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ON SEMI-SYMMETRIC COMPLEX HYPERSURFACES
OF A SEMI-DEFINITE COMPLEX SPACE FORM

YOUNG SUK CHOI, JUNG-HWAN KWON AND YOUNG JIN SUH

ABSTRACT. The purpose of this paper is to give a com-
plete classification of semi-symmetric complex hypersurfaces
M in an (n+1)-dimensional semi-definite complex space form

Mn+1
s+t (c). Moreover, we also give a classification of semi-

symmetric complex hypersurfaces in a semi-definite complex
Euclidean space Cn+1

t , t = 0 or 1 when M has no geodesic
points.

1. Introduction. Theory of indefinite complex submanifolds of an
indefinite complex space form is one of the most interesting topics in
differential geometry, and it has been investigated by many geometers
from various points of view ([1], [2], [3], [6], [9], [12], [13] and [15],
etc.).

Let Mm
t (c) be an m-dimensional semi-definite complex space form of

constant holomorphic sectional curvature c and of index 2t, 0 � t � m.
As is well known, it globally consists of the following three kinds of
complex space forms: the semi-definite complex projective space CPm

t ,
the semi-definite complex Euclidean space Cm

t or the semi-definite
complex hyperbolic space CHm

t , according to whether c > 0, c = 0
or c < 0.

Now let M be a semi-definite Kaehler manifold. We denote by R
the Riemannnian curvature tensor defined on M . Then M is said
to be semi-symmetric if it satisfies the condition R(X,Y )R = 0 for
any vector field X and Y on M . Its notion is much wider than the
notion of locally symmetric spaces, that is, ∇R = 0. The notion of
semi-symmetric Riemannian spaces was first introduced by Cartan and
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Szabó [14], who systematically studied this kind of manifold structure
in detail.

Now in this paper we give a classification of semi-symmetric semi-
definite complex hypersurfaces in a semi-definite complex space form
Mn+1

s+t (c) as follows:

Theorem 1. Let Mn
s be an n-dimensional semi-symmetric and semi-

definite complex hypersurface of index 2s in M ′ =Mn+1
s+t (c), 0 � s � n,

t = 0 or 1, c �= 0. Then M is totally geodesic with the scalar curvature
r = n(n+ 1)c or Einstein with the scalar curvature r = n2c.

Moreover, for a semi-symmetric complex hypersurface in a semi-
definite complex Euclidean space Cn+1

t , we assert the following.

Theorem 2. Let M be an n-dimensional semi-symmetric complex
hypersurface of Cn+1

t , t = 0 or 1. If it has no geodesic points, then for
any point x in M there exists a totally geodesic hypersurface M(x) of
M through x.

2. Semi-definite Kaehler manifolds. This section is concerned
with recalling basic formulas on semi-definite Kaehler manifolds. Let
M be a complex m (� 2)-dimensional semi-definite Kaehler manifold
equipped with semi-definite Kaehler metric tensor g and almost com-
plex structure J . For the semi-definite Kaehler structure {g, J}, it fol-
lows that J is integrable and the index of g is even, say 2q, 0 � q � m.
In such a case it is denoted by Mm

q .

When the index q is contained in the range 0 < q < m, M is said to
be an indefinite Kaehler manifold and the structure {g, J} is called an
indefinite Kaehler structure and in particular, in the case where q = 0
or m, M is only called a Kaehler manifold, and then the structure
{g, J} is called a Kaehler structure.

We can choose a local field {EA, EA∗} = {E1, . . . , Em, E1∗ , . . . , Em∗}
of orthonormal frames on a neighborhood ofM where EA∗ = JEA and
A∗ = m + A. Here the indices A,B, . . . run from 1 to m. We set
UA = (EA−iEA∗)/

√
2 and UA = (EA+iEA∗)/

√
2, where i denotes the

imaginary unit. Then {UA} constitutes a local field of unitary frames
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on the neighborhood of M . This is a complex linear frame which is
orthonormal with respect to the semi-definite Kaehler metric, that is,
g(UA, UB) = εAδAB, where

εA = −1 or 1, according to whether 1 � A � q or q + 1 � A � m.

