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ON SEMIDEFINITE RELAXATIONS FOR THE BLOCK MODEL1

BY ARASH A. AMINI AND ELIZAVETA LEVINA

University of California, Los Angeles and University of Michigan

The stochastic block model (SBM) is a popular tool for community de-
tection in networks, but fitting it by maximum likelihood (MLE) involves a
computationally infeasible optimization problem. We propose a new semidef-
inite programming (SDP) solution to the problem of fitting the SBM, derived
as a relaxation of the MLE. We put ours and previously proposed SDPs in a
unified framework, as relaxations of the MLE over various subclasses of the
SBM, which also reveals a connection to the well-known problem of sparse
PCA. Our main relaxation, which we call SDP-1, is tighter than other re-
cently proposed SDP relaxations, and thus previously established theoretical
guarantees carry over. However, we show that SDP-1 exactly recovers true
communities over a wider class of SBMs than those covered by current re-
sults. In particular, the assumption of strong assortativity of the SBM, im-
plicit in consistency conditions for previously proposed SDPs, can be relaxed
to weak assortativity for our approach, thus significantly broadening the class
of SBMs covered by the consistency results. We also show that strong as-
sortativity is indeed a necessary condition for exact recovery for previously
proposed SDP approaches and not an artifact of the proofs. Our analysis of
SDPs is based on primal-dual witness constructions, which provides some in-
sight into the nature of the solutions of various SDPs. In particular, we show
how to combine features from SDP-1 and already available SDPs to achieve
the most flexibility in terms of both assortativity and block-size constraints,
as our relaxation has the tendency to produce communities of similar sizes.
This tendency makes it the ideal tool for fitting network histograms, a method
gaining popularity in the graphon estimation literature, as we illustrate on an
example of a social networks of dolphins. We also provide empirical evidence
that SDPs outperform spectral methods for fitting SBMs with a large number
of blocks.

1. Introduction. Community detection, one of the fundamental problems in
network analysis, has attracted a lot of attention in a number of fields, including
computer science, statistics, physics and sociology. The stochastic block model
(SBM) [30] is a well established and widely used model for community detection,
attractive for its analytical tractability and connections to fundamental properties
of random graphs [6, 15, 42], but fitting it to data is a challenge due to the need to
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optimize over Kn assignments of n nodes to K communities. Many fitting methods
have been proposed, including profile likelihood [15], MCMC [45, 51], variational
approaches [4, 14, 18], belief propagation [24] and pseudo-likelihood [8], the latter
two being more or less the current state of the art in speed and accuracy. However,
all these methods rely on a good initial value and can be sensitive to starting points.
In contrast, spectral clustering methods do not require an initial value, are fast and
have also been popular in community detection [19, 35, 49, 50]. Spectral cluster-
ing works reasonably well in dense networks with balanced communities but fails
on sparse networks [34]. Regularization can help [8, 19, 32], but even regular-
ized spectral clustering does not achieve the accuracy of likelihood-based methods
when they are given a good initial value [8].

Recently, semidefinite programming (SDP) approaches to fitting the SBM have
appeared in the literature [17, 20, 21], which rely on a SDP relaxation of the com-
putationally infeasible likelihood optimization problem. They are attractive be-
cause, on one hand, they solve a global optimization problem and require no initial
value, and on the other hand, they are still maximizing the likelihood, and one can
therefore hope for better performance than from generic methods that do not use
the likelihood in any way. As global optimization methods, they are easier to ana-
lyze than iterative methods depending on a starting value. It also appears that SDP
relaxations in themselves have a regularization effect, which makes their solutions
more robust to noise and outliers (see Remark 3.1). One drawback of SDP meth-
ods is the higher computational cost of SDP solvers. However, by formulating the
problem as a SDP, we can benefit from continuous advances in solving large scale
SDPs, an active area of research in optimization.

In this paper, we propose a new SDP relaxation of the likelihood optimization
problem, which is tighter than any of the previously proposed SDP relaxations [17,
20, 21]. We also put all these relaxations into a unified framework, by viewing them
as versions of the MLE restricted to different parameter spaces, and show their
connection to the well-studied problem of sparse PCA. Empirically, the tighter
relaxation gives better results, and we derive a first-order SDP implementation via
ADMM which keeps computing costs reasonable.

On the theoretical side, our focus for the most part will be on balanced mod-
els, that is, those with equal community sizes. We obtain sufficient conditions on
the parameters of the block model for strong consistency (i.e., exact recovery of
communities) of our relaxation, SDP-1. These conditions guarantee success over
a wider class of SBMs than in previous literature. Current conditions for the suc-
cess of SDP relaxations implicitly impose what we will call strong assortativity,
whereas our SDP succeeds for any weakly assortative SBM (cf. Definition 4.1),
when the expected degree grows as �(logn). We also show that the requirement of
strong assortativity is necessary for the success of previous SDP relaxations (SDP-
2 and SDP-3 in Table 1), and it is not an artifact of proof techniques (Section 5).
Our proof of the success of SDP-1 is based on a primal-dual witness construction
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TABLE 1
SDP relaxations

SDP-1 SDP-2 SDP-3 EVT

Maximize 〈A,X〉 〈A,X〉 〈A,X〉 − λ〈En,X〉 〈A,X〉
Subject to X1n = (n/K)1n 〈En,X〉 = n2/K

diag(X) = 1n tr(X) = n tr(X) = n

X ≥ 0 0 ≤ X ≤ 1 |||X|||2 ≤ n/K

X � 0
Model PPbal(p, q) ≡Xorbit(X0) PP(p, q) ≡Xfree

which has already been used successfully in the context of sparse recovery prob-
lems; see, for example, [10, 54]. In the context of SDP relaxations for the SBM,
however, the only instance of this approach that we know of is the recent work
of [1], for the case of the K = 2 SBM. Our approach can be viewed as a nontrivial
extension of [1] to the case of general K , and a more complex SDP with the dou-
bly nonnegative cone constraint and more equality constraints. As a by-product,
we also recover the current results for SDP-2 for the class of strongly assortative
SBMs.

SDP-1, in its basic form, tends to partition the network into blocks of similar
sizes. This is sometimes an unwelcome feature in practice, and sometimes a de-
sirable one, since very large and very small communities are generally difficult
to interpret. If this feature is not desirable, SDP-1 can be modified to allow for
different block sizes, as discussed in Section 6. The equal sized blocks are espe-
cially suitable for constructing network histograms, a method for graphon estima-
tion proposed by [46]. Viewing the SBM as a nonparametric approximation to a
general reasonably smooth mean function of the adjacency matrix (the graphon)
is analogous to constructing a histogram to approximate a general smooth den-
sity function. A number of methods for graphon estimation have been proposed
recently [5, 55, 58], and the network histogram as a graphon estimator has been
proposed in [46]. A histogram is appealing because it is controlled by the number
of bins (blocks) K , which is a single parameter that can be chosen to balance fit-
ting the data with robustness to noise. In this case, it is particularly appropriate to
fit blocks of equal or similar sizes, just like in the usual histogram. We show em-
pirically in Section 8 that our SDP relaxation provides the best tool for histogram
estimation, as well as generally cleaner solutions, compared to other less tight SDP
relaxations and generic methods like spectral clustering.

The rest of the paper is organized as follows. In Section 2, we introduce the SBM
and its submodels. We derive a general blueprint for MLE relaxations in Section 3,
introduce our proposed SDP and compare with the ones existing in the literature,
including a brief discussion of the connection with sparse PCA. Section 4 presents
our consistency results for balanced block models, along with an overview of the



152 A. A. AMINI AND E. LEVINA

proofs. A result showing the failure of SDP-2 in the absence of strong assortativ-
ity (which is not needed for our relaxation) appears in Section 5. Extension to the
case of unbalanced communities is discussed in Section 6. Section 7 presents ap-
plication of SDP-1 to graphon estimation via fitting network histograms. Section 8
compares several SDPs numerically, and we conclude with a discussion in Sec-
tion 9. Technical details of the proofs and a brief discussion of a first-order method
for implementing SDP-1 can be found in the supplementary material [9].

Notation. We use ⊗ to denote Kronecker product of matrices, and ◦ to denote
Schur (element-wise) product of matrices. Sn denotes the set of symmetric n × n

matrices, and 〈A,X〉 := tr(AX) the corresponding inner product. (Sn
+,�) is the

cone of positive semidefinite (PSD) n × n matrices, and its natural partial order,
namely, A � B iff A−B ∈ S

n
+. En,m is the n×m matrix of all ones and En is the

n×n matrix of all ones. A n×1 vector of all ones is denoted 1n. ‖u‖ = ‖u‖2 is the
ℓ2 norm of vector u, and |||A||| = |||A|||2 is the ℓ2 → ℓ2 operator norm of matrix A.
ker(A) and range(A) denote the kernel (null space) and the range (column space)
of matrix A. diag : Rn×n → R

n acts on square matrices and extracts the diagonal.
diag∗ : Rn → R

n×n is the adjoint of diag, acting on vectors, producing the natural
diagonal matrix. For a matrix X, let supp(X) := {(i, j) : Xij �= 0} be its support.
More specialized notation is introduced in Section 4.2.

