On semigroups with an infinitesimal operator

by Jolanta Olko (Kraków)

Abstract. Let $\{F^t : t \ge 0\}$ be an iteration semigroup of linear continuous set-valued functions. If the semigroup has an infinitesimal operator then it is a uniformly continuous semigroup majorized by an exponential semigroup. Moreover, for sufficiently small t every linear selection of F^t is invertible and there exists an exponential semigroup $\{f^t : t \ge 0\}$ of linear continuous selections f^t of F^t .

If X is a nonempty set, then n(X) denotes the set of all nonempty subsets of X. All linear spaces are over \mathbb{R} .

We say that a nonempty subset C of a linear space is a *cone* if $tC \subset C$ for every t > 0.

Let X, Y be linear spaces and C be a convex cone in X. The set-valued function (abbreviated to s.v. function) $F: C \to n(Y)$ is called *superadditive* if

(1)
$$F(x) + F(y) \subset F(x+y)$$
 for all $x, y \in C$.

F is said to be *additive* if equality holds in (1), and \mathbb{Q}^+ -homogeneous if

(2)
$$F(\lambda x) = \lambda F(x)$$
 for all $x \in C, \lambda \in \mathbb{Q}^+$,

where \mathbb{Q}^+ is the set of all positive rational numbers. *F* is *linear* if it is additive and (2) is satisfied for all $\lambda > 0$.

If X is a linear topological space, then b(X) denotes the set of all bounded elements of n(X), and c(X) stands for the family of all compact elements of n(X).

Now let X, Y be topological spaces. An s.v. function $F : X \to n(Y)$ is called *lower semicontinuous* at $x_0 \in X$ if for every open set G in Y such that $F(x_0) \cap G \neq \emptyset$ there exists a neighbourhood U of x_0 in X such that $F(x) \cap G \neq \emptyset$ for $x \in U$. We say that F is lower semicontinuous in a set $A \subset X$ if F is lower semicontinuous at every point $x \in A$.

We say that $F: X \to n(Y)$ is upper semicontinuous at $x_0 \in X$ if for every open set $G \subset Y$ such that $F(x_0) \subset G$ there exists a neighbourhood U of x_0

²⁰⁰⁰ Mathematics Subject Classification: 54C60, 54C65, 39B12.

 $Key\ words\ and\ phrases:$ set-valued function, iteration semigroup, infinitesimal operator, selection.

in X such that $F(x) \subset G$ for $x \in U$; F is called upper semicontinuous in a set $A \subset X$ if it is upper semicontinuous at every point of A, and *continuous* if it is both lower and upper semicontinuous.

We recall a set-valued version of the Banach–Steinhaus theorem.

LEMMA 1 (Lemma 4 in [8]). Let X, Y be normed spaces, $C \subset X$ a convex cone of the second category in C, and $\{F_i : i \in I\}$ a family of superadditive, \mathbb{Q}^+ -homogeneous and lower semicontinuous s.v. functions $F_i : C \to n(Y)$. If $\bigcup_{i \in I} F_i(x) \in b(Y)$ for every $x \in C$ then there exists a constant $M \in (0, \infty)$ such that

$$\sup_{i \in I} \|F_i(x)\| \le M \|x\|, \quad x \in C,$$

where $||F_i(x)|| = \sup\{||y|| : y \in F_i(x)\}.$

Applying Lemma 1 to one s.v. function $F: C \to b(Y)$, we can define the norm of F by

(3)
$$||F|| := \inf\{M > 0 : \forall_{x \in C} ||F(x)|| \le M ||x||\}.$$

REMARK 1. There exists an open convex cone which is of the first category in itself.

Proof. This example is adapted from [8]. Let $C(\mathbb{R}, \mathbb{R})$ denote the space of all bounded continuous functions from \mathbb{R} to \mathbb{R} and let $K := \{x \in C(\mathbb{R}, \mathbb{R}) : \sup x \in b(\mathbb{R})\}$ and $||x|| := \sup\{|x(t)| : t \in \mathbb{R}\}$ for $x \in K$. Observe that $(K, ||\cdot||)$ is a normed space. Therefore K is an open convex cone in the space K. On the other hand, from the proof of Remark 1 in [8] it follows that K is of the first category in K.

Since not every convex cone with nonempty interior is of the second category in itself, in order to define the norm of a linear continuous s.v. function defined on such a cone, the following lemma will be useful.