Let {ωA} be the dual coframe field with respect to the local field
{UA} of unitary frames on the neighborhood of M . Then {ωA} =
{ω1, . . . , ωm} consists of complex-valued 1-forms of type (1, 0) on M
such that ωA(UB) = εAδAB and {ωA, ω̄A} = {ω1, . . . , ωm, ω̄1, . . . , ω̄m}
are linearly independent.

The semi-definite Kaehler metric g of M can be expressed as g =
2

∑
A εAωA ⊗ ω̄A. Associated with the frame field {UA}, there exist

complex-valued forms ωAB which are usually called connection forms
on M such that they satisfy the structure equations of M :

(2.1)

dωA +
∑
B

εBωAB ∧ ωB = 0, ωAB + ω̄BA = 0,

dωAB +
∑
C

εCωAC ∧ ωCB = ΩAB,

ΩAB =
∑
C,D

εCεDRABCDωC ∧ ω̄D,

where Ω = (ΩAB), respectively RABCD, denotes the curvature form,
respectively the components of the semi-definite Riemannian curvature
tensor R, of M .

The second relation of the equation (2.1) means that the skew-
Hermitian symmetry of ΩAB, which is equivalent to the symmetric
condition RABCD = RBADC . Moreover, the first Bianchi identity∑

B εBΩAB∧ωB = 0 is given by the exterior differential of the first and
third equations of (2.1), which implies the further symmetric relations

RABCD = RACBD = RDCBA = RDBCA.

Now, relative to the frame field chosen above, the Ricci tensor S of
M can be expressed as follows:

S =
∑
A,B

εAεB(SABωA ⊗ ω̄B + SABω̄A ⊗ ωB),
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where SAB =
∑

C εCRCCAB = SBA = SAB. The scalar curvature
r is also given by r = 2

∑
A εASAA. An n-dimensional semi-definite

Kaehler manifoldM is said to be Einstein if the Ricci tensor S is given
by SAB = (r/2n)εAδAB. The components RABCD:E and RABCD:E
of the covariant derivative of the Riemannian curvature tensor R are
defined by

∑
E

εE(RABCD:EωE +RABCD:Eω̄E) = dRABCD

−
∑
E

εE(REBCDω̄EA +RAECDωEB +RABEDωEC + RABCEω̄ED).

The second Bianchi identity is given by RABCD:E = RABED:C .

Let M be an m-dimensional semi-definite Kaehler manifold of index
2q, 0 � q � m. A plane section P of the tangent space TxM of M
at any point x is said to be nondegenerate provided that gx|TxM is
nondegenerate. It is easily seen that P is nondegenerate if and only if
it has a basis {X,Y } such that

g(X,X)g(Y, Y )− g(X,Y )2 �= 0.

If the nondegenerate plane P is invariant by the complex structure
J , it is said to be holomorphic. It is also trivial that the plane P
is holomorphic if and only if it contains a vector X in P such that
g(X,X) �= 0. For the nondegenerate plane P spanned by X and Y in
P , the sectional curvature K(P ) is usually defined by

K(P ) = K(X,Y ) =
g(R(X,Y )Y,X)

g(X,X)g(Y, Y )− g(X,Y )2
.

The sectional curvature K(P ) of the holomorphic plane P is called
the holomorphic sectional curvature, which is denoted by H(P ). The
semi-definite Kaehler manifoldM is said to be of constant holomorphic
sectional curvature if its holomorphic sectional curvatures H(P ) are
constant for all holomorphic planes at all points of M . Then M is
called a semi-definite complex space form, which is denoted by Mm

q (c)
provided that it is of constant holomorphic sectional curvature c, of
complex dimension m and of index 2q (� 0).
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It is seen in Wolf [16] that the standard models of semi-definite com-
plex space forms are the following three kinds: the semi-definite com-
plex projective space CPm

q , the semi-definite complex Euclidean space
Cm

q and the semi-definite complex hyperbolic space CHm
q , according to

whether c > 0, c = 0 or c < 0. For any integer q, 0 � q � m, it is also
seen by [16] that they are completely simply connected and connected
semi-definite complex space forms of dimension m and of index 2q. The
Riemannian curvature tensor RABCD of Mm

q (c) is given by

RABCD =
c

2
εBεC(δABδCD + δACδBD).

3. Semi-definite complex submanifolds. This section is con-
cerned with semi-definite complex submanifolds of an indefinite Kaehler
manifold. First of all the basic formulas for the theory of semi-definite
complex submanifolds are given.

