ON SEMI-SYMMETRIC METRIC CONNECTION IN SUB-RIEMANNIAN MANIFOLD

YANLING HAN, FENGYUN FU AND PEIBIAO ZHAO

Abstract

The authors firstly in this paper define a semi-symmetric metric non-holonomic connection (in briefly, SS-connection) on sub-Riemannian manifolds. An invariant under a SS-connection transformation is obtained. The authors then further give a result that a sub-Riemannian manifold ($M, V_{0}, g, \bar{\nabla}$) is locally horizontally flat if and only if M is horizontally conformally flat and horizontally Ricci flat.

1. Introduction

In order to formulate a unified field theory, H. Weyl [8] introduced a generalization of Riemannian geometry. Weyl's theory provides an instructive example of non-Riemannian connections. These non-Riemannian connections are exactly the semi-symmetric metric connection which firstly proposed by K.Yano [10] in 1970. The study of various semi-symmetric connections on Riemannian or non-Riemannian manifolds has been an active field over the past seven decades. In particular, since the formidable papers [1, 3, 4, 5, 6, 7] were published in succession, these works had stimulated such research fields to present a scene of prosperity, and demonstrate the importance of this topic.

In this paper we will do a similar argument on sub-Riemannian manifolds, that is, we will introduce a semi-symmetric metric connection (SS-connection) on sub-Riemannian manifolds, and investigate the geometries of sub-Riemannian manifolds equipped with a class of SS-connection(defined below) by combining the idea of K. Yano with the work of Zhao and Jiao [11].

The paper is organized as follows. In Section 2 we collect some necessary definitions and notations about sub-Riemannian manifolds which will be used later. Then we define a class of semi-symmetric metric connection(i.e. SS-connection defined below) based on the unique

[^0]SR-connection. Moreover we find that the horizontal Weyl conformal curvature tensors are kept unchanged under the horizontal projective transformation. A sufficient and necessary condition that a sub-Riemannian manifold ($M, V_{0}, g, \bar{\nabla}$) is locally horizontally flat is given at the end of Section 3. In section 4, we explain our results by Heisenberg group.

2. Preliminaries

Let $\left(M, V_{0}, g\right)$ be a n-dimensional sub-Riemannian manifold, where V_{0} is a ℓ-dimensional sub-bundle, that is the so-called horizontal bundle, g is called the sub-Riemannian metric. In the paper, we denote by $\Gamma\left(V_{0}\right)$ the $C^{\infty}(M)$-module of smooth sections on V_{0}. Also, if not stated otherwise, we use the following ranges for indices: $i, j, k, h, \cdots \in\{1, \cdots, \ell\}, \alpha, \beta, \cdots \in$ $\{\ell+1, \cdots, n\}$. The repeated indices with one upper index and one lower index indicates summation over their range.

In order to study the geometry of $\left\{M, V_{0}, g\right\}$, we suppose that there exists a Riemannian metric $\langle\cdot, \cdot\rangle$ and V_{1} is taken as the complementary orthogonal distribution to V_{0} in $T M$, then, there holds $V_{0} \oplus V_{1}=T M$. Here we call V_{1} the vertical distribution. Denote by X_{0} the projection of the vector field X from $T M$ onto V_{0}, and by X_{1} the projection of the vector field X from $T M$ onto V_{1}.

Assume that $\left\{e_{i}\right\}$ is a basis of V_{0}, then the formulas $\nabla_{e_{i}} e_{j}=\Gamma_{i j}^{k} e_{k}$, define ℓ^{3} functions as $\Gamma_{i j}^{k}$, we call $\Gamma_{i j}^{k}$ the connection coefficients of the non-holonomic connection ∇. It is well known that the Lie bracket $[\cdot, \cdot]$ on M is a Lie algebra structure of smooth tangent vector fields $\Gamma(T M)$, then it is easy to see that the following formula

$$
\left[e_{i}, e_{j}\right]_{0}=\Omega_{i j}^{k} e_{k}
$$

determine ℓ^{3} functions $\Omega_{i j}^{k}$.
Theorem $2.1([2,9])$. Given a sub-Riemannian manifold $\left(M, V_{0}, g\right)$, then there exists a unique non-holonomic connection satisfying

$$
\begin{align*}
\left(\nabla_{Z} g\right)(X, Y) & =Z(g(X, Y))-g\left(\nabla_{Z} X, Y\right)-g\left(X, \nabla_{Z} Y\right)=0, \tag{2.1}\\
T(X, Y) & =\nabla_{X} Y-\nabla_{Y} X-[X, Y]_{0}=0 . \tag{2.2}
\end{align*}
$$

Definition 2.1. A non-holonomic connection is said to be metric if it satisfies (2.1) and symmetric if it satisfies (2.2). A non-holonomic connection satisfying (2.1) and (2.2) is called a sub-Riemannian connection, in short, SR-connection.

Remark 2.1. For given sub-Riemannian metric g, it is extended to Riemannian metric \bar{g} in $T M$. If we denote D by the Levi-civita connection associated with \bar{g}, then the SR-connection
is exactly the projection of Levi-civita connection D on the horizontal bundle, namely, for any horizontal vectors X, Y, there holds

$$
\nabla_{X} Y=\left(D_{X} Y\right)_{0}
$$

Theorem 2.1 is the counterpart of the existence and uniqueness of the Levi-Civita connection in Riemannian geometry. It can be regarded as the projection of Levi-Civita connection on the horizontal bundle. We will use this SR-connection to build the relative transformative theories of the semi-symmetric metric connection.

For sub-Riemannian manifolds, J. A. Schouten first considered the curvature problem of non-holonomic connections(see [2]), he defined a curvature tensor as follows:

Definition 2.2. A horizontal curvature tensor is a mapping $R^{H}: \Gamma\left(V_{0}\right) \times \Gamma\left(V_{0}\right) \rightarrow \Gamma\left(V_{0}\right)$ defined by

$$
\begin{equation*}
R^{H}(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]_{0}} Z-\left[[X, Y]_{1}, Z\right]_{0} \tag{2.3}
\end{equation*}
$$

where $X, Y, Z \in \Gamma\left(V_{0}\right)$.
Proposition 2.2. For any horizontal vector fields $X, Y, Z, V, W \in \Gamma\left(V_{0}\right)$,
(1) $R^{H}(X, Y) Z+R^{H}(Y, X) Z=0$;
(2) $R^{H}(X, Y) Z+R^{H}(Y, Z) X+R^{H}(Z, X) Y=0$;
(3) $R^{H}(X, Y, Z, W)+R^{H}(Y, X, Z, W)=[Z, W]_{1} g(Y, X)-g\left(\left[[Z, W]_{1}, X\right]_{0}, Y\right)-g\left(\left[[Z, W]_{1}, Y\right]_{0}, X\right)$. where $R^{H}(X, Y, Z, W)=g\left(R^{H}(X, Y) Z, W\right)$.