LEMMA 2. Let X be a normed space, $C \subset X$ a convex cone with nonempty interior, and $F : C \to b(X)$ a superadditive, \mathbb{Q}^+ -homogeneous and upper semicontinuous s.v. function. Then there exists a constant M > 0 such that

$$||F(x)|| \le M ||x|| \quad for \ x \in C.$$

Proof. Fix $x_0 \in \text{Int } C$ and $\varepsilon > 0$. Then there exists r > 0 such that $B(x_0, r) \subset C$, where $B(x_0, r)$ is the open ball with center at x_0 and radius r. Since F is upper semicontinuous at x_0 , there exists $0 < \delta < r$ such that

$$F(y) \subset F(x_0) + B(0,\varepsilon)$$
 for $y \in B(x_0,\delta)$.

Let $x \in B(0, \delta) \cap C$. Then $x + x_0 \in B(x_0, \delta) \cap C = B(x_0, \delta)$ and

$$F(x+x_0) \subset F(x_0) + B(0,\varepsilon)$$

By the above relation and superadditivity of F,

 $F(x) + F(x_0) \subset F(x + x_0) \subset F(x_0) + B(0,\varepsilon) \subset F(x_0) + \operatorname{cl} B(0,\varepsilon)$

for all $x \in B(0, \delta) \cap C$. On account of the Rådström theorem (see [5]) we obtain

$$F(x) \subset \operatorname{cl} B(0,\varepsilon)$$
 for all $x \in B(0,\delta) \cap C$.

This means that $\lim_{x\to 0, x\in C} F(x) = \{0\}$ and according to Lemma 2 in [8], the proof is complete.

For a function F satisfying the assumptions of the above lemma we can define the norm ||F|| in the same way as in (3).

If Y is a normed space, then h denotes the Hausdorff distance derived from the norm in Y.

LEMMA 3. Let X, Y be normed spaces and $C \subset X$ be a convex cone of the second category in C. Let $\{F_t : t > 0\}$ be a family of superadditive, \mathbb{Q}^+ -homogeneous and lower semicontinuous s.v. functions $F_t : C \to b(Y)$. If there exists an s.v. function $G : C \to b(Y)$ such that

(4)
$$\lim_{t \to 0} h(F_t(x), G(x)) = 0 \quad \text{for all } x \in C,$$

then there exist $M, T \in (0, \infty)$ such that

 $||F_t|| \le M$ for every $t \in (0, T]$.

Proof. Assume that $G: C \to b(Y)$ is an s.v. function satisfying (4) and suppose that the assertion of the lemma is false. Then for every $n \in \mathbb{N}$ there exists $t_n \in (0, 1/n)$ such that

$$\|F_{t_n}\| > n.$$

Therefore, according to Lemma 1, there exists an element $x_0 \in C$ for which the set $\bigcup_{n \in \mathbb{N}} F_{t_n}(x_0)$ is not bounded. Thus

(5)
$$\sup\{\|F_{t_n}(x_0)\|: n \in \mathbb{N}\} = \infty$$

On the other hand, condition (4) implies that there exists T > 0 with

(6)
$$F_t(x_0) \subset G(x_0) + S$$
 for $t \in (0, T)$,

where S is the closed unit ball in Y. Therefore

$$||F_{t_n}(x_0)|| \le ||G(x_0)|| + 1$$
 for every $n > 1/T$,

which contradicts (5).

From now on, Id stands for the map $x \mapsto \{x\}$, called the set-valued identity.

COROLLARY 1. Let X be a normed space, $C \subset X$ a convex cone of the second category in C, and $\{F_t : t > 0\}$ a family of superadditive, \mathbb{Q}^+ homogeneous and lower semicontinuous set-valued functions $F_t : C \to b(X)$, J. Olko

t > 0. If there exists an s.v. function $G: C \to b(X)$ such that

$$\lim_{t \to 0} h\left(\frac{1}{t} \left(F_t(x) - x\right), G(x)\right) = 0 \quad \text{for } x \in C,$$

then

$$\lim_{t \to 0} \|F_t - \mathrm{Id}\| = 0.$$

Proof. According to Lemma 3, there exist positive constants T, M such that

$$\left|\frac{1}{t}\left(F_t - \mathrm{Id}\right)\right| \leq M \quad \text{for all } t \in (0, T].$$

Therefore

 $||F_t - \mathrm{Id}|| \le tM \quad \text{ for } t \in (0, T],$

which proves the corollary.

LEMMA 4. Let X be a normed space, $C \subset X$ a convex cone with nonempty interior, and $\{F_t : t > 0\}$ a family of linear continuous s.v. functions $F_t : C \to b(X), t > 0$, such that $\lim_{t\to 0} ||F_t - \mathrm{Id}|| = 0$. Then there exists a constant T > 0 such that each linear selection of F_t (0 < t < T) is invertible.

