (4.12) and summing up with respect to the index
h and using hy;?> = (ha/n)exdr, we have

hg{(n + 1)5k6klhij — (aiéilhjk + sjéﬂhik)} =0,

from which it follows that we have (n + 2)(n — 1)hah;; = 0. Thus we
get ho = 0 on M, from which together with (4.12) it follows that we
have h;; = 0 on M. It means that M is totally geodesic.

Secondly, let us consider the case where 2hy = nc. That is, the square
norm hy of the second fundamental form is given by (n/2)c. Then in
this case by (3.18) we know that M is Einstein with the constant scalar
curvature r = n?c. This completes the proof. o

Now let us introduce the following theorem due to Nakagawa and
Takagi [8].

Theorem A. Let M be a complete Kaehler submanifold imbedded
into CPN with parallel second fundamental form. If M is irreducible,
then M is congruent to one of the following Kaehler submanifolds
imbedded into CPN, N = n+p, with parallel second fundamental form:

CP"=SU(n+1)/S(U(n) x U(1)),

Q" =50(n+2)/5(0(n) x SO(2)),

SU(r+2)/S(U(r) xU(2)), r=3,

SO(10)/U(5), Eg/Spin(10) x T, E7/Egx T,

where U(n), SU(n) and SO(n) denote the unitary group, the special
unitary group and the special orthogonal group of order n, respectively,
and Eg, Spin (10) and T denote the exceptional group, the spin group
and the torus group, respectively. If M is reducible then M is congruent
to (CP™ x CP"2, f) for some ny and ny with dim M = ny 4+ no, where

f: CP™M x CP™ — CpPmtnetmanz ys the Kaehler imbedding. The
corresponding local version is also true.
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In general, the Kaehler submanifold with parallel second fundamental
form is known to be locally symmetric. So it naturally is semi-
symmetric. Now let us consider only a complex hypersurface in C P*+!
and give a complete classification of semi-symmetric hypersurfaces.
Then, as an application of Theorem 4.1 and Theorem A, we assert
the following:

Theorem 4.2. Let M be an n-dimensional complex hypersurface of
an (n + 1)-dimensional complex projective space CP" 1. If it is semi-
symmetric, then M is locally congruent to a complex quadric Q™ or a
complex projective space CP™.

Proof. Let M be an n-dimensional complex hypersurface of an
(n + 1)-dimensional complex space form M"!(c), ¢ # 0. We assume
that it is semi-symmetric. Then we have hi32 = hgd;;/n where hs
is constant, and so M is FEinstein by Theorem 4.1. Since M is
a hypersurface, we see that hijz =3 hirﬁ,«j. Differentiating this
relation covariantly, by (3.11), (3.19) and the fact that hy is constant,
we obtain ) higrhyrj = 0. Since hy = ne/2 if M is not totally geodesic,
we see that h;j, = 0, which means that the second fundamental form
of M is parallel. Combining this result with Theorem A, we have the
results of the main theorem. This completes the proof. ]

Remark. By using a method quite different from ours, Ryan [12] also
has verified that complex hypersurfaces in P"*t!(C satisfying R- R =0
is Einstein. Moreover, Smith [13] has classified the class of Kaehler
Einstein hypersurfaces in CP"*! and showed that they are congruent
to CP"™ or Q™.

Also, in the proof of Theorem 4.1, if we compare both cases concerned

with the length of the second fundamental form hs, we can easily verify
the following:

Corollary 4.3. Let M = M™ be an n-dimensional complex hyper-
surface of M’ = M"™*1(c), ¢ < 0. If it is semi-symmetric, then M is
totally geodesic.
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Corollary 4.4. Let M = M™ be an n-dimensional complex hyper-
surface of M' = Mgfll (¢), ¢ > 0. If it is semi-symmetric, then M is
totally geodesic.

5. Semi-symmetric complex hypersurface in M&T(O). In
the paper [2], Aiyama, et al., studied an n-dimensional semi-definite
complex hypersurface M of index 2s in M!}}'(0) of index 2(s + t),
0<s<n,t=0or 1, and proved that (4.1) implies hi32 =0or

(5.1) hijhkl = hilhjk on M.

As a direct consequence of (3.17), h;;* = 0 is equivalent to the fact
that the Ricci tensor is flat, but in their paper the geometric meaning
of the second one was not stated. In this section we are concerned
with the geometric meaning of semi-symmetric complex hypersurfaces
in a semi-definite complex space form Mg_ﬁ;l (0), t = 0 or 1; namely, we
will discuss the different case from the topics treated in the previous
sections.

We prove the following theorem.

Theorem 5.1. Let M = M™ be an n-dimensional semi-symmetric
complex hypersurface of M’ = Mgﬁj‘tl(O), t =0 or 1. If it has no
geodesic points, then, for any point x in M, there exists a totally
geodesic hypersurface M(x) of M through z.

In order to prove this theorem, we establish some steps. We remark
here that the equations (4.4)—(4.9) hold under the assumption of
Theorem 5.1. First of all, we require the relation between the functions
hg and h4.

Lemma 1. Let M be as in Theorem 5.1. Then we have
ho?

(5.2) h4 = h22 or 9 .

Proof. In (4.7) we have
(5.3) hijhia® = hi;® h.
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On the other hand, by (4.6) we get
(5.4) 2h;;° — (hg + ho*)hi; = 0,
because of ¢ = 0. From (5.3) and (5.4), we have
2hiihi® = 2hi P hi® = (ha + ha®)hijhi.
From the second equality it follows that we have 2h4hij3 = (hy +

ha?)hah;;. Thus we obtain 2hy? = (hy + ha?)ho?, which yields that the
conclusion of this lemma is derived. O

Lemma 2. Let M be as in Theorem 5.1. If hy = —h22/2, then we
have ho = hy = 0.