Now letM ′ be an (n+p)-dimensional connected semi-definite Kaehler
manifold of index 2(s + t), 0 � s � n, 0 � t � p, with semi-definite
Kaehler structure (g′, J ′). Let M be an n-dimensional connected semi-
definite complex submanifold of M ′, and let g be the induced semi-
definite Kaehler metric tensor of index 2s onM from g′. We can choose
a local field {UA} = {Uj , Ux} = {U1, . . . , Un+p} of unitary frames on a
neighborhood ofM ′ in such a way that, restricted toM , U1, . . . , Un are
tangent to M and the others are normal to M . Here and in the sequel,
the following convention on the range of indices is used throughout this
paper unless otherwise stated:

A,B,C, . . . = 1, . . . , n, n+ 1, . . . , n+ p;
i, j, k, l, . . . = 1, . . . , n; x, y, z, . . . = n+ 1, . . . , n+ p.

With respect to the frame field, let {ωA} = {ωj , ωy} be its dual frame
fields. Then the semi-definite Kaehler metric tensor g′ ofM ′ is given by
g′ = 2

∑
A εAωA⊗ω̄A where {εA} = {εj , εy}, εA = ±1. The connection

forms on M ′ are denoted by {ωAB}. The canonical forms ωA and the
connection forms ωAB of the ambient space M ′ satisfy the structure



422 Y.S. CHOI, J.-H. KWON AND Y.J. SUH

equations

(3.1)

dωA +
∑
B

εBωAB ∧ ωB = 0, ωAB + ω̄BA = 0,

dωAB +
∑
C

εCωAC ∧ ωCB = Ω′
AB,

Ω′
AB =

∑
C,D

εCεDR
′
ABCD

ωC ∧ ω̄D,

where Ω′
AB, respectively R

′
ABCD

, denotes the curvature form, respec-
tively the components of the Riemannian curvature tensor R′, of M ′.
Restricting these forms to the submanifold M , we have

(3.2) ωx = 0,

and the induced semi-definite Kaehler metric tensor g of index 2s of
M is given by g = 2

∑
j εjωj ⊗ ω̄j . Then {Uj} is a local unitary frame

field with respect to this metric and {ωj} is a local dual frame field due
to {Uj} which consists of complex-valued 1-forms of type (1, 0) on M .
Moreover, ω1, . . . , ωn, ω̄1, . . . , ω̄n are linearly independent and {ωj} is
the canonical form on M . It follows from (3.2) and Cartan’s lemma
that the exterior derivative of (3.2) gives rise to

(3.3) ωxi =
∑

j

εjhij
xωj , hij

x = hji
x.

The quadratic form α =
∑

i,j,x εiεjεxhij
xωi⊗ωj⊗Ux with values in the

normal bundle NM on M in M ′ is called the second fundamental form
of the submanifold M . The structure equations for M are similarly
given by

(3.4)

dωi +
∑

j

εjωij ∧ ωj = 0, ωij + ω̄ji = 0,

dωij +
∑

k

εkωik ∧ ωkj = Ωij , Ωij =
∑
k,l

εkεlRījkl̄ωk ∧ ω̄l.

Moreover, the following relationships are obtained:

(3.5)

dωxy +
∑

z

εzωxz ∧ ωzy = Ωxy,

Ωxy =
∑
k,l

εkεlRx̄ykl̄ωk ∧ ω̄l,
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where Ωxy is called the normal curvature form of M . For the Rieman-
nian curvature tensors R and R′ of M and M ′, respectively, it follows
from (3.1), (3.3) and (3.4) that we have the Gauss equation

(3.6) Rījkl̄ = R′̄
ijkl̄ −

∑
x

εxhjk
xh̄il

x.

And by means of (3.3) and (3.5), we have

(3.7) Rx̄ykl̄ = R′
x̄ykl̄ +

∑
r

εrhkr
xh̄rl

y.

The components Sij̄ of the Ricci tensor S and the scalar curvature r
of M are given by

Sij̄ =
∑

k

εkR
′̄
jikk̄ − hij̄

2,(3.8)

r = 2
( ∑

k,j

εkεjR
′̄
kkjj̄ − h2

)
,(3.9)

where hij̄
2 = hj̄i

2 =
∑

x,r εxεrhir
xh̄rj

x and h2 =
∑

j εjhjj̄
2.

