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On semigroups with an infinitesimal operator

by Jolanta Olko (Kraków)

Abstract. Let {F t : t ≥ 0} be an iteration semigroup of linear continuous set-valued
functions. If the semigroup has an infinitesimal operator then it is a uniformly continuous
semigroup majorized by an exponential semigroup. Moreover, for sufficiently small t every
linear selection of F t is invertible and there exists an exponential semigroup {f t : t ≥ 0}
of linear continuous selections f t of F t.

IfX is a nonempty set, then n(X) denotes the set of all nonempty subsets
of X. All linear spaces are over R.

We say that a nonempty subset C of a linear space is a cone if tC ⊂ C
for every t > 0.

Let X, Y be linear spaces and C be a convex cone in X. The set-valued
function (abbreviated to s.v. function) F : C→n(Y ) is called superadditive if

F (x) + F (y) ⊂ F (x+ y) for all x, y ∈ C.(1)

F is said to be additive if equality holds in (1), and Q+-homogeneous if

F (λx) = λF (x) for all x ∈ C, λ ∈ Q+,(2)

where Q+ is the set of all positive rational numbers. F is linear if it is
additive and (2) is satisfied for all λ > 0.

IfX is a linear topological space, then b(X) denotes the set of all bounded
elements of n(X), and c(X) stands for the family of all compact elements
of n(X).

Now let X,Y be topological spaces. An s.v. function F : X → n(Y ) is
called lower semicontinuous at x0 ∈ X if for every open set G in Y such
that F (x0) ∩ G 6= ∅ there exists a neighbourhood U of x0 in X such that
F (x) ∩ G 6= ∅ for x ∈ U . We say that F is lower semicontinuous in a set
A ⊂ X if F is lower semicontinuous at every point x ∈ A.

We say that F : X → n(Y ) is upper semicontinuous at x0 ∈ X if for every
open set G ⊂ Y such that F (x0) ⊂ G there exists a neighbourhood U of x0
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in X such that F (x) ⊂ G for x ∈ U ; F is called upper semicontinuous in a
set A ⊂ X if it is upper semicontinuous at every point of A, and continuous
if it is both lower and upper semicontinuous.

We recall a set-valued version of the Banach–Steinhaus theorem.

Lemma 1 (Lemma 4 in [8]). Let X,Y be normed spaces, C ⊂ X a con-
vex cone of the second category in C, and {Fi : i ∈ I} a family of superad-
ditive, Q+-homogeneous and lower semicontinuous s.v. functions Fi : C →
n(Y ). If

⋃
i∈I Fi(x) ∈ b(Y ) for every x ∈ C then there exists a constant

M ∈ (0,∞) such that

sup
i∈I
‖Fi(x)‖ ≤M‖x‖, x ∈ C,

where ‖Fi(x)‖ = sup{‖y‖ : y ∈ Fi(x)}.
Applying Lemma 1 to one s.v. function F : C → b(Y ), we can define the

norm of F by

‖F‖ := inf{M > 0 : ∀x∈C ‖F (x)‖ ≤M‖x‖}.(3)

Remark 1. There exists an open convex cone which is of the first cat-
egory in itself.

Proof. This example is adapted from [8]. Let C(R,R) denote the space of
all bounded continuous functions from R to R and let K := {x ∈ C(R,R) :
suppx ∈ b(R)} and ‖x‖ := sup{|x(t)| : t ∈ R} for x ∈ K. Observe that
(K, ‖ · ‖) is a normed space. Therefore K is an open convex cone in the
space K. On the other hand, from the proof of Remark 1 in [8] it follows
that K is of the first category in K.

Since not every convex cone with nonempty interior is of the second
category in itself, in order to define the norm of a linear continuous s.v.
function defined on such a cone, the following lemma will be useful.

Lemma 2. Let X be a normed space, C⊂X a convex cone with nonempty
interior , and F : C → b(X) a superadditive, Q+-homogeneous and upper
semicontinuous s.v. function. Then there exists a constant M > 0 such that

‖F (x)‖ ≤M‖x‖ for x ∈ C.
Proof. Fix x0 ∈ IntC and ε > 0. Then there exists r > 0 such that

B(x0, r) ⊂ C, where B(x0, r) is the open ball with center at x0 and radius r.
Since F is upper semicontinuous at x0, there exists 0 < δ < r such that

F (y) ⊂ F (x0) +B(0, ε) for y ∈ B(x0, δ).