Proof. (1), (2) follow from Definition 2.2 and the Jacobi identity. One need to show formula (3).

$$
\begin{aligned}
& R^{H}(X, Y, Z, W)+R^{H}(Y, X, Z, W)=g\left(R^{H}(Z, W) Y, X\right)+g\left(R^{H}(Z, W) X, Y\right) \\
&= g\left(\nabla_{Z} \nabla_{W} Y, X\right)-g\left(\nabla_{W} \nabla_{Z} Y, X\right)-g\left(\nabla_{[Z, W]_{0}} Y, X\right)-g\left(\left[[Z, W]_{1}, Y\right]_{0}, X\right) \\
&+g\left(\nabla_{Z} \nabla_{W} X, Y\right)-g\left(\nabla_{W} \nabla_{Z} X, Y\right)-g\left(\nabla_{[Z, W]_{0}} X, Y\right)-g\left(\left[[Z, W]_{1}, X\right]_{0}, Y\right) \\
&= Z g\left(\nabla_{W} Y, X\right)-g\left(\nabla_{W} Y, \nabla_{Z} X\right)-W g\left(\nabla_{Z} Y, X\right)+g\left(\nabla_{Z} Y, \nabla_{W} X\right)-g\left(\left[[Z, W]_{1}, Y\right]_{0}, X\right) \\
&+g\left(\nabla_{Z} \nabla_{W} X, Y\right)-g\left(\nabla_{W} \nabla_{Z} X, Y\right)-g\left(\nabla_{[Z, W]_{0}} X, Y\right)-g\left(\left[[Z, W]_{1}, X\right]_{0}, Y\right) \\
&= Z\left\{W g(Y, X)-g\left(Y, \nabla_{W} X\right)\right\}-W g\left(Y, \nabla_{Z} X\right)+g\left(Y, \nabla_{W} \nabla_{Z} X\right)-W\left\{Z g(Y, X)-g\left(Y, \nabla_{Z} X\right)\right\} \\
&+Z g\left(Y, \nabla_{Z} X\right)-g\left(Y, \nabla_{Z} \nabla_{W} X\right)-[Z, W]_{0} g(Y, X)-g\left(\left[[Z, W]_{1}, Y\right]_{0}, X\right) \\
&+g\left(\nabla_{Z} \nabla_{W} X, Y\right)-g\left(\nabla_{W} \nabla_{Z} X, Y\right)-g\left(\nabla_{[Z, W]_{0}} X, Y\right)-g\left(\left[[Z, W]_{1}, X\right]_{0}, Y\right) \\
&=-g\left(\left[[Z, W]_{1}, Y\right]_{0}, X\right)-g\left(\left[[Z, W]_{1}, X\right]_{0}, Y\right)+\left\{Z W-W Z-[Z, W]_{0}\right\} g(Y, X)
\end{aligned}
$$

$$
=[Z, W]_{1} g(Y, X)-g\left(\left[[Z, W]_{1}, X\right]_{0}, Y\right)-g\left(\left[[Z, W]_{1}, Y\right]_{0}, X\right)
$$

This finishes the proof.
Let $\left\{e_{i}\right\}$ be a basis of V_{0}, we denote by

$$
\begin{aligned}
R^{H}\left(e_{i}, e_{j}\right) e_{k} & =\left(R^{H}\right)_{i j k}^{h} e_{h}, \nabla_{e_{i}} e_{j}=\Gamma_{i j}^{k} e_{k},\left[e_{i}, e_{j}\right]_{0}=\Omega_{i j}^{k} e_{k}, \\
{\left[e_{i}, e_{j}\right]_{1} } & =M_{i j}^{\alpha} e_{\alpha},\left[\left[e_{i}, e_{j}\right]_{1}, e_{k}\right]_{0}=M_{i j}^{\alpha} \Lambda_{\alpha k}^{h} e_{h} .
\end{aligned}
$$

Then we know that

$$
\begin{equation*}
\left(R^{H}\right)_{i j k}^{h}=e_{i}\left(\Gamma_{j k}^{h}\right)-e_{j}\left(\Gamma_{i k}^{h}\right)+\Gamma_{j k}^{e} \Gamma_{i e}^{h}-\Gamma_{i k}^{e} \Gamma_{j e}^{h}-\Omega_{i j}^{e} \Gamma_{k e}^{h}-M_{i j}^{\alpha} \Lambda_{\alpha k}^{h} . \tag{2.4}
\end{equation*}
$$

Since ∇ is torsion free, then we get

$$
\nabla_{e_{i}} e_{j}-\nabla_{e_{j}} e_{i}-\left[e_{i}, e_{j}\right]_{0}=0
$$

so we arrive at

$$
\begin{equation*}
\Gamma_{i j}^{k}-\Gamma_{j i}^{k}=\Omega_{i j}^{k}, \tag{2.5}
\end{equation*}
$$

we further have

$$
\begin{equation*}
\left[e_{i}, e_{j}\right]-\Omega_{i j}^{k} e_{k}=M_{i j}^{\alpha} e_{\alpha} \tag{2.6}
\end{equation*}
$$

In this basis, the identity (1) and (2) in Proposition 2.2 can be rewritten, respectively, as

$$
\begin{align*}
& \left(R^{H}\right)_{i j k}^{h}=-\left(R^{H}\right)_{j i k}^{h}, \tag{2.7}\\
& \left(R^{H}\right)_{i j k}^{h}+\left(R^{H}\right)_{j k i}^{h}+\left(R^{H}\right)_{k i j}^{h}=0 . \tag{2.8}
\end{align*}
$$

We call (2.8) the first Bianchi identity of the SR-connection ∇.
In (2.8), by taking $j=h=e$ and using (2.7), we get

$$
\begin{equation*}
\left(R^{H}\right)_{k i e}^{e}=\left(R^{H}\right)_{k e i}^{e}-\left(R^{H}\right)_{i e k}^{e} . \tag{2.9}
\end{equation*}
$$

It is clear that $\left(R^{H}\right)_{k i e}^{e}$ is an anti-symmetric $(0,2)$ tensor , which is different from Riemannian case. So

$$
0=\left(R^{H}\right)_{k i e}^{e} g^{k i}+\left(R^{H}\right)_{i k e}^{e} g^{k i}=\left(R^{H}\right)_{k i e}^{e} g^{k i}+\left(R^{H}\right)_{i k e}^{e} g^{i k}=2\left(R^{H}\right)_{k i e}^{e} g^{k i}
$$

Now multiplying $g^{k i}$ at both side of (2.9), then $g^{k i}\left(R^{H}\right)_{k e i}^{e}-\left(R^{H}\right)_{i e k}^{e} g^{i k}=0$. Similar to the case of Riemannian manifolds, we call $R^{H}=g^{i k}\left(R^{H}\right)_{i e k}^{e}$ the horizontal scalar curvature, and $\left(R^{H}\right)_{i e k}^{e}$ the horizontal Ricci curvature tensor of horizontal curvature tensors.