Now the components hijk
x and hijk̄

x of the covariant derivative of
the second fundamental form on M are given by

(3.10)
∑

k

εk(hijk
xωk + hijk̄

xω̄k)

= dhij
x −

∑
k

εk(hkj
xωki + hik

xωkj) +
∑

y

εyhij
yωxy.

Then, substituting dhij
x in this definition into the exterior derivative

of (3.3) and using (3.1) (3.4) and (3.8), we have

(3.11) hijk
x = hikj

x, hijk̄
x = −R′

x̄ijk̄.

Similarly, the components hijkl
x and hijkl̄

x, respectively hijk̄l
x and

hijk̄l
x, of the covariant derivative of hijk

x, respectively hijk̄
x, can be

defined by

(3.12)
∑

l

εl(hijkl
xωl + hijkl̄

xω̄l)

= dhijk
x −

∑
l

εl(hljk
xωli + hilk

xωlj + hijl
xωlk) +

∑
y

εyhijk
yωxy.
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(3.13)
∑

l

εl(hijk̄l
xωl + hijk̄l̄

xω̄l) = dhijk̄
x

−
∑

l

εl(hljk̄
xωli + hilk̄

xωlj + hijl̄
xω̄lk) +

∑
y

εyhijk̄
yωxy.

Differentiating (3.10) exteriorly and using the properties d2 = 0, (3.4),
(3.5), (3.8), (3.10) and (3.11), we have the following Ricci formula for
the second fundamental form:

hijkl
x = hijlk

x, hijk̄l̄
x = hijl̄k̄

x,(3.14)

hijkl̄
x − hijl̄k

x =
∑

r

εr(Rl̄kir̄hrj
x +Rl̄kjr̄hir

x)−
∑

y

εyRx̄ykl̄hij
y.

(3.15)

In particular, let the ambient space M ′ be an (n + p)-dimensional
semi-definite complex space form Mn+p

s+t (c) of constant holomorphic
sectional curvature c and of index 2(s+ t), 0 � s � n, 0 � t � p. Then
we get

(3.16) Rījkl̄ =
c

2
εjεk(δijδkl + δikδjl)−

∑
x

εxhjk
xh̄il

x,

(3.17) Sij̄ =
(n+ 1)c

2
εiδij − hij̄

2,

(3.18) r = n(n+ 1)c− 2h2,

(3.19) hijk̄
x = 0,

(3.20) hijkl̄
x =

c

2
(εkhij

xδkl + εihjk
xδil + εjhki

xδjl)

−
∑
r,y

εrεy(hri
xhjk

y + hrj
xhki

y + hrk
xhij

y)h̄rl
y.

For the sake of brevity, a tensor hij̄
2m and a function h2m on M for
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any integer m (� 2) are introduced as follows:

hij̄
2m =

∑
i1,... ,im−1

εi1 · · · εim−1hīi1
2hi1 ī2

2 · · ·him−1j̄
2,

h2m =
∑

i

εihīi
2m.

In particular, if M is a hypersurface, then a tensor hij
2m+1 on M is

introduced as follows:

hij
2m+1 =

∑
k

εkhik̄
2mhkj .

4. Semi-symmetric and semi-definite complex hypersur-
faces. This section is concerned with semi-symmetric and semi-definite
complex hypersurfaces in a semi-definite complex space form. LetM be
an n-dimensional semi-definite complex hypersurface of index 2s of an
(n+ 1)-dimensional semi-definite complex space form M ′ = Mn+1

s+t (c),
0 � s � n, t = 0 or 1, of index 2(s + t) and of constant holomorphic
sectional curvature c.

Let us denote by R the Riemannian curvature tensor on M . Assume
that the hypersurface M satisfies the Nomizu condition

(4.1) R(X,Y )R = 0, X, Y ∈ TM.

It is equivalent to

(4.2) Rh̄ijk̄ln̄ −Rh̄ijk̄n̄l = 0.

By the twice exterior differentiation of the Riemannian curvature tensor
R, the Ricci formula for R is as follows:

Rh̄ijk̄ln̄ −Rh̄ijk̄n̄l =
∑

r

εr(−Rn̄lrh̄Rr̄ijk̄ +Rn̄lir̄Rh̄rjk̄

+Rn̄ljr̄Rh̄irk̄ − Rn̄lrk̄Rh̄ijr̄).