Let x ∈ B(0, δ) ∩ C. Then x+ x0 ∈ B(x0, δ) ∩ C = B(x0, δ) and

F (x+ x0) ⊂ F (x0) +B(0, ε).
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By the above relation and superadditivity of F ,

F (x) + F (x0) ⊂ F (x+ x0) ⊂ F (x0) +B(0, ε) ⊂ F (x0) + clB(0, ε)

for all x ∈ B(0, δ) ∩ C. On account of the R̊adström theorem (see [5]) we
obtain

F (x) ⊂ clB(0, ε) for all x ∈ B(0, δ) ∩ C.
This means that limx→0, x∈C F (x) = {0} and according to Lemma 2 in [8],
the proof is complete.

For a function F satisfying the assumptions of the above lemma we can
define the norm ‖F‖ in the same way as in (3).

If Y is a normed space, then h denotes the Hausdorff distance derived
from the norm in Y .

Lemma 3. Let X,Y be normed spaces and C ⊂ X be a convex cone of
the second category in C. Let {Ft : t > 0} be a family of superadditive,
Q+-homogeneous and lower semicontinuous s.v. functions Ft : C → b(Y ).
If there exists an s.v. function G : C → b(Y ) such that

lim
t→0

h(Ft(x), G(x)) = 0 for all x ∈ C,(4)

then there exist M,T ∈ (0,∞) such that

‖Ft‖ ≤M for every t ∈ (0, T ].

Proof. Assume that G : C → b(Y ) is an s.v. function satisfying (4) and
suppose that the assertion of the lemma is false. Then for every n ∈ N there
exists tn ∈ (0, 1/n) such that

‖Ftn‖ > n.

Therefore, according to Lemma 1, there exists an element x0 ∈ C for which
the set

⋃
n∈N Ftn(x0) is not bounded. Thus

sup{‖Ftn(x0)‖ : n ∈ N} =∞.(5)

On the other hand, condition (4) implies that there exists T > 0 with

Ft(x0) ⊂ G(x0) + S for t ∈ (0, T ),(6)

where S is the closed unit ball in Y . Therefore

‖Ftn(x0)‖ ≤ ‖G(x0)‖+ 1 for every n > 1/T,

which contradicts (5).

From now on, Id stands for the map x 7→ {x}, called the set-valued
identity.

Corollary 1. Let X be a normed space, C ⊂ X a convex cone of
the second category in C, and {Ft : t > 0} a family of superadditive, Q+-
homogeneous and lower semicontinuous set-valued functions Ft : C → b(X),
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t > 0. If there exists an s.v. function G : C → b(X) such that

lim
t→0

h

(
1
t

(Ft(x)− x), G(x)
)

= 0 for x ∈ C,

then
lim
t→0
‖Ft − Id‖ = 0.

Proof. According to Lemma 3, there exist positive constants T,M such
that ∥∥∥∥

1
t

(Ft − Id)
∥∥∥∥ ≤M for all t ∈ (0, T ].

Therefore
‖Ft − Id‖ ≤ tM for t ∈ (0, T ],

which proves the corollary.

Lemma 4. Let X be a normed space, C⊂X a convex cone with nonempty
interior , and {Ft : t > 0} a family of linear continuous s.v. functions Ft :
C → b(X), t > 0, such that limt→0 ‖Ft − Id‖ = 0. Then there exists a
constant T > 0 such that each linear selection of Ft (0 < t < T ) is invertible.

Proof. According to Lemma 5 in [8] there exists a positive constant M
such that for every linear continuous s.v. function F ,

h(F (x), F (y)) ≤M‖F‖ ‖x− y‖, x, y ∈ C.(7)

By our assumptions, there exists T > 0 such that

‖Ft − Id‖ < 1
2M

, 0 < t < T.(8)

Fix t ∈ (0, T ) and let ft be a linear selection of Ft. Since IntC 6= ∅, we have
X = C−C. Thus there exists a unique linear extension f̂t of ft to the space
X, which is defined as follows:

f̂t(x− y) = ft(x)− ft(y), x, y ∈ C.
By (7) and (8), for all x, y ∈ C,

‖f̂t(x− y)− (x− y)‖ = ‖(ft(x)− x)− (ft(y)− y)‖ ≤M‖ft − id‖ ‖x− y‖
≤M‖Ft − Id‖ ‖x− y‖ < 1

2
‖x− y‖,

and therefore ‖f̂t − id‖ < 1, which completes the proof.

