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On semilinear elliptic equations with diffuse
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Abstract. We consider semilinear equation of the form −Lu = f(x, u)+µ,
where L is the operator corresponding to a transient symmetric regular
Dirichlet form E , µ is a diffuse measure with respect to the capacity
associated with E , and the lower-order perturbing term f(x, u) satisfies
the sign condition in u and some weak integrability condition (no growth
condition on f(x, u) as a function of u is imposed). We prove the existence
of a solution under mild additional assumptions on E . We also show that
the solution is unique if f is nonincreasing in u.
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1. Introduction

Let E be a locally compact separable metric space, m be a positive Radon
measure on E such that supp [m] = E, and let (E ,D(E)) be a regular transient
symmetric Dirichlet form on L2(E;m). In this paper, we consider semilinear
equations of the form

− Lu = f(·, u) + μ. (1.1)
In (1.1), f : E × R → R is a Carathéodory function satisfying the so-called
“sign condition”:

f(x, 0) = 0, f(x, y)y ≤ 0, x ∈ E, y ∈ R, (1.2)

and μ is a diffuse measure on E with respect to the capacity associated with
E , i.e. a bounded signed Borel measure on E which charges no set of capacity
zero. As for L, we assume that it is the operator corresponding to E , i.e. the
unique nonpositive self-adjoint operator on L2(E;m) such that

D(L) ⊂ D(E), E(u, v) = (−Lu, v), u ∈ D(L) , v ∈ D(E),
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where (·, ·) stands for the usual scalar product in L2(E;m) (see [15, Section
1.3]). Problems of the form (1.1) with f satisfying the sign conditions are called
absorption problems. The model examples of (1.1) are

− Δu = f(·, u) + μ in D, u = 0 on ∂D, (1.3)

where E := D is a bounded open subset of R
d and Δ is the Laplace operator,

and
− Δα/2u = f(·, u) + μ in D, u = 0 on R

d \ D, (1.4)
where Δα/2 is the fractional Laplace operator with α ∈ (0, 2).

The study of problems of the form (1.3) with μ ∈ L1(D; dx) was initiated
by Brezis and Strauss [9] (in fact, in [9] more general second-order elliptic
differential operator is considered). In [9] it is proved that if f satisfies the
sign condition and

∀a > 0 Fa ∈ L1(E;m), where Fa(x) = sup
|y|≤a

|f(x, y)|, x ∈ E (1.5)

with E = D, then there exists a solution to (1.3) for μ belonging to some class
which is “arbitrarily smaller” than L1(D; dx). If f satisfies stronger mono-
tonicity condition:

(f(x, y1) − f(x, y2))(y1 − y2) ≤ 0, x ∈ E, y1, y2 ∈ R, (1.6)

then the solution exists for any μ ∈ L1(D; dx) and is unique. Later, Gallouët
and Morel [16] proved the existence of a solution to (1.3) for any μ ∈ L1(D; dx)
and f satisfying (1.2), (1.5). Orsina and Ponce [28] have subsequently general-
ized and strengthened this result by showing that a solution to (1.3) exists for
any diffuse measure μ and any f satisfying (1.2) and an integrability condition
weaker than (1.5).

Equations of the form (1.1) in the case where L is a general, possibly
nonlocal, operator associated with a transient regular Dirichlet form were con-
sidered by Klimsiak and Rozkosz [22,24] in case f satisfies the monotonicity
condition, and by Klimsiak [20] in case f satisfies the sign condition (in fact,
in [20] systems of equations with right-hand side satisfying a generalized sign
condition are considered).

In [20,22,24] the proofs of the existence results rely heavily on probabilis-
tic methods. In particular, we make an extensive use of the theory of backward
stochastic differential equations and we use some results from stochastic analy-
sis and probabilistic potential theory. In the present paper we give new, rather
short analytical proofs of some of the results of [20,22]. We are motivated by
the desire to make them accessible to people working in PDEs that are not
familiar with probabilistic methods.

Let De(E) denote the extended Dirichlet space of (E ,D(E)). In the present
paper we provide a proof of the existence of a solution u in the sense of duality
(or, equivalently, renormalized solution; see Sect. 3) to (1.1) for f satisfying
(1.2) and (1.5) under the following additional assumption on E :

if {un} ⊂ De(E) and supn≥1 E(un, un) < ∞,

then, up to a subsequence, {un} converges m-a.e. (1.7)
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We also show that if u is a solution to (1.1), then Tk(u) = ((−k)∨u)∧k ∈ De(E)
for every k > 0 and

E(Tk(u), Tk(u)) ≤ 2k‖μ‖TV ,

where ‖μ‖TV is the total variation norm of μ. Furthermore, if (1.6) is satisfied,
then the solution u is unique.

Condition (1.7) holds true in many interesting situations. For instance,
it holds if

the embedding V1 ↪→ L2(E;m) is compact, (1.8)
where V1 denotes the space D(E) equipped with the norm determined by the
form E1(·, ·) := E(·, ·) + (·, ·). Another condition, which is often satisfied in
practice and implies (1.7), is the so called absolute continuity condition saying
that

Rα(x, ·) � m for any α > 0 and x ∈ E, (1.9)
where Rα(x, ·) is the resolvent kernel associated with E . For symmetric forms
considered in this paper, condition (1.9) is equivalent to the condition

Pt(x, ·) � m for any t > 0 and x ∈ E, (1.10)

where Pt(x, ·) is the transition kernel associated with E .
The main idea of our proofs resembles the idea used in case of problem

(1.3) (see the proof of Theorem B.4 in Brezis et al. [8] and also Ponce [31,
Chapter 19]). Let V denote the extended space De(E) equipped with the norm
determined by E . We first prove the existence of a solution to (1.1) with μ ∈
M0,b ∩ V ′, where M0,b is the set of all diffuse measures on E and V ′ is the
dual of V . This step can be viewed as some modification of the result of
Brezis and Browder [7] on absorption problems (1.3) with μ ∈ H−1(D). To
get the existence for general μ ∈ M0,b, we approximate it by a suitably chosen
sequence {μn} ⊂ M0,b ∩V ′ and show that solutions un of (1.1) corresponding
to the measures μn converge to a solution of (1.1). In this second step we use
some a priori estimates for un in V and condition (1.7). In [25] it is proved
that any μ ∈ M0,b admits decomposition of the form μ = g + ν with g ∈
L1(E;m) and ν ∈ M0,b ∩ V ′ (this generalizes the corresponding result proved
by Boccardo et al. [5] for the form associated with Δ). Therefore, similarly to
[8], in the second step of the proof it is enough to approximate by {μn} the
measure μ = g · m. This, however, does not simplify the reasoning, so in the
present paper we give a direct approximation of μ ∈ M0,b (without recourse
to [25]).

In the present paper we confine ourselves to single equation with operator
corresponding to symmetric regular Dirichlet forms. For results (proved with
the help of probabilistic methods) for quasi-regular, possibly nonsymmetric
forms, we refer the reader to [24], and for results for systems of equations to
[20]. Also note that equations with f = 0 but Δ replaced by the Schrödinger
operator are treated in [29] and [31, Chapter 22].

