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On semigroups with an infinitesimal operator

by JoLANTA OLKO (Krakéw)

Abstract. Let {F': ¢ > 0} be an iteration semigroup of linear continuous set-valued
functions. If the semigroup has an infinitesimal operator then it is a uniformly continuous
semigroup majorized by an exponential semigroup. Moreover, for sufficiently small ¢ every
linear selection of F! is invertible and there exists an exponential semigroup {f! : ¢ > 0}
of linear continuous selections f! of F*.

If X is a nonempty set, then n(X) denotes the set of all nonempty subsets
of X. All linear spaces are over R.

We say that a nonempty subset C of a linear space is a cone if tC' C C
for every t > 0.

Let X, Y be linear spaces and C' be a convex cone in X. The set-valued
function (abbreviated to s.v. function) F' : C'—n(Y) is called superadditive if

(1) F(z)+ F(y) C F(zr+y) forallz,yeC.
F is said to be additive if equality holds in (1), and QT -homogeneous if
(2) F(\r) = AF(z) forallzeC, \eQt,

where QT is the set of all positive rational numbers. F is linear if it is
additive and (2) is satisfied for all A > 0.

If X is a linear topological space, then b(X ) denotes the set of all bounded
elements of n(X), and ¢(X) stands for the family of all compact elements
of n(X).

Now let X,Y be topological spaces. An s.v. function F' : X — n(Y) is
called lower semicontinuous at xg € X if for every open set G in Y such
that F(x9) N G # 0 there exists a neighbourhood U of xy in X such that
F(z)NG # 0 for x € U. We say that F is lower semicontinuous in a set
A C X if F is lower semicontinuous at every point z € A.

We say that F': X — n(Y) is upper semicontinuous at xo € X if for every
open set G C Y such that F(xzo) C G there exists a neighbourhood U of xg
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in X such that F'(z) C G for z € U; F is called upper semicontinuous in a
set A C X if it is upper semicontinuous at every point of A, and continuous
if it is both lower and upper semicontinuous.

We recall a set-valued version of the Banach—Steinhaus theorem.

LEMMA 1 (Lemma 4 in [8]). Let X,Y be normed spaces, C C X a con-
vex cone of the second category in C, and {F; :i € I} a family of superad-
ditive, Q*-homogeneous and lower semicontinuous s.v. functions F; : C —
n(Y). If U;er Fi(z) € b(Y) for every x € C then there exists a constant
M € (0,00) such that

sup [|[Fi(2)|| < M|jz]|, 2 €C,
el

where || Fy(x)|| = sup{|ly|| : y € Fi(x)}.

Applying Lemma 1 to one s.v. function F': C' — b(Y'), we can define the
norm of F' by

(3) [F[| := inf{M >0 : Vocc |[F(z)|| < M|z}

REMARK 1. There exists an open convex cone which is of the first cat-
egory in itself.

Proof. This example is adapted from [8]. Let C(R, R) denote the space of
all bounded continuous functions from R to R and let K := {z € C(R,R) :
suppz € b(R)} and ||z|| := sup{|z(t)| : t € R} for x € K. Observe that
(K,|| - ||) is a normed space. Therefore K is an open convex cone in the
space K. On the other hand, from the proof of Remark 1 in [8] it follows
that K is of the first category in K. =

Since not every convex cone with nonempty interior is of the second
category in itself, in order to define the norm of a linear continuous s.v.
function defined on such a cone, the following lemma will be useful.

LEMMA 2. Let X be a normed space, C C X a convex cone with nonempty
interior, and F : C — b(X) a superadditive, QT -homogeneous and upper
semicontinuous s.v. function. Then there exists a constant M > 0 such that

[1F (@) < Mllz||  forz e C.

Proof. Fix g € IntC' and € > 0. Then there exists r > 0 such that
B(zg,r) C C, where B(xg,r) is the open ball with center at z¢ and radius 7.
Since F' is upper semicontinuous at xg, there exists 0 < § < r such that

F(y) C F(xo) + B(0,e) for y € B(xo,9).
Let x € B(0,9) N C. Then z + z¢ € B(x0,d) N C = B(xo,d) and
F(z + z0) C F(x0) + B(0,¢).
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By the above relation and superadditivity of F,
F(x)+ F(xo) C F(z + x0) C F(xg) + B(0,¢) C F(x9) + c1 B(0,¢)

for all x € B(0,0) N C. On account of the Radstrém theorem (see [5]) we
obtain

F(z) Cc clB(0,e) forallx € B(0,0)NC.
This means that lim, .o zec F(x) = {0} and according to Lemma 2 in [§],
the proof is complete.