Combining Lemma 4 with Corollary 1, we get

Corollary 2. Let X be a normed space, C ⊂ X a convex cone of the
second category in C with nonempty interior , and {Ft : t > 0} a family of
linear continuous s.v. functions Ft : C → b(X), t > 0. Assume that there
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exists an s.v. function G : C → b(X) such that

lim
t→0

h

(
1
t

(Ft(x)− x), G(x)
)

= 0 for x ∈ C.

Then there exists a constant T > 0 such that each linear selection of Ft,
0 < t < T , is invertible.

The compositionG◦F of s.v. functions F : X → n(Y ) and G : Y → n(Z)
is the s.v. function given as follows:

(G ◦ F )(x) := G(F (x)) for x ∈ X.
A family {F t : t ≥ 0} of s.v. functions F t : X → n(X) is called an

iteration semigroup if

F t ◦ F s = F t+s for all s, t ≥ 0.

Let {F t : t ≥ 0} be an iteration semigroup of s.v. functions, defined on a
cone C in a normed space X with values in b(C). It is continuous if the
s.v. function t 7→ F t(x) is continuous for every x ∈ C. The semigroup
{F t : t ≥ 0} has an infinitesimal operator if there exists an s.v. function
G : C → b(X) such that limt→0 h(t−1(F t(x)−x), G(x)) = 0, for every x ∈ C.
Then G is called an infinitesimal operator of the semigroup.

Let C be a convex cone of the second category in itself with nonempty
interior. By Corollary 1, a semigroup of linear continuous s.v. functions
F t : C → b(C) which has an infinitesimal operator is uniformly continuous,
that is, limt→0 ‖F t − Id‖ = 0. Moreover, for sufficiently small t every linear
selection of F t is invertible (see Corollary 2).

According to Lemmas 4 and 5 of [8] we obtain a more general version of
Theorem 1 of [2] (the proof runs in much the same way).

Theorem 1. Let X be a normed space, and C ⊂ X a convex cone of
the second category in C with nonempty interior. If {F t : t ≥ 0} is an
iteration semigroup of linear continuous s.v. functions F t : C → c(C), t ≥ 0,
satisfying the conditions

(i) F 0 = Id,
(ii) limt→0 ‖F t − Id‖ = 0,

then there exist constants M > 0 and ω ≥ 0 with the property that

‖F t‖ ≤Meωt, t ≥ 0.(9)

Moreover , if B is a bounded subset of C, then

∀s0≥0∀ε>0∃δ>0∀x∈B∀s≥0 (|s− s0| < δ ⇒ h(F s(x), F s0(x)) < ε).(10)

Remark 2. An iteration semigroup satisfying the assumptions of The-
orem 1 is continuous.
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Corollary 3. Let X be a normed space, and C ⊂ X a convex cone
of the second category in C with nonempty interior. If {F t : t ≥ 0} is an
iteration semigroup of linear continuous s.v. functions F t : C → c(C), t ≥ 0,
satisfying the conditions

(i) F 0 = Id,
(ii) there exists an s.v. function G : C → b(X) such that

lim
t→0

t−1(F t(x)− x) = G(x) for every x ∈ C,

then there exists constants M > 0 and ω ≥ 0 with the property that
‖F t‖ ≤Meωt, t ≥ 0.

Moreover , if B is a bounded subset of C, then

∀s0≥0∀ε>0∃δ>0∀x∈B∀s≥0 (|s− s0| < δ ⇒ h(F s(x), F s0(x)) < ε).

If X is a linear space, then we say that an iteration semigroup {F t : t≥0}
is concave if

F λs+(1−λ)t(x) ⊂ λF s(x) + (1− λ)F t(x)

for all s, t ≥ 0, λ ∈ [0, 1] and x ∈ X.
Observe that a concave iteration semigroup satisfying the assumptions

of Theorem 1 in [3] also fulfils the assumptions of the above corollary.
Let C be a convex cone in a normed space X. If g : C → C is an

additive and positively homogeneous continuous operator, then etg : C → C
is defined as follows:

etg(x) =
∞∑

i=0

tigi(x)
i!