In the paper we deal exclusively with equations with diffuse measures.
The theory of semilinear equations with general bounded measures is much
more subtle. In this case (1.3) with f satisfying (1.6) need not have a solution
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(see [2,3,8]). Results on (1.3) with general bounded measure μ and f satisfying
the monotonicity condition are found in [3,8,13], and for equations with f
satisfying the sign condition (1.2) in [31, Chapter 21]. The Dirichlet problem
for linear equations with nonlocal operators and bounded measure μ is studied
in [19,26,30]. In Klimsiak [21] general equations of the form (1.1) with general
bounded measure μ and f satisfying (1.6) are considered. The question whether
one can extend the existence results of [31] to some nonlocal operators or
extend some existence results of [21] to f satisfying (1.2) remains open.

2. Preliminaries

In this paper, E is a locally compact separable metric space and m is a Radon
measure such that supp[m] = E, i.e. m is a nonnegative measure on the σ-field
of Borel subsets of E which is finite on compact sets and strictly positive on
nonempty open sets.

In what follows (E ,D(E)) is a symmetric regular Dirichlet form on
L2(E;m). We denote by (·, ·) the usual inner product in L2(E;m). As usual,
for λ ≥ 0 we set Eλ(u, v) = E(u, v) + λ(u, v), u, v ∈ D(E).

In the whole paper we assume that (E ,D(E)) is transient. Recall that
this means that there exists a bounded strictly m-a.e. positive g ∈ L1(E;m)
such that ∫

E

|u(x)|g(x)m(dx) ≤ E(u, u), u ∈ D(E). (2.1)

For an equivalent formulation, see [15, Section 1.5]. The extended Dirichlet
space associated with (E ,D(E)) (see [15, Section 1.5] for the definition) will be
denoted by (E ,De(E)). Note that De(E) with the inner product E is a Hilbert
space (see [15, Theorem 1.5.3]). In the sequel this space will be denoted by V .
We denote by V ′ the dual space of V . The duality pairing between V ′ and V
will be denoted by 〈〈·, ·〉〉.

In the paper we define 0-order quasi notions with respect to E (capacity
Cap(0), exceptional sets, nests, quasi-continuity) as in [15, Chapter 2, page 74].
Recall that Cap(0) is defined as follows. For an open subset U of E, we set

L(0)
U = {u ∈ De(E) : u ≥ 1 m-a.e. on U}

and

Cap(0)(U) =

{
inf{E(u, u) : u ∈ L(0)

U } if L(0)
U �= ∅,

∞ if L(0)
U = ∅.

Then, as usual, for an arbitrary A ⊂ E, we set

Cap(0)(A) = inf{Cap(0)(U) : U open, U ⊃ A}.

We say that A ⊂ E is exceptional if Cap(0)(A) = 0, and we say that a property
of points in E holds quasi-everywhere (q.e. in abbreviation) if it holds outside
some exceptional subset of E.
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For a measure μ on E and a function u : E → R, we use the notation

〈μ, u〉 =
∫

E

u(x)μ(dx),

whenever the integral is well defined. For a signed Borel measure μ, we denote
by μ+ and μ− its positive and negative parts, and by |μ| the total variation
measure, i.e. |μ| = μ+ + μ−. We denote by Mb the space of all finite signed
Borel measures on E endowed with the total variation norm ‖μ‖TV = |μ|(E),
and by M0,b the subspace of Mb consisting of all measures charging no set of
capacity Cap(0) zero. Elements of M0,b are called diffuse measures.

We write μ ∈ M0,b ∩ V ′ if for some c > 0,

〈|μ|, |ũ|〉 ≤ cE(u, u)1/2, u ∈ De(E),

where ũ denotes a quasi-continuous m-version of u (see [15, Theorem 2.1.7]).
Elements of M0,b ∩ V ′ are called measures of finite 0-order energy integral. If
μ ∈ M0,b ∩ V ′, then

〈μ, ũ〉 = 〈〈μ, u〉〉, u ∈ De(E). (2.2)

If f ∈ V ′, then by Riesz’s theorem there is a unique element Gf ∈ De(E) such
that

E(Gf, u) = 〈〈f, u〉〉, u ∈ De(E). (2.3)

In particular, if μ ∈ M0,b∩V ′, then the function Gμ is well defined and belongs
to V .

Let B+(E) (resp. Bb(E)) denote the set of all positive (resp. bounded) real
Borel functions on E, and let (Gα)α>0 denote the strongly continuous resolvent
on L2(E;m) associated with (E ,D(E)). Recall that αGα is Markovian for each
α > 0, i.e. 0 ≤ αGαf ≤ 1 m-a.e. whenever f ∈ L2(E;m) and 0 ≤ f ≤ 1 m-a.e.
Since Gα is positivity preserving, we can extend it to any positive f ∈ B+(E)
by

Gαf(x) = lim
n→∞ Gαfn(x) = sup

n≥1
Gαf(x) for m-a.e. x ∈ E, (2.4)

where {fn} ⊂ L2(E;m) is a nondecreasing sequence of positive functions con-
verging m-a.e. to f . It is clear that Gαf does not depend on the choice of the
sequence {fn}. By the resolvent equation, if β > α > 0, then Gαf ≤ Gβf
m-a.e. for any B+(E). Therefore for f ∈ B+(E) we can set

Gf(x) := G0f(x) = lim
α↓0

Gαf(x) = sup
α>0

Gαf(x) for m-a.e. x ∈ E. (2.5)

By [15, Lemma 2.2.11], for f ∈ B+(E) such that f · m ∈ V ′, Gf defined by
(2.5) coincides with Gf of (2.3).

An increasing sequence {Fn} of closed subsets of E is called a generalized
nest if Cap(0)(K \ Fn) → 0 for any compact K ⊂ E. A Borel measure μ on
E is called smooth if there exists a generalized nest {Fn} such that 1Fn

·
μ ∈ M0,b, n ≥ 1. In particular each diffuse measure is smooth. If {Fn} is a
generalized nest such that 1Fn

· μ ∈ M0,b then
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μ
(
E \

∞⋃
n=1

Fn

)
= 0 (2.6)

(see [15, (2.2.18)]).
By the 0-order version of [15, Theorem 2.2.4] (see the remark following

[15, Corollary 2.2.2]), for each smooth measure μ there exists a generalized
nest {Fn} such that 1Fn

· μ ∈ M0,b ∩ V ′. Therefore, for a positive smooth
measure μ, we may define a function Gμ with values in [0,∞] by

Gμ(x) = lim
n→∞ Gμn(x) = sup

n≥1
Gμn(x), x ∈ E, (2.7)

where μn = 1Fn
· μ and {Fn} is a generalized nest such that μn ∈ M0,b ∩ V ′,

n ≥ 1. Note that Gμ is defined uniquely up to m-equivalence.
In the paper, for a function u on E, we denote by ũ its quasi-continuous

m-version (whenever it exists). We will freely use, without explicit mention, the
following fact: if u1 ≤ u2 m-a.e. and u1, u2 have quasi-continuous m-versions,
then ũ1 ≤ ũ2 q.e. (see [15, Lemma 2.1.4]).

Let β > 0. In the proof of the lemma below we will need the symmetric
form E(β) defined by

E(β)(u, v) = β(u, v − βGβv), u, v ∈ L2(E;m).