Proof. According to Lemma 5 in [8] there exists a positive constant M such that for every linear continuous s.v. function F,

(7)
$$h(F(x), F(y)) \le M ||F|| ||x - y||, \quad x, y \in C.$$

By our assumptions, there exists T > 0 such that

(8)
$$||F_t - \mathrm{Id}|| < \frac{1}{2M}, \quad 0 < t < T.$$

Fix $t \in (0, T)$ and let f_t be a linear selection of F_t . Since Int $C \neq \emptyset$, we have X = C - C. Thus there exists a unique linear extension \hat{f}_t of f_t to the space X, which is defined as follows:

$$f_t(x-y) = f_t(x) - f_t(y), \quad x, y \in C.$$

By (7) and (8), for all $x, y \in C$, $\|\widehat{f}_t(x-y) - (x-y)\| = \|(f_t(x) - x) - (f_t(y) - y)\| \le M \|f_t - \mathrm{id}\| \|x - y\|$ $\le M \|F_t - \mathrm{Id}\| \|x - y\| < \frac{1}{2} \|x - y\|,$

and therefore $\|\widehat{f}_t - \mathrm{id}\| < 1$, which completes the proof.

Combining Lemma 4 with Corollary 1, we get

COROLLARY 2. Let X be a normed space, $C \subset X$ a convex cone of the second category in C with nonempty interior, and $\{F_t : t > 0\}$ a family of linear continuous s.v. functions $F_t : C \to b(X)$, t > 0. Assume that there

80

exists an s.v. function $G: C \to b(X)$ such that

$$\lim_{t \to 0} h\left(\frac{1}{t} \left(F_t(x) - x\right), G(x)\right) = 0 \quad \text{for } x \in C.$$

Then there exists a constant T > 0 such that each linear selection of F_t , 0 < t < T, is invertible.

The composition $G \circ F$ of s.v. functions $F : X \to n(Y)$ and $G : Y \to n(Z)$ is the s.v. function given as follows:

$$(G \circ F)(x) := G(F(x)) \quad \text{for } x \in X.$$

A family $\{F^t:t\geq 0\}$ of s.v. functions $F^t:X\to n(X)$ is called an $iteration\ semigroup\ {\rm if}$

$$F^t \circ F^s = F^{t+s}$$
 for all $s, t \ge 0$.

Let $\{F^t : t \ge 0\}$ be an iteration semigroup of s.v. functions, defined on a cone C in a normed space X with values in b(C). It is *continuous* if the s.v. function $t \mapsto F^t(x)$ is continuous for every $x \in C$. The semigroup $\{F^t : t \ge 0\}$ has an infinitesimal operator if there exists an s.v. function $G : C \to b(X)$ such that $\lim_{t\to 0} h(t^{-1}(F^t(x)-x), G(x)) = 0$, for every $x \in C$. Then G is called an infinitesimal operator of the semigroup.

Let C be a convex cone of the second category in itself with nonempty interior. By Corollary 1, a semigroup of linear continuous s.v. functions $F^t: C \to b(C)$ which has an infinitesimal operator is uniformly continuous, that is, $\lim_{t\to 0} ||F^t - \mathrm{Id}|| = 0$. Moreover, for sufficiently small t every linear selection of F^t is invertible (see Corollary 2).

According to Lemmas 4 and 5 of [8] we obtain a more general version of Theorem 1 of [2] (the proof runs in much the same way).

THEOREM 1. Let X be a normed space, and $C \subset X$ a convex cone of the second category in C with nonempty interior. If $\{F^t : t \geq 0\}$ is an iteration semigroup of linear continuous s.v. functions $F^t : C \to c(C), t \geq 0$, satisfying the conditions

(i)
$$F^0 = \mathrm{Id}$$
,

(ii)
$$\lim_{t\to 0} ||F^t - \mathrm{Id}|| = 0$$
,

then there exist constants M > 0 and $\omega \ge 0$ with the property that

(9)
$$||F^t|| \le M e^{\omega t}, \quad t \ge 0.$$

Moreover, if B is a bounded subset of C, then

$$(10) \quad \forall_{s_0 \ge 0} \forall_{\varepsilon > 0} \exists_{\delta > 0} \forall_{x \in B} \forall_{s \ge 0} \ (|s - s_0| < \delta \Rightarrow h(F^s(x), F^{s_0}(x)) < \varepsilon).$$

REMARK 2. An iteration semigroup satisfying the assumptions of Theorem 1 is continuous.