, x ∈ C, t ≥ 0.

Lemma 5. Let X be a Banach space, C a convex cone in X with non-
empty interior , and T a positive number. Let {f t : t ∈ [0, T ]} be a family of
linear continuous operators from C into C satisfying the conditions

(i) f0 = id,
(ii) f t ◦ f s = f t+s for t, s, t+ s ∈ [0, T ],

(iii) limt→0 ‖f t − id‖ = 0.

Then there exists a unique linear continuous operator g : X → X such that
f t(x) = etg(x) for all x ∈ C and t ∈ [0, T ].

Proof. Let f̃ t be an extension of f t to X = C − C defined as follows:

f̃ t(x1 − x2) = f t(x1)− f t(x2), t ∈ [0, T ], x1, x2 ∈ C.
Note that {f̃ t : t ∈ [0, T ]} is a family of linear continuous operators satisfying
(i)–(iii). Indeed, for all x1, x2 ∈ C, t, s, t+ s ∈ [0, T ],

(f̃ t ◦ f̃ s)(x1 − x2) = f̃ t(f̃ s(x1 − x2)) = f̃ t(f s(x1)− f s(x2))

= f̃ t(f s(x1))− f̃ t(f s(x2)) = f t(f s(x1))− f t(f s(x2))

= f t+s(x1)− f t+s(x2) = f̃ t+s(x1 − x2).
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By Lemma 5 in [8], there exists M > 0 such that for every t ≥ 0 and
x, y ∈ C,

‖(f t − id)(x)− (f t − id)(y)‖ ≤M‖f t − id‖‖x− y‖

and consequently ‖f̃ t − id‖ ≤ M‖f t − id‖, which together with condition
(iii) gives

lim
t→0
‖f̃ t − id‖ = 0.

Take any t > T and n ∈ N large enough that t/n ∈ [0, T ] and define
f̃ t := (f̃ t/n)n. This function is well defined. If n,m ∈ N are so chosen that
t/n, t/m ∈ [0, T ] then t/nm ∈ [0, T ]. Hence

(f̃ t/m)m = [(f̃ t/nm)n]m = [(f̃ t/nm)m]n = (f̃ t/n)n.

Since {f̃ t : t ≥ 0} is a uniformly continuous iteration semigroup of
linear continuous operators, there exists a unique linear continuous operator
g : X → X such that f̃ t = etg for t ≥ 0 (cf. Corollary 1.4 in [4]), which
completes the proof.

An element x of a nonempty set A in a linear space X is called an extreme
point of A if there is no λ ∈ (0, 1) and two different x1, x2 ∈ A such that
x = λx1 + (1−λ)x2. We denote by ExtA the set of all extreme points of A.

Let X be a nonempty set, Y a linear space, and F : X → n(Y ) an s.v.
function. We say that a selection f of F is extreme if f(x) ∈ ExtF (x) for
all x ∈ X.

Remark 3. Let X,Y be normed spaces, C ⊂ X an open convex cone,
and x0 ∈ C. If f is an additive selection of an additive lower semicontinuous
s.v. function F : C → n(Y ) such that f(x0) ∈ ExtF (x0) then f is extreme,
linear and continuous.

Proof. According to Nikodem’s theorem (Th. 5.4 in [1]) a selection f
such that f(x0) ∈ ExtF (x0) is unique and f(x) ∈ ExtF (x) for x ∈ C. Since
f(x) ∈ F (x) for each x ∈ C and F is continuous, by Theorems 5.2 and 5.3
in [1], f is linear continuous.

The following lemma is a generalization of Lemma 4 in [2]. The separa-
bility of X is not necessary.

Lemma 6. Let X be a normed space, C an open convex cone in X, and
x0 ∈ C. Let F,G : C → n(C) be additive lower semicontinuous s.v. functions
such that every extreme additive selection of F is invertible. Then for each
additive selection h of F ◦G such that

h(x0) ∈ Ext (F ◦G)(x0)
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there exist unique additive selections f and g of F and G respectively for
which

h = f ◦ g.
Moreover , f and g are extreme, linear and continuous.