Since βGβ is a symmetric linear operator on L2(E;m), by [15, Lemma 1.4.1]
there exists a unique nonnegative symmetric Radon measure σ on the product
space E × E such that for any Borel functions u, v ∈ L1(E;m),

(u, βGβ) =
∫

E×E

u(x)v(x)σβ(dx dy). (2.8)

Since βGβ is Markovian, from (2.8) it follows that σβ(E ×B) ≤ m(B) for any
Borel B ⊂ E. Let sβ denote the Radon-Nikodym derivative of the measure
B �→ σβ(E × B) with respect to m. Then 0 ≤ sβ ≤ 1 m-a.e., and by a direct
computation one can check that for a Borel u ∈ L2(E;m) one can rewrite
E(β)(u, u) in the form

E(β)(u, u) =
β

2

∫
E×E

(u(x) − u(y))2σβ(dx dy)

+ β

∫
E

(u(x))2(1 − sβ(x))m(dx) (2.9)

(see [15, (1.4.8)]). The expression (2.9) can be extended to any Borel function
u on E. Furthermore, by [15, Theorem 1.5.2(ii)], for any Borel u ∈ De(E),
E(β)(u, u) increases to E(u, u) as β → ∞.

Lemma 2.1. Let u ∈ De(E), and let ψ : R → R be an increasing function such
that ψ(0) = 0 and ψ is Lipschitz continuous with Lipschitz constant 1. Then

E(ψ(u), ψ(u)) ≤ E(u, ψ(u)).

Proof. By [15, Theorem 1.5.3(δ)], ψ(u) ∈ De(E). Furthermore, for any β > 0
we have
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E(β)(u, ψ(u)) =
1
4
{E(β)(u + ψ(u), u + ψ(u)) − E(β)(u − ψ(u), u − ψ(u))}

=
β

2

∫
E×E

(u(x) − u(y))(ψ(u(x)) − ψ(u(y)))σβ(dx dy)

+ β

∫
E

u(x)ψ(u(x))(1 − sβ(x))m(dx)

and

E(β)(ψ(u), ψ(u)) =
β

2

∫
E×E

(ψ(u(x)) − ψ(u(y)))2σβ(dx dy)

+ β

∫
E

(ψ(u(x)))2(1 − sβ(x))m(dx).

From this we conclude that for any β > 0,

E(β)(ψ(u), ψ(u)) ≤ E(β)(u, ψ(u)).

Letting β → ∞ and using [15, Theorem 1.5.2(ii)] we obtain the desired inequal-
ity. �

For k ≥ 0 and u : E → R, we write

Tk(u)(x) = ((−k) ∨ u(x)) ∧ k, x ∈ E.

Since ψ(y) = ((−k) ∨ y) ∧ y, y ∈ R, satisfies the assumptions of Lemma 2.1, if
u ∈ De(E), then Tku ∈ De(E) and for every k ≥ 0,

E(Tk(u), Tk(u)) ≤ E(u, Tk(u)). (2.10)

Lemma 2.2. Let μ ∈ M+
0,b. Then Gμ has a quasi-continuous m-version.

Proof. Let {Hn} be a generalized nest such that μn = 1Hn
μ ∈ M0,b ∩ V ′,

n ≥ 1, and μ(E \ Hn) ≤ 2−3n. Set un = Gμn, u = Gμ. It is clear that un ↗ u
m-a.e. By the 0-order version of [15, (2.1.10)], for all ε, δ > 0 we have

Cap(0)(ũn+1 − ũn > ε) = Cap(0)(Tε+δ(ũn+1 − ũn) > ε)

≤ ε−2E(Tε+δ(un+1 − un), Tε+δ(un+1 − un))

Since ũn+1 − ũn ∈ De(E), it follows from the above inequality and (2.10) that

Cap(0)(ũn+1 − ũn > ε) ≤ ε−2E(un+1 − un, Tε+δ(un+1 − un))

= ε−2

∫
E

Tε+δ(ũn+1 − ũn) d(μn+1 − μn)

≤ (ε + δ)ε−2μ(E \ Hn).

Taking ε = 2−n and letting δ ↘ 0 we get

Cap(0)(ũn+1 − ũn > 2−n) ≤ 2−2n, n ≥ 1. (2.11)

By [15, Theorem 2.1.2], there exists a nest {Gk} such that ũn is continuous
on Gk for all k, n ≥ 1. Let Fn =

⋂∞
k=n(E \ Uk) ∩ Gk, where Uk = {ũk+1 −

ũk > 2−k}. From (2.11) it is clear that {Fn} is a nest and ũ defined q.e. as
ũ = limn→∞ ũn is quasi-continuous. Of course, ũ is an m-version of u. �
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Lemma 2.3. Let μ ∈ M0,b. Then for every k ≥ 0, Tk(Gμ) ∈ De(E) and

E(Tk(Gμ), Tk(Gμ)) ≤ k‖μ‖TV . (2.12)

Proof. By Lemma 2.2, Gμ+, Gμ− are finite m-a.e., so Gμ is well defined m-a.e.
Let {Fn} be a generalized nest for μ such that μn = 1Fn

μ ∈ V ′, n ≥ 1. Set
un = Gμn, u = Gμ. Then un ∈ De(E) and by (2.2) and (2.3),

E(un, Tk(un)) =
∫

E

T̃k(un)(x)μn(dx) ≤ k‖μ‖TV .

By (2.10), E(Tk(un), Tk(un)) ≤ E(un, Tk(un)). Hence

E(Tk(un), Tk(un)) ≤ k‖μ‖TV . (2.13)

In particular, {Tk(un)}n is weakly relatively compact in V . Taking a subse-
quence if necessary, we can assume that Tk(un) → v weakly in V as n → ∞.
By the Banach-Saks theorem, there is a subsequence (nl) such that the Cesàro
mean {vN := 1

N

∑N
l=1 Tk(unl

)} converges strongly to v in V . Hence, by (2.1),
vN → v in L1(E; g ·m). On the other hand, un → u m-a.e., so vN → Tk(u) m-
a.e. Consequently, Tk(un) → Tk(u) weakly in V as n → ∞. Therefore letting
n → ∞ in (2.13) yields (2.12). �

Lemma 2.4. Let μ ∈ M+
0,b, and let G̃μ be a quasi-continuous m-version of Gμ.

Then for every ε > 0,

Cap(0)(G̃μ > ε) ≤ ε−1‖μ‖TV .

Proof. By Lemma 2.3, Tk(G̃μ) ∈ De(E) and (2.12) holds true. By this and the
0-order version of [15, (2.1.10)], for all ε, δ > 0 we have

Cap(0)(G̃μ > ε) = Cap(0)(Tε+δ(G̃μ) > ε) ≤ ε−2E(Tε+δ(G̃μ), Tε+δ(G̃μ))

≤ ε−2(ε + δ)‖μ‖TV ,

which implies the desired inequality. �

Lemma 2.5. Assume that {μn} ⊂ M+
0,b and ‖μn‖TV → 0. Then, up to a

subsequence, G̃μn → 0 q.e.

Proof. We can and do assume that ‖μn‖ ≤ 2−2n, n ≥ 1. Then by Lemma 2.4,

Cap(0)(G̃μn > 2−n) ≤ 2−n.