3. Main theorems and proofs

In view of the unique SR-connection in sub-Riemannian manifolds, we firstly introduce a very important non-holonomic connection-semi-sub-Riemannian connection. Roughly speaking, a semi-sub-Riemannian connection is a non-holonomic connection with nonvanishing torsion tensor which is compatible with sub-Riemannian metric. Now we give a new definition below

Definition 3.1. A non-holonomic connection is called a semi-sub-Riemannian connection, in short, a SS-connection, if it satisfies

$$
\left\{\begin{array}{l}
\left(\bar{\nabla}_{Z} g\right)(Y, Z)=Z g(X, Y)-g\left(\bar{\nabla}_{Z} X, Y\right)-g\left(X, \bar{\nabla}_{Z} Y\right)=0, \forall X, Y, Z \in V_{0} \tag{3.1}\\
\bar{T}(X, Y)=\bar{\nabla}_{X} Y-\bar{\nabla}_{X} Y-[X, Y]_{0}=\pi(Y) X-\pi(Y) X, \forall X, Y, Z \in V_{0}
\end{array}\right.
$$

where π is a smooth 1 -form defined on the horizontal bundle.
Remark 3.1. It's obvious that the SS-connection is a metric connection. It is also called a SSconnection transformation from the transformation's theory. We denote a sub-Riemannian manifold (M, V_{0}, g) admitting a SS-connection $\bar{\nabla}$ by $\left(M, V_{0}, g, \bar{\nabla}\right)$.

By a straight forward calculation, one can derive that the SS-connection $\bar{\nabla}$ is necessarily of the form,

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+\pi(Y) X-g(X, Y) P, \tag{3.2}
\end{equation*}
$$

where P is a horizontal vector field defined by $g(P, X)=\pi(X)$ for any $X \in V_{0}$. In local frame $\left\{e_{i}\right\}$, denote by $\pi\left(e_{i}\right)=\pi_{i}, \pi^{i}=g^{i j} \pi_{j}$, then we know

$$
\begin{equation*}
\bar{\Gamma}_{i j}^{k}=\Gamma_{i j}^{k}+\delta_{i}^{k} \pi_{j}-g_{i j} \pi^{k} \tag{3.3}
\end{equation*}
$$

and the horizontal curvature tensor of the SS-connection $\bar{\nabla}$ is

$$
\begin{equation*}
\left(\bar{R}^{H}\right)_{i j k}^{h}=e_{i}\left(\bar{\Gamma}_{j k}^{h}\right)-e_{j}\left(\bar{\Gamma}_{i k}^{h}\right)+\bar{\Gamma}_{j k}^{e} \bar{\Gamma}_{i e}^{h}-\bar{\Gamma}_{i k}^{e} \bar{\Gamma}_{j e}^{h}-\bar{\Omega}_{i j}^{e} \bar{\Gamma}_{k e}^{h}-\bar{M}_{i j}^{\alpha} \bar{\Lambda}_{\alpha k}^{h} \tag{3.4}
\end{equation*}
$$

where

$$
\left[e_{i}, e_{j}\right]_{0}=\bar{\Omega}_{i j}^{k} e_{k},\left[e_{i}, e_{j}\right]_{1}=\bar{M}_{i j}^{\alpha} e_{\alpha},\left[\left[e_{i}, e_{j}\right]_{1}, e_{k}\right]_{0}=\bar{M}_{i j}^{\alpha} \bar{\Lambda}_{\alpha k}^{h} e_{h}
$$

then by using (2.5), (2.6) and (3.3), we have

$$
\begin{equation*}
\bar{\Omega}_{i j}^{k}=\Omega_{i j}^{k}, \bar{M}_{i j}^{\alpha}=M_{i j}^{\alpha}, \bar{\Lambda}_{\alpha k}^{h}=\Lambda_{\alpha k}^{h} . \tag{3.5}
\end{equation*}
$$

Substituting (3.3) and (3.5) into (3.4) and by straightway computation, we can get the relation between the horizontal curvature tensor of $\bar{\nabla}$ and ∇ as follows

$$
\begin{equation*}
\left(\bar{R}^{H}\right)_{i j k}^{h}=\left(R^{H}\right)_{i j k}^{h}+\delta_{j}^{h} \pi_{i k}-\delta_{i}^{h} \pi_{j k}+\pi_{j}^{h} g_{i k}-\pi_{i}^{h} g_{j k}, \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\pi_{i k}=\nabla_{i} \pi_{k}-\pi_{i} \pi_{k}+\frac{1}{2} g_{i k} \pi_{h} \pi^{h}, \pi_{i}^{j}=\pi_{i k} g^{j k}, \nabla_{i} \pi_{j}=e_{i}\left(\pi_{j}\right)-\Gamma_{i j}^{k} \pi_{k} . \tag{3.7}
\end{equation*}
$$

It is not hard to derive that $\left(\bar{R}^{H}\right)_{i j k}^{h}$ satisfy the following properties,

$$
\left\{\begin{array}{l}
\left(\bar{R}^{H}\right)_{i j k}^{h}+\left(\bar{R}^{H}\right)_{j i k}^{h}=0 ; \\
\left(\bar{R}^{H}\right)_{i j k}^{h}+\left(\bar{R}^{H}\right)_{j k i}^{h}+\left(\bar{R}^{H}\right)_{k i j}^{h}=\delta_{j}^{h}\left(\pi_{i k}-\pi_{k i}\right)+\delta_{i}^{h}\left(\pi_{j k}-\pi_{k j}\right)+\delta_{k}^{h}\left(\pi_{i j}-\pi_{j i}\right) .
\end{array}\right.
$$