In fact (4.2) is derived from (4.1). For the unitary frame {Uj} on M ,
the components Rh̄ijk̄ of the Riemannian curvature tensor R is given
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by
R(Ui, U j)Uk =

∑
r

εrRr̄kij̄Ur,

R(Ui, U j)Uk =
∑

r

εrRrk̄ij̄Ur.

Accordingly we have

(R(Ul, Un)R)(Uj , Uk, Ui)
= R(Ul, Un)R(Uj , Uk)Ui −R(R(Ul, Un)Uj , Uk)Ui

−R(Uj , R(Ul, Un)Uk)Ui −R(Uj , Uk)R(Ul, Un)Ui

=
∑

r

εr{Rr̄ijk̄R(Ul, Un)Ur −Rr̄jln̄R(Ur, Uk)Ui

+Rk̄rln̄R(UJ , Ur)Ui −Rr̄iln̄R(Uj , Uk)Ur}
=

∑
r,h

εrεh(Rr̄ijk̄Rh̄rln̄ − Rr̄jln̄Rh̄irk̄ +Rk̄rln̄Rh̄ijr̄ −Rr̄iln̄Rh̄rjk̄)Uh.

So the condition (4.1) is equivalent to

(4.3)
∑

r

εr(Rr̄ijk̄Rh̄rln̄ −Rr̄jln̄Rh̄irk̄ +Rk̄rln̄Rh̄ijr̄ −Rr̄iln̄Rh̄rjk̄) = 0.

It means that (4.1) is equivalent to (4.3). By (3.16) and (4.3) we have

(4.4)

2(hlk̄
2h̄nh + hlh̄

2h̄nk)hij − 2(hjn̄
2hli + hin̄

2hlj)h̄hk

− c(εlδlhhijh̄nk − εiδinhjlh̄hk − εjδjnhlih̄hk + εlδlkhijhn) = 0.

Transvecting εkεrhkr to (4.4) and summing up with respect to indices
k and r, we have

(4.5) 2(hlh̄
4 + h2hlh̄

2)hij − 2(hjh̄
4hli + hih̄

4hlj)

− c(εlδlhh2hij − hljhih̄
2 − hilhjh̄

2 + hijhlh̄
2) = 0.

Then, putting h = l in (4.5), multiplying εl and summing up with
respect to the index l, we have

(4.6) 4hij
5 − 2chij

3 − {2(h4 + h2
2)− (n+ 1)ch2}hij = 0.
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On the other hand, putting l = n in (4.4), multiplying εl and summing
up with respect to the index l, and then putting j = h in (4.5),
multiplying εj and summing up with respect to the index j, we have

(4.7) hij
3h̄hk = h̄hk

3hij , h2hik
3 = h4hik,

respectively. Multiplying h2
2 to (4.6) and making use of (4.7), we have

(4.8) [4h4
2 − 2ch2h4 − h2

2{2(h4 + h2
2)− (n+ 1)ch2}]hij = 0,

and hence we get

(4.9) h2[4h24− 2ch2h4 − h2
2{2(h4 + h2

2)− (n+ 1)ch2}] = 0.

Theorem 4.1. Let M = Mn
s be an n-dimensional semi-symmetric

and semi-definite complex hypersurface of index 2s in M ′ =Mn+1
s+t (c),

0 � s � n, t = 0 or 1, c �= 0. Then M is totally geodesic with
r = n(n + 1)c or Einstein with r = n2c, where r denotes the scalar
curvature.

Proof. Since it satisfies the condition RR = 0, equation (4.4) holds.
Putting l = k in (4.4), transvecting εl to the equation and summing up
with respect to the index l, we get

(4.10) 2(h2h̄nh + h̄nh
3)hij − 2(hjn̄

2hih̄
2 + hin̄

2hjh̄
2)

− c{(n+ 1)hij h̄hn − εiδinhjh̄
2 − εjδjnhih̄

2} = 0.

Furthermore, putting h = i in (4.10), transvecting εh to the equation
and summing up with respect to the index h, we get

c(nhjī
2 − h2εjδji) = 0,

which implies that M is Einstein because of c �= 0 and (3.17).