Let F =
⋃

n≥1

⋂
k≥n{G̃μk ≤ 2−k}. By the above inequality, Cap(0)(E\F ) = 0.

This proves the lemma because by the definition of F , G̃μn → 0 q.e. on F . �

Lemma 2.6. There exists a strictly positive function g ∈ B(E) such that
‖Gg‖∞ < ∞.

Proof. Since E is transient there exists a strictly positive h ∈ L1(E;m) such
that Gh < ∞. By [15, Theorem 2.2.4], there exist a nest {Fn} such that
1Fn

· h ∈ L1(E;m) ∩ V ′. Write Hn,k = {G(1Fn
h) ≤ k} and Hk = {Gh ≤ k}.
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By [15, Lemma 2.2.4], G(1Fn∩Hn,k
h) ≤ k. Letting n → ∞ yields G(1Hk

h) ≤ k.
Set g =

∑∞
n=0

1
2n(n+1)1Hn

h. Then

Gg =
∞∑

n=0

1
2n(n + 1)

G(1Hn
h) ≤

∞∑
n=0

2−n,

which proves the lemma. �

Lemma 2.7. For any positive η ∈ L1(E;m) such that ‖Gη‖∞ < ∞ and any
positive μ ∈ M0,b,

〈μ, G̃η〉 =
∫

E

η(x)Gμ(x)m(dx), (2.14)

where G̃η is a quasi-continuous m-version of Gη.

Proof. We first assume that μ ∈ M0,b ∩ V ′ and η ∈ L1(E;m) ∩ V ′. Then

E(Gμ,Gη) =
∫

E

G̃η(x)μ(dx), E(Gη,Gμ) =
∫

E

η(x)Gμ(x)m(dx).

Since E is symmetric, this implies (2.14). Now assume that μ ∈ M0,b, η ∈
L1(E;m) and Gη is bounded. Let {Fn} be a generalized nest such that ηn =
1Fn

· η ∈ L1(E;m) ∩ V ′ and μn = 1Fn
· μ ∈ M0,b ∩ V ′. By what has already

been proved,

〈μn, G̃ηn〉 =
∫

E

η(x)Gμn(x)m(dx), n ≥ 1.

Letting n → ∞ we get (2.14). �

In the rest of this section we assume that the absolutely continuity con-
dition (1.9) is satisfied. Condition (1.9) was introduced by Meyer [27]. It is
sometimes called condition (L) (see [12, p. 246]). By [15, Theorem 4.2.4], con-
dition (1.9) is equivalent to (1.10). If (1.9) is satisfied, then for any α > 0 there
exists a positive B(E) ⊗ B(E)-measurable function rα : E × E → R such that
rα(x, y) = rα(y, x), x, y ∈ E, and for any f ∈ B+(E),

Gαf(x) =
∫

E

rα(x, y)f(y)m(dy) for m-a.e. x ∈ E. (2.15)

Moreover, there exists a positive B(E)⊗B(E)-measurable function r : E×E →
R such that r(x, y) = r(y, x), x, y ∈ E, and for any f ∈ B+(E),

Gf(x) =
∫

E

r(x, y)f(y)m(dy), for m-a.e. x ∈ E.

In fact, r(x, y) = limα↓0 rα(x, y) (see the remarks in [4, p. 256]).

Lemma 2.8. Assume that (1.9) is satisfied. If μ ∈ M0,b, then for m-a.e. x ∈ E,

Gμ(x) =
∫

E

r(x, y)μ(dy). (2.16)



35 Page 10 of 23 T. Klimsiak and A. Rozkosz NoDEA

Proof. Let {Fn} be a generalized nest such that μn = 1Fn
· μ ∈ M0,b ∩ V ′. By

[15, Exercise 4.2.2, Lemma 5.1.3], for any α > 0 we have

Gαμn(x) =
∫

E

rα(x, y)μn(dy)

for m-a.e. x ∈ E. Letting α ↓ 0 in the above equality yields (2.16) with μ
replaced by μn. Then, using (2.6), (2.7) and the monotone convergence, we
get (2.16) for μ. �

3. Existence and uniqueness of solutions

Throughout this section, we assume that μ ∈ M0,b and f : E × R → R is a
Carathéodory function, i.e. f(·, y) is measurable on E for each fixed y ∈ R,
and f(x, ·) is continuous on R for each fixed x ∈ E.

Following [22] we adopt the following definition.

Definition 3.1. We say that u : E → R is a solution of (1.1) (in the sense of
duality) if

(a) f(·, u) ∈ L1(E;m),
(b) for any η ∈ L1(E;m) such that G|η| is bounded we have∫

E

u(x)η(x)m(dx) =
∫

E

f(x, u(x))Gη(x)m(dx) +
∫

E

G̃η(x)μ(dx). (3.1)

Remark 3.2. If u is a solution of (1.1), then u has a quasi-continuous m-version,
because then u = G(f(·, u) · m + μ) m-a.e. by Lemma 2.7, so the existence of
a quasi-continuous m-version follows from Lemma 2.2.

Recall that an increasing sequence {Fn} of closed subsets of E is called
a generalized nest if Cap(0)(K \ Fn) → 0 for any compact K ⊂ E.

Proposition 3.3. Let u be a measurable function such that f(·, u) ∈ L1(E;m).
Then the following assertions are equivalent:

(i) u is a solution to (1.1).
(ii) u = G(f(·, u)) + Gμ m-a.e.
(iii) For any generalized nest {Fn} such that 1Fn

· (f(·, u) ·m+μ) ∈ M0,b ∩V ′

we have un → u m-a.e., where un ∈ De(E) is the unique solution of the
problem

E(un, η) = 〈1Fn
f(·, u) · m, η〉 + 〈1Fn

· μ, η̃〉, η ∈ De(E) (3.2)

(iv) For some generalized nest {Fn} such that 1Fn
·(f(·, u)·m+μ) ∈ M0,b∩V ′

we have un → u m-a.e., where un ∈ De(E) is the unique solution of (3.2).
(v) For any generalized nest {Fn} such that 1Fn

· (f(·, u) ·m+μ) ∈ M0,b ∩V ′

we have ũn → ũ q.e., where un ∈ De(E) is the unique solution of (3.2).
(vi) For some generalized nest {Fn} such that 1Fn

·(f(·, u)·m+μ) ∈ M0,b∩V ′

we have ũn → ũ q.e., where un ∈ De(E) is the unique solution of (3.2).
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Proof. The equivalence of (i) and (ii) follows from Lemma 2.7. Obviously, (iii)
implies (iv), (v) implies (iii) and (vi), and (vi) implies (iv). What is left ist to
show that (ii) implies (v) and (iv) implies (ii). Let {Fn} be a generalized nest
for f(·, u) · m + μ, and let

un = G(1Fn
f(·, u)) + G(1Fn

· μ). (3.3)

By the definition of {Fn}, un ∈ V . Moreover, by (2.2) and (2.3), un satisfies

(3.2). If (ii) is satisfied, then |ũ − ũn| ≤ ˜G1E\Fn
|f(·, u)| + ˜G1E\Fn

· |μ| q.e.
Hence, by Lemma 2.5, ũn → ũ q.e. Now assume (iv). By (2.3), since un solves
(3.2), it is given by (3.3). Therefore letting n → ∞ in (3.3) we get (ii). �

Remark 3.4. Let f(·, u) ∈ L1(E;m). By Lemma 2.8 and Proposition 3.3, if
(1.9) is satisfied, then u is a solution to (1.1) if and only if

u(x) =
∫

E

f(y, u(y))r(x, y)m(dy) +
∫

E

r(x, y)μ(dy)

for m-a.e. x ∈ E.