J. Olko

COROLLARY 3. Let X be a normed space, and $C \subset X$ a convex cone of the second category in C with nonempty interior. If $\{F^t : t \ge 0\}$ is an iteration semigroup of linear continuous s.v. functions $F^t : C \to c(C), t \ge 0$, satisfying the conditions

(i) $F^0 = Id$,

(ii) there exists an s.v. function
$$G: C \to b(X)$$
 such that

$$\lim_{t \to 0} t^{-1}(F^t(x) - x) = G(x) \quad \text{for every } x \in C,$$

then there exists constants M > 0 and $\omega \ge 0$ with the property that $||F^t|| \le M e^{\omega t}, \quad t \ge 0.$

Moreover, if B is a bounded subset of C, then

$$\forall_{s_0 \ge 0} \forall_{\varepsilon > 0} \exists_{\delta > 0} \forall_{x \in B} \forall_{s \ge 0} \ (|s - s_0| < \delta \Rightarrow h(F^s(x), F^{s_0}(x)) < \varepsilon).$$

If X is a linear space, then we say that an iteration semigroup $\{F^t : t \ge 0\}$ is *concave* if

$$F^{\lambda s+(1-\lambda)t}(x) \subset \lambda F^s(x) + (1-\lambda)F^t(x)$$

for all $s, t \ge 0, \lambda \in [0, 1]$ and $x \in X$.

Observe that a concave iteration semigroup satisfying the assumptions of Theorem 1 in [3] also fulfils the assumptions of the above corollary.

Let C be a convex cone in a normed space X. If $g : C \to C$ is an additive and positively homogeneous continuous operator, then $e^{tg} : C \to C$ is defined as follows:

$$e^{tg}(x) = \sum_{i=0}^{\infty} \frac{t^i g^i(x)}{i!}, \quad x \in C, \ t \ge 0.$$

LEMMA 5. Let X be a Banach space, C a convex cone in X with nonempty interior, and T a positive number. Let $\{f^t : t \in [0,T]\}$ be a family of linear continuous operators from C into C satisfying the conditions

(i) $f^{0} = \text{id},$ (ii) $f^{t} \circ f^{s} = f^{t+s}$ for $t, s, t+s \in [0,T],$ (iii) $\lim_{t \to 0} \|f^{t} - \text{id}\| = 0.$

Then there exists a unique linear continuous operator $g: X \to X$ such that $f^t(x) = e^{tg}(x)$ for all $x \in C$ and $t \in [0,T]$.

Proof. Let \tilde{f}^t be an extension of f^t to X = C - C defined as follows: $\tilde{f}^t(x_1 - x_2) = f^t(x_1) - f^t(x_2), \quad t \in [0, T], \ x_1, x_2 \in C.$

Note that $\{\tilde{f}^t : t \in [0,T]\}$ is a family of linear continuous operators satisfying (i)–(iii). Indeed, for all $x_1, x_2 \in C$, $t, s, t + s \in [0,T]$,

$$(\widetilde{f}^t \circ \widetilde{f}^s)(x_1 - x_2) = \widetilde{f}^t(\widetilde{f}^s(x_1 - x_2)) = \widetilde{f}^t(f^s(x_1) - f^s(x_2))$$

= $\widetilde{f}^t(f^s(x_1)) - \widetilde{f}^t(f^s(x_2)) = f^t(f^s(x_1)) - f^t(f^s(x_2))$
= $f^{t+s}(x_1) - f^{t+s}(x_2) = \widetilde{f}^{t+s}(x_1 - x_2).$

By Lemma 5 in [8], there exists M > 0 such that for every $t \ge 0$ and $x, y \in C$,

$$||(f^t - id)(x) - (f^t - id)(y)|| \le M ||f^t - id|| ||x - y||$$

and consequently $\|\widetilde{f}^t - id\| \leq M \|f^t - id\|$, which together with condition (iii) gives

$$\lim_{t \to 0} \|\widetilde{f}^t - \mathrm{id}\| = 0.$$

Take any t > T and $n \in \mathbb{N}$ large enough that $t/n \in [0, T]$ and define $\tilde{f}^t := (\tilde{f}^{t/n})^n$. This function is well defined. If $n, m \in \mathbb{N}$ are so chosen that $t/n, t/m \in [0, T]$ then $t/nm \in [0, T]$. Hence

$$(\tilde{f}^{t/m})^m = [(\tilde{f}^{t/nm})^n]^m = [(\tilde{f}^{t/nm})^m]^n = (\tilde{f}^{t/n})^n.$$

Since $\{\tilde{f}^t : t \ge 0\}$ is a uniformly continuous iteration semigroup of linear continuous operators, there exists a unique linear continuous operator $g : X \to X$ such that $\tilde{f}^t = e^{tg}$ for $t \ge 0$ (cf. Corollary 1.4 in [4]), which completes the proof.

An element x of a nonempty set A in a linear space X is called an *extreme* point of A if there is no $\lambda \in (0, 1)$ and two different $x_1, x_2 \in A$ such that $x = \lambda x_1 + (1 - \lambda) x_2$. We denote by Ext A the set of all extreme points of A.

Let X be a nonempty set, Y a linear space, and $F: X \to n(Y)$ an s.v. function. We say that a selection f of F is *extreme* if $f(x) \in \text{Ext} F(x)$ for all $x \in X$.