Next we investigate the scalar curvature r on M . Since hjh̄
2 =

(h2/n)εjδjh, the equation (4.10) is reduced to

(4.11) (2h2 − nc){n(n+ 1)hijh̄lh − h2εiεj(δilδjh + δjlδih)} = 0.
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Since M is Einstein, h2 is a constant. So first of all let us consider the
case where 2h2 − nc �= 0 on M ; then (4.11) gives

(4.12) n(n+ 1)hijh̄lh − h2εiεj(δilδjh + δjlδih) = 0.

Transvecting εhhhk to (4.12) and summing up with respect to the index
h and using hkl̄

2 = (h2/n)εkδkl, we have

h2{(n+ 1)εkδklhij − (εiδilhjk + εjδjlhik)} = 0,

from which it follows that we have (n + 2)(n − 1)h2hij = 0. Thus we
get h2 = 0 on M , from which together with (4.12) it follows that we
have hij = 0 on M . It means that M is totally geodesic.

Secondly, let us consider the case where 2h2 = nc. That is, the square
norm h2 of the second fundamental form is given by (n/2)c. Then in
this case by (3.18) we know thatM is Einstein with the constant scalar
curvature r = n2c. This completes the proof.

Now let us introduce the following theorem due to Nakagawa and
Takagi [8].

Theorem A. Let M be a complete Kaehler submanifold imbedded
into CPN with parallel second fundamental form. If M is irreducible,
then M is congruent to one of the following Kaehler submanifolds
imbedded into CPN , N = n+p, with parallel second fundamental form:

CPn = SU(n+ 1)/S(U(n)× U(1)),

Qn = SO(n+ 2)/S(O(n)× SO(2)),

SU(r + 2)/S(U(r)× U(2)), r � 3,

SO(10)/U(5), E6/Spin (10)× T, E7/E6 × T,

where U(n), SU(n) and SO(n) denote the unitary group, the special
unitary group and the special orthogonal group of order n, respectively,
and E6, Spin (10) and T denote the exceptional group, the spin group
and the torus group, respectively. If M is reducible then M is congruent
to (CPn1 ×CPn2 , f) for some n1 and n2 with dimM = n1+n2, where
f : CPn1 × CPn2 → CPn1+n2+n1n2 is the Kaehler imbedding. The
corresponding local version is also true.
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In general, the Kaehler submanifold with parallel second fundamental
form is known to be locally symmetric. So it naturally is semi-
symmetric. Now let us consider only a complex hypersurface in CPn+1

and give a complete classification of semi-symmetric hypersurfaces.
Then, as an application of Theorem 4.1 and Theorem A, we assert
the following:

Theorem 4.2. Let M be an n-dimensional complex hypersurface of
an (n+ 1)-dimensional complex projective space CPn+1. If it is semi-
symmetric, then M is locally congruent to a complex quadric Qn or a
complex projective space CPn.

Proof. Let M be an n-dimensional complex hypersurface of an
(n + 1)-dimensional complex space form Mn+1(c), c �= 0. We assume
that it is semi-symmetric. Then we have hij̄

2 = h2δij̄/n where h2

is constant, and so M is Einstein by Theorem 4.1. Since M is
a hypersurface, we see that hij̄

2 =
∑

r hirh̄rj . Differentiating this
relation covariantly, by (3.11), (3.19) and the fact that h2 is constant,
we obtain

∑
r hikrh̄rj = 0. Since h2 = nc/2 ifM is not totally geodesic,

we see that hijk = 0, which means that the second fundamental form
of M is parallel. Combining this result with Theorem A, we have the
results of the main theorem. This completes the proof.

Remark. By using a method quite different from ours, Ryan [12] also
has verified that complex hypersurfaces in Pn+1C satisfying R ·R = 0
is Einstein. Moreover, Smith [13] has classified the class of Kaehler
Einstein hypersurfaces in CPn+1 and showed that they are congruent
to CPn or Qn.

Also, in the proof of Theorem 4.1, if we compare both cases concerned
with the length of the second fundamental form h2, we can easily verify
the following:

Corollary 4.3. Let M = Mn be an n-dimensional complex hyper-
surface of M ′ = Mn+1(c), c < 0. If it is semi-symmetric, then M is
totally geodesic.
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Corollary 4.4. Let M = Mn be an n-dimensional complex hyper-
surface of M ′ = Mn+1

0+1 (c), c > 0. If it is semi-symmetric, then M is
totally geodesic.

