

Research Article

On semiparallel anti-invariant submanifolds of generalized Sasakian space forms

Cihan ÖZGÜR^{1,*}, Fatma GÜRLER¹, Cengizhan MURATHAN²

¹Department of Mathematics, Balıkesir University, Çağış, Balıkesir, Turkey ²Department of Mathematics, Uludağ University, Bursa, Turkey

Abstract: We consider minimal anti-invariant semiparallel submanifolds of generalized Sasakian space forms. We show that the submanifolds are totally geodesic under certain conditions.

Key words: Semiparallel submanifold, generalized Sasakian space form, Laplacian of the second fundamental form, totally geodesic submanifold

1. Introduction

Let (M,g) and (N,\tilde{g}) be Riemannian manifolds and $f: M \to N$ an isometric immersion. Denote by σ and $\overline{\nabla}$ its second fundamental form and van der Waerden-Bortolotti connection, respectively. If $\overline{\nabla}\sigma = 0$, then the submanifold M is said to have a parallel second fundamental form [6]. The act of \overline{R} to the second fundamental form σ is defined by

$$\left(\overline{R}(X,Y)\cdot\sigma\right)(Z,W) = R^{\perp}(X,Y)h(Z,W) - \sigma(R(X,Y)Z,W) - \sigma(Z,R(X,Y)W)$$

$$= (\overline{\nabla}_X \overline{\nabla}_Y \sigma)(Z, W) - (\overline{\nabla}_Y \overline{\nabla}_X \sigma)(Z, W), \tag{1}$$

where \overline{R} is the curvature tensor of the van der Waerden-Bortolotti connection $\overline{\nabla}$. Semiparallel submanifolds were introduced by Deprez in [7]. If $\overline{R} \cdot \sigma = 0$, then f is called semiparallel. It is clear that if f has parallel second fundamental form, then it is semiparallel. Hence, a semiparallel submanifold can be considered as a natural generalization of a submanifold with a parallel second fundamental form. Semiparallel submanifolds have been studied by various authors; see, for example [3, 7, 8, 9, 13, 16] and the references therein. Recently, in [18], Yıldız et al. studied C-totally real pseudoparallel submanifolds of Sasakian space forms, which are generalizations of semiparallel submanifolds. In [5], Brasil et al. studied C-totally real pseudoparallel submanifolds of λ -Sasakian space forms. In [15], Sular, et al. studied anti-invariant pseudoparallel submanifolds of Kenmotsu space forms with ξ tangent to the submanifold. In [14], Sular studied pseudoparallel submanifolds of Kenmotsu space forms with ξ normal to the submanifold.

Motivated by the studies of the above authors, in the present paper, we study anti-invariant minimal semiparallel submanifolds of generalized Sasakian space forms.

^{*}Correspondence: cozgur@balikesir.edu.tr

²⁰¹⁰ AMS Mathematics Subject Classification: 53C40, 53C42, 53C25.

ÖZGÜR et al./Turk J Math

2. Generalized Sasakian space forms

Let $M^{2n+1} = M(\varphi, \xi, \eta, g)$ be an almost contact metric manifold. If $[\varphi, \varphi](X, Y) = -2d\eta(X, Y)\xi$ for all vector fields X, Y on M^{2n+1} then the almost contact metric structure is called *normal*, where $[\varphi, \varphi]$ denotes the Nijenhuis torsion. If $d\eta(X, Y