2. The stochastic block model. We now formally introduce the SBM. The
network data (nodes and edges connecting them) are represented by a simple undi-
rected graph on n nodes via its n × n adjacency matrix A, a binary symmetric
matrix with Aij = 1 if there is an edge between nodes i and j , and 0 otherwise.
Each node belongs to exactly one community, specified by its membership vector
zi ∈ {0,1}K , with exactly one nonzero entry, zik = 1, indicating that node i be-
longs to community k. The vectors zi are not observed. The SBM is parametrized
through the symmetric probability matrix � ∈ [0,1]K×K , where �kr is the proba-
bility of an edge forming between a pair of nodes from communities k and r . For
simplicity, we assume n is a multiple of K .

Given zi and � , {Aij , i < j} are drawn independently as Bernoulli random
variables with E[Aij |zi, zj ] = zT

i �zj . Let Z be the n × K matrix with rows
zT

1 , . . . , zT
n . Then we can write the model as

MZ := E[A|Z] = Z�ZT .(2.1)

Note that Aii’s are so far undefined. They can be defined based on convenience, but
we will always assume that they are defined so that (2.1) holds over all elements
(e.g., one possibility is to set Aii := [MZ]ii). We do not treat {Aii} as part of the
observed data.

MZ is a block constant, rank K matrix and we can think of the operation � �→
Z�ZT as a block constant embedding of a K × K matrix into the space of n × n
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matrices. This provides us with a simple but useful property: for any matrix M and
function f on R, let f ◦ M be the pointwise application of f to the entries of M ,
[f ◦ M]ij = f (Mij ). Then we have

f ◦
(
Z�ZT )= Z(f ◦ �)ZT .(2.2)

Using (2.2), we can write the log-likelihood of the SBM in a compact form. First,
note that

ℓ(Z,�) =
∑

i<j

Aij log[MZ]ij + (1 − Aij ) log
(
1 − [MZ]ij

)

=
∑

i<j

Aij [f ◦ MZ]ij + [g ◦ MZ]ij ,

where f (x) := log x
1−x

and g(x) := log(1 − x) are functions on [0,1]. Recall that
for symmetric matrices A and B , we defined 〈A,B〉 := tr(AB), and En is the
n×n matrix of ones. Let 〈A,B〉0 := 〈A,B〉−

∑
i AiiBii , that is, the inner product

defined through off-diagonal elements of A and B . Using (2.2),

2ℓ(Z,�) = 〈A,f ◦ MZ〉0 + 〈En, g ◦ MZ〉0
(2.3)

=
〈
A,Z(f ◦ �)ZT 〉

0 +
〈
En,Z(g ◦ �)ZT 〉

0.

In deriving the SDPs, our focus will be on the following two special cases of the
SBM. In Section 4, we will show the SDPs work for larger classes of SBMs than
those they are derived for.

(PP) The planted partition (PP) model, PP(p, q), defined by just two param-
eters p and q via

(2.4) � = qEK + (p − q)IK ,

where IK is the K × K identity matrix, and following the PP literature we assume
p > q . Note that (2.4) simply means that the diagonal elements are p and the
off-diagonal elements are q .

(PPbal) The balanced planted partition model, PPbal(p, q), which is PP(p, q)

with the additional assumption that the blocks have equal sizes.

For PP(p, q), the likelihood greatly simplifies, since f ◦ � and g ◦ � take only
two values,

f ◦ � = f (q)EK +
[
f (p) − f (q)

]
IK

and similarly for g ◦ � . Since ZEKZT = En, (2.3) becomes

2ℓ(Z,�) =
[
f (p) − f (q)

]〈
A,ZZT 〉

0 +
[
g(p) − g(q)

]〈
En,ZZT 〉

0 + const,
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where the constant term does not depend on Z. With the condition p > q , we have
f (p) > f (q) and g(p) < g(q). Then we obtain

2ℓ(Z,�)

f (p) − f (q)
(2.5)

=
〈
A,ZZT 〉− λ

〈
En,ZZT 〉+ const, λ :=

g(q) − g(p)

f (p) − f (q)
> 0.

Note that we have safely replaced 〈·, ·〉0 with 〈·, ·〉, possibly changing the constant,
since [ZZT ]ii = 1,∀i regardless of Z. A similar calculation appears in [17], albeit
in a slightly different form.

3. Relaxing the maximum likelihood estimator (MLE). Given the adja-
cency matrix A, the MLE for (Z,�) is obtained by maximizing the likelihood of
the SBM. It is known to have desirable consistency and in some sense optimality
properties [15], but the exact computation of the MLE is in general NP-hard, due
to the optimization over Z. However, it can be relaxed to computationally feasible
convex problems.

We can obtain a class of MLEs by varying the domain over which the likeli-
hood (2.5) is maximized. That is, we have the general estimator:

Ẑ := argmax
Z∈Z

〈
A,ZZT 〉− λ

〈
En,ZZT 〉.(3.1)

Each Z corresponds to a clustering matrix X = ZZT ∈ {0,1}n×n, where Xij = 1
if i and j belong to the same community, and Xij = 0 otherwise. Any subset Z
in the Z-space induces a corresponding subset X in the X-space. We can consider
estimators of X, and our blueprint for deriving different relaxations will be varying
the space X in the optimization problem

X̂ := argmax
X∈X

〈A,X〉 − λ〈En,X〉.(3.2)

3.1. Our relaxation: SDP-1. Our relaxation corresponds to the balanced
model PPbal(p, q), in which each community is of size n/K . In this case, all
admissible Z’s can be obtained by permutation of any fixed admissible Z0 =
IK ⊗ 1n/K , and we can take the feasible set Z in (3.1) to be

Zorbit(Z0) := {PZ0Q : P,Q are permutation matrices},
where ⊗ is the Kronecker product and 1n/K is the vector of all ones of length
n/K . This choice of Z0 is for convenience and corresponds to assigning nodes
consecutively to communities 1 through K . Recalling X = ZZT , the correspond-
ing feasible set in the X-space is

Xorbit(X0)
(3.3)

:=
{
PX0P

T : P is a permutation matrix
}
, X0 = IK ⊗ En/K .

Note that X0 is block-diagonal with all the diagonal blocks equal to En/K .
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In order to relax Xorbit(X0), we first note that any X in this set is clearly positive
semidefinite (PSD), denoted by X � 0, since X = (PZ0)(PZ0)

T . In addition, 0 ≤
Xij ≤ 1 for all i, j , which we write as 0 ≤ X ≤ 1, and diag(X) = 1n. Note that the
latter condition, X � 0 and X ≥ 0 imply X ≤ 1, since 1 −X2

ij = XiiXjj −X2
ij ≥ 0

implying Xij = |Xij | ≤ 1. Finally, it is easy to see that each row of X should sum
to n/K , that is, X1n = (n/K)1n. This implies we can remove the term λ〈En,X〉
from the objective function in (3.2), since

〈X,En〉 = tr
(
X1n1T

n

)
= 1T

n X1n = 1T
n (n/K)1n = n2/K,(3.4)

which is a constant. Thus, we arrive at our proposed relaxation, SDP-1:

argmaxX 〈A,X〉
(3.5)

subject to X1n = (n/K)1n, diag(X) = 1n, X � 0,X ≥ 0.

3.2. Other relaxations: SDP-2 and SDP-3. Two other interesting SDP relax-
ations have recently appeared in the literature. First, we will consider the relax-
ation of Chen and Xu [21]; see also [20]. They essentially work with the same
PPbal(p, q), although their model is slightly more general (see Remark 3.1). The
main relaxation proposed in [21] is via constraining the nuclear norm of X, a com-
mon heuristic for constraining the rank. Since X is PSD, we obtain |||X|||∗ =
tr(X) = n. In addition, they impose a single affine constraint, namely (3.4). Thus,
their main focus is on the relaxation which replaces Xorbit(X0) with {X : |||X|||∗ ≤
n, 〈X,En〉 = n2/K,0 ≤ X ≤ 1}. However, they briefly mention a much tighter
SDP relaxation which imposes positive semidefiniteness directly. This is what we
have called SDP-2, shown in Table 1.

Note that X � 0 and tr(X) = n imply |||X|||∗ = n, which is much tighter than
|||X|||∗ ≤ n. The main difference between SDP-2 and our relaxation is that we im-
pose the constraint 〈En,X〉 = n2/K more restrictively, by breaking it into n sepa-
rate affine constraints. We also break the tr(X) = n into n pieces, but that does not
seem to make much of a difference.

Next, we consider the relaxation of Cai and Li [17], though in a slightly different
form. This relaxation works for the more general model PP(p, q). In this case, we
are looking at the feasible set

Xfree =
{
X = ZZT : Z is an admissible membership matrix

}
.(3.6)

For X ∈ Xfree, we still have X � 0 and Xij ∈ {0,1}. Thus, one can simply relax to
the problem denoted by SDP-3 in Table 1.

Note that λ〈En,X〉 remains in the objective, since there are no constraints to
make it constant. We cannot enforce an affine constraint involving 〈En,X〉 directly
for Xfree without knowing the block sizes. In fact, let n = (n1, . . . , nK) be the
vector of block sizes, and let En := diag∗(En1, . . . ,EnK

) be the block-diagonal
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matrix with diagonal blocks of all ones with sizes given by n. It is easy to see that
Xfree is the union of orbits of all possible En,

Xfree =
⋃

n:‖n‖1=n

Xorbit(En) =
⋃

‖n‖1=n

{
PEnP T : P is a permutation matrix

}
(3.7)

from which it follows that 〈En,X〉 = ‖n‖2
2 =

∑
j n2

j , a function of the unknown
{nj }.