5. Semi-symmetric complex hypersurface in Mn+1
0+t (0). In

the paper [2], Aiyama, et al., studied an n-dimensional semi-definite
complex hypersurface M of index 2s in Mn+1

s+t (0) of index 2(s + t),
0 � s � n, t = 0 or 1, and proved that (4.1) implies hij̄

2 = 0 or

(5.1) hijhkl = hilhjk on M.

As a direct consequence of (3.17), hij̄
2 = 0 is equivalent to the fact

that the Ricci tensor is flat, but in their paper the geometric meaning
of the second one was not stated. In this section we are concerned
with the geometric meaning of semi-symmetric complex hypersurfaces
in a semi-definite complex space form Mn+1

0+t (0), t = 0 or 1; namely, we
will discuss the different case from the topics treated in the previous
sections.

We prove the following theorem.

Theorem 5.1. Let M = Mn be an n-dimensional semi-symmetric
complex hypersurface of M ′ = Mn+1

0+t (0), t = 0 or 1. If it has no
geodesic points, then, for any point x in M , there exists a totally
geodesic hypersurface M(x) of M through x.

In order to prove this theorem, we establish some steps. We remark
here that the equations (4.4) (4.9) hold under the assumption of
Theorem 5.1. First of all, we require the relation between the functions
h2 and h4.

Lemma 1. Let M be as in Theorem 5.1. Then we have

(5.2) h4 = h2
2 or − h2

2

2
.

Proof. In (4.7) we have

(5.3) h̄ijhkl
3 = h̄ij

3hkl.
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On the other hand, by (4.6) we get

(5.4) 2hij
5 − (h4 + h2

2)hij = 0,

because of c = 0. From (5.3) and (5.4), we have

2h̄ijhkl
5 = 2h̄ij

3hkl
3 = (h4 + h2

2)h̄ijhkl.

From the second equality it follows that we have 2h4hij
3 = (h4 +

h2
2)h2hij . Thus we obtain 2h4

2 = (h4+h2
2)h2

2, which yields that the
conclusion of this lemma is derived.

Lemma 2. Let M be as in Theorem 5.1. If h4 = −h2
2/2, then we

have h2 = h4 = 0.

Proof. Putting i = h in (4.5) and summing up with respect to the
index h, we have

(5.5) h2(2hij
3 + h2hij) = 0.

On the other hand, from (4.4) we get

h2(hlk̄
2h̄nh + hlh̄

2h̄nk)hij = h2(hlihjn̄
2 + hljhin̄

2)h̄hk.

Transvecting hkp to the above equation, summing up with respect to
the index k, and then replacing the index p with k, we can obtain

h2(hlk
3h̄nh + hlh̄

2hkn̄
2)hij = h2(hlihjn̄

2 + hljhin̄
2)hkh̄

2.

Repeating the similar discussion, we get

h2(hlk
3hnh

3 + hlh
3hnk

3)hij = h2(hlihnj
3 + hljhni

3)hkh
3,

from which together with (5.5) it follows that we have

h2(hlkhnh + hlhhkn)hij = h2(hlihnj + hljhni)hkh.

Transvecting h̄hk to the above equation, summing up with respect to
the indices h and k, we have

2h2hnl
3hij = h2

2(hlihnj + hljhni),
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i.e.,
h2

2(hlnhij + hlihnjhljhnj) = 0,

with the help of (5.5). Putting i = j = l = n, we get h2
2hjjhjj = 0

and then putting i = l �= j = n, we have h2
2hijhij = 0. It means that

we have h2
2hij = 0. This completes the proof.

Lemma 3. Let M be as in Theorem 5.1. If h4 = h2
2 �= 0, then M

satisfies condition (5.1).

Proof. By the second equation of (4.7), we have

hij
3 − h2hij = 0 and hij̄

4 − h2hij̄
2 = 0.

By (4.5) and the above equation, we have 2hlh̄
2hij = hlihjh̄

2+hljhih̄
2,

and hence 2hlhhij = hlihjh+hljhih. Interchanging cyclically the indices
i, j and h and then summing up the two equations, we have condition
(5.1). This completes the proof.