Proof. There exists a point y0 ∈ G(x0) such that h(x0) ∈ ExtF (y0).
According to Nikodem’s theorem (Th. 5.4 in [1]) there exists exactly one
additive selection f of F such that h(x0) = f(y0) and f(x) ∈ ExtF (x) for
x ∈ C.

We will show that y0 ∈ ExtG(x0) and it is unique.
Suppose that λ ∈ (0, 1), y1, y2 ∈ G(x0) and y0 = λy1 + (1− λ)y2. Then

f(y1), f(y2) ∈ F (G(x0)) and

h(x0) = f(y0) = λf(y1) + (1− λ)f(y2) ∈ Ext (F ◦G)(x0),

hence f(y1) = f(y2) = f(y0). Since f is invertible we have y1 = y2 = y0.
Now suppose that there exists z 6= y0 such that z ∈ ExtG(x0) and

h(x0) ∈ ExtF (z). Then for every λ ∈ (0, 1),

h(x0) = λh(x0) + (1− λ)h(x0) ∈ λF (z) + (1−λ)F (y0) = F (λz+ (1− λ)y0).

Since h(x0) is an extreme point of F (G(x0)) it cannot be expressed as a
convex combination of elements of the set F (λz + (1 − λ)y0) ⊂ F (G(x0)).
Hence h(x0) ∈ ExtF (λz + (1 − λ)y0). On account of Nikodem’s theorem
there exists a unique extreme additive selection f̃ of F such that h(x0) =
f̃(λz + (1− λ)y0). Remark 3 shows that f̃ is linear and therefore

h(x0) = f̃(λz + (1− λ)y0) = λf̃(z) + (1− λ)f̃(y0).(11)

Since h(x0) ∈ Ext (F ◦G)(x0) and f̃(z), f̃(y0) ∈ (F ◦G)(x0), (11) shows that
h(x0) = f̃(z) = f̃(y0) and so z = y0.

Again by Nikodem’s theorem there exists exactly one additive selection
g of the additive s.v. function G such that y0 = g(x0) and g(x) ∈ ExtG(x)
for x ∈ C.

Therefore h(x0) = f(y0) = f(g(x0)) = (f ◦g)(x0) and h, f ◦g are additive
selections of F ◦G, which yields h = f ◦ g. On account of Remark 3 both f
and g are linear continuous, which completes the proof.

By induction, we get the following corollary.

Corollary 4. Let X be a normed space, C an open convex cone in X,
x0 ∈ C, and n ≥ 2 a positive integer. Let F1, . . . , Fn : C → c(C) be additive
lower semicontinuous s.v. functions such that every extreme additive selec-
tion of Fi is invertible for i ∈ {2, . . . , n}. Then for every additive selection
h of Fn ◦ · · · ◦ F1 satisfying

h(x0) ∈ Ext(Fn ◦ · · · ◦ F1)(x0)
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there exist unique additive selections fi of Fi, i ∈ {1, . . . , n}, such that

h = fn ◦ · · · ◦ f1.

Moreover each fi, i ∈ {1, . . . , n}, is extreme, linear and continuous.

Combining Lemma 4 and the above corollary gives us a lemma which
will be useful later.

Lemma 7. Let X be a Banach space and C ⊂ X an open convex cone.
Let {F t : t ≥ 0} be an iteration semigroup of linear continuous s.v. functions
F t : C → c(C), t ≥ 0, satisfying the condition

lim
t→0
‖F t − Id‖ = 0.

Then every extreme linear selection of F t (t > 0) is invertible.

Proof. According to Lemma 4, there exists a constant T > 0 such that
each linear continuous selection of F t (0 < t < T ) is invertible.

It remains to show that the assertion is true for t > T . Fix t0 > T ,
x0 ∈ C and a linear selection f of F t0 such that f(x0) ∈ ExtF t0(x0).
Let n ∈ N be large enough that t0/n ∈ (0, T ). Then f(x0) ∈ ExtF t0(x0) =
Ext (F t0/n)n(x0). Hence, on account of Corollary 4, there exist unique linear
selections f1, . . . , fn such that

f = fn ◦ · · · ◦ f1.

Since each function fi (i ∈ {1, . . . , n}) is invertible, so is f .

Note that if {F t : t ≥ 0} is an iteration semigroup with an infinitesimal
operator, then every extreme linear selection of F t is invertible.