The optimal value for parameter λ, assuming the model is PP(p, q), is given
in (2.5) as a function of p and q . However, one can think of λ as a general reg-
ularization parameter controlling the sparseness of X, noticing 〈En,X〉 = ‖X‖1
since X ≥ 0. It is well known that the ℓ1 norm is a good surrogate for a cardinal-
ity constraint when enforcing sparseness, which leads us to a link to sparse PCA
discussed in Section 3.3.

REMARK 3.1. Both [21] and [17] consider the effect of outliers on their SDPs.
Cai and Li [17] derive the SDP for the model we described but they modify it by
penalizing the trace, which is justified by their theory for a fairly general model of
outliers. Chen and Xu [21] start with a generalized version of PPbal(p, q) which
allows for a subset of nodes that belong to no community, and relax that model. Our
relaxation SDP-1 can also work for this generalized model if we replace X1n =
(n/K)1n with the inequality version X1n ≤ (n/K)1n. This has an advantage over
Chen and Xu’s approach, since one does not need to know the number of outliers
a priori.

3.3. Connection with nonnegative sparse PCA. Representation (3.7) suggests
another natural direction to restrict the parameter space. Note that ‖n‖∞ =
maxj nj ∈ [n/K,n], as a consequence of ‖n‖1 = n. The closer ‖n‖∞ is to n/K ,
the more balanced the communities are. This suggests the following class:

X
γ
free :=

⋃{
Xorbit(En) : ‖n‖1 = n,‖n‖∞ ≤ γ (n/K)

}
,(3.8)

where γ ∈ [1,K] measures the deviation from completely balanced communities.
For X ∈ X

γ
free, note that |||X|||2 = |||En|||2 = maxj |||Enj

|||2 = ‖n‖∞ ≤ γ (n/K). As
before, we have tr(X) = n, ‖X‖1 = 〈En,X〉, and X ∈ N n

+ := {X : X � 0,X ≥ 0},
the doubly nonnegative cone. Letting X̃ = (K/n)X, we have

argmaxX̃ 〈A, X̃〉 − λ‖X̃‖1
(3.9)

subject to |||X̃|||2 ≤ γ, tr(X̃) = K, X̃ � 0, X̃ ≥ 0.

Apart from the nonnegative constraint X̃ ≥ 0 (which can be removed to obtain a
further relaxation), this is a generalization of the SDP relaxation for sparse PCA.
Specifically, γ = 1 corresponds to the now well-known relaxation for recovering
a sparse K-dimensional leading eigenspace of A. The corresponding solution X̃
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can be considered a generalized projection into this subspace (see, e.g., [22, 53]),
and note that X̃ � 0, |||X̃|||2 ≤ 1 is equivalent to 0 � X̃ � I . We will not pursue this
direction here, but it opens up possibilities for leveraging sparse PCA results in
network models.

3.4. Connection with adjacency-based spectral clustering. The first step in
spectral clustering based on the adjacency matrix is the truncation of A to its K

largest eigenvalues, which we call eigenvalue truncation (EVT). The resulting ma-
trix X̃ is the solution of a SDP maximizing 〈A, X̃〉 subject to X̃ � 0, tr(X̃) =
K, |||X̃|||2 ≤ 1. We can consider X := (n/K)X̃ as an estimate of the cluster ma-
trix by EVT. The resulting SDP appears in Table 1, and will be our surrogate to
compare the other SDPs to this particular version of spectral clustering. We should
note that the more common form of spectral clustering, based on truncation to K

largest eignevalues in absolute value is equivalent to applying EVT to |A| =
√

A2.
The SDP formulation of EVT can be considered a relaxation of the MLE in

PPbal, similar to the other SDPs we have considered. It is enough to note that
|||X|||2 = |||X0|||2 = n/K for any X ∈ Xorbit(X0). Also note that SDP-1 is a strictly
tighter relaxation than EVT. To see that, take any X which is feasible for SDP-1,
and note that X1n = (n/K)1n means that 1n is an eigenvector of X associated with
eigenvalue n/K . The Perron–Frobenius theorem then implies that |||X|||2 ≤ n/K ;
hence, X is feasible for EVT.

4. Strong consistency results. In this section, we provide consistency results
for SDP-1 and a variant of SDP-2, which we will call SDP-2′. This version is ob-
tained from SDP-2 by replacing tr(X) = n with diag(X) = 1n and removing the
now redundant condition X ≤ 1. This modification allows us to unify the treat-
ment of these two SDPs. For example, optimality conditions in Section 4.2.2 are
derived for a general blueprint (4.9), which includes both SDP-1 and SDP-2′ as
special cases. The consistency results will go beyond the PPbal(p, q) model origi-
nally used in deriving them. Consider a general balanced block model, denoted as
BMbal(�) = BMbal

m (�) with block size m, and probability matrix � ∈ [0,1]K×K .
Note the relationship n = mK between the number of nodes n, the block size m

and the number of blocks K . For notational consistency, we will denote diagonal
and off-diagonal entries of � differently:

pk := �kk, qkℓ := �kℓ, k �= ℓ.(4.1)

The balanced planted partition model PPbal(p, q) = PPbal
m,K(p, q) is a special case

of BMbal
m (�) where pk = p and qkℓ = q for all k, l.

We start with defining two notions of assortativity that will be key in our results.
Let

q∗
k := max

r=k,s �=k
qrs = max

r �=k,s=k
qrs .(4.2)
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DEFINITION 4.1 (Strong and weak assortativity). Consider the balanced
block model BMbal

m (�) determined by (4.1):

• The model is strongly assortative (SA) if mink pk > maxk q∗
k .

• The model is weakly assortative (WA) if pk > q∗
k for all k.

An alternative way to state strong assortativity is mink pk > max(k,ℓ):k �=ℓ qk,ℓ.
Strong assortativity implies weak assortativity. See (8.1) for an example where
weak assortativity holds but not the strong one.

These definitions apply to general block models since they are defined only
in terms of the edge probability matrix � . We also define a partial order among
balanced block models, which reflects the hardness of recovering the underlying
cluster matrix X.

DEFINITION 4.2 (Strong assortativity (SA) ordering). The collection
{BMbal

m (�) : � ∈ [0,1]K×K ∩ S
K} is partially ordered by

BMbal
m (�̃) ≥ BMbal

m (�) ⇐⇒ p̃k ≥ pk, q̃kℓ ≤ qkℓ, ∀k �= ℓ.(4.3)

This ordering or the one induced on matrices in [0,1]K×K ∩ S
K is referred to as

SA-ordering.

Intuitively, for assortative models BMbal
m (�̃) ≥ BMbal

m (�) implies that
BMbal

m (�̃) is easier than BMbal
m (�) for cluster recovery. This will be made pre-

cise in Corollary 4.2 in Section 4.2.1. For example, consider a strongly assortative
model BMbal(�) where

p− := min
k

pk > max
(k,ℓ):k �=ℓ

qk,ℓ =: q+.(4.4)

Then it is easy to see that BMbal(�) ≥ PPbal(p−, q+), roughly meaning that fitting
BMbal(�) is not harder than fitting PPbal(p−, q+).

In order to study consistency, we always condition on the true cluster matrix,
which is taken to be X0 := IK ⊗Em without loss of generality. Let S0 := supp(X0)

be the index set of nonzero elements of X0. We write SDPsol(A) for the solution
set of the SDP for input A, where SDP is any of SDP-1, SDP-2 or SDP-3, which
will be clear from the context. In this notation, SDPsol(A) = {X0} means that X0
is the unique solution of the SDP, in which case we say that the SDP is strongly

consistent for cluster matrices.

REMARK 4.1. Our notion of consistency here is stronger than what is com-
monly called strong consistency in the literature [8, 15, 44, 59]. Strong consistency
for an algorithm that outputs a set of community labels usually means exact recov-
ery of labels up to a permutation of communities, with high probability. Viewing
SDPs as algorithms that output the cluster matrix X̂, here by strong consistency
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we mean the exact recovery of X0, which immediately implies exact label recov-
ery. We note, however, that in some regimes one can recover labels exactly even
when the output X̂ of an SDP is not exact. For example, one can run a community
detection algorithm on X̂, say spectral clustering; see Algorithm 1 in Section 7.
However, if the labels are inferred directly from X̂ (if X̂ corresponds to a graph
with K disjoint connected components, then output the labels implied by the com-
ponents; otherwise, output random labels), then our notion of strong consistency
matches the standard one in the literature.

A key piece in our results will be the following matrix concentration inequality
noted recently by many authors; see, for example, [21, 35, 52] and the references
therein. Results of this type are often based on the refined discretization argument
of [25].

PROPOSITION 4.1. Let A = (Aij ) ∈ {0,1}n×n be a symmetric binary matrix,
with independent lower triangle and zero diagonal. There are universal positive

constant (C,C′, c, r) such that if

max
ij

Var(Aij ) ≤ σ 2 for nσ 2 ≥ C′ logn

then with probability at least 1 − cn−r ,

|||A −EA||| ≤ Cσ
√

n.

In what follows, (C,C′, c, r) will always refer to the constants in this propo-
sition. Our first result establishes consistency of SDP-2′ for the balanced planted
partition models. We will work with two rescaled version of p, namely

p̄ := pm = p
n

K
, p̃ :=

p̄

logn
,(4.5)

and similarly for q̃ , q̄ and q .