The second formula is called the first Bianchi identity of the SS-connection. Contracting j and h in (3.6), we have

$$
\begin{equation*}
\left(\bar{R}^{H}\right)_{i e k}^{e}=\left(R^{H}\right)_{i e k}^{e}+(\ell-2) \pi_{i k}+\alpha g_{i k}, \tag{3.8}
\end{equation*}
$$

where $\alpha=\pi_{i j} g^{i j}=\pi_{i}^{i}$. It is no longer symmetric about the two indexes unless $\pi_{i k}=\pi_{i k}$, namely π is closed on the horizontal bundle. Now when multiplying (3.8) by $g^{i k}$ we get

$$
\begin{equation*}
(\bar{R})^{H}=R^{H}+2(\ell-1) \alpha . \tag{3.9}
\end{equation*}
$$

We call \bar{R}^{H} the horizontal curvature, and hence $\left(\bar{R}^{H}\right)_{i e k}^{e}$ the horizontal Ricci curvature tensors w.r.t. the SS-connection.

For the SS-connection $\bar{\nabla}$, we define the horizontal Weyl conformal curvature tensors by

$$
\begin{align*}
\bar{C}_{i j k}^{h}= & \left(\bar{R}^{H}\right)_{i j k}^{h}-\frac{1}{\ell-2}\left\{\delta_{j}^{h}\left(\left(\bar{R}^{H}\right)_{i e k}^{e}-\frac{1}{\ell}\left(\bar{R}^{H}\right)_{i k e}^{e}-\frac{\bar{R}^{H}}{2(\ell-1)} g_{i k}\right)-\delta_{i}^{h}\left(\left(\bar{R}^{H}\right)_{j e k}^{e}\right.\right. \\
& \left.-\frac{1}{\ell}\left(\bar{R}^{H}\right)_{j k e}^{e}-\frac{\bar{R}^{H}}{2(\ell-1)} g_{j k}\right)+g_{i k}\left(\left(\bar{R}^{H}\right)_{j e f}^{e} g^{f h}-\frac{1}{\ell}\left(\bar{R}^{H}\right)_{j f e}^{e} g^{f h}-\frac{\bar{R}^{H}}{2(\ell-1)} \delta_{j}^{h}\right) \\
& \left.-g_{j k}\left(\left(\bar{R}^{H}\right)_{i e f}^{e} g^{f h}-\frac{1}{\ell}\left(\bar{R}^{H}\right)_{i f e}^{e} g^{f h}-\frac{\bar{R}^{H}}{2(\ell-1)} \delta_{i}^{h}\right)\right\}+\frac{1}{\ell} \delta_{k}^{h}\left(\bar{R}^{H}\right)_{i j e}^{e} . \tag{3.10}
\end{align*}
$$

Remark 3.2. The horizontal Weyl conformal curvature tensors $\bar{C}_{i j k}^{h}$ will degenerate into the sub-conformal Weyl curvature tensors defined by [11], if the 1 -form π vanishes. It is natural to assume $\ell>2$ from now.

Theorem 3.1. The horizontal Weyl conformal curvature tensors are invariants under the SSconnection transformation.

Proof. In virtue of Equation (3.6), one has

$$
\left(\bar{R}^{H}\right)_{i j k}^{h}+\left(\bar{R}^{H}\right)_{j i k}^{h}=0,
$$

and

$$
\left(\bar{R}^{H}\right)_{i j k}^{h}+\left(\bar{R}^{H}\right)_{j k i}^{h}+\left(\bar{R}^{H}\right)_{k i j}^{h}=\delta_{j}^{h}\left(\pi_{i k}-\pi_{k i}\right)+\delta_{i}^{h}\left(\pi_{k j}-\pi_{j k}\right)+\delta_{k}^{h}\left(\pi_{j i}-\pi_{i j}\right) .
$$

Let $k=h=e$, one gets

$$
\left(\bar{R}^{H}\right)_{i j e}^{e}=\left(\bar{R}^{H}\right)_{i e j}^{e}-\left(\bar{R}^{H}\right)_{j e i}^{e}+(\ell-2)\left(\pi_{j i}-\pi_{i j}\right) .
$$

Considering (3.8), one further obatins

$$
\begin{equation*}
\left(\bar{R}^{H}\right)_{i j e}^{e}=\left(R^{H}\right)_{i e j}^{e}-\left(R^{H}\right)_{j e i}^{e}=\left(R^{H}\right)_{i j e}^{e} . \tag{3.11}
\end{equation*}
$$