Remark 3.5. In [23] the following definition of a solution of (1.1) is introduced:
u : E → R is a renormalized solution of (1.1) if
(a) f(·, u) ∈ L1(E;m) and Tk(u) ∈ De(E) for every k > 0,
(b) there exists a sequence {νk} ⊂ M0,b(E) such that ‖νk‖TV → 0 as k → ∞

and for every k ∈ N and every bounded v ∈ De(E),

E(Tk(u), v) = 〈f(·, u) · m + μ, ṽ〉 + 〈νk, ṽ〉.
Note that in case of local operators, this is essentially [11, Definition 2.29]. By
[22, Proposition 5.3] and [23, Theorem 3.5], u is a solution of (1.1) in the sense
of Definition 3.1 if and only if it is a renormalized solution.

Lemma 3.6. (i) Let u be a solution of (1.1) with f satisfying (1.2). Then for
every a > 0,∫

{|u|>a}
|f(x, u(x))|m(dx) ≤ ‖1{|ũ|>a} · μ‖TV .

(ii) Assume that f satisfies (1.6). If ui, i = 1, 2, is a solution of (1.1) with μ
replaced by μi ∈ M0,b, then

‖f(·, u1) − f(·, u2)‖L1(E;m) ≤ ‖μ1 − μ2‖TV .

Proof. Let {Fn} be a generalized nest such that 1Fn
(|f(·, u)|·m+|μ|) ∈ M0,b∩

V ′. For n ≥ 1 we set fn = 1Fn
f(·, u), μn = 1Fn

· μ and un = G(fn · m + μn).
Then un ∈ De(E). For a > 0, k ∈ N we set

ψa,k(y) =
k(y − a)+

1 + k(y − a)+
− k(y + a)−

1 + k(y + a)− , y ∈ R.

Since ψ := (1/k)ψa,k satisfies the assumptions of Lemma 2.1, ψa,k(un) ∈ De(E)
and

E(un, ψa,k(un)) ≥ 0.
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Let ũn be a quasi-continuous m-version of un. Then ψa,k(ũn) is a quasi-
continuous m-version of ψa,k(un). By Proposition 3.3,

E(un, ψa,k(un)) = 〈fn · m,ψa,k(un)〉 + 〈μn, ψa,k(ũn)〉.
Hence

−
∫

E

fn(x)ψa,k(un(x))m(dx) ≤
∫

E

ψa,k(ũn(x))μn(dx)

≤
∫

{|ũn|>a}
|μ|(dx). (3.4)

By Proposition 3.3(v), ũn → ũ q.e. Therefore letting n → ∞ in (3.4) and using
the dominated convergence theorem we obtain

−
∫

E

f(x, u(x))ψa,k(u(x))m(dx) ≤
∫

{|ũ|>a}
|μ|(dx).

By (1.2) and the definition of ψa,k, |f(·, u)ψa,k(u)| = −f(·, u)ψa,k(u). Hence∫
E

|f(x, u(x))||ψa,k(u(x))|m(dx) ≤
∫

{|ũ|>a}
|μ|(dx).

Letting k → ∞ in the above inequality yields part (i) of the lemma. To get
(ii), we observe that v = u1 − u2 is a solution to the problem

−Lv = g(·, v) + μ1 − μ2

with g(x, y) = f(x, y + u2(x)) − f(x, u2(x)). Since f satisfies (1.6), g satisfies
(1.2). Therefore the desired inequality follows from part (i). �

Note that from Lemma 3.6(i) with a = 0 the following absorption esti-
mate follows:

‖f(·, u)‖L1(E;m) ≤ ‖μ‖TV . (3.5)

Corollary 3.7. If f satisfies (1.6), then there exists at most one solution to
(1.1).

Proof. Let u1, u2 be solutions of (1.1), and let v = u1 −u2. By Lemma 3.6(ii),
v is a solution of the problem −Lv = 0. Hence v = 0 m-a.e. by Proposition
3.3(ii). �

Proposition 3.8. If u is a solution of (1.1) with f satisfying (1.2), then for
every k ≥ 0, Tk(u) ∈ De(E) and

E(Tk(u), Tk(u)) ≤ 2k‖μ‖TV . (3.6)

Proof. By Proposition 3.3(ii) and Lemma 2.3, Tk(u) ∈ De(E) and

E(Tk(u), Tk(u)) ≤ k(‖f(·, u)‖L1(E;m) + ‖μ‖TV ),

which when combined with (3.5) yields (3.6). �

Lemma 3.9. Let μ ∈ Mb. If |μ| charges no set of capacity Cap(0) zero, then
for every ε > 0 there exists δ > 0 such that for any Borel subset B of E, if
Cap(0)(B) ≤ δ, then |μ|(B) ≤ ε.
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Proof. By the 0-order version of [15, Lemma 2.1.2] (see the remarks following
[15, (2.1.14)]) and [15, Theorem A.1.2], Cap(0) is a countably subadditive set
function. Therefore the desired result follows from [31, Proposition 14.7]. �

Theorem 3.10. Assume (1.7). If f satisfies (1.2) and (1.5), then there exists
a solution of (1.1). Moreover, for every k ≥ 0, Tk(u) ∈ De(E) and (3.6) is
satisfied.

Proof. We divide the proof into two steps.
Step 1 We first assume that μ+μ− ∈ M0,b ∩ V ′. For a positive g ∈

L2(E;m) ∩ V ′ set fn = ng
1+ng Tn(f), n ∈ N. Under the hypothesis (1.5) the

operator An : V → V ′ defined as An(u) = −Lu − fn(u) is pseudomonotone
(see, e.g., [32, Section 2.1] for the definition). Indeed, it is clear that An maps
bounded sets of V into bounded sets of V ′. Next, suppose that uk → u weakly
in V . Then for any v ∈ V ,

lim inf
k→∞

〈〈−Luk, uk − v〉〉 = lim inf
k→∞

E(uk, uk − v) = lim inf
k→∞

E(uk, uk) − E(uk, v)

≥ E(u, u) − E(u, v) = 〈〈−Lu, u − v〉〉.
Furthermore, by (1.7), we can assume that uk → u m-a.e. Consequently, we
can assume that fn(·, uk) → fn(·, u) in V ′. Therefore, for any v ∈ V ,

lim
k→∞

〈〈−fn(·, uk), uk − v〉〉 = lim
k→∞

(−fn(·, uk), uk − v)

= lim inf
k→∞

∫
E

|fn(x, uk(x))uk(x)|m(dx)

+ lim
k→∞

〈〈fn(·, uk), v〉〉

≥
∫

E

|fn(x, u(x))u(x)|m(dx) + 〈〈fn(·, u), v〉〉
= (−fn(·, u), u − v) = 〈〈−fn(·, u), u − v〉〉.