THEOREM 4.1 (Consistency of SDP-2′). Let A be drawn from PPbal
m,K(p, q).

For any c1, c2 > 0, let C1 := C′ ∨ 4
9(c1 + 1) and C2 := C + (

√
4(c1 + 1) ∨

3
√

4(c2 + 1)). Assume p̃ ≥ C1. Then, if

p̃ − q̃ > C2(
√

p̃ +
√

q̃K),(4.6)

SDP-2′ is strongly consistent with probability at least 1−c(Km−r +n−r)−n−c1 −
2m−1n−c2 .

As a consequence, we get consistency for a strongly assortative block model.
More precisely, Theorem 4.1 combined with Corollary 4.2 in Section 4.2.1 gives
the following.
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COROLLARY 4.1 (Consistency of SDP-2′ for the strongly assortative case).
Let A be drawn from a strongly assortative BMbal

m (�). Then the conclusion of

Theorem 4.1 holds with (p, q) replaced with (p−, q+) as defined in (4.4).

Note that Theorem 4.1 and its corollary automatically apply to SDP-1, be-
cause it is a tighter relaxation of the MLE than SDP-2′. However, SDP-1 succeeds
for the much larger class of weakly assortative block models, as reflected in our
main result, Theorem 4.2 below. Recall the notation q∗

k defined in (4.2) and write
q∗

max = maxk q∗
k = maxk �=ℓ qkℓ. The scaled versions q̃∗

k , q̄∗
k and q̃∗

max, q̄
∗
max are de-

fined based on q∗
k and q∗

max as in (4.5).

THEOREM 4.2 (Consistency of SDP-1). Let A be drawn from a weakly as-

sortative BMbal
m (�). For any c1, c2 > 0, let C1 := C′ ∨ 4

9(c1 + 1) and C2 :=
(
√

4(c1 + 1) + C) ∨ (6
√

2(c2 + 1)). Assume mink p̃k ≥ C1. Then, if

min
k

[(
p̃k − q̃∗

k

)
− C2

(√
p̃k +

√
q̃∗
k

)]
> C

√
q̃∗

maxK

logn
,(4.7)

SDP-1 is strongly consistent with probability at least 1−c(Km−r +n−r)−n−c1 −
2m−1n−c2 .

Note that for any weakly assortative BMbal
m (�) with fixed K and constant en-

tries of � , condition (4.7) holds for large n and hence SDP-1 is strongly consistent.
We show in Section 5 that SDP-2′ fails in general outside the class of strongly as-
sortative block models.

REMARK 4.2. Our result for SDP-2 can be slightly strengthened by stat-
ing (4.6) as in (4.7) with p̃k ≡ p̃ and q̃k,ℓ ≡ q̃ . This gives a better threshold in
the case where q̃ → ∞ but q̃/ logn → 0.

REMARK 4.3. One can define strong and weak disassortativity by replacing
pk and qkℓ with −pk and −qkℓ, respectively, in Definition 4.2. The results then
hold if one applies the SDPs to −A in the disassortative case.

REMARK 4.4. Another way to express conditions of Theorem 4.1 is in terms
of the alternative parametrization (d,β) where d := p̄ + (K − 1)q̄ is the expected
node degree, and β := q/p = q̄/p̄ is the out-in-ratio. A slight weakening of con-
dition (4.6), using (a + b)2 ≤ 2(a2 + b2), gives

(p̄ − q̄)2 � (p̄ + q̄K) logn ⇐⇒ d �

(
1 + Kβ

1 − β

)2
logn,(4.8)

where we have used d ≍ p̄ + Kq̄ . We also need p̄ � logn which translates to
d � (1+Kβ) logn, which is implied by (4.8). In particular, for fixed β , it is enough
to have d = �(K2 logn) for SDP-2′ (and hence SDP-1) to be strongly consistent.
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The proof of Theorem 4.2 appears in Section 4.3 with some of the more tech-
nical details deferred to the Appendices. The proof of Theorem 4.1 is similar and
appears in the supplementary material [9] (Section 10.1).

4.1. Comparison with other consistency results. Rigorous results about the
phase transition in the so-called reconstruction problem for the 2-block balanced
PP model, that is, recovering a labeling positively correlated with the truth, in
the sparse regime where d = O(1), have appeared in [37, 42, 43] after origi-
nally conjectured by [23]. For K = 2, the problem of exact recovery in PP has
recently been studied in [1, 44], where the exact recovery threshold is obtained
when d = �(logn), the minimal degree growth required for exact recovery. Mos-
sel et al. [44] also discusses exact thresholds for weak consistency, that is, fraction
of misclassified labels going to zero. Abbe et al. [1] also analyzed the MAXCUT
SDP showing a consistency threshold within constant factor of the optimal. Since
the earlier draft of our manuscript, more refined analyses of SDPs for balanced
PP have appeared in [28, 29], as well as [2] which obtains the exact threshold for
a general SBM, by a two-stage approach with no SDP involved. In [28], the ar-
gument in [1] is refined to show that MAXCUT SDP achieves the threshold of
exact recovery with optimal constant, for the case K = 2. In [29], the analysis is
extended to the general K , for an SDP which interestingly is equivalent to what
we have called SDP-1, showing that it achieves optimal exact recovery threshold.
This threshold is equivalent, up to constants, to that obtained in [21], and hence
to (4.8) as will be discussed below. The analysis in [29] also provides the exact
constant and an extension to the unbalanced case.

For the PP model with general K , [21] provides sufficient conditions for strong
consistency of their nuclear norm relaxation of the MLE. These conditions au-
tomatically apply to SDP-2′ and SDP-1 since they are tighter relaxations. More
precisely, their model, in the zero outliers case, coincides with PPbal(p, q) and
their sufficient conditions translate to (p − q)2(n/K)2 � p(n/K) logn + qn.
A slightly weaker version, obtained by replacing q with q logn, reads (p̄ − q̄)2 �
(p̄ + q̄K) logn which is the one we have obtained in (4.8) as a consequence of
Theorem 4.1. The stronger version also follows from our proof; see Remark 4.2.
Interestingly, exactly the same condition (4.8), is established in [17] for SDP-3,
when specialized to PPbal(p, q), the case with zero outliers. In other words, re-
sults of the form predicted by Theorem 4.1 already exist for SDP relaxations of
the block model, albeit using different proof techniques. On the other hand, we are
not aware of any results like Theorem 4.2, which guarantees success of SDP-1 for
weakly assortative block models. A somewhat different condition amounting to
(p̄ − q̄)2 �mK2p̄ and np = Kp̄ ≥ logn is implied by the results of [35] for spec-
tral clustering based on the adjacency matrix, which we have called eigenvalue
truncation (EVT). We note that the dependence on K is worse than in the SDP
results, among other things. This is corroborated empirically in Section 8, which
shows SDPs outperform EVT for larger values of K .
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We should point out that there is a somewhat parallel line of work regard-
ing relaxations for clustering problems. For example, a variant of SDP-1 [with
diag(X) = 1n replaced with tr(X) = n] has been proposed as a relaxation of the
K-means or normalized K-cut problems [47, 56]. However, theoretical analysis of
SDPs in the clustering context have only recently began. See, for example, [11] for
a recent analysis, using a probabilistic model of clusters. An earlier line of work re-
formulates the clustering problem as instances of the planted partition model and
analyzes an SDP relaxation for cluster recovery [7, 38]. The planted K-disjoint
clique model in [7] and the fully random model of [38] both can be considered
as special case of the planted partition model. The analysis in [38] is in particu-
lar interesting for analyzing an SDP with triangle-inequality type constraints and
providing approximation bounds relative to the optimal combinatorial solution.

Recently, a very interesting paper [27] analyzed the performance of SDP relax-
ations in the sparse regime where d = O(1). They showed that as long as the fea-
sible region is contained in the so-called Grothendieck set {X � 0,diag(X) ≤ 1},
the SDPs can achieve arbitrary accuracy, with high probability, assuming that
(p̄ − q̄)2/(p̄ + q̄K) is sufficiently large. These results are complementary to ours
and show that all the SDPs in Table 1 are capable of approximate recovery in the
sparse regime.

As a testament to the resurgence of interest in SDP relaxations for community
detection, while this paper was under review, the following have appeared in the
literature: On exact recovery for general K [3], [48] and for K = 2 [12], on the
performance in the sparse regime [31, 41], on local optima of rank-restricted ver-
sions [40], on relation to Probably Certifiably Correct algorithms [13], on robust-
ness [39] and on extensions to the case with node covariates [57]. In particular, [31,
40] provide encouraging results on scalability of SDPs for community detection.
Their approach is based on solving rank-restricted versions of SDPs as nonconvex
optimization problems, going back to the seminal work of [16]. The results in [31,
40] suggest that the rank can be taken to be much smaller for community detection
problems than the previous known bound in [16].