The substitution of Equations (3.6), (3.8),(3.9) and (3.11)into (3.10) implies

$$
\begin{aligned}
\bar{C}_{i j k}^{h}= & \left(\bar{R}^{H}\right)_{i j k}^{h}-\frac{1}{\ell-2}\left\{\delta_{j}^{h}\left(\left(\bar{R}^{H}\right)_{i e k}^{e}-\frac{1}{\ell}\left(\bar{R}^{H}\right)_{i k e}^{e}-\frac{\bar{R}^{H}}{2(\ell-1)} g_{i k}\right)-\delta_{i}^{h}\left(\left(\bar{R}^{H}\right)_{j e k}^{e}\right.\right. \\
& \left.-\frac{1}{\ell}\left(\bar{R}^{H}\right)_{j k e}^{e}-\frac{\bar{R}^{H}}{2(\ell-1)} g_{j k}\right)+g_{i k}\left(\left(\bar{R}^{H}\right)_{j e f}^{e} g^{f h}-\frac{1}{\ell}\left(\bar{R}^{H}\right)_{j f e}^{e} g^{f h}-\frac{\bar{R}^{H}}{2(\ell-1)} \delta_{j}^{h}\right) \\
& \left.-g_{j k}\left(\left(\bar{R}^{H}\right)_{i e f}^{e} g^{f h}-\frac{1}{\ell}\left(\bar{R}^{H}\right)_{i f e}^{e} g^{f h}-\frac{\bar{R}^{H}}{2(\ell-1)} \delta_{i}^{h}\right)\right\}+\frac{1}{\ell} \delta_{k}^{h}\left(\bar{R}^{H}\right)_{i j e}^{e} \\
= & \left(R^{H}\right)_{i j k}^{h}+\delta_{j}^{h} \pi_{i k}-\delta_{i}^{h} \pi_{j k}+\pi_{j}^{h} g_{i k}-\pi_{i}^{h} g_{j k} \\
& -\frac{1}{\ell-2} \delta_{j}^{h}\left[\left(R^{H}\right)_{i e k}^{e}+(\ell-2) \pi_{i k}+\alpha g_{i k}-\frac{1}{\ell}\left(R^{H}\right)_{i k e}^{e}-\frac{R^{H}+2(\ell-1) \alpha}{2(\ell-1)} g_{i k]}\right. \\
& +\frac{1}{\ell-2} \delta_{i}^{h}\left[\left(R^{H}\right)_{j e k}^{e}+(\ell-2) \pi_{j k}+\alpha g_{j k}-\frac{1}{\ell}\left(R^{H}\right)_{j k e}^{e}-\frac{R^{H}+2(\ell-1) \alpha}{2(\ell-1)} g_{j k]}\right. \\
& -\frac{1}{\ell-2} g_{i k}\left[g^{f h}\left(\left(R^{H}\right)_{j e f}^{e}+(\ell-2) \pi_{j f}+\alpha g_{j f}\right)-\frac{1}{\ell} g^{f h}\left(R^{H}\right)_{j f e}^{e}-\frac{R^{H}+2(\ell-1) \alpha}{2(\ell-1)} \delta_{j}^{h}\right] \\
& +\frac{1}{\ell-2} g_{j k}\left[g^{f h}\left(R_{i e f}^{e}+(\ell-2) \pi_{i f}+\alpha g_{i f}\right)-\frac{1}{\ell} g^{f h}\left(R^{H}\right)_{i f e}^{e}-\frac{R^{H}+2(\ell-1) \alpha}{2(\ell-1)} \delta_{i}^{h}\right] \\
& +\frac{1}{\ell} \delta_{k}^{h}\left(R^{H}\right)_{i j e}^{e} \\
= & \left(R^{H}\right)_{i j k}^{h}-\frac{1}{\ell-2}\left\{\delta_{j}^{h}\left(\left(R^{H}\right)_{i e k}^{e}-\frac{1}{\ell}\left(R^{H}\right)_{i k e}^{e}-\frac{R^{H}}{2(\ell-1)} g_{i k}\right)-\delta_{i}^{h}\left(\left(R^{H}\right)_{j e k}^{e}\right.\right. \\
& \left.-\frac{1}{\ell}\left(R^{H}\right)_{j k e e}^{e}-\frac{R^{H}}{2(\ell-1)} g_{j k}\right)+g_{i k}\left(\left(R^{H}\right)_{j e f}^{e} g^{f h}-\frac{1}{\ell}\left(R^{H}\right)_{j f e}^{e} g^{f h}-\frac{R^{H}}{2(\ell-1)} \delta_{j}^{h}\right) \\
& \left.-g_{j k k}\left(\left(R^{H}\right)_{i e f}^{e} g^{f h}-\frac{1}{\ell}\left(R^{H}\right)_{i f e}^{e} g^{f h}-\frac{R^{H}}{2(\ell-1)} \delta_{i}^{h}\right)\right\}+\frac{1}{\ell} \delta_{k}^{h}\left(R^{H}\right)_{i j e}^{e} \\
= & C_{i j k}^{h} .
\end{aligned}
$$

This finishes the proof.
Definition 3.2. A sub-Riemannian manifold ($M, V_{0}, g, \bar{\nabla}$) is locally horizontally flat if and only if the horizontal curvature tensors associated with the SS-connection $\bar{\nabla}$ equal zero, i.e. $\left(\bar{R}^{H}\right)_{i j k}^{h}=$ 0.

Theorem 3.2. A sub-Riemannian manifold ($M, V_{0}, g, \bar{\nabla}$) is locally horizontally flat if and only if M is horizontally conformally flat and horizontally Ricci flat.

Proof. If $\left(M, V_{0}, g, \bar{\nabla}\right)$ is locally horizontally flat, then $\left(\bar{R}^{H}\right)_{i j k}^{h}=0$, w.r.t. the SS-connection, that is, there holds

$$
\begin{equation*}
\left(R^{H}\right)_{i j k}^{h}=\delta_{i}^{h} \pi_{j k}-\delta_{j}^{h} \pi_{i k}+\pi_{i}^{h} g_{j k}-\pi_{j}^{h} g_{i k}, \tag{3.12}
\end{equation*}
$$

let $j=h=e$, we obtain

$$
\begin{equation*}
\left(R^{H}\right)_{i e k}^{e}=(2-\ell) \pi_{i k}-\alpha g_{i k} . \tag{3.13}
\end{equation*}
$$

Multiplying the Equation (3.13) by $g^{i k}$ we get $R^{H}=\left(R^{H}\right)_{i e k}^{e} g^{i k}=2(1-\ell) \alpha$, so we have

$$
\begin{equation*}
\alpha=\frac{R^{H}}{2(1-\ell)} . \tag{3.14}
\end{equation*}
$$

Substituting (3.14) into (3.13), we get

$$
\begin{equation*}
\pi_{i k}=\frac{1}{2-\ell}\left(\left(R^{H}\right)_{i e k}^{e}-\frac{R^{H}}{2(\ell-1)} g_{i k}\right) . \tag{3.15}
\end{equation*}
$$

Similarly, we substitute (3.15) into (3.12), we have

$$
\begin{align*}
\left(R^{H}\right)_{i j k}^{h}= & -\frac{1}{\ell-2}\left(\delta_{i}^{h}\left(R^{H}\right)_{j e k}^{e}-\delta_{j}^{h}\left(R^{H}\right)_{i e k}^{e}+g_{j k}\left(R^{H}\right)_{i e f}^{e} g^{f h}-g_{i k}\left(R^{H}\right)_{j e f}^{e} g^{f h}\right) \\
& +\frac{R^{H}}{(\ell-2)(\ell-1)}\left(g_{j k} \delta_{i}^{h}-g_{i k} \delta_{j}^{h}\right), \tag{3.16}
\end{align*}
$$

and $\left(R^{H}\right)_{i j e}^{e}=0$, which means $C_{i j k}^{h}=0$. Hence one has $\bar{C}_{i j k}^{h}=0$ because of Theorem 3.1.
Conversely, since M is horizontally conformally flat, $\bar{C}_{i j k}^{h}=0$, then $C_{i j k}^{h}=0$ in view of Theorem 3.1, and