Accordingly, An is pseudomonotone. Since by (1.2), for u ∈ V we have
〈〈Anu, u〉〉 = E(u, u) − (fn(·, u), u) ≥ E(u, u), the operator An is also coercive.
Therefore An is surjective by standard result in the theory of pseudomonotone
mappings (see, e.g., [32, Theorem 2.6]). Thus, there exists a weak solution
un ∈ De(E) of the equation

− Lun = fn(·, un) + μ, (3.7)

i.e. for any v ∈ De(E),

E(un, v) =
∫

E

fn(x, un(x))v(x)m(dx) + 〈〈μ, v〉〉. (3.8)

Taking un as a test function in (3.8) we get

E(un, un) −
∫

E

fn(x, un(x))un(x)m(dx) = 〈〈μ, un〉〉

≤ ‖μ‖V ′E(un, un)1/2. (3.9)
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By (1.2) and (3.9),

E(un, un) +
∫

E

|fn(x, un(x))un(x)|m(dx) ≤ ‖μ‖2
V ′ , n ≥ 1. (3.10)

By (1.7) and (3.10) there is u ∈ De(E) and a subsequence (still denoted by
n) such that un → u m-a.e. and weakly in V . Then, by the definition of fn,
fn(·, un) → f(·, u) m-a.e. By (3.10), for any Borel subset B of E and a > 0 we
have ∫

B

|f(x, un(x))|m(dx) ≤ a−1

∫
B∩{|un|>a}

|f(x, un(x))un(x)|m(dx)

+
∫

B∩{|un|≤a}
|f(x, un(x))|m(dx)

≤ a−1‖μ‖2
V ′ +

∫
B

Fa(x)m(dx).

From the above inequality and (1.5) we conclude that the sequence {fn(·, un)}
is equi-integrable and tight. Hence fn(·, un) → f(·, u) in L1(E;m) by Vitali’s
convergence theorem (see, e.g., [14, Theorem 2.24]). Therefore letting n → ∞
in (3.8) we see that

E(u, v) =
∫

E

f(x, u(x))v(x)m(dx) + 〈〈μ, v〉〉 (3.11)

for any bounded v ∈ De(E). Let η ∈ L1(E;m) be such that ‖G|η|‖∞ < ∞,
and let {Fn} be a generalized nest such that ηn = 1Fn

η ∈ V ′. Then Gηn is
bounded and Gηn ∈ V . Therefore taking v = Gηn as a test function in (3.11)
we get ∫

E

uηn dm =
∫

E

f(x, u(x))Gηn(x)m(dx) +
∫

E

G̃ηn(x)μ(dx).

By Lemma 2.5, G̃ηn → G̃η as n → ∞. Therefore letting n → ∞ in the above
equation we obtain (3.1). Thus u is a solution of (1.1). Step 2 We now show
how to dispense with the assumption that μ+, μ− ∈ M0,b ∩V ′. By the 0-order
version of [15, Theorem 2.2.4] (see the beginning of the proof of [15, Theorem
2.4.2(ii)]), there exists a generalized nest {Fn} such that μ

(+)
n = 1Fn

· μ+,
μ

(−)
n = 1Fn

· μ− ∈ M0,b ∩ V ′. Set μn = μ
(+)
n − μ

(−)
n . By Step 1, there exists a

solution un ∈ De(E) of the equation

− Lun = f(·, un) + μn. (3.12)

In particular,∫
E

un(x)η(x)m(dx) =
∫

E

f(x, un(x))Gη(x)m(dx) +
∫

E

G̃η(x)μ(dx) (3.13)

for any η ∈ L1(E;m) such that G|η| is bounded. By Lemma 3.6, for any Borel
subset B of E and a > 0 we have∫

B

|f(x, un(x))|m(dx) =
∫

B∩{|un|≤a}
|f(x, un(x))|m(dx)
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+
∫

B∩{|un|>a}
|f(x, un(x))|m(dx)

≤
∫

B

Fa(x)m(dx) + ‖1{|un|>a} · μ‖TV . (3.14)

By Proposition 3.8,

E(Tk(un), Tk(un)) ≤ 2k‖μn‖TV , (3.15)

whereas by the 0-order version of [15, (2.1.10)] and (3.19),

Cap(0)({|Tk(un)| > a}) ≤ a−2E(Tk(un), Tk(un)).

If k > a, then {|un| > a} = {|Tk(un)| > a}, so for any k > a,

Cap(0)({|un| > a}) = Cap(0)({|Tk(un)| > a})

≤ a−2E(Tk(un), Tk(un)) ≤ 2a−2k‖μn‖TV .

Hence
Cap(0)({|un| > a}) ≤ 2a−1‖μ‖TV . (3.16)

Let ε > 0. As |μ| ∈ M0,b, by Lemma 3.9 there exists δ > 0 such that |μ|({|un| >
a}) ≤ ε/2 if Cap(0)({|un| > a}) ≤ δ. Hence, by (3.16), |μ|({|un| > a}) ≤ ε/2
if a = δ−1‖μ‖TV . By (1.5) with a = δ−1‖μ‖TV , there is γ > 0 such that∫

B
Fa(x)m(dx) < ε/2 if m(B) ≤ γ. From this and (3.14) it follows that

if m(B) ≤ γ, then
∫

B
|f(x, un(x))|m(dx) ≤ ε. Furthermore, by (1.5) and

σ-finitness of m, there exists a Borel set E0 ⊂ E such that m(E0) < ∞
and

∫
E\E0

Fa(x)m(dx) < ε/2. Therefore taking B = E \ E0 in (3.14) we get∫
E\E0

|f(x, un(x))|m(dx) ≤ ε. This shows that the sequence {f(·, un)} is equi-
integrable and tight. On the other hand, by (1.7) and (3.15), for each k > 0 the
sequence {Tk(un)}n is, up to a subsequence, convergent m-a.e., so using the
diagonal argument, one can find a subsequence, still denoted by (n), such that
{un} converges m-a.e. to some u. Hence f(·, un) → f(·, u) m-a.e. Consequently,
by Vitali’s theorem, f(·, un) → f(·, u) in L1(E;m). Let k > 0, and let g be
a strictly positive function such that ‖Gg‖∞ < ∞ and g ∈ L1(E;m). Taking
η = g1{un≥k} and η = −g1{un≤−k} as test functions in (3.13) we obtain

∫
{|un|≥k}

|un(x)|g(x)m(dx) ≤ −
∫

E

|fn(x, un(x))|G(g1{|un|≥k})(x)m(dx)

+
∫

E

˜G(g1{|un|≥k})(x)μ(dx). (3.17)

We already know that the sequence {f(·, un)} is equi-integrable and tight.