4.2. Some useful general results. Here, we collect some general observations
on solutions of SDPs which will be useful in proving Theorems 4.1 and 4.2. Let
Sk be the indices of the kth community. We have |Sk| = m. Let XSkSj

be the sub-
matrix of X on indices Sk × Sj , and XSk

:= XSkSk
. Let 1Sk

∈ R
n be the indicator

vector of Sk , equal to one on Sk and zero elsewhere. ES0 ∈ {0,1}n×n denotes the
indicator matrix of S0 ⊂ [n]2. Let en

k , or simply ek , be kth unit vector of Rn. Let
span{1Sk

} and span{1Sk
}⊥ denote the subspace spanned by {1S2,1S2, . . . ,1SK

} and
its orthogonal complement. Let d(Sk) ∈ R

n be the vector of node degrees relative
to the subgraph induced by Sk , d(Sk) = A1Sk

= ASk
1m. Note that [d(Sk)]Sk

∈ R
m

is the subvector of d(Sk) on indices Sk .
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4.2.1. SDPs respect SA-ordering. The following lemma formalizes an intu-
itive fact on how SDPs interact with the SA-ordering of Definition 4.2. The proof
is given in the supplementary material [9] (Section 9).

LEMMA 4.1. Let Ã ∈ S
n be obtained from A by setting some elements off S0

to zero and some elements on S0 to one. Then, for either of SDP-1 or SDP-2′,

SDPsol(A) = {X0} =⇒ SDPsol(Ã) = {X0}.

The lemma generalizes to any optimization problem that maximizes X �→
〈A,X〉, and has its feasible region included in {X : 0 ≤ X ≤ 1}. An immediate
consequence is the following probabilistic version for SBMs, stated conditionally
on the true cluster matrix X0.

COROLLARY 4.2. Assume BMbal
m (�̃) ≥ BMbal

m (�), and let Ã ∼ BMbal
m (�̃)

and A ∼ BMbal
m (�). Then, for either of SDP-1 or SDP-2′,

P
(
SDPsol(Ã) = {X0}

)
≥ P

(
SDPsol(A) = {X0}

)
.

This corollary allows us to transfer consistency results for SDPs regarding a
particular SBM to any SBM that dominates it. It also allows us to inflate off-
diagonal entries of � for a general BMbal(�) without loss of generality. More
precisely, we will assume in the course of the proof that off-diagonal entries of �

satisfy certain lower bounds to ensure concentration. These lower bounds can then
be safely discarded at the end by Corollary 4.2.

4.2.2. Optimality conditions. Consider the following general SDP:

max 〈A,X〉

s.t. diag(X) = 1n, L2(X) = b2(4.9)

X � 0, X ≥ 0,

where L2 is a linear map from S
n to R

s for some integer s, and b2 ∈ R
s . This is

a blueprint for both SDP-1 and SDP-2′. Let L1(X) := diag(X) and b1 = 1n. Then
L(X) := (L1(X),L2(X)) = (b1, b2) =: b summarizes the linear constraints for the
SDP. The dual problem is

min 〈μ,b2〉 +
∑

i

νi

s.t. L
∗
2(μ) + diag∗(ν) � A + Ŵ, Ŵ ≥ 0,

where μ ∈ R
s , ν ∈R

n and Ŵ ∈ S
n, and the minimization is over the triple (μ, ν,Ŵ)

of dual variables. L∗
2 is the adjoint of L2 and diag∗ is the adjoint of diag. Letting

� := �(μ,ν,Ŵ) := L
∗
2(μ) + diag∗(ν) − A − Ŵ,(4.10)
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the (KKT) optimality conditions are

Primal Feas. X � 0, X ≥ 0, L(X) = b,

Dual Feas. � � 0, Ŵ ≥ 0,

Comp. Slackness (a) ŴijXij = 0, ∀i, j, (CSa)
Comp. Slackness (b) 〈�,X〉 = 0. (CSb)

Another way to state (CSa) is to write Ŵ ◦ X = 0 where ◦ denotes the Schur
(element-wise) product of matrices.

The primal-dual witness approach that we will use in the proofs is based on
finding a pair of primal and dual solutions that simultaneously satisfy the KKT
conditions. The pair then witnesses strong duality between the primal and dual
problems implying that it is an optimal pair.

4.2.3. Sufficient conditions for exact recovery. We would like to obtain suffi-
cient conditions under which the true cluster matrix X0 = IK ⊗ Em is the unique
solution of the primal SDP. Complementary slackness (a), or (CSa), implies that
we need ŴSk

= 0 for all k, while we are free to choose ŴSkSj
for j �= k, using the

submatrix notation.
Since both X0 and � are PSD, (CSb) is equivalent to �X0 = 0, which is in turn

equivalent to range(X0) ⊂ ker(�). Note that X0 has K nonzero eigenvalues, all
equal to m, corresponding to eigenvectors {1Sk

}Kk=1, where 1Sk
∈ R

n is the indicator
vector of Sk . Hence, range(X0) = span{1Sk

}, and (CSb) for X0 is equivalent to

span{1Sk
} ⊂ ker(�).

The following lemma, proved in the supplementary material [9] (Section 10), gives
conditions for X0 to be the unique optimal solution.

LEMMA 4.2. Assume that Ŵ is dual feasible (i.e., Ŵ ≥ 0), and for some μ ∈R

and ν ∈ R
n:

(A1) ker(�(μ, ν,Ŵ)) = span{1Sk
}, and �(μ,ν,Ŵ) � 0,

(A2) ŴSk
= 0,∀k,

(A3) Each ŴSkSℓ
, k �= ℓ has at least one nonzero element.

Then X0 is the unique primal optimal solution, and (μ, ν,Ŵ) is dual optimal.

Note that condition (A1) is satisfied if for some ε > 0,

�1Sk
= 0, ∀k,(4.11)

uT �u ≥ ε‖u‖2
2, ∀u ∈ span{1Sk

}⊥.(4.12)
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4.3. Proof of Theorem 4.2: Primal-dual witness for SDP-1. Let �i = ei1
T
n +

1ne
T
i ∈ S

n where ei = en
i is the ith standard basis vector in R

n. We note that
〈X,�i〉 = tr(X�i) = 2(X1n)i . Thus, SDP-1 is an instance of (4.9), with L2(X) =
(〈X,�i〉)ni=1 and b2 = 2m1n. The corresponding adjoint operator is L∗

2(μ) =∑n
i=1 μi�i = μ1T

n + 1nμ
T . Thus [cf. (4.10)],

� = �(μ,ν,Ŵ) =
(
μ1T

n + 1nμ
T )+ diag∗(ν) − A − Ŵ.(4.13)

The following summarizes our primal-dual construction in this case:

νSk
=
[
d(Sk)

]
Sk

− φkm1m, μSk
:=

1

2
φk1m,

(4.14)
ŴSk

:= 0,

ŴSkSℓ
:= μSk

1T
m + 1mμT

Sℓ
+ P1⊥

m
ASkSℓ

P1⊥
m

− ASkSℓ
,

(4.15)

=
1

2
(φk + φℓ)Em + P1⊥

m
ASkSℓ

P1⊥
m

− ASkSℓ
, k �= ℓ

for some numbers {φk}Kk=1 to be determined later. Note that μ is chosen to be
constant over blocks, but these constants can vary between blocks. We have the
following analogue of Lemma 10.2. Recall that ES

c
0

is the indicator matrix of S
c
0

where S0 is the support of X0.

LEMMA 4.3. Let (μ, ν,Ŵ) be as defined in (4.14)–(4.15). Then Ŵ verifies (A2)
and (4.11) holds. In addition:

(a) Ŵ is dual feasible, that is, Ŵ ≥ 0, if for all i ∈ Sk, j ∈ Sℓ, ℓ �= k,

1

2
(φk + φℓ)m ≥ di(Sℓ) + dj (Sk) − dav(Sk, Sℓ),(4.16)

and satisfies (A3) if at least one inequality is strict for each pair k �= ℓ.
(b) Ŵ verifies (4.12) if for ρk := mini∈Sk

di(Sk)/m,

(4.17) min
k

[
(ρk − φk)m − |||�k|||

]
> |||ES

c
0
◦ �|||.

This lemma amounts to a set of deterministic conditions for the success of
SDP-1. To complete the proof of Theorem 4.2, we develop a probabilistic ana-
logue by choosing φk ≈ q̄∗

k and using the key inequality q̄kℓ ≤ 1
2(q̄∗

k + q̄∗
ℓ ). See

Appendix B for details.

5. Failure of SDP-2′ in the absence of strong assortativity. We now show
that strong assortativity is a necessary condition for exact recovery in SDP-2′. For
this purpose, it is enough to focus on the noiseless case, that is, when the input to
the SDP is the mean matrix of the block model. If SDP-2′ fails on exact recovery of
the true population mean, there is no hope of recovering its noisy version, that is,
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the adjacency matrix. The following result is deterministic and nonasymptotic. In
particular, it holds without any constraints on the expected degrees (besides those
imposed by assortativity assumptions). We will state it in a slightly more general
form than is needed here, including the case of general block sizes. Keeping con-
sistency with earlier notation, we let ESkSℓ

∈ {0,1}n×n be the indicator matrix of
the set Sk × Sℓ, and ESk

:= ESkSk
. Similarly, ISk

is the n × n identity matrix with
elements outside Sk × Sk set to zero, that is, ESkSℓ

is not a submatrix of En, but a
masked version of it.