$$
\begin{aligned}
\left(R^{H}\right)_{i j k}^{h}= & \frac{1}{\ell-2}\left\{\delta_{j}^{h}\left(\left(R^{H}\right)_{i e k}^{e}-\frac{1}{\ell}\left(R^{H}\right)_{i k e}^{e}-\frac{R^{H}}{2(\ell-1)} g_{i k}\right)-\delta_{i}^{h}\left(\left(R^{H}\right)_{j e k}^{e}\right.\right. \\
& \left.-\frac{1}{\ell}\left(R^{H}\right)_{j k e}^{e}-\frac{R^{H}}{2(\ell-1)} g_{j k}\right)+g_{i k}\left(\left(R^{H}\right)_{j e f}^{e} g^{f h}-\frac{1}{\ell}\left(R^{H}\right)_{j f e}^{e} g^{f h}-\frac{R^{H}}{2(\ell-1)} \delta_{j}^{h}\right) \\
& \left.-g_{j k}\left(\left(R^{H}\right)_{i e f}^{e} g^{f h}-\frac{1}{\ell}\left(R^{H}\right)_{i f e}^{e} g^{f h}-\frac{R^{H}}{2(\ell-1)} \delta_{i}^{h}\right)\right\}-\frac{1}{\ell} \delta_{k}^{h}\left(R^{H}\right)_{i j e}^{e} .
\end{aligned}
$$

By contracting with k and h, one obtains $\left(R^{H}\right)_{i j e}^{e}=0$, and hence $\left(R^{H}\right)_{i e j}^{e}=\left(R^{H}\right)_{j e i}^{e}$ because of the first Bianchi identity of the SR-connection. Therefore $\pi_{i k}=\frac{1}{2-\ell}\left(\left(R^{H}\right)_{i e k}^{e}-\frac{R^{H}}{2(\ell-1)} g_{i k}\right)$ is symmetric, and hence one has the first Bianchi identity of the SS-connection

$$
\left(\bar{R}^{H}\right)_{i j k}^{h}+\left(\bar{R}^{H}\right)_{j k i}^{h}+\left(\bar{R}^{H}\right)_{k i j}^{h}=0,
$$

one further gets by contracting k and h,

$$
\left(\bar{R}^{H}\right)_{i j e}^{e}=\left(\bar{R}^{H}\right)_{i e j}^{e}-\left(\bar{R}^{H}\right)_{j e i}^{h} .
$$

On the other hand, $\pi_{i k}=\frac{1}{2-\ell}\left(\left(R^{H}\right)_{i e k}^{e}-\frac{R^{H}}{2(\ell-1)} g_{i k}\right)$ means $\left(\bar{R}^{H}\right)_{i e k}^{e}=0$ based on the fact (3.8) and (3.9), and $\bar{C}_{i j k}^{h}=0$ can derive $\left(\bar{R}^{H}\right)_{i k e}^{e}=0$, so one has $\bar{R}^{H}=0$, and hence

$$
\begin{aligned}
\left(\bar{R}^{H}\right)_{i j k}^{h}= & \bar{C}_{i j k}^{h}+\frac{1}{\ell-2}\left\{\delta_{j}^{h}\left(\left(\bar{R}^{H}\right)_{i e k}^{e}-\frac{1}{\ell}\left(\bar{R}^{H}\right)_{i k e}^{e}-\frac{\bar{R}^{H}}{2(\ell-1)} g_{i k}\right)-\delta_{i}^{h}\left(\left(\bar{R}^{H}\right)_{j e k}^{e}\right.\right. \\
& \left.-\frac{1}{\ell}\left(\bar{R}^{H}\right)_{j k e}^{e}-\frac{\bar{R}^{H}}{2(\ell-1)} g_{j k}\right)+g_{i k}\left(\left(\bar{R}^{H}\right)_{j e f}^{e} g^{f h}-\frac{1}{\ell}\left(\bar{R}^{H}\right)_{j f e}^{e} g^{f h}-\frac{\bar{R}^{H}}{2(\ell-1)} \delta_{j}^{h}\right) \\
& \left.-g_{j k}\left(\left(\bar{R}^{H}\right)_{i e f}^{e} g^{f h}-\frac{1}{\ell}\left(\bar{R}^{H}\right)_{i f e}^{e} g^{f h}-\frac{\bar{R}^{H}}{2(\ell-1)} \delta_{i}^{h}\right)\right\}-\frac{1}{\ell} \delta_{k}^{h}\left(\bar{R}^{H}\right)_{i j e}^{e} \\
= & 0,
\end{aligned}
$$

where the second equality follows from Equations (3.11) and Theorem 3.1.
This completes the proof of Theorem 3.2.

4. Examples

Let $M=H^{n}$ be a Heisenberg group with the noncommutative law

$$
x \circ y=\left(x_{1}+y_{1}, x_{2}+y_{2}, \cdots, x_{n}+y_{n}+\frac{1}{2} \sum_{i, j=1}^{n}\left(x_{i} y_{n+j}-x_{n+j} y_{i}\right)\right) .
$$

for any $x=\left(x_{i}, x_{n+i}, x_{2 n+1}\right), y=\left(y_{i}, y_{n+i}, y_{2 n+1}\right)$. The left invariant vectors are given by

$$
e_{i}=\frac{\partial}{\partial x_{i}}-\frac{x_{n+i}}{2} \frac{\partial}{\partial x_{2 n+1}}, e_{n+i}=\frac{\partial}{\partial x_{n+i}}+\frac{x_{i}}{2} \frac{\partial}{\partial x_{2 n+1}}, e_{2 n+1}=\frac{\partial}{\partial x_{2 n+1}} .
$$

Take the horizontal bundle V_{0} spanned by e_{i}, e_{n+i}. Consider $V_{1}=\operatorname{span}\left\{e_{2 n+1}\right\}$, and g as the Riemannian metric which $\left\{e_{i}, e_{n+i}, e_{2 n+1}\right\}$ is an orthonomal basis. We note that the only nontrivial commutator is

$$
\begin{equation*}
\left[e_{i}, e_{n+j}\right]=-\delta_{i j} e_{2 n+1} \tag{4.1}
\end{equation*}
$$