REMARK 3. Let X, Y be normed spaces, $C \subset X$ an open convex cone, and $x_0 \in C$. If f is an additive selection of an additive lower semicontinuous s.v. function $F: C \to n(Y)$ such that $f(x_0) \in \text{Ext } F(x_0)$ then f is extreme, linear and continuous.

Proof. According to Nikodem's theorem (Th. 5.4 in [1]) a selection f such that $f(x_0) \in \text{Ext } F(x_0)$ is unique and $f(x) \in \text{Ext } F(x)$ for $x \in C$. Since $f(x) \in F(x)$ for each $x \in C$ and F is continuous, by Theorems 5.2 and 5.3 in [1], f is linear continuous.

The following lemma is a generalization of Lemma 4 in [2]. The separability of X is not necessary.

LEMMA 6. Let X be a normed space, C an open convex cone in X, and $x_0 \in C$. Let $F, G : C \to n(C)$ be additive lower semicontinuous s.v. functions such that every extreme additive selection of F is invertible. Then for each additive selection h of $F \circ G$ such that

$$h(x_0) \in \operatorname{Ext} (F \circ G)(x_0)$$

there exist unique additive selections f and g of F and G respectively for which

$$h = f \circ g.$$

Moreover, f and g are extreme, linear and continuous.

Proof. There exists a point $y_0 \in G(x_0)$ such that $h(x_0) \in \text{Ext } F(y_0)$. According to Nikodem's theorem (Th. 5.4 in [1]) there exists exactly one additive selection f of F such that $h(x_0) = f(y_0)$ and $f(x) \in \text{Ext } F(x)$ for $x \in C$.

We will show that $y_0 \in \operatorname{Ext} G(x_0)$ and it is unique.

Suppose that $\lambda \in (0, 1), y_1, y_2 \in G(x_0)$ and $y_0 = \lambda y_1 + (1 - \lambda)y_2$. Then $f(y_1), f(y_2) \in F(G(x_0))$ and

$$h(x_0) = f(y_0) = \lambda f(y_1) + (1 - \lambda) f(y_2) \in \text{Ext} (F \circ G)(x_0),$$

hence $f(y_1) = f(y_2) = f(y_0)$. Since f is invertible we have $y_1 = y_2 = y_0$.

Now suppose that there exists $z \neq y_0$ such that $z \in \operatorname{Ext} G(x_0)$ and $h(x_0) \in \operatorname{Ext} F(z)$. Then for every $\lambda \in (0, 1)$,

$$h(x_0) = \lambda h(x_0) + (1 - \lambda)h(x_0) \in \lambda F(z) + (1 - \lambda)F(y_0) = F(\lambda z + (1 - \lambda)y_0).$$

Since $h(x_0)$ is an extreme point of $F(G(x_0))$ it cannot be expressed as a convex combination of elements of the set $F(\lambda z + (1 - \lambda)y_0) \subset F(G(x_0))$. Hence $h(x_0) \in \text{Ext} F(\lambda z + (1 - \lambda)y_0)$. On account of Nikodem's theorem there exists a unique extreme additive selection \tilde{f} of F such that $h(x_0) = \tilde{f}(\lambda z + (1 - \lambda)y_0)$. Remark 3 shows that \tilde{f} is linear and therefore

(11)
$$h(x_0) = \tilde{f}(\lambda z + (1-\lambda)y_0) = \lambda \tilde{f}(z) + (1-\lambda)\tilde{f}(y_0).$$

Since $h(x_0) \in \text{Ext} (F \circ G)(x_0)$ and $\tilde{f}(z), \tilde{f}(y_0) \in (F \circ G)(x_0), (11)$ shows that $h(x_0) = \tilde{f}(z) = \tilde{f}(y_0)$ and so $z = y_0$.

Again by Nikodem's theorem there exists exactly one additive selection g of the additive s.v. function G such that $y_0 = g(x_0)$ and $g(x) \in \operatorname{Ext} G(x)$ for $x \in C$.

Therefore $h(x_0) = f(y_0) = f(g(x_0)) = (f \circ g)(x_0)$ and $h, f \circ g$ are additive selections of $F \circ G$, which yields $h = f \circ g$. On account of Remark 3 both f and g are linear continuous, which completes the proof.

By induction, we get the following corollary.