PROPOSITION 5.1. Let E[A] be the mean matrix of a weakly assortative block

model. Assume that the blocks are indexed by Sk ⊂ [n] where |Sk| = nk , for k =
1, . . . ,K . For some I ⊂ [n] = {1, . . . , n}, to be determined, consider a solution of

the form

X =
∑

k∈I

∑

ℓ∈I

αkℓESkSℓ
+
∑

k /∈I

[
βkESk

+ (1 − βk)ISk

]
, αkℓ = αℓk,(5.1)

with αkk = 1, k ∈ I and βk ∈ [0,1) for k /∈ I . Then the following hold:

(a) Assume that argmaxk �=ℓ qkℓ = {(k0, ℓ0)} and let I := {k : pk ≥ qk0ℓ0}. Fur-

thermore, let m := mink nk , ξk := nk/m and

α∗
k0ℓ0

:=
1

2ξk0ξℓ0

[(
1 −

1

m

)∑

k /∈I

ξk −
∑

k∈I

ξk(ξk − 1)

]
.(5.2)

If α∗
k0ℓ0

∈ [0,1], then SDP-2′, applied with A = E[A] and m = mink nk has (5.1)
as solution, with αkℓ = α∗

k0ℓ0
1{{k, ℓ} = {k0, ℓ0}} and βk = 0 for all k /∈ I .

(b) Assume that the given block model is balanced and let I c := [K] \ I =
{k : pk < qk0ℓ0} where I and (k0, ℓ0) are defined in part (a). If |I c| ≤ 2, then the

conclusion of part (a) holds with α∗
k0ℓ0

= 1
2(1 − 1/m)|I c|.

(c) Assume that the given block model is balanced and weakly but not strongly

assortative. Let SDPsol(·) be the solution set of SDP-2′. Then SDPsol(E[A]) �=
{X0}.

We note that part (c) establishes the failure of SDP-2′ once strong assortativity is
violated. We prove the proposition in Section 14 of the supplementary material [9].
The conclusions of both parts (a) and (b) hold even in the strongly assortative case.
However, in that case, the set I c will be empty and the conditions in part (a) cannot
be met, whereas part (b) gives the expected result of X = X0. The interesting
case occurs when strong assortativity is violated, which gives a nonempty set I c.
Since βk = 0 for k ∈ I c, this shows that SDP-2′ fails to recover those blocks. The
condition |I c| ≤ 2, in the balanced case, might seem restrictive, but it is enough for
our purpose of establishing part (c). In general, that is, with no assumption on |I c|,
SDP-2′ still misses the blocks violating strong associativity, though the nonzero-
block portion of X, namely, (αkℓ)k,ℓ∈I takes a more complicated form. In parts (a)
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FIG. 1. Illustration of Propositions 6.1 and 5.1. This block model is weakly but not strongly assor-

tative, and has unequal block sizes n = (10,10,5,20,10,10). The leftmost column is the population

mean, and the rest of the columns are the results of various SDPs, with m = mink nk , and equal

regularization parameters in the case of SDP-3 and SDP-13 (λ = μ). The ideal cluster matrix is also

shown for comparison. See Section 17 in the supplementary material [9] for more details.

and (b), at most one nondiagonal element of (αkℓ) is nonzero whereas in general
several such elements will be nonzero. These ideas are illustrated in Figure 1,
with more detailed discussion in Section 6.1 of the supplementary material [9], in
particular, with an application of part (a), in the unbalanced case with |I c| > 2.

6. Extensions to the unbalanced case. Let us discuss how our results can be
extended to the unbalanced case. Recall that, in general, n = (n1, . . . , nK) denotes
the vector of block sizes. One could argue that as long as (mink nk)/n ≥ C for
some constant C > 0, that is, {nk/n}k is bounded away from zero, the problem
of block model recovery is not inherently more difficult than that of the balanced
case. To simplify our discussion, we focus on the noiseless case from which the
results can be extended to the aforementioned bounded block-size regime. We will
show that in a weakly assortative block model, SDP-1 applied with m = mink nk

recovers all the blocks, albeit some imperfectly. We also consider the following
mixture of SDP-1 and SDP-3, which we will call SDP-13:

max
X

〈A,X〉 − μ〈En,X〉,

s.t. diag(X) = 1n, X1n ≥ m1n,(6.1)

X � 0, X ≥ 0,

and show that when applied with m ≤ mink nk and appropriate choice of μ, it too
recovers the blocks with improvements over SDP-1. Without loss of generality, let
us sort the blocks so that p1 ≥ p2 ≥ · · · ≥ pK .

PROPOSITION 6.1. Let E[A] be the mean matrix of a weakly assortative block

model, with blocks indexed by Sk ⊂ [n] where |Sk| = nk , for k = 1, . . . ,K . Con-

sider a solution of the form

X =
K∑

k=1

αkESk
+ (1 − αk)ISk

, αk ∈ (0,1].(6.2)

The following hold:
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(a) SDP-1 applied with A = E[A] and m ≤ mink nk has (6.2) as a solution with

αk = (m − 1)/(nk − 1) for all k.
(b) Consider I := {k : nk > m} and I1(k) := {r ∈ I : r ≤ k}. Let Jk :=⋂k
r=1[q∗

r ,pr ]. Define k0 := max{k : Jk �= ∅}. Then SDP-13, applied with A =
E[A], m ≤ mink nk and

μ ∈ Jk0 ∩ [pk0+1,1], (pK+1 := 0),

has (6.2) as a solution with

αk =
{

1 k ∈ I1(k0),

(m − 1)/(nk − 1) otherwise.

The key difference between the solution presented in Proposition 6.1 and that of
Proposition 5.1 is that in the former, all αk are guaranteed to be nonzero, whereas
in the latter, αk ≡ βk corresponding to blocks violating weak assortativity are zero.
Let us call the blocks in (6.2) for which αk ∈ (0,1), as imperfectly-recovered,
while those with αk = 1 as perfectly recovered. The result of Proposition 6.1 can
be summarized as follows: Both SDP-1 and SDP-13, with properly set parame-
ters, recover all the blocks at least imperfectly, while SDP-13 has the potential to
recover more blocks perfectly. Note that this is in contrast to the partial recovery

of SDP-2′ in Proposition 5.1 where some of the blocks are completely missing
from the solution, namely, those with αk ≡ βk = 0. (Both perfect and imperfect
recovery of the blocks of X lead to exact label recovery; the difference matters
when one adds noise, since one expects the imperfectly recovered blocks to need
more SNR to be recovered in the noisy setting.) In particular, we always have
k0 ≥ 1 in part (b), implying that SDP-13 recovers at least one more block per-
fectly relative to SDP-1. In the special case of a strongly assortative block model,
we have ∅ �= [maxk q∗

k ,mink pk] ⊂
⋂K

k=1[q∗
r ,pr ], hence k0 = K and SDP-13 re-

covers all the blocks perfectly. It is also interesting to note that both SDP-1 and
SDP-13 recover the smallest blocks (i.e., those in {k : nk = m}) perfectly, when we
set m = mink nk (which is the optimal choice if the minimum is known). These
observations are illustrated in Figure 1. The proof of Proposition 6.1 appears in the
supplementary material [9], along more details on Figure 1.

7. Application to network histograms. A balanced block model is ideally
suited for computing network histograms as defined by [46], which have been
proposed as nonparametric estimators of graphons. They have been shown to do
well empirically and recent results of [33], Section 2.4, suggest rate optimality
of the balanced models for reasonably sparse graphs; see also [26]. A graphon is
a bivariate symmetric function f : [0,1]2 → [0,1]. The corresponding network
model can be written as E[A|ξ ] = f (ξi, ξj ) where ξ = (ξ1, . . . , ξn) ∈ [0,1]n are
(unobserved) latent node positions. Without loss of generality, (ξi) can be assumed
to be i.i.d. uniform on [0,1]. The goal is to recover (a version of) f given A. In
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general, f is identifiable up to a measure-preserving transformation σ of [0,1]
onto itself, since f σ = f (σ(·), σ (·)) produces the same network model as f .

Let {I1, I2, . . . , IK} be a partition of [0,1] into equal-sized blocks, that is, |Ik| =
1/K for k ∈ [K]. We associate to each node a label zi , by letting zi := k if ξi ∈ Ik .
With some abuse of notation, we identify zi with an element (zik)k of {0,1}K as
before, and let Z = (zik)ik . Then MZ := E[A|Z] follows a block model as in (2.1)
with [�]kk = |Ik|−1 ∫

Ik
f (ξ, ξ) dξ and [�]kℓ = (|Ik||Iℓ|)−1 ∫

Ik

∫
Iℓ

f (ξ, ξ ′) dξ dξ ′,
for k �= ℓ. Asymptotically, as n → ∞, this block model is very close to being
balanced. It provides an approximation of f , via the mapping that sends � to a
block constant graphon f̃ , defined as f̃ (ξ, ξ ′) = [�]kℓ if ξ ∈ Ik, ξ

′ ∈ Iℓ. One can
show that under regularity assumptions (e.g., smoothness) on f , as K → ∞, f̃

approximates f , for example, in the quotient norm: infσ ||f − f̃ σ ||L2 . Alternatively,
one can consider the mean matrix Mf := (f (ξi, ξj ))ij ∈ [0,1]n×n of the graphon
model as an empirical version of f . In which case, the mean matrix MZ of the
aforementioned block model serves as an approximation to Mf , for example, in
the quotient norm: infP |||Mf − PMZP T |||F , where P runs through permutation
matrices. This is the approach we take here and, with some abuse of terminology,
call Mf the “graphon.”