We construct the Levi-civita connection compatible with the Riemannian metric g via the usual Kozul formula

$$
\left\{\begin{array}{l}
D_{e_{i}} e_{n+j}=-\frac{1}{2} \delta_{i j} e_{2 n+1}, D_{e_{i}} e_{2 n+1}=\frac{1}{2} e_{n+i} \\
D_{e_{n+i}} e_{j}=\frac{1}{2} \delta_{i j} e_{2 n+1}, D_{e_{n+i}} e_{2 n+1}=-\frac{1}{2} e_{i} \\
D_{e_{2 n+1}} e_{i}=-\frac{1}{2} e_{n+i}, D_{e_{2 n+1}} e_{n+i}=\frac{1}{2} e_{i}
\end{array}\right.
$$

the left covariant derivatives vanish. So the unique SR-connection is

$$
\nabla_{e_{i}} e_{n+j}=\left(D_{e_{i}} e_{n+j}\right)_{0}=0,
$$

and hence for all $X, Y \in V_{0}$ with $Y=\Sigma_{i=1}^{n}\left(Y^{i} e_{i}+Y^{n+i} e_{n+i}\right)$,

$$
\nabla_{X} Y=\Sigma_{i=1}^{n}\left(X\left(Y^{i}\right) e_{i}+X\left(Y^{n+i}\right) e_{n+i}\right)
$$

If we denote the horizontal vector field Z by $Z=\Sigma_{k=1}^{2 n} Z^{k} e_{k}$, then the horizontal curvature tensor can be given exactly as

$$
\begin{align*}
R^{H}(X, Y) Z= & \nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]_{0}} Z-\left[[X, Y]_{1}, Z\right]_{0} \\
= & \Sigma_{k=1}^{2 n}\left(X Y\left(Z^{k}\right) e_{k}-Y X\left(Z^{k}\right) e_{k}-[X, Y]_{0}\left(Z^{k}\right) e_{k}\right. \\
& \left.-[X, Y]_{1}\left(Z^{k}\right) e_{k}-Z^{k}\left[[X, Y]_{1}, e_{k}\right]_{0}\right) \\
= & \Sigma_{k=1}^{2 n}\left([X, Y]-[X, Y]_{0}-[X, Y]_{1}\right)\left(Z^{k}\right) e_{k}-\Sigma_{k=1}^{2 n} Z^{k}\left[[X, Y]_{1}, e_{k}\right]_{0} \\
= & 0, \tag{4.2}
\end{align*}
$$

where the last equality follows from Equation (4.1) and

$$
\begin{aligned}
{[X, Y]=} & \Sigma_{i, j=1}^{n}\left(X^{i} e_{i}\left(Y^{j}\right) e_{j}+X^{i} Y^{j} e_{i} e_{j}+X^{n+i} e_{n+i}\left(Y^{j}\right) e_{j}+X^{n+i} Y^{j} e_{n+i} e_{j}\right. \\
& \left.+X^{i} e_{i}\left(Y^{n+j}\right) e_{n+j}+X^{i} Y^{n+j} e_{i} e_{n+j}+X^{n+i} e_{n+i}\left(Y^{n+j}\right) e_{n+j}+X^{n+i} Y^{n+j} e_{n+i} e_{n+j}\right) \\
& -\sum_{i, j=1}^{n}\left(Y^{j} e_{j}\left(X^{i}\right) e_{i}+X^{i} Y^{j} e_{j} e_{i}+Y^{n+j} e_{n+j}\left(X^{i}\right) e_{j}+Y^{n+j} X^{i} e_{n+j} e_{i}\right. \\
& \left.+Y^{j} e_{j}\left(X^{n+i}\right) e_{n+i}+Y^{j} X^{n+i} e_{j} e_{n+i}+Y^{n+j} e_{n+j}\left(X^{n+i}\right) e_{n+i}+Y^{n+j} X^{n+i} e_{n+j} e_{n+i}\right) \\
= & \Sigma_{i, j=1}^{n}\left(X^{i} e_{i}\left(Y^{j}\right) e_{j}+X^{n+i} e_{n+i}\left(Y^{j}\right) e_{j}+X^{i} e_{i}\left(Y^{n+j}\right) e_{n+j}+X^{n+i} e_{n+i}\left(Y^{n+j}\right) e_{n+j}\right. \\
& -Y^{j} e_{j}\left(X^{i}\right) e_{i}-Y^{n+j} e_{n+j}\left(X^{i}\right) e_{j}-Y^{j} e_{j}\left(X^{n+i}\right) e_{n+i}-Y^{n+j} e_{n+j}\left(X^{n+i}\right) e_{n+i} \\
& \left.+X^{i} Y^{j}\left[e_{i}, e_{j}\right]+X^{n+i} Y^{j}\left[e_{n+i}, e_{j}\right]+X^{i} Y^{n+j}\left[e_{i}, e_{n+j}\right]+X^{n+i} Y^{n+j}\left[e_{n+i}, e_{n+j}\right]\right),
\end{aligned}
$$

so

$$
\begin{aligned}
{[X, Y]_{1}=} & \Sigma_{i, j=1}^{n}\left(X^{i} Y^{j}\left[e_{i}, e_{j}\right]_{1}+X^{n+i} Y^{j}\left[e_{n+i}, e_{j}\right]_{1}+X^{i} Y^{n+j}\left[e_{i}, e_{n+j}\right]_{1}\right. \\
& \left.+X^{n+i} Y^{n+j}\left[e_{n+i}, e_{n+j}\right]_{1}\right) \\
= & \Sigma_{i}^{n}\left(X^{n+i} Y^{i}-X^{i} Y^{n+i}\right) e_{2 n+1} .
\end{aligned}
$$

Hence the corresponding horizontal Weyl conformal curvature tensors $C_{i j k}^{h}=0$.
Now we define a SS-connection by

$$
\bar{\nabla}_{X} Y=\Sigma_{i, j, k=1}^{2 n}\left(X^{i} e_{i}\left(Y^{k}\right)+Y^{j} \pi_{j} X^{k}-X^{i} Y^{j} g_{i j} \pi^{k}\right) e_{k}
$$

the horizontal curvature tensors are given, based on Equation (4.2), by,

$$
\left(\bar{R}^{H}\right)_{i j k}^{h}=\delta_{j}^{h} \pi_{i k}-\delta_{i}^{h} \pi_{j k}+\pi_{j}^{h} g_{i k}-\pi_{i}^{h} g_{j k} .
$$

By contracting k and h, one obtains $\left(\bar{R}^{H}\right)_{i j e}^{e}=0$, and

$$
\begin{equation*}
\left(\bar{R}^{H}\right)_{i e k}^{e}=2(n-1) \pi_{i k}+\alpha g_{i k} ;\left(\bar{R}^{H}\right)_{j e i}^{e}-\left(\bar{R}^{H}\right)_{i e j}^{e}=2(2 n-1)\left(\pi_{i j}-\pi_{j i}\right), \tag{4.3}
\end{equation*}
$$

so if $\pi_{i j}=\pi_{j i}$, one can define the horizontal Ricci tensor and horizontal curvature with respect to the SS-connection.