For a function F' satisfying the assumptions of the above lemma we can
define the norm || F'|| in the same way as in (3).

If Y is a normed space, then h denotes the Hausdorff distance derived
from the norm in Y.

LEMMA 3. Let X,Y be normed spaces and C' C X be a convex cone of
the second category in C. Let {F; : t > 0} be a family of superadditive,
Qt-homogeneous and lower semicontinuous s.v. functions Fy : C — b(Y).
If there exists an s.v. function G : C — b(Y') such that

(4) 21inr(1) h(Fi(z),G(x)) =0 forallx € C,
then there exist M, T € (0,00) such that
|Ft| <M for every t € (0,T].

Proof. Assume that G : C' — b(Y') is an s.v. function satisfying (4) and
suppose that the assertion of the lemma is false. Then for every n € N there
exists ¢, € (0,1/n) such that

£, ]| > n.

Therefore, according to Lemma 1, there exists an element zg € C for which
the set (J,,cn F4, (%0) is not bounded. Thus

(5) sup{||Fy,, (zo)|| : n € N} = oo.
On the other hand, condition (4) implies that there exists T' > 0 with
(6) Fi(zo) C G(xzo)+ S fort e (0,7),

where S is the closed unit ball in Y. Therefore
| F2, (zo)|| < [|G(x0)|| +1  for every n > 1/T,
which contradicts (5).

From now on, Id stands for the map = — {z}, called the set-valued
identity.

COROLLARY 1. Let X be a normed space, C C X a conver cone of
the second category in C, and {F; : t > 0} a family of superadditive, Q-
homogeneous and lower semicontinuous set-valued functions Fy : C — b(X),
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t > 0. If there exists an s.v. function G : C' — b(X) such that

%i_g(l)h(% (Fy(x) — ), G(a:)) —0 forzeC,

then

lim || F; — Id|| = 0.

t—0

Proof. According to Lemma 3, there exist positive constants 1", M such
that
1
H; (Fy —Id)H <M forallte(0,T].
Therefore
|Fy —Id|| <tM fort e (0,71,

which proves the corollary.

LEMMA 4. Let X be a normed space, C C X a convex cone with nonempty
interior, and {Fy : t > 0} a family of linear continuous s.v. functions Fy :
C — b(X), t > 0, such that lim;_¢ |[F; — Id|| = 0. Then there exists a
constant T > 0 such that each linear selection of F; (0 < t < T) is invertible.

Proof. According to Lemma 5 in [8] there exists a positive constant M
such that for every linear continuous s.v. function F,

(7) h(F(x), F(y)) < M| F| |z —yl, xy€C.

By our assumptions, there exists T' > 0 such that

1
F—d|| < &~ t<T.
(8) 1F —1d|| < oy 0<t<

Fix t € (0,T) and let f; be a linear selection of F}. Since Int C' # (), we have

X = (C —C. Thus there exists a unique linear extension ﬁ of f; to the space
X, which is defined as follows:

filz —y) = fix) = fily), wyeC.
By (7) and (8), for all z,y € C,
Ife(z —y) = (x = )|l = | (fel@) = 2) = (fe(y) = 9)| < M| f; = id|| |« = y]|
1
< M||F; = 1d][flz =yl < 5 llz =y,

and therefore Hﬁ —id|| < 1, which completes the proof. m
Combining Lemma 4 with Corollary 1, we get

COROLLARY 2. Let X be a normed space, C C X a convex cone of the
second category in C with nonempty interior, and {Fy : t > 0} a family of
linear continuous s.v. functions Fy : C' — b(X), t > 0. Assume that there
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exists an s.v. function G : C — b(X) such that

%i_r}(l)h(% (Fy(x) — ), G(a:)) —0 forzeC.

Then there exists a constant T > 0 such that each linear selection of F%,
0 <t<T, is invertible.

The composition GoF of s.v. functions F' : X — n(Y)and G: Y — n(2)
is the s.v. function given as follows:

(GoF)(z) :=G(F(x)) forzelX.

A family {F' : ¢ > 0} of s.v. functions F' : X — n(X) is called an
iteration semigroup if

FtoF$ = F's forall s,t > 0.