COROLLARY 4. Let X be a normed space, C an open convex cone in X, $x_0 \in C$, and $n \geq 2$ a positive integer. Let $F_1, \ldots, F_n : C \to c(C)$ be additive lower semicontinuous s.v. functions such that every extreme additive selection of F_i is invertible for $i \in \{2, \ldots, n\}$. Then for every additive selection h of $F_n \circ \cdots \circ F_1$ satisfying

$$h(x_0) \in \operatorname{Ext}(F_n \circ \cdots \circ F_1)(x_0)$$

there exist unique additive selections f_i of F_i , $i \in \{1, ..., n\}$, such that

$$h = f_n \circ \cdots \circ f_1.$$

Moreover each f_i , $i \in \{1, ..., n\}$, is extreme, linear and continuous.

Combining Lemma 4 and the above corollary gives us a lemma which will be useful later.

LEMMA 7. Let X be a Banach space and $C \subset X$ an open convex cone. Let $\{F^t : t \ge 0\}$ be an iteration semigroup of linear continuous s.v. functions $F^t : C \to c(C), t \ge 0$, satisfying the condition

$$\lim_{t \to 0} \|F^t - \mathrm{Id}\| = 0.$$

Then every extreme linear selection of F^t (t > 0) is invertible.

Proof. According to Lemma 4, there exists a constant T > 0 such that each linear continuous selection of F^t (0 < t < T) is invertible.

It remains to show that the assertion is true for t > T. Fix $t_0 > T$, $x_0 \in C$ and a linear selection f of F^{t_0} such that $f(x_0) \in \operatorname{Ext} F^{t_0}(x_0)$. Let $n \in \mathbb{N}$ be large enough that $t_0/n \in (0,T)$. Then $f(x_0) \in \operatorname{Ext} F^{t_0}(x_0) = \operatorname{Ext} (F^{t_0/n})^n(x_0)$. Hence, on account of Corollary 4, there exist unique linear selections f_1, \ldots, f_n such that

$$f = f_n \circ \cdots \circ f_1.$$

Since each function f_i $(i \in \{1, ..., n\})$ is invertible, so is f.

Note that if $\{F^t : t \ge 0\}$ is an iteration semigroup with an infinitesimal operator, then every extreme linear selection of F^t is invertible.

The next theorem is a refinement of Theorem 2 in [2]; the assumption that there exists a finite cone-basis is omitted. Moreover the assertion is stronger.

THEOREM 2. Let X be a Banach space and $C \subset X$ an open convex cone. Let $\{F^t : t \ge 0\}$ be an iteration semigroup of linear continuous s.v. functions $F^t : C \to c(C), t \ge 0$, satisfying the conditions

(i)
$$F^0 = \text{Id},$$

(ii) $\lim_{t \to 0} \|E^t - \text{Id}\| =$

(ii) $\lim_{t\to 0} ||F^t - \mathrm{Id}|| = 0.$

Then for every $t_0 > 0$, $x_0 \in C$ and $y_0 \in \text{Ext } F^{t_0}(x_0)$ there exists exactly one iteration semigroup $\{f^t : t \geq 0\}$ of linear selections f^t of F^t with the property $f^{t_0}(x_0) = y_0$.

Moreover, f^t is extreme for every $t \in [0, t_0]$ and there exists a unique linear continuous operator $g: X \to X$ such that $f^t(x) = e^{tg}(x)$ for all $t \ge 0$ and $x \in C$.

Proof. Let $\{F^t : t \ge 0\}$ be an iteration semigroup satisfying our assumptions. By Lemma 7 every extreme linear selection of F^t is invertible

for t > 0. Fix $t_0 > 0$, $x_0 \in C$ and $y_0 \in \text{Ext } F^{t_0}(x_0)$. Then there exists exactly one extreme linear selection a^{t_0} of F^{t_0} such that

(12)
$$a^{t_0}(x_0) = y_0.$$

Let $t, s, t + s \in [0, t_0]$. Then Ext $F^{t_0}(x) = \text{Ext} (F^{t_0-(t+s)} \circ F^{t+s})(x)$ for all $x \in C$. On account of Lemma 6, there exist unique extreme linear selections $a^{t_0-(t+s)}, f^{t+s}$ of $F^{t_0-(t+s)}, F^{t+s}$ respectively, such that

(13)
$$a^{t_0} = a^{t_0 - (t+s)} \circ f^{t+s}.$$

Similarly, there exist unique extreme linear selections g^t, h^s of F^t, F^s respectively, such that

(14)
$$a^{t_0} = a^{t_0 - (t+s)} \circ g^t \circ h^s$$

Since $a^{t_0-(t+s)}$ is invertible, from (13) and (14) we conclude that for every $t, s, t+s \in [0, t_0]$,

(15)
$$f^{t+s} = g^t \circ h^s.$$

In this way we have defined the families of linear functions $\{f^t : t \in [0, t_0]\}$, $\{g^t : t \in [0, t_0]\}$ and $\{h^t : t \in [0, t_0]\}$ satisfying the Pexider equation (15). Taking in (15) s = 0 and next t = 0 we obtain

$$f^t = g^t \circ h^0 = g^t \circ \mathrm{id} = g^t \quad \text{for } t \in [0, t_0],$$

$$f^s = g^0 \circ h^s = \mathrm{id} \circ h^s = h^s \quad \text{for } s \in [0, t_0].$$

Thus for all $t, s \in [0, t_0]$ such that $t + s \in [0, t_0]$ we have $f^t = g^t = h^t$.