Furthermore, the functions ˜G(g1{|un|≥k}) is bounded q.e., and by Lemma 2.5,
˜G(g1{|un|≥k}) ↘ 0 q.e. as k → ∞. Therefore from (3.17) it follows that the

sequence {un} is equi-integrable with respect to the finite measure ν = g · m.
Since un is a solution of (3.12), for any η ∈ L1(E;m) such that ‖G|η|‖∞ < ∞
and any k ≥ 0 we have
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∫
E

un(x)η(x)gk(x)m(dx) =
∫

E

fn(x, un(x))G(ηgk)(x)m(dx)

+
∫

E

1Fn
(x)G̃(ηgk)(x)μ(dx), (3.18)

where gk = kg
1+kg . By what has already been proved, letting n → ∞ in (3.18)

yields ∫
E

u(x)η(x)gk(x)m(dx) =
∫

E

f(x, u(x))G(ηgk)(x)m(dx)

+
∫

E

1F (x)G̃(ηgk)(x)μ(dx)

with F =
⋃∞

n=1 Fn. Since μ(E \ F ) = 0 by (2.6), letting k → ∞ and using
Lemma 2.5 shows that u is a solution to (1.1). �

Remark 3.11. (i) Let μ̄ = f(·, 0) · m + μ, f̄(x, y) = f(x, y) − f(x, 0). Then
μ̄ ∈ M0,b and if f satisfies (1.5) and (1.6), then f̄ satisfies (1.2) and (1.5).
Furthermore, u is a solution of the problem −Lu = f̄(x, u)+ μ̄ if and only
if it is a solution of (1.1). Therefore under (1.5) and (1.6) there exists a
solution of (1.1).

(ii) If (1.5) and (1.6) are satisfied, then Step 2 of the proof of Theorem 3.10
can be shortened. Indeed, by (1.6) and Lemma 3.6(ii),

‖f(·, un) − f(·, uk)‖L1(E;m) ≤ ‖μn − μk‖TV .

Since

‖μn − μ‖TV ≤ ‖μ+ − 1Fn
· μ+‖TV + ‖μ− − 1Fn

· μ−‖TV

= μ+(E \ Fn) + μ−(E \ Fn),

we have

lim sup
n→∞

‖μn − μ‖TV ≤ μ+(E \ F ) + μ−(E \ F ) = 0.

By the above, {f(·, un)} is convergent in L1(E;m). The rest of the proof
runs as the proof of Theorem 3.10 (see the reasoning following the state-
ment that {f(·, un)} is equi-integrable).

If (1.8) is satisfied, then the following Poincaré-type inequality holds true:
there exists c > 0 such that

‖u‖L2(E;m) ≤ cE(u, u)1/2, u ∈ D(E) (3.19)

(see [18, Corollary 2.5]). Hence, under (1.8), De(E) = D(E) and the norms
determined by E and E1 are equivalent. It follows in particular that under the
assumptions of Theorem 3.10 the solutions of (1.3) belong to D(E).

In general, solutions of (1.3) are not even locally integrable (see [22,
Example 5.7]). Below we shall see that a simple condition guaranteeing their
integrability is

‖G1‖∞ < ∞.
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This condition is sometimes expressed by saying that E is Green-bounded
(see, e.g., [6,10]; note that in the case where problem (1.3) (resp. (1.4)) is
considered, G is the Green function for Δ (resp. Δα/2) on D. The Green-
bounded domain need not be bounded. For instance, if L = Δ, then the
infinite strip {(x, y) ∈ R

2 : |x| < a} (a > 0) in R
2 is Green-bounded (see [10,

p. 39]).

Lemma 3.12. If (3.19) is satisfied, then E is Green-bounded.

Proof. For the constant c from (3.19) we set Ec(u, v) = E(u, v) − 1
2c2 (u, v),

u, v ∈ D(E). Then (Ec,D(E)) is a regular symmetric Dirichlet form on
L2(E;m). Obviously,

E(u, v) = Ec(u, v) +
1

2c2
(u, v), u, v ∈ D(E). (3.20)

Let (Gc
α)α>0 denote the resolvent associated with (Ec,D(E)). From (3.20) it

follows that G = Gc
(2c2)−1 . Hence G1 = Gc

(2c2)−11 ≤ 2c2 since (αGc
α)α>0 is

Markovian. �
Proposition 3.13. Assume that E is Green-bounded. If u is a solution to (1.1),
then u ∈ L1(E;m).

Proof. To see this it is enough to consider an increasing sequence of compact
sets {Fn} such that

⋃∞
n=1 Fn = E, take ηn = 1Fn

sign(u) as test functions in
(3.1), and use (3.5) and Fatou’s lemma. �

4. Applications

In this section we provide some examples of local and nonlocal symmetric
transient regular Dirichlet forms satisfying condition (1.7). Before proceeding,
we make some general comments on conditions (1.8) and (1.9).

Since (1.8) implies (3.19), it is clear that (1.8) implies (1.7). That the
absolute continuity condition (1.9) [or, equivalently, condition (1.10)] implies
(1.7) follows from [20, Propositions 2.4 and 2.11]. We include a direct proof of
this fact for completeness of exposition.

Proposition 4.1. Condition (1.9) implies (1.7).

Proof. Assume that {un} ⊂ De(E) and supn≥1 E(un, un) < ∞. Choose v ∈
D(E) such that ‖v‖∞ < ∞ and v > 0 m-a.e., and for k > 0 set wk

n = v · Tkun.
By [15, Corollary 1.5.1], wk

n ∈ De(E) and

E(wk
n, wk

n) ≤ ‖v‖∞E(un, un) + kE(v, v). (4.1)

Clearly

(wk
n − αGαwk

n, wk
n − αGαwk

n) = (wk
n, wk

n − αGαwk
n) + (αGαwk

n, αGαwk
n − wk

n).

By [15, Lemma 1.3.4], α(wk
n, wk

n − αGαwk
n) ≤ E(wk

n, wk
n) for every α > 0.

Moreover,

(αGαwk
n, αGαwk

n − wk
n) = α(Gαwk

n, αGαwk
n) − Eα(Gαwk

n, αGαwk
n)

= −E(Gαwk
n, αGαwk

n) ≤ 0.
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By the above estimates, ‖αGαwk
n − wk

n‖2
L2(E;m) ≤ α−1E(wk

n, wk
n) for α > 0,

which when combined with (4.1) shows that there is a constant c(k, v) depend-
ing only on k and v such that

‖αGαwk
n − wk

n‖2
L2(E;m) ≤ α−1c(k, v). (4.2)

Since αGα1 ≤ 1, from (2.15) it follows that
∫

E
rα(x, y)m(dy) ≤ α−1. Hence

rα(x, ·) ∈ L1(E;m) for every x ∈ E. Furthermore, since supn≥1 ‖wk
n‖∞ ≤

k‖v‖∞ < ∞, there is a subsequence (n′) ⊂ (n) such that {wk
n′} converges

weakly∗ in L∞(E;m) to some w ∈ L∞(E;m), i.e.
∫

E
wk

n′(x)η(x)m(dx) →∫
E

w(x)η(x)m(dx) for every η ∈ L1(E;m). In particular, for every x ∈ E,

Gαwk
n′(x) =

∫
E

rα(x, y)wk
n′(y)m(dy)

→
∫

E

rα(x, y)w(y)m(dy) = Gαw(x). (4.3)

Since |αGαwk
n| ≤ kαGα|v|, it follows from (4.3) that the sequence{αGαwk

n′}
converges in L2(E;m) for any fixed α > 0, k > 0. This and (4.2) imply that
there exists a subsequence (n′′) ⊂ (n′) such that {wk

n′′} converges in L2(E;m).
Using the diagonal procedure one can find a further subsequence (n′′′) ⊂ (n′′)
such that {un′′′} converges m-a.e. on E. �

Example 4.2. Let D ⊂ R
d, d ≥ 1, be a nonempty bounded open set, and let

aij :D → R be locally integrable functions such that aij(x) = aji(x) for x ∈ D,
i, j = 1, . . . , d, and for some λ > 0,

d∑
i,j=1

aij(x)ξiξj ≥ λ|ξ|2, x ∈ D, ξ = (ξ1, . . . , ξd) ∈ R
d.