To show H^{n} is a horizontal flat manifold, one need to show the horizontal Weyl conformal curvature tensors $\bar{C}_{i j k}^{h}$ equal zero. In fact,

$$
\begin{aligned}
\bar{C}_{i j k}^{h}= & \left(\bar{R}^{H}\right)_{i j k}^{h}-\frac{1}{2(n-1)}\left\{\delta_{j}^{h}\left(\left(\bar{R}^{H}\right)_{i e k}^{e}-\frac{1}{2 n}\left(\bar{R}^{H}\right)_{i k e}^{e}-\frac{\bar{R}^{H}}{2(2 n-1)} g_{i k}\right)-\delta_{i}^{h}\left(\left(\bar{R}^{H}\right)_{j e k}^{e}\right.\right. \\
& \left.-\frac{1}{2 n}\left(\bar{R}^{H}\right)_{j k e}^{e}-\frac{\bar{R}^{H}}{2(2 n-1)} g_{j k}\right)+g_{i k}\left(\left(\bar{R}^{H}\right)_{j e f}^{e} g^{f h}-\frac{1}{2 n}\left(\bar{R}^{H}\right)_{j f e}^{e} g^{f h}-\frac{\bar{R}^{H}}{2(2 n-1)} \delta_{j}^{h}\right) \\
& \left.-g_{j k}\left(\left(\bar{R}^{H}\right)_{i e f}^{e} g^{f h}-\frac{1}{2 n}\left(\bar{R}^{H}\right)_{i f e}^{e} g^{f h}-\frac{\bar{R}^{H}}{2(2 n-1)} \delta_{i}^{h}\right)\right\}+\frac{1}{2 n} \delta_{k}^{h}\left(\bar{R}^{H}\right)_{i j e}^{e} \\
= & \left(\bar{R}^{H}\right)_{i j k}^{h}-\frac{1}{2(n-1)}\left\{\delta_{j}^{h}\left(2(n-1) \pi_{i k}+\alpha g_{i k}\right)-\frac{\bar{R}^{H}}{2(n-1)} g_{i k} \delta_{j}^{h}-\delta_{i}^{h}\left(2(n-1) \pi_{j k}+\alpha g_{j k}\right)\right. \\
& +\frac{\bar{R}^{H}}{2(2 n-1)} g_{j k} \delta_{i}^{h}+g_{i k}\left(2(n-1) \pi_{j f}+\alpha g_{j f}\right) g^{f h}-\frac{\bar{R}^{H}}{2(2 n-1)} g_{i k} \delta_{j}^{h} \\
& \left.-g_{j k}\left(2(n-1) \pi_{i f}+\alpha g_{i f}\right) g^{f h}+\frac{\bar{R}^{H}}{2(2 n-1)} g_{j k} \delta_{i}^{h}\right\} \\
= & -\frac{\alpha}{n-1} g_{i k} \delta_{j}^{h}+\frac{\alpha}{n-1} g_{j k} \delta_{i}^{h}+\frac{\bar{R}^{H}}{2(n-1)(n-1)} g_{i k} \delta_{j}^{h}-\frac{\bar{R}^{H}}{2(2 n-1)(n-1)} g_{j k} \delta_{i}^{h} \\
= & 0,
\end{aligned}
$$

where the last equality follows from Equation (4.3).
Therefore Heisenberg group H^{n} is a horizontally flat manifold and the horizontal Weyl conformal curvature tensor is a variant under the horizontal projective transformation.

Remark 4.1. It is not hard to show our results are also true for Carnot group.

Acknowledgements

The third author would like to thank Professor H. Z. Li for his encouragement and help!

References

[1] N. S. Agache and M. R. Chafle, A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math., 23(1992), 399-409.
[2] F. Cantrijn and B. Langerock, Generalized connections over a vector bundle, Differ. Geom. Appl., 18(2003), 295-317.
[3] U. C. De and S. C. Biswas, On a type of semi-symmetric non-metric connection on a Riemannian manifold, Istanbul Univ. Mat. Derg., 55/56(1996/1997), 237-243.
[4] U. C. De and D. Kamila, On a type of semi-symmetric non-metric connection on a Riemannian manifold, J. Indian Inst. Sci., 75(1995), 707-710.
[5] A. Friedmann and J. A. Schouten, Über die Gecmetrie der Halbsymmerischen Übertragung, Math. Z., 21(1924), 211-233.
[6] F. Y. Fu, X. P. Yang and P. B. Zhao, Geometrical and physical characteristics of a class conformal mapping, J. Geom. Phys., 62(2012), 1467-1479.
[7] Y. X. Liang, Some properties of the semi-symmetric metric connection, J. of Xiamen University (Natural Science). 30(1991), 22-24.
[8] H. Weyl, Gravitation und Elektrizität, S.-B.Preuss. Akad. Wiss. Berlin(1918), (Translated in The principle of relativity, Dover Books, New York)
[9] K. H. Tan and X. P. Yang, On some sub-Riemannian objects of hypersurfaces in sub-Riemannian manifolds, Bull. Austral. Math. Soc., 10(2004), 177-198.
[10] K. Yano, On semi-symmetric metric connection, Rev. Roum. Math. Pureset Appl., 15(1970), 1579-1586.
[11] P. B. Zhao and L. Jiao, Conformal transformations on Carnot Caratheodory spaces, Nihonkal Mathematical J., 17(2006), 167-185.

Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing 210094, P. R. China. School of Science, Qilu University of Technology, Jinan 250353, P. R. China.
E-mail: hanyanling1979@163.com
School of Mathematics and Statistics, Guangdong University of Finance and Economics, Guangzhou 510320, P. R. China.

E-mail: ffy1984229@163.com
Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
E-mail: pbzhao@njust.edu.cn

[^0]: Received April 29, 2015, accepted March 30, 2016. 2010 Mathematics Subject Classification. 53C20, 53D11.
 Key words and phrases. Sub-Riemmannian manifolds, SS-connections, horizontal curvature tensors. Corresponding author: Peibiao Zhao.
 This work is supported by National Natural Science Foundation of China (No. 11371194, No.11526055) and by Graduate student Innovation Engineering of Jiangsu Province(No.CXZZ130186).