Graphon estimation via block model approximation requires estimating the
mean matrix MZ , which is fairly straightforward once we have a good estimate
of the cluster matrix X. Algorithm 1 details the procedure based on eigenvalue
truncation and K-means (i.e., spectral clustering), leading to estimate M̂Ẑ of Mf .
We call M̂Ẑ a network histogram or a graphon estimator, and note that it can be
computed from any estimate of X̂. However, in practice, SDP-1 has advantages
over other ways of estimating X̂ in this context. The likelihood-based estimators
have no way of enforcing equal number of nodes in each block, whereas our empir-
ical results in Section 8 show that SDP-1 has a high tendency to form equal-sized
blocks, more so than SDP-2, making it an ideal choice for histograms. SDP-3 is
not well suited for this task since it does not enforce either a particular number of
blocks or a particular block size. It is more flexible due to the tuning parameter λ,
but that flexibility is a disadvantage when the goal is to construct a histogram.

Algorithm 1 Graphon estimation by fitting PPbal(p, q)

Require: Estimated cluster matrix X̂, and number of blocks K .
Ensure: Graphon estimator M̂Ẑ .

1: Compute the eigendecomposition X̂ = Û�̂ÛT and set ÛK = Û (:,1: K).
2: Apply K-means to rows of ÛK to get a label vector e ∈ [K]n. Set

Ẑ(i, e(i)) = 1, otherwise 0.
3: Set �̂rk = 1

n2

∑
ei=r,ej=k Aij for r �= k and 1

n(n−1)

∑
ei=ej=r Aij otherwise.

4: Change �̂ to Q�̂QT so that its diagonal is decreasing. and update Ẑ to ẐQT .
5: Change Ẑ to P Ẑ so that corresponding labels are in increasing order.
6: Set M̂Ẑ = Ẑ�̂ẐT .
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FIG. 2. Bias-corrected NMI versus K in a balanced planted partition model, for various values of

average degree d , with n = 120 and β = 0.05.

8. Numerical results. In this section, we present some experimental results
comparing SDP-1 with SDP-2, SDP-3 and EVT, which amounts to spectral clus-
tering on the adjacency matrix A. We chose EVT rather than a version of spectral
clustering based on the graph Laplacian because SDPs also all operate on A itself.
For SDP-3, in simulations we set the tuning parameter λ to the optimal value given
in (2.5); a data-driven choice is given in [17].

We first consider the balanced symmetric model PPbal(p, q), reparametrized
in terms of the average expected degree d = p( n

K
− 1) + q n

K
(K − 1) and the

out-in-ratio β = q/p < 1. Estimation becomes harder when d decreases (fewer
edges) and when β increases (communities are not well separated). Figure 2 shows
the agreement of estimated labels with the truth, as measured by the normalized
mutual information (NMI), versus the number of communities K , averaged over 25
Monte Carlo replications. NMI takes values between 0 and 1, with higher values
representing a better match. The labels are estimated from X̂ by Algorithm 1.
As expected, the SDPs rank according to the tightness of relaxation, with SDP-1
dominating the other two, and all SDPs outperforing EVT. In Figure 2, the NMI is
bias-adjusted, so that random guessing maps to NMI = 0. Without the adjustment,
the NMI of random guessing increases as K approaches n, leading to a “dip” in
the plots. See Figure 6 in the supplementary material [9] and the discussion that
follows for more details.

Next, we consider a more general balanced block model BMbal(�), with K = 4
to investigate the predictions of the theorems of Section 4. We consider the proba-
bility matrix

� =

⎛
⎜⎜⎝

0.7 0.4 0.05 0.2
0.4 0.6 0.05 0.2

0.05 0.05 p3 0.05
0.2 0.2 0.05 0.4

⎞
⎟⎟⎠(8.1)

and we vary p3 from 0.7 down to 0.05. This model never satisfies the strong as-
sortativity assumption over the range of p3, because of the last row. However, it
is at the boundary of strong assortativity if p3 > 0.4, since �44 = maxk �=ℓ �kℓ and
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FIG. 3. Mean estimated cluster matrices, X̂, for SDP-1 and SDP-2, for the weakly but not strongly

assortative model (8.1) with p3 = 0.7 and p3 = 0.05. SDP-2 fails to recover one block at p3 = 0.7
and two blocks at p3 = 0.05.

�jj > maxk �=ℓ �kℓ for j �= 4. Its deviation from strong assortativity increases once
p3 falls below 0.4, and again once it crosses below 0.2. However, except for the
boundary value of p3 = 0.05, the model always remains weakly assortative. Fig-
ure 3 shows the results of Monte Carlo simulations with 25 replications, for SDP-1
and SDP-2. Mean cluster matrices X̂ obtained for the two SDPs are shown at the
boundary points p3 = 0.05,0.7. SDP-2 has difficulty recovering the fourth block
in both cases, and completely fails to recover the third block when p3 = 0.05. The
performance of SDP-1, however, remains more or less the same, surprisingly even
at p3 = 0.05. This can be clearly seen in Figure 4, which shows the relative errors
|||X̂ − X0|||F /|||X0|||F for cluster matrices and the NMI for the labels reconstructed
by Algorithm 1. Note how SDP-2 degrades as p3 decreases to 0.05, with a sharp
drop around 0.2, while SDP-1 behaves more or less the same. Note that for larger
values of p3, while SDP-2 does not reconstruct X0 exactly as seen from the relative
error plot, the resulting labels are nearly always exactly the truth as seen from the
NMI plot. This may be due to the EVT truncation on X̂ implicit in Algorithm 1.

FIG. 4. NMI and relative error of X̂ versus p3 for the model with probability matrix (8.1).
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FIG. 5. Results for the dolphins network for K = 3 (a)–(d) and K = 10 (e)–(h). Row 1: adjacency

matrix sorted according to the permutation of Algorithm 1. Row 2: Graphon estimator M̂Ẑ of Algo-

rithm 1.

Finally, we apply various SDPs to graphon estimation for the dolphins net-
work [36], with n = 62 nodes. Figure 5 shows the results for the three SDPs and
the EVT with K = 3 and K = 10. For SDP-3, we used the median connectivity to
set λ as suggested in [17]. The adjacency matrices in the first row and the graphon
estimators in the second row are both permuted according to the ordering from
Algorithm 1. The SDPs again provide a much cleaner picture of the communities
in the data than the EVT. The blocks found by SDP-1 are similar in size and well
separated from each other compared to the other two SDPs. We also applied the
algorithms with K = 2 to compare to the the partition suggested by Figure 1(b)
in [36], which can be considered the ground truth for a two-community structure.
SDP-1, SDP-2, SDP-3 and EVT misclassify 7, 1, 4 and 11 nodes, respectively, out
of 62. Since this partition into two blocks has unbalanced blocks (20 and 42), we
expect SDP-1 to not match it as well. However, if we replace equality constraints
with the inequality ones as discussed in Remark 3.1, SDP-1 misclassifies only 2
nodes. It is worth noting that the ground truth in this case is only one possible
way to describe the network, taken from one scientific paper focused on the dol-
phins split, and there may well be more communities than two in the data. The
nine strong (and one weak) clusters found by SDP-1 may be of interest for further
understanding of this network.

9. Discussion. In this paper, we have put several SDP relaxations of the MLE
into a unified framework (Table 1) by treating them as relaxations over different
parameter spaces. SDP-1, the tighter relaxation we proposed, was shown to em-
pirically dominate previous relaxations, and while all the SDPs we considered are
strongly consistent on the strongly assortative class of block models, we showed
that SDP-1 is strongly consistent on the much larger class of weakly assortative
models, while SDP-2 fails outside the strongly assortative class. We proposed a
mixture of SDP-1 and SDP-3 which combines the flexibilities of both, namely,
consistency in weakly assortative and unbalanced models. It remains an open ques-
tion whether a SDP relaxation can work for mixed networks with both assorta-
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tive and dissortative communities. There are some indications that one can tackle
mixed networks by applying SDPs to |A| =

√
A2, the positive square-root of A.

We also note that SDP-3 is harder to compare directly to SDP-1 or SDP-2 be-
cause it depends on a tuning parameter λ. However, Lagrange duality implies that
for every A and K there exists a λ that makes SDP-3 equivalent to SDP-2. In gen-
eral, SDP-3 is more flexible than SDP-2 because of the continuous parameter λ,
but this also makes it unsuitable for certain tasks such as histogram estimation.
Empirically, the SDPs outperformed adjacency-based spectral clustering (EVT),
especially for a large number of communities K . This is reflected in current theo-
retical guarantees, where the conditions for the SDPs have better dependence on K

that those available for the EVT. In addition, SDP formulation of EVT shows it to
be a looser relaxation than, say, SDP-1 for balanced planted partition model. The
three SDPs also seem to be inherently more robust to noise than the EVT, perhaps
due to the implicit regularization effect of the doubly nonnegative cone.

APPENDIX A: PROOF OF LEMMA 4.3

As in the proof of Theorem 4.1, and in accordance with condition (A2), we set
ŴSk

:= 0. Then

�Sk
= μSk

1T
m + 1mμT

Sk
+ diag∗(νSk

) − ASk
,

(A.1)
�Sc

kSk
= μSc

k
1T
m + 1n−mμT

Sk
− (A + Ŵ)Sc

kSk
.