Let {F':t > 0} be an iteration semigroup of s.v. functions, defined on a
cone C' in a normed space X with values in b(C). It is continuous if the
s.v. function t — F!(z) is continuous for every # € C. The semigroup
{F' : t > 0} has an infinitesimal operator if there exists an s.v. function
G : C — b(X) such that limy_o h(t 1 (F!(z)—z),G(z)) = 0, for every z € C.
Then G is called an infinitesimal operator of the semigroup.

Let C be a convex cone of the second category in itself with nonempty
interior. By Corollary 1, a semigroup of linear continuous s.v. functions
F': C — b(C) which has an infinitesimal operator is uniformly continuous,
that is, limy— || F* — Id|| = 0. Moreover, for sufficiently small ¢ every linear
selection of F' is invertible (see Corollary 2).

According to Lemmas 4 and 5 of [8] we obtain a more general version of
Theorem 1 of [2] (the proof runs in much the same way).

THEOREM 1. Let X be a normed space, and C C X a conver cone of
the second category in C with nonempty interior. If {F* : t > 0} is an
iteration semigroup of linear continuous s.v. functions F* : C — ¢(C), t > 0,
satisfying the conditions

(i) F° =1d,
(ii) lim—o [|F* — Id| = 0,

then there exist constants M > 0 and w > 0 with the property that

(9) |FY| < Me*t, t>0.

Moreover, if B is a bounded subset of C, then

(10)  Vsp>0Ye>03550VaeBVs>0 (Is — so| <& = h(F*(z), F*°(z)) <é).

REMARK 2. An iteration semigroup satisfying the assumptions of The-
orem 1 is continuous.
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COROLLARY 3. Let X be a normed space, and C C X a convex cone
of the second category in C with nonempty interior. If {F* :t > 0} is an
iteration semigroup of linear continuous s.v. functions F* : C — ¢(C), t > 0,
satisfying the conditions

(i) FO=1d,

(ii) there exists an s.v. function G : C — b(X) such that

%in% t L (Fi(z) —x) = G(x)  for every x € C,
then there exists constants M > 0 and w > 0 with the property that
|FY| < Me',  t>0.
Moreover, if B is a bounded subset of C, then
Vs0>0Ve>036>0V2eBVs>0 (Is — so| <6 = h(F*(z), F*(z)) < e).

If X is a linear space, then we say that an iteration semigroup {F*:¢>0}

is concave if
F/\5+(1_A)t(:n) C AF3(z) + (1 — N F'(x)
for all s,t >0, A €[0,1] and = € X.

Observe that a concave iteration semigroup satisfying the assumptions
of Theorem 1 in [3] also fulfils the assumptions of the above corollary.

Let C be a convex cone in a normed space X. If g : C — C is an
additive and positively homogeneous continuous operator, then e : C' — C
is defined as follows: o

tg tzgl(x)
e (x)zz e zeC, t>0.
i=0

LEMMA 5. Let X be a Banach space, C a convex cone in X with non-
empty interior, and T a positive number. Let {ft:t € [0,T]} be a family of
linear continuous operators from C into C' satisfying the conditions

(i) £ = id,
(ii) fro f* = f*** fort,s,t +s € [0,T],

(iii) limg—o || f* —id| = 0.

Then there exists a unique linear continuous operator g : X — X such that
fi(z) =€ (x) for allz € C and t € [0,T).

Proof. Let ft be an extension of f! to X = C' — C defined as follows:
ft(xl — .CCQ) = ft(xl) — ft(:L’Q), te [O,T], xr1,T9 € C.

Note that {ft :t € ]0,T]} is a family of linear continuous operators satisfying
(i)—(iii). Indeed, for all 21,29 € C, t,s,t + s € [0,T],

(' F) (a1 = w2) = [U(f* (@1 = w2)) = JH(f*(21) = [*(22))
= PP @) = FUP(2) = £ ) = £ (22)

= [ (21) — [T (@) = (1 — 2o).
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By Lemma 5 in [8], there exists M > 0 such that for every ¢ > 0 and
z,y €C,

I(F* = id)(z) = (f* —id) ()]l < M| f* —id||[lz — y|

and consequently ||ft —id|| < M||f* —id||, which together with condition
(iii) gives

lim || f* — id|| = 0.

lim |~ id]| = 0

Take any ¢ > T and n € N large enough that t/n € [0,7] and define

ft:= (f/™)n. This function is well defined. If n,m € N are so chosen that
t/n,t/m € [0,T] then t/nm € [0, T]. Hence

(FHmym = [y = () = (F

Since {]?t : t > 0} is a uniformly continuous iteration semigroup of
linear continuous operators, there exists a unique linear continuous operator
g : X — X such that f* = €% for t > 0 (cf. Corollary 1.4 in [4]), which
completes the proof.