(i) (Dirichlet boundary conditions) The form defined by

E(u, v) =
d∑

i,j=1

∫
D

∂u

∂xi
(x)

∂v

∂xj
(x)aij(x) dx, u, v ∈ D(E) (4.4)

with D(E) = H1
0 (D) is a regular symmetric Dirichlet form on L2(D) (see,

e.g., [15, Section 3.1]). The generator L of (E ,D(E)) is of the form

Lu =
d∑

i,j=1

∂

∂xj

(
aij

∂u

∂xi

)
, u ∈ D(L).

The form (E ,D(E)) is transient by Poincaré’s inequality, and (1.8) is
satisfied by Rellich’s theorem. Also note that by classical results (see
[1]), assumption (1.10) [and hence (1.9)] is satisfied as well. Therefore
Theorem 3.10 applies to the Dirichlet problem

− Lu = f(·, u) + μ in D, u = 0 on ∂D. (4.5)

Note that we impose no regularity assumption on the boundary ∂D of D.
Note also that by Poincaré’s inequality, De(E) = H1

0 (D). Consequently,
Tk(u) ∈ H1

0 (D) for every k > 0. Furthermore, since D is Green-bounded
(see, e.g., [10, Theorem 1.17]), u ∈ L1(D; dx) by Proposition 3.13.
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(ii) (Neumann boundary conditions) Assume additionally that ∂D is Lip-
schitz. Consider the form E defined by (4.4), but with domain H1(D).
Then (E ,H1(D)) is a regular symmetric Dirichlet form on L2(D̄; dx) with
D̄ = D∪∂D (see [15, Example 4.5.3]), and clearly so is (Eλ,H1(D)) with
λ ≥ 0. Moreover, if λ > 0, then (Eλ,H1(D)) is transient because D is
Green-bounded (see Lemma 3.12). The generator Lλ of (Eλ,H1(D)) is
equal to L−λ, where L is the generator of (E ,H1(D)). By Rellich’s theo-
rem, H1(D) ↪→ L2(D; dx) is compact, so the results of the paper apply to
Eq. (1.1) with L replaced by the operator L−λ defined above. A solution
u to such equation can be viewed as a solution to the Neumann problem

−Lu = −λu + f(·, u) + μ in D,
∂u

∂(a · n)
= 0 on ∂D,

where n denotes the unit outward normal to ∂D.

Example 4.3. Assume that f satisfies (1.2) and (1.5). Let ψ : R
d → [0,∞)

be a continuous negative definite function in the sense of Schoenberg (see [17,
Chapter 3] for the definition). Denote by Hψ,1(Rd) the space

Hψ,1(Rd) = {u ∈ L2(Rd) : ‖u‖ψ,1 < ∞},

where

‖u‖2
ψ,1 =

∫
Rd

(1 + ψ(x))|û(x)|2 dx

and û stands for the Fourier transform of u. It is known (see [15, Example
1.4.1] or [17, Example 4.1.28]) that (E ,D(E)) defined as

E(u, v) =
∫
Rd

û(x)v̂(x)ψ(x) dx, u, v ∈ D(E) := Hψ,1(Rd) (4.6)

is a symmetric regular Dirichlet form on L2(Rd; dx). By [15, Example 1.5.2],
it is transient if and only if

1
ψ

∈ L1
loc(R

d). (4.7)

(i) Let νt, t > 0, be a probability measure on R
d such that ν̂t(x) = e−tψ(x),

x ∈ R
d. Then the semigroup (Pt)t>0 associated with E has the form

Ptf(x) =
∫
Rd f(x+y) νt(dy) for f ∈ L2(Rd; dx)∩Bb(E) (see [15, Example

1.4.1]). It follows in particular that if νt are absolutely continuous with
respect to the Lebesgue measure, then (1.10) is satisfied. For instance, this
is the case when ψ(ξ) = |ξ|α, ξ ∈ R

d, with α ∈ (0, 2] (see [15, Example
1.4.1]). For such ψ, the operator corresponding to E is the fractional
Laplacian Δα/2. If α < d, then (4.7) is satisfied, so the form E is transient.
Therefore Theorem 3.10 applies to the equation

−Δα/2 = f(·, u) + μ in R
d

with α ∈ (0, 2 ∧ d). If f satisfies (1.2) and u is a solution to the above
equation, then Tk(u) ∈ De(Rd) for any k > 0. For the characterisation
of De(E) see [15, Example 1.5.2]. Finally, let us note that some general
conditions ensuring (1.10) are found in [33, Section 27].
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(ii) Let D ⊂ R
d be a nonempty bounded open set, and let (ED,D(ED))

denote the part of (E ,D(E)) on D, i.e.,{
D(ED) = {u ∈ D(E) : ũ = 0 q.e. on R

d \ D},

ED(u, v) = E(u, v), u, v ∈ D(ED)
(4.8)

(here ũ denotes a quasi-continuous version of u). By [15, Theorem 4.4.3],
(ED,D(ED)) is a symmetric regular Dirichlet form on L2(D; dx) and
D(ED) = Hψ,1

0 (D), where Hψ,1
0 (D) denotes the closure of C∞

c (D) in
Hψ,1(Rd). If (4.7) is satisfied, then the form (ED,D(ED)) is transient
by [15, Theorem 4.4.4]. Let L denote the generator of (E ,D(E)) and LD

denote the generator of (ED,D(ED)). By virtue of (4.8), the solution u
of (1.1) with E = D and operator LD can be interpreted as a solution of
the Dirichlet problem

− Lu = f(·, u) + μ in D, u = 0 on R
d \ D. (4.9)

By [17, Remark 3.10.6], the embedding of V := Hψ,1
0 (D) (equipped with

the norm ‖ · ‖ψ,1) into L2(D; dx) is compact if and only if

lim
|ξ|→∞

ψ(ξ) = ∞. (4.10)

Therefore, if (4.7) and (4.10) are satisfied, then by Theorem 3.10 there
exists a solution u to (4.9). Since (1.8) implies (3.19), De(ED) = D(ED).
Consequently, Tk(u) ∈ Hψ,1

0 (D) for k > 0.
For instance, (4.7) and (4.10) are satisfied for ψ defined as ψ(ξ) = |ξ|α, ξ ∈ R

d,
with α ∈ (0, 2∧d). Since then L = Δα/2, Eq. (1.1) with LD can be interpreted
as (1.4). Note also that, because D is bounded, it is Green-bounded (see, e.g.,
[6, (2.4)]). Therefore, by Proposition 3.13, if u is a solution to (1.4), then
u ∈ L1(D; dx). Other examples of ψ satisfying (4.7) and (4.10) are found in
[17, Chapter 3].

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.
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