Therefore $\{f^t : t \in [0, t_0]\}$ is a family of extreme linear continuous selections of functions from $\{F^t : t \in [0, t_0]\}$, respectively, such that

(16)
$$f^{t+s} = f^t \circ f^s \quad \text{for } t, s, t+s \in [0, t_0].$$

Moreover, since $a^{t_0}(x_0) = y_0$, substituting $t + s = t_0$ in (13) we obtain $f^{t_0}(x_0) = y_0$.

Observe that $\lim_{t\to 0} ||f^t - \mathrm{id}|| = 0$, since $||f^t - \mathrm{id}|| \le ||F^t - \mathrm{Id}||$. Therefore, by Lemma 5, there exists a unique linear continuous operator g such that $f^t = e^{tg}$ for $t \in [0, t_0]$ and $e^{t_0 g}(x) = f^{t_0}(x) = y_0$.

Take $t > t_0$ and $x \in C$. There exists $n \in \mathbb{N}$ large enough to have $t/n \in [0, t_0]$. Since $f^{t/n}(x) \in \operatorname{Ext} F^{t/n}(x)$ and $f^t = (f^{t/n})^n$, we have $f^t(x) \in F^t(x)$, $x \in C$, which finishes our proof.

COROLLARY 5. Let X be a Banach space and $C \subset X$ an open convex cone. Let $\{F^t : t \ge 0\}$ be an iteration semigroup of linear continuous s.v. functions $F^t : C \to c(C), t \ge 0$, satisfying the conditions

- (i) $F^0 = \mathrm{Id},$
- (ii) there exists a set-valued function $G: C \to b(X)$ such that

$$\lim_{t \to 0} \frac{1}{t} (F^t(x) - x) = G(x) \quad \text{for } x \in C.$$

Then for every $t_0 > 0$, $x_0 \in C$ and $y_0 \in \text{Ext } F^{t_0}(x_0)$ there exists exactly one iteration semigroup $\{f^t : t \geq 0\}$ of linear selections f^t of F^t with the property $f^{t_0}(x_0) = y_0$.

Moreover, f^t is extreme for $t \in [0, t_0]$ and there exists a unique linear continuous operator $g: X \to X$ such that $g(x) \in G(x)$ and $f^t(x) = e^{tg}(x)$ for every $x \in C$ and $t \ge 0$.

Proof. Let $\{F^t : t \ge 0\}$ be an iteration semigroup satisfying our assumptions. According to Corollary 1, the semigroup also fulfills all assumptions of the above theorem. Therefore there exists a unique linear continuous operator $g : X \to X$ such that $f^t(x) = e^{tg}(x)$ for every $x \in C$ and $t \ge 0$. Hence

(17)
$$\frac{e^{tg}(x) - x}{t} = \frac{f^t(x) - x}{t} \in \frac{F^t(x) - x}{t}, \quad x \in C, \ t \ge 0.$$

Fix any $\varepsilon > 0$ and $x \in C$. According to assumption (ii), there exists $T_1 > 0$ such that

(18)
$$\frac{F^{v}(x) - x}{t} \subset G(x) + \varepsilon S \quad \text{for all } 0 < t < T_1.$$

Combining (17) with (18), we can write

$$\frac{e^{tg}(x) - x}{t} \in G(x) + \varepsilon S \quad \text{for all } t \in (0, T_1).$$

Consequently,

$$g(x) \in G(x) + \varepsilon S$$

Since G(x) is compact, as a limit of a sequence in the complete space c(C),

 $g(x) \in G(x), \quad x \in C,$

and the proof is complete.

COROLLARY 6. Let X be a Banach space and $C \subset X$ a convex cone with nonempty interior. Let $\{F^t : t \ge 0\}$ be an iteration semigroup of linear continuous s.v. functions $F^t : C \to c(C), t \ge 0$, satisfying the conditions

(i) $F^0 = \mathrm{Id},$

(ii)
$$F^t(\operatorname{Int} C) \subset \operatorname{Int} C, t > 0,$$

(iii) there exists a set-valued function $G: C \to c(C)$ such that

$$\lim_{t \to 0} \frac{1}{t} \left(F^t(x) - x \right) = G(x) \quad \text{for } x \in C.$$

Then for every $t_0 > 0$, $x_0 \in \text{Int } C$ and $y_0 \in \text{Ext } F^{t_0}(x_0)$ there exists exactly one iteration semigroup $\{f^t : t \ge 0\}$ of linear selections f^t of F^t with the property $f^{t_0}(x_0) = y_0$.