An element z of a nonempty set A in a linear space X is called an extreme
point of A if there is no A € (0,1) and two different x1,x9 € A such that
x = Ar1+ (1 — X)xa. We denote by Ext A the set of all extreme points of A.

Let X be a nonempty set, Y a linear space, and F' : X — n(Y) an s.v.
function. We say that a selection f of F' is extreme if f(z) € Ext F(z) for
all x € X.

REMARK 3. Let X,Y be normed spaces, C C X an open convex cone,
and xg € C. If f is an additive selection of an additive lower semicontinuous
s.v. function F' : C' — n(Y) such that f(xg) € Ext F(xg) then f is extreme,
linear and continuous.

Proof. According to Nikodem’s theorem (Th. 5.4 in [1]) a selection f
such that f(zo) € Ext F(z¢) is unique and f(z) € Ext F'(x) for z € C. Since
f(z) € F(x) for each z € C and F is continuous, by Theorems 5.2 and 5.3
in [1], f is linear continuous.

The following lemma is a generalization of Lemma 4 in [2]. The separa-
bility of X is not necessary.

LEMMA 6. Let X be a normed space, C' an open convex cone in X, and
xo € C. Let F,G : C — n(C) be additive lower semicontinuous s.v. functions
such that every extreme additive selection of F' is invertible. Then for each
additive selection h of F o G such that

h(zo) € Ext (F o G)(x0)
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there exist unique additive selections f and g of F' and G respectively for
which

h=fog.
Moreover, f and g are extreme, linear and continuous.

Proof. There exists a point yg € G(xg) such that h(xzg) € Ext F(yo).
According to Nikodem’s theorem (Th. 5.4 in [1]) there exists exactly one
additive selection f of F such that h(xzg) = f(yo) and f(z) € Ext F(x) for
xeC.

We will show that yo € Ext G(z¢) and it is unique.

Suppose that A € (0,1), y1,y2 € G(zp) and yo = Ay1 + (1 — A)y2. Then
f(), f(y2) € F(G(xo)) and

h(zo) = f(yo) = Af(y1) + (1 = A)f(y2) € Ext (F o G)(z0),

hence f(y1) = f(y2) = f(yo). Since f is invertible we have y; = ya = yo.
Now suppose that there exists z # yo such that z € ExtG(zg) and
h(zo) € Ext F(z). Then for every A € (0,1),

h(zo) = Ah(wo) + (1 = A)h(zo) € AF(2) + (1 = A)F(yo) = F(Az+ (1= A)yo).

Since h(zg) is an extreme point of F(G(xp)) it cannot be expressed as a
convex combination of elements of the set F'(Az + (1 — N)yo) C F(G(zo)).
Hence h(zg) € Ext F(Az + (1 — X)yo). On account of Nikodem’s theorem

there exists a unique extreme additive selection f of F' such that h(xg) =
f(Az+ (1 — AN)yo). Remark 3 shows that f is linear and therefore

(11) h(zo) = f(Az + (1 = Ayo) = Af(2) + (1 = A) f(yo)-

Since h(zg) € Ext (FoG)(x0) and f(2), f(y0) € (FoG) (), (11) shows that

h(zo) = f(2) = f(yo) and so z = yo.

Again by Nikodem’s theorem there exists exactly one additive selection
g of the additive s.v. function G such that yo = g(z¢) and g(x) € Ext G(x)
for z € C.

Therefore h(zg) = f(yo) = f(g(x0)) = (fog)(xo) and h, fog are additive
selections of F' o GG, which yields h = f o g. On account of Remark 3 both f
and g are linear continuous, which completes the proof.

By induction, we get the following corollary.

COROLLARY 4. Let X be a normed space, C' an open convex cone in X,
xo € C, and n > 2 a positive integer. Let Fi, ..., F, : C — ¢(C) be additive
lower semicontinuous s.v. functions such that every extreme additive selec-
tion of F; is invertible for i € {2,...,n}. Then for every additive selection
h of F,, o --- o Fy satisfying

h(z0) € Ext(Fp 0+ o Fy)(x0)
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there exist unique additive selections f; of F;, i € {1,...,n}, such that
h=fao---ofi.
Moreover each f;, i € {1,...,n}, is extreme, linear and continuous.