The next theorem is a refinement of Theorem 2 in [2]; the assumption
that there exists a finite cone-basis is omitted. Moreover the assertion is
stronger.

Theorem 2. Let X be a Banach space and C ⊂ X an open convex cone.
Let {F t : t ≥ 0} be an iteration semigroup of linear continuous s.v. functions
F t : C → c(C), t ≥ 0, satisfying the conditions

(i) F 0 = Id,
(ii) limt→0 ‖F t − Id‖ = 0.

Then for every t0 > 0, x0 ∈ C and y0 ∈ ExtF t0(x0) there exists exactly
one iteration semigroup {f t : t ≥ 0} of linear selections f t of F t with the
property f t0(x0) = y0.

Moreover , f t is extreme for every t ∈ [0, t0] and there exists a unique
linear continuous operator g : X → X such that f t(x) = etg(x) for all t ≥ 0
and x ∈ C.

Proof. Let {F t : t ≥ 0} be an iteration semigroup satisfying our as-
sumptions. By Lemma 7 every extreme linear selection of F t is invertible
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for t > 0. Fix t0 > 0, x0 ∈ C and y0 ∈ ExtF t0(x0). Then there exists exactly
one extreme linear selection at0 of F t0 such that

at0(x0) = y0.(12)

Let t, s, t + s ∈ [0, t0]. Then ExtF t0(x) = Ext (F t0−(t+s) ◦ F t+s)(x) for all
x ∈ C. On account of Lemma 6, there exist unique extreme linear selections
at0−(t+s), f t+s of F t0−(t+s), F t+s respectively, such that

at0 = at0−(t+s) ◦ f t+s.(13)

Similarly, there exist unique extreme linear selections gt, hs of F t, F s respec-
tively, such that

at0 = at0−(t+s) ◦ gt ◦ hs.(14)

Since at0−(t+s) is invertible, from (13) and (14) we conclude that for every
t, s, t+ s ∈ [0, t0],

f t+s = gt ◦ hs.(15)

In this way we have defined the families of linear functions {f t : t ∈ [0, t0]},
{gt : t ∈ [0, t0]} and {ht : t ∈ [0, t0]} satisfying the Pexider equation (15).
Taking in (15) s = 0 and next t = 0 we obtain

f t = gt ◦ h0 = gt ◦ id = gt for t ∈ [0, t0],

f s = g0 ◦ hs = id ◦ hs = hs for s ∈ [0, t0].

Thus for all t, s ∈ [0, t0] such that t+ s ∈ [0, t0] we have f t = gt = ht.
Therefore {f t : t ∈ [0, t0]} is a family of extreme linear continuous selec-

tions of functions from {F t : t ∈ [0, t0]}, respectively, such that

f t+s = f t ◦ f s for t, s, t+ s ∈ [0, t0].(16)

Moreover, since at0(x0) = y0, substituting t + s = t0 in (13) we obtain
f t0(x0) = y0.

Observe that limt→0 ‖f t−id‖ = 0, since ‖f t−id‖ ≤ ‖F t−Id‖. Therefore,
by Lemma 5, there exists a unique linear continuous operator g such that
f t = etg for t ∈ [0, t0] and et0g(x) = f t0(x) = y0.

Take t > t0 and x ∈ C. There exists n ∈ N large enough to have t/n ∈
[0, t0]. Since f t/n(x) ∈ ExtF t/n(x) and f t = (f t/n)n, we have f t(x) ∈ F t(x),
x ∈ C, which finishes our proof.

Corollary 5. Let X be a Banach space and C ⊂ X an open convex
cone. Let {F t : t ≥ 0} be an iteration semigroup of linear continuous s.v.
functions F t : C → c(C), t ≥ 0, satisfying the conditions

(i) F 0 = Id,
(ii) there exists a set-valued function G : C → b(X) such that

lim
t→0

1
t
(F t(x)− x) = G(x) for x ∈ C.
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Then for every t0 > 0, x0 ∈ C and y0 ∈ ExtF t0(x0) there exists exactly
one iteration semigroup {f t : t ≥ 0} of linear selections f t of F t with the
property f t0(x0) = y0.

Moreover , f t is extreme for t ∈ [0, t0] and there exists a unique linear
continuous operator g : X → X such that g(x) ∈ G(x) and f t(x) = etg(x)
for every x ∈ C and t ≥ 0.