With these preparations now complete, we are able to give a geometric
meaning of condition (5.1).

Proposition 5.2. Let M be as in Theorem 5.1. If h2 �= 0, then
condition (5.1) is equivalent to S2 = rS/2, where r denotes the scalar
curvature of M and S the matrix of the Ricci tensor.

Proof. Under the condition (5.1) we have hij
3 = h2hij and so

hij̄
4 = h2hij̄

2. Since the Ricci tensor Sij̄ is given by Sij̄ = −hij̄
2,

the equation hij̄
4 = h2hij̄

2 is equivalent to S2 = rS/2. On the other
hand, the condition implies h4 = h2

2. By Lemma 3, we get (5.1). This
completes the proof.

Proof of Theorem 5.1. Since M has no geodesic points, we have
h2 �= 0 on M . Then it turns out by Lemmas 1 and 2 that we have
h4 = h2

2. Accordingly, we get by Lemma 3 and Proposition 5.2 that
it satisfies condition (5.1) and so hij̄

4 = h2hij̄
2. We can regard (hij̄

2)
as a semi-definite Hermitian matrix of order n. If t = 0, that is, if the
ambient space is complex Euclidean, then it is positive semi-definite;
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and if t = 1, that is, if the ambient space is complex Minkowski,
then it is negative semi-definite. We denote by λi an eigenvalue of
the Hermitian matrix (hij̄

2). It is a nonnegative or nonpositive real-
valued function onM . For the unitary frame {Uj , U0} the matrix (hij̄

2)
can be diagonalized as follows: hij̄

2 = λiδij . Because of h4 =
∑

i λi
2

and h2 =
∑

i λi, we see that 0 = h4 − h2
2 = −∑

i �=j λiλj � 0. This
yields that there exist at most two distinct eigenvalues, one of which
is equal to 0 and of multiplicity n − 1. Without loss of generality, we
can interchange the number and we may suppose that λ1 = λ �= 0 and
λr = 0, r � 2. Since it satisfies that λr =

∑
j hrjh̄rj = 0, we have that

hrj = 0 for any index j. Accordingly, λ = h11h̄11 �= 0 because M has
no geodesic points on M . Let D be the distribution defined by ω0 = 0
and ω1 = 0. For the unitary frame {Uj , U0}, the connection form {ω0j}
satisfies

ω01 =
∑

j

h1jωj = h11ω1,

ω0r =
∑

j

hrjωj = 0, r � 2.

From the structure equation (3.1) of M ′ we have

dω0 = −
∑
A

ω0A ∧ ωA = −ω00 ∧ ω0 − ω01 ∧ ω1

≡ 0 (mod ω0 and ω1).

On the other hand, we have

dω01 = −
∑
A

ω0A ∧ ωA1 +Ω′
01

= −ω00 ∧ ω01 − ω01 ∧ ω11

≡ 0 (mod ω0 and ω1),

because the ambient space is complex Euclidean. On the other hand,
it satisfies

dω01 = dh11 ∧ ω1 + h11 dω1,

from which together with the property dω01 ≡ 0 (mod ω0 and ω1) it
follows that we have

(5.6) dω1 ≡ 0 (mod ω0 and ω1),
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where the fact that h11 has no zero points is used. Thus the distribution
D is completely integrable and, for any point x in M , the maximal
integral submanifold M(x) through x is of (n− 1)-dimension. So it is
the hypersurface of M . By the structure equation on M , we have

dω1 = −
∑
A

ω1,A ∧ ωA

= −ω10 ∧ ω0 − ω11 ∧ ω1 −
∑
r�2

ω1r ∧ ωr

≡ −
∑
r�2

ω1r ∧ ωr (mod ω0 and ω1).

By (5.6) we have

∑
r�2

ω1r ∧ ωr ≡ 0 (mod ω0 and ω1).

Similarly, we have

∑
r�2

ω0r ∧ ωr ≡ 0 (mod ω0 and ω1).

These yield that the connection forms ω1r and ω0r can be expressed
as the linear combination of the 1-forms ω0 and ω1. Thus, restricted
to the maximal integral submanifold M(x), the connection forms ω1r

and ω0r satisfy ω1r = 0 and ω0r = 0. This means that M(x) is totally
geodesic on M ′. It turns out that so is M(x) in M . This completes
the proof.
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