Combining Lemma 4 and the above corollary gives us a lemma which
will be useful later.

LEMMA 7. Let X be a Banach space and C' C X an open convex cone.
Let {F' : t > 0} be an iteration semigroup of linear continuous s.v. functions
F':C — ¢(C), t >0, satisfying the condition

lim ||F* —1d|| = 0.
t—0
Then every extreme linear selection of F' (t > 0) is invertible.

Proof. According to Lemma 4, there exists a constant 1" > 0 such that
each linear continuous selection of F'* (0 < ¢t < T is invertible.

It remains to show that the assertion is true for ¢t > T. Fix to > T,
o € C and a linear selection f of F' such that f(xg) € Ext F'(x).
Let n € N be large enough that to/n € (0,T). Then f(xq) € Ext F'(zg) =
Ext (F*/™)"(z0). Hence, on account of Corollary 4, there exist unique linear
selections fi, ..., fn such that

f=fno-o0fi.
Since each function f; (i € {1,...,n}) is invertible, so is f.

Note that if {F*:¢ > 0} is an iteration semigroup with an infinitesimal
operator, then every extreme linear selection of F' is invertible.

The next theorem is a refinement of Theorem 2 in [2]; the assumption
that there exists a finite cone-basis is omitted. Moreover the assertion is
stronger.

THEOREM 2. Let X be a Banach space and C C X an open convex cone.
Let {F' : t > 0} be an iteration semigroup of linear continuous s.v. functions
F':C — ¢(C), t >0, satisfying the conditions

(i) FO =1d,

(i) limg_g || F* —1d|| = 0.

Then for every to > 0, zg € C and yo € Ext F'(xq) there exists exactly
one iteration semigroup {f : t > 0} of linear selections f' of F' with the
property f*(zo) = yo.

Moreover, ft is extreme for every t € [0,to] and there exists a unique
linear continuous operator g : X — X such that f'(x) = e (x) for all t >0
and x € C.

Proof. Let {F' : t > 0} be an iteration semigroup satisfying our as-
sumptions. By Lemma 7 every extreme linear selection of F! is invertible
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for t > 0. Fix tg > 0, 29 € C and yo € Ext F'(x(). Then there exists exactly
one extreme linear selection a®® of F' such that

(12) a’(xg) = yo.
Let t,s,t 4+ s € [0,t). Then Ext F'(z) = Ext (Flo=(t+5) o F+5)(z) for all
x € C. On account of Lemma 6, there exist unique extreme linear selections
qto—(t+s) - pt+s of plo—(t+s)  pt+s pegpectively, such that
(13) alo — ato_(H_S) o ft—l-s'
Similarly, there exist unique extreme linear selections g¢, h* of F, F'S respec-
tively, such that
(14) ato = glo—(t+s) o gt o h?.
Since a~(+%) is invertible, from (13) and (14) we conclude that for every
t,s,t+ s € [0,to],
(15) ft+s — gt o hS.
In this way we have defined the families of linear functions {f*: ¢ € [0,¢]},
{g' : t €]0,t0]} and {h! : t € [0,t9]} satisfying the Pexider equation (15).
Taking in (15) s = 0 and next ¢t = 0 we obtain
fl=gtoh’ =gloid=g¢' forte|0,t),
ff=g"oh®*=idoh®=h* for s € [0,tg].
Thus for all ¢, s € [0, %] such that ¢t + s € [0,%y] we have f! = g* = ht.

Therefore {f! : t € [0,t0]} is a family of extreme linear continuous selec-
tions of functions from {F* : t € [0,to]}, respectively, such that
(16) fir5=flofs fort,s,t+s€l0,tg
Moreover, since a'(zg) = yo, substituting ¢t + s = o in (13) we obtain
f(z0) = yo.

Observe that lim;_q || f —id|| = 0, since || f —id|| < ||F* —1d||. Therefore,
by Lemma 5, there exists a unique linear continuous operator g such that
ft=ce for t € [0,tp] and e'o9(x) = flo(x) = yo.

Take t > tg and x € C. There exists n € N large enough to have t/n €
[0, to]. Since f¥/™(x) € Ext F!/"(z) and f* = (f¥/™)", we have fi(z) € F'(z),
x € C, which finishes our proof.