Proof. Let {F t : t ≥ 0} be an iteration semigroup satisfying our assump-
tions. According to Corollary 1, the semigroup also fulfills all assumptions
of the above theorem. Therefore there exists a unique linear continuous op-
erator g : X → X such that f t(x) = etg(x) for every x ∈ C and t ≥ 0.
Hence

etg(x)− x
t

=
f t(x)− x

t
∈ F

t(x)− x
t

, x ∈ C, t ≥ 0.(17)

Fix any ε > 0 and x ∈ C. According to assumption (ii), there exists T1 > 0
such that

F t(x)− x
t

⊂ G(x) + εS for all 0 < t < T1.(18)

Combining (17) with (18), we can write

etg(x)− x
t

∈ G(x) + εS for all t ∈ (0, T1).

Consequently,
g(x) ∈ G(x) + εS.

Since G(x) is compact, as a limit of a sequence in the complete space c(C),

g(x) ∈ G(x), x ∈ C,
and the proof is complete.

Corollary 6. Let X be a Banach space and C ⊂ X a convex cone
with nonempty interior. Let {F t : t ≥ 0} be an iteration semigroup of linear
continuous s.v. functions F t : C → c(C), t ≥ 0, satisfying the conditions

(i) F 0 = Id,
(ii) F t(IntC) ⊂ IntC, t > 0,
(iii) there exists a set-valued function G : C → c(C) such that

lim
t→0

1
t

(F t(x)− x) = G(x) for x ∈ C.

Then for every t0 > 0, x0 ∈ IntC and y0 ∈ ExtF t0(x0) there exists exactly
one iteration semigroup {f t : t ≥ 0} of linear selections f t of F t with the
property f t0(x0) = y0.

Moreover , f t(x) ∈ ExtF t(x) for x ∈ IntC and t ∈ [0, t0], and there
exists a unique linear continuous operator g : X → X such that g(x) ∈ G(x)
(x ∈ C) and f t = etg for t ≥ 0.
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Proof. Define F̂ t = F t|IntC for all t ≥ 0. It is easy to observe that
{F̂ t : t ≥ 0} is an iteration semigroup of linear s.v. functions satisfying all
assumptions of Theorem 2.

Then for every t0 > 0, x0 ∈ IntC and y0 ∈ Ext F̂ t0(x0) there exists
exactly one iteration semigroup {f̂ t : t ≥ 0} of linear continuous selections
f̂ t of F̂ t with the property f̂ t0(x0) = y0.

Moreover, there exists a unique linear continuous operator g : X → X
such that g(x) ∈ G(x) and f̂ t(x) = etg(x) for x ∈ IntC and t ≥ 0.

Since C is a convex cone with nonempty interior, C = IntC. Therefore
we can uniquely extend every function f̂ t to a linear continuous function
f t : C → X, t ≥ 0. It is also easily seen that f t(x) = etg(x) for x ∈ C and
t ≥ 0.

Fix t ≥ 0. We will show that f t is a selection of F t. Take x ∈ C \ IntC
and a sequence of elements {xn : n ∈ N} of the cone IntC. Then, by the
closedness of F t(x) and the continuity of F t,

f t(x) = lim
n→∞

f̂ t(xn) ∈ lim
n→∞

F̂ t(xn) = F t(x).

From the above theorem and Theorem 1 of [3], one can obtain a similar
result for concave iteration semigroups.

Corollary 7. Let X be a Banach space and C ⊂ X a closed con-
vex cone with nonempty interior. Let {F t : t ≥ 0} be a concave iteration
semigroup of linear continuous s.v. functions F t : C → c(C), t ≥ 0, such
that F 0 = Id and F t(IntC) ⊂ IntC for t > 0. Then for every t0 > 0,
x0 ∈ IntC and y0 ∈ ExtF t0(x0) there exists exactly one iteration semigroup
{f t : t ≥ 0} of linear selections f t of F t with the property f t0(x0) = y0.

Moreover , f t(x) ∈ ExtF t(x) for x ∈ IntC and t ∈ [0, t0] and there exists
a unique linear continuous operator g : X → X such that

g(x) ∈
⋂

t≥0

1
t

(F t(x)− x)

and f t(x) = etg(x) for all t ≥ 0 and x ∈ C.
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