Recalling that [d(Sk)]Sk
= ASk

1m, we can rewrite (4.11) as

�Sk
1m = 0 ⇐⇒ μSk

m + 1mμT
Sk

1m + νSk
−
[
d(Sk)

]
Sk

= 0,(A.2)

�SℓSk
1m = 0 ⇐⇒

(A.3) [
μSℓ

1T
m + 1mμT

Sk
− (A + Ŵ)SℓSk

]
1m = 0, k �= ℓ.

As in the case of SDP-2′ (cf. the supplementary material [9]), (A.3) is equivalent
to

μSℓ
1T
m + 1mμT

Sk
− (A + Ŵ)SℓSk

= −BSℓSk

for some BSℓSk
acting on span{1m}⊥. As before, we set BSℓSk

:= P1⊥
m
ASℓSk

P1⊥
m

,
and note that

� := A −EA, [EA]Sk
= pkEm, [EA]SkSℓ

= qkℓEm, k �= ℓ,(A.4)

so that BSℓSk
= P1⊥

m
�SℓSk

P1⊥
m

. Now, take u ∈ span{1Sk
}⊥. Then u =

∑
k uSk

=
∑

k ek ⊗ uk , for some {uk} ⊂ span{1m}⊥. We will work with expansion of uT �u

obtained in the supplementary material ([9], equation (11.5)). Using ASk
=

pkEm + �Sk
and (A.1), we have

uT
k �Sk

uk = uT
k

[
μSk

1T
m + 1mμT

Sk
− pkEm + diag∗(νSk

) − �Sk

]
uk

= uT
k

(
diag∗(νSk

) − �Sk

)
uk
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using 1T
muk = 0. Let us now choose μ to be constant over blocks, that is, μSk

:=
1
2φk1m,∀k for some numbers {φk} to be determined later. Note that (A.2) reads
φkm1m + νSk

− [d(Sk)]Sk
= 0, or equivalently

diag∗(νSk
) = diag∗([d(Sk)

]
Sk

)
− φkmIm.(A.5)

On the other hand, for k �= ℓ, we have uT
k �SkSℓ

uℓ = −uT
k BSkSℓ

uℓ = −uT
k �SkSℓ

uℓ

since {uk} ⊂ span{1m}⊥. We arrive at

uT �u =
∑

k

uT
k

(
diag∗([d(Sk)

]
Sk

)
− μ̄kmIm − �Sk

)
uk −

∑

k �=ℓ

uT
k �SkSℓ

uℓ.(A.6)

PROOF OF (a) AND (b). To verify dual feasibility, recall that P1⊥
m
ej = ej −

1
m

1m. Then

[ŴSkSℓ
]ij = eT

i ŴSkSℓ
ej =

1

2
(φk + φℓ) +

(
ei −

1

m
1m

)T

ASkSℓ

(
ej −

1

m
1m

)
− Aij

=
1

2
(φk + φℓ) −

1

m

[
di(Sℓ) + dj (Sk) − dav(Sk, Sℓ)

]
≥ 0.

To verify (4.12), we recall representation (A.6). By assumption
diag∗([d(Sk)]Sk

) � ρkmIm for all k. From (A.5) and (A.6), it follows that, for
u ∈ span{1Sk

}⊥,

uT �u ≥
∑

k

uT
k (ρkmIm − φkmIm − �Sk

)uk −
∑

k �=ℓ

uT
k �SkSℓ

uℓ

≥
∑

k

[
(ρk − φk)m − |||�Sk

|||
]
||uk||2 − uT (ES

c
0
◦ �)u

≥ min
k

[
(ρk − φk)m − |||�Sk

|||
]
‖u‖2 − |||ES

c
0
◦ �|||‖u‖2. �

APPENDIX B: PROBABILISTIC BOUNDS FOR BMbal

We will complete the construction of (μ, ν,Ŵ) in (4.14)–(4.15) for BMbal
m (�),

by specifying {φk} and completing the the proof of Theorem 4.2. The following is
the analogue of Lemma 12.1 in the supplementary material [9] for BMbal

m (�). The
proof is similar and is omitted.

LEMMA B.1. Let γk :=
√

(4c1 logn)/p̄k and ζkℓ :=
√

(4c2 logn)/q̄kℓ. As-

sume γk, ζkℓ ∈ [0,3]. Then

di(Sk) ≥ p̄k(1 − γkℓ), i ∈ Sk,∀k w.p. at least 1 − n−(c1−1), and
∣∣di(Sℓ) − q̄kℓ

∣∣≤ ζkℓq̄kℓ, i ∈ Sk,∀(k �= ℓ), w.p. at least 1 − 2m−1n−(c2−2).
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We also have the following corollary of Proposition 4.1 for BMbal
m (�). Re-

call the chain of definitions and equivalences: q̄∗
max := maxk q̄∗

k = maxk �=ℓ q̄kℓ =
m(maxk �=ℓ qkℓ) =: mqmax.

COROLLARY B.1. Let A ∈ {0,1}n×n be distributed as BMbal
m (�) and � :=

A −EA. Assume that pk ≥ (C′ logm)/m for all k and qmax ≥ (C′ logn)/n. Then:

• maxk |||�Sk
||| ≤ C

√
p̄k , w.p. at least 1 − cKm−r .

• |||ES
c
0
◦ �||| ≤ C

√
q̄∗

maxK w.p. at least 1 − cn−r .

PROOF. The assertion about diagonal blocks follows as in Corollary 12.1 of
the supplementary material [9]. For the second assertion, we note that ES

c
0
◦ � is

an n × n matrix whose entries have variance ≤ maxk,ℓ(qk,ℓ) = maxk,ℓ(q̄k,ℓ/m) =
q̄∗

max/m, hence w.p. at least 1 − cn−r , |||ES
c
0
◦ �||| ≤ C

√
(q̄∗

max/m)n. �

According to Lemma B.1, for sufficiently small γk and ζk,ℓ, we have w.h.p. that
dav(Sk, Sℓ) also lies in [q̄kℓ(1 − ζkℓ), q̄kℓ(1 + ζkℓ)], for k �= ℓ, so that

di(Sℓ) + dj (Sk) − dav(Sk, Sℓ) ≤ q̄kℓ(1 + 3ζkℓ)

≤ q̄kℓ + 3
√

4c2q̄kℓ logn, (i, j) ∈ Sk × Sℓ.

Note that right-hand side is increasing in q̄kℓ. We also note the following key in-
equality q̄kℓ ≤ 1

2(q̄∗
k + q̄∗

ℓ ) obtained by summing the following two inequalities:

1

2
q̄kℓ ≤

1

2
max

r=k,s �=k
q̄rs,

1

2
q̄kℓ ≤

1

2
max

r �=ℓ,s=ℓ
q̄rs

which hold for k �= ℓ. Hence,

q̄kℓ + 3
√

4c2q̄kℓ logn ≤
1

2

(
q̄∗
k + q̄∗

ℓ

)
+ 3

√
2c2
(
q̄∗
k + q̄∗

ℓ

)
logn

≤
1

2

(
q̄∗
k + 6

√
2c2q̄

∗
k logn

)
+

1

2

(
q̄∗
ℓ + 6

√
2c2q̄

∗
ℓ logn

)
,

where we have used
√

x + y ≤
√

x + √
y for x, y ≥ 0. Thus, taking

φk :=
1

m
φ̄k, φ̄k := q̄∗

k + 6
√

2c2q̄
∗
k logn

satisfies (4.16). We also have mρk := mini∈Sk
di(Sk) ≥ p̄k −

√
4c1p̄k logn, and

from Corollary B.1, |||�Sk
||| ≤ C

√
p̄k for all k. It follows that

(ρk − φk)m − |||�k||| ≥ p̄k −
√

4c1p̄k logn −
(
q̄∗
k + 6

√
2c2q̄

∗
k logn

)
− C

√
p̄k

≥
(
p̄k − q̄∗

k

)
− (C +

√
4c1)

√
p̄k logn − 6

√
2c2q̄

∗
k logn.
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By Corollary B.1, |||ES
c
0
◦ �||| ≤ C

√
q̄∗

maxK . Thus, to satisfy (4.17), it is enough to
have

min
k

[(
p̄k − q̄∗

k

)
− (C +

√
4c1)

√
p̄k logn − 6

√
2c2q̄

∗
k logn

]
> C

√
q̄∗

maxK,

which is implied by

min
k

[(
p̄k − q̄∗

k

)
− C2

(√
p̄k logn +

√
q̄∗
k logn

)]
> C

√
q̄∗

maxK.(B.1)

Auxiliary conditions we needed on p̄k and q̄kℓ were p̄k ≥ (4c1/9) logn and
q̄kℓ ≥ (4c2/9) logn from Lemma B.1 and p̄k ≥ C′ logm and nqmax > C′ logn. As
before, we can drop the lower bounds on {qkℓ}k �=ℓ due to Corollary 4.2. The lower
bounds on p̄k are implied by p̄k ≥ (C′ ∨ (4c1/9)) logn. This completes the proof.
To get to the form in which the theorem is stated, replace c1 with c1 + 1 and c2
with c2 + 2, and divide (B.1) by logn.

Acknowledgments. We would like to thank Karl Rohe and Dave Choi for in-
teresting discussions regarding the possibility of extending SDPs to mixed models.

SUPPLEMENTARY MATERIAL

Supplement to “On semidefinite relaxations for the block model” (DOI:
10.1214/17-AOS1545SUPP; .pdf). This supplement contains proofs of some of
the results.
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