COROLLARY 5. Let X be a Banach space and C C X an open conver
cone. Let {F' :t > 0} be an iteration semigroup of linear continuous s.v.
functions F' : C — ¢(C), t > 0, satisfying the conditions

(i) F° =1d,

(ii) there exists a set-valued function G : C' — b(X) such that

711_11%%(}725(3:)—a:):G(a:) forx e C.
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Then for every tg > 0, xg € C and yo € Ext F(xq) there exists exactly
one iteration semigroup {f' : t > 0} of linear selections f' of F' with the
property f*(x0) = yo.

Moreover, ft is extreme for t € [0,to] and there exists a unique linear
continuous operator g : X — X such that g(x) € G(z) and fi(x) = e'9(x)
for every x € C and t > 0.

Proof. Let {F*:t> 0} be an iteration semigroup satisfying our assump-
tions. According to Corollary 1, the semigroup also fulfills all assumptions
of the above theorem. Therefore there exists a unique linear continuous op-
erator g : X — X such that f!(z) = e"9(x) for every x € C and t > 0.
Hence

(17) e9(x) —x _ fiz) —x c Fi(z) —x

t t t ’
Fix any € > 0 and = € C. According to assumption (ii), there exists 77 > 0
such that

zeC, t>0.

Ft(z) —
(18) %CG(&J)—FES forall 0 <t < Th.
Combining (17) with (18), we can write
t9(p) —
)z € G(x)+eS forallte (0,T1).
Consequently,

g(z) € G(x) +€S.
Since G(z) is compact, as a limit of a sequence in the complete space ¢(C),
g(z) € G(x), xe€C,
and the proof is complete.

COROLLARY 6. Let X be a Banach space and C C X a convexr cone
with nonempty interior. Let {F' :t > 0} be an iteration semigroup of linear
continuous s.v. functions F': C — ¢(C), t > 0, satisfying the conditions

(i) FO=1d,
(i) F*(IntC) Cc Int C, t > 0,
(iii) there exists a set-valued function G : C' — ¢(C) such that

%%%(Ft(x)—x) =G(x) forxeC.

Then for every tg > 0, xo € Int C' and yo € Ext F'©(xq) there exists exactly
one iteration semigroup {f' : t > 0} of linear selections f' of F' with the
property f(z0) = yo-

Moreover, f'(z) € Ext F'(z) for x € IntC and t € [0,to], and there
exists a unique linear continuous operator g : X — X such that g(x) € G(z)
(x € C) and ft =€ fort > 0.
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Proof. Define F! = Flleo for all t > 0. It is easy to observe that
{ﬁ ©: ¢ > 0} is an iteration semigroup of linear s.v. functions satisfying all
assumptions of Theorem 2. R

Then for every tg > 0, 79 € IntC and yg € Ext F'0(zy) there exists
exactly one iteration semigroup {/} t > 0} of linear continuous selections
Ft of F! with the property f%(z) = .

Moreover, there exists a unique linear continuous operator g : X — X
such that g(z) € G(z) and f!(z) = €'9(x) for « € Int C and t > 0.

Since C is a convex cone with nonempty interior, C' = Int C. Therefore
we can uniquely extend every function ﬁ to a linear continuous function
ft:C — X, t>0. It is also easily seen that fi(x) = e9(x) for z € C and
t>0.

Fix t > 0. We will show that f* is a selection of F*. Take x € C'\ Int C
and a sequence of elements {x, : n € N} of the cone Int C. Then, by the
closedness of F*(x) and the continuity of F?,

fi(z) = nh_)rgo ) € nh_)r{)lo Ft(zy,) = F'(z). =

From the above theorem and Theorem 1 of [3], one can obtain a similar
result for concave iteration semigroups.

COROLLARY 7. Let X be a Banach space and C C X a closed con-
vex cone with nonempty interior. Let {F' : t > 0} be a concave iteration
semigroup of linear continuous s.v. functions F' : C — ¢(C), t > 0, such
that FO = 1d and Fi(IntC) C IntC for t > 0. Then for every tg > 0,
zo € Int C and yo € Ext F'0(xq) there exists exactly one iteration semigroup
{ft:t >0} of linear selections f! of F' with the property f°(xq) = yo.

Moreover, fi(z) € Ext F'(z) forz € Int C and t € [0,to] and there exists
a unique linear continuous operator g : X — X such that

o) € (5 (F'@) — )

>0
and f'(z) = e (x) for allt >0 and x € C.
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