Proof. Putting ¢« = h in (4.5) and summing up with respect to the
index h, we have

(5.5) ha(2hi;® + hahij) = 0.
On the other hand, from (4.4) we get
ho(hyp2hon + hip2hoi) hij = ha(hiihjn® + hyjhin?) b

Transvecting hy, to the above equation, summing up with respect to
the index k, and then replacing the index p with k, we can obtain

ha(hak®hn + hyphiea®) i = ha(hushjn® + hughin®)hyg?.
Repeating the similar discussion, we get
ho(hik® han® + hin bk hij = ho(hyihng® + Bijhoi™ ) his®,
from which together with (5.5) it follows that we have
ho(highnn + hinhin)hi; = ho(hiiha + hijhni) hin.

Transvecting hp;, to the above equation, summing up with respect to
the indices h and k, we have

2hohni*hij = ho®(hiihng + hijhni),
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ie.,

ho® (hinhij + hiihinghijhng) = 0,

with the help of (5.5). Putting i = j = [ = n, we get ho?h;jhj; =0
and then putting i = [ # j = n, we have h22hijhij = 0. It means that
we have ho?h;; = 0. This completes the proof. |

Lemma 3. Let M be as in Theorem 5.1. If hy = hy? # 0, then M
satisfies condition (5.1).

Proof. By the second equation of (4.7), we have
hz‘j3 — hah;; =0 and hij‘l — h2hi32 = 0.

By (4.5) and the above equation, we have 2h;;%hi; = hyih;% 4+ hijhiz?,
and hence 2h;ph;; = hyhjp+hijhs,. Interchanging cyclically the indices
i, 7 and h and then summing up the two equations, we have condition
(5.1). This completes the proof. o

With these preparations now complete, we are able to give a geometric
meaning of condition (5.1).

Proposition 5.2. Let M be as in Theorem 5.1. If hy # 0, then
condition (5.1) is equivalent to S? = rS/2, where r denotes the scalar
curvature of M and S the matriz of the Ricci tensor.

Proof. Under the condition (5.1) we have h;;> = hoh;; and so
hij‘l = hghi32. Since the Ricci tensor S;; is given by S;; = —hijz,
the equation h;;* = hoh,;; is equivalent to S* = S/2. On the other
hand, the condition implies hy = ho?. By Lemma 3, we get (5.1). This

completes the proof. O

Proof of Theorem 5.1. Since M has no geodesic points, we have
ha # 0 on M. Then it turns out by Lemmas 1 and 2 that we have
hy = ho?. Accordingly, we get by Lemma 3 and Proposition 5.2 that
it satisfies condition (5.1) and so h;;* = hah;;%. We can regard (h;;?)
as a semi-definite Hermitian matrix of order n. If ¢ = 0, that is, if the
ambient space is complex Euclidean, then it is positive semi-definite;
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and if ¢ = 1, that is, if the ambient space is complex Minkowski,
then it is negative semi-definite. We denote by \; an eigenvalue of
the Hermitian matrix (hif). It is a nonnegative or nonpositive real-
valued function on M. For the unitary frame {Uj, Uy} the matrix (h;;?)
can be diagonalized as follows: h;;? = \;d;;. Because of hy = >, A;?
and hy = ), \;, we see that 0 = hy — he? = —Zi# AiA; £ 0. This
yields that there exist at most two distinct eigenvalues, one of which
is equal to 0 and of multiplicity n — 1. Without loss of generality, we
can interchange the number and we may suppose that \; = A # 0 and
A =0, r 2 2. Since it satisfies that A\, = Zj hyjh.; = 0, we have that
hr; = 0 for any index j. Accordingly, A = hi1hi1 # 0 because M has
no geodesic points on M. Let D be the distribution defined by wy =0
and wy = 0. For the unitary frame {U;, Uy}, the connection form {w; }
satisfies

wo1 = Z hljwj = hywi,
J
wor = Zhrjwj =0, r=2.
J
From the structure equation (3.1) of M’ we have

dwg = _Z‘UOA/\WA = —wpo N\ wg — wo1 N\ w1
A
=0 (mod wy and wy).

On the other hand, we have

dwg, = — ZWOA ANwal + 961
A

= —woo A wp1 — wo1 A w1

=0 (mod wp and wy),

because the ambient space is complex Euclidean. On the other hand,
it satisfies
dwo1 = dh11 A w1 + hq1 dwy,

from which together with the property dwps = 0 (mod wp and wy) it
follows that we have

(5.6) dwy =0 (mod wp and wy),
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where the fact that h1; has no zero points is used. Thus the distribution
D is completely integrable and, for any point x in M, the maximal
integral submanifold M (z) through z is of (n — 1)-dimension. So it is
the hypersurface of M. By the structure equation on M, we have

dwy = _ZWI’A Awgy
A

= —wio Awo —wi1 Awi — E wir A\ Wy
r=2

=— Zw” Aw, (mod wy and wy).
r>2

By (5.6) we have

ZwlT Aw, =0 (mod wp and wy).
r>2

Similarly, we have

Za}o,« Aw, =0 (mod wy and wy).
r>2

These yield that the connection forms wi, and wg, can be expressed
as the linear combination of the 1-forms wy and w;. Thus, restricted
to the maximal integral submanifold M (z), the connection forms wi,
and wy, satisfy wq, = 0 and wp, = 0. This means that M (z) is totally
geodesic on M’. It turns out that so is M(z) in M. This completes
the proof. ni
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