Moreover, $f^t(x) \in \operatorname{Ext} F^t(x)$ for $x \in \operatorname{Int} C$ and $t \in [0, t_0]$, and there exists a unique linear continuous operator $g: X \to X$ such that $g(x) \in G(x)$ $(x \in C)$ and $f^t = e^{tg}$ for $t \ge 0$.

Proof. Define $\widehat{F}^t = F^t|_{\text{Int }C}$ for all $t \ge 0$. It is easy to observe that $\{\widehat{F}^t : t \ge 0\}$ is an iteration semigroup of linear s.v. functions satisfying all assumptions of Theorem 2.

Then for every $t_0 > 0$, $x_0 \in \text{Int } C$ and $y_0 \in \text{Ext } \widehat{F}^{t_0}(x_0)$ there exists exactly one iteration semigroup $\{\widehat{f}^t : t \ge 0\}$ of linear continuous selections \widehat{f}^t of \widehat{F}^t with the property $\widehat{f}^{t_0}(x_0) = y_0$.

Moreover, there exists a unique linear continuous operator $g: X \to X$ such that $g(x) \in G(x)$ and $\hat{f}^t(x) = e^{tg}(x)$ for $x \in \text{Int } C$ and $t \ge 0$.

Since C is a convex cone with nonempty interior, $\overline{C} = \overline{\operatorname{Int} C}$. Therefore we can uniquely extend every function \widehat{f}^t to a linear continuous function $f^t: C \to X, t \ge 0$. It is also easily seen that $f^t(x) = e^{tg}(x)$ for $x \in C$ and $t \ge 0$.

Fix $t \ge 0$. We will show that f^t is a selection of F^t . Take $x \in C \setminus \text{Int } C$ and a sequence of elements $\{x_n : n \in \mathbb{N}\}$ of the cone Int C. Then, by the closedness of $F^t(x)$ and the continuity of F^t ,

$$f^t(x) = \lim_{n \to \infty} \widehat{f}^t(x_n) \in \lim_{n \to \infty} \widehat{F}^t(x_n) = F^t(x).$$

From the above theorem and Theorem 1 of [3], one can obtain a similar result for concave iteration semigroups.

COROLLARY 7. Let X be a Banach space and $C \subset X$ a closed convex cone with nonempty interior. Let $\{F^t : t \ge 0\}$ be a concave iteration semigroup of linear continuous s.v. functions $F^t : C \to c(C), t \ge 0$, such that $F^0 = \text{Id}$ and $F^t(\text{Int } C) \subset \text{Int } C$ for t > 0. Then for every $t_0 > 0$, $x_0 \in \text{Int } C$ and $y_0 \in \text{Ext } F^{t_0}(x_0)$ there exists exactly one iteration semigroup $\{f^t : t \ge 0\}$ of linear selections f^t of F^t with the property $f^{t_0}(x_0) = y_0$.

Moreover, $f^t(x) \in \operatorname{Ext} F^t(x)$ for $x \in \operatorname{Int} C$ and $t \in [0, t_0]$ and there exists a unique linear continuous operator $g: X \to X$ such that

$$g(x) \in \bigcap_{t \ge 0} \frac{1}{t} \left(F^t(x) - x \right)$$

and $f^t(x) = e^{tg}(x)$ for all $t \ge 0$ and $x \in C$.

References

- K. Nikodem, K-convex and K-concave set-valued functions, Zeszyty Nauk. Politech. Łódz. Mat. 559 (1989).
- J. Olko, Selections of an iteration semigroup of linear set-valued functions, Aequationes Math. 56 (1998), 157–168.
- [3] —, Concave iteration semigroups of linear set-valued functions, Ann. Polon. Math. 71 (1999), 31–38.
- [4] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.

- [5] H. Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165–169.
- [6] A. Smajdor, Additive selections of a composition of additive set-valued functions, in: Iteration Theory (Batschuns, 1992), World Sci., 1996, 251–254.
- [7] —, Iterations of multi-valued functions, Prace Nauk. Uniw. Śląsk. Katowic. 759 (1985).
- [8] —, On regular multivalued cosine families, Ann. Math. Sil. 13 (1999), 271–280.
- W. Smajdor, Superadditive set-valued functions and Banach-Steinhaus theorem, Rad. Mat. 3 (1987), 203-214.

Institute of Mathematics Pedagogical University Podchorążych 2 30-084 Kraków, Poland E-mail: jolko@ap.krakow.pl

> Reçu par la Rédaction le 10.9.2004 Révisé le 6.1.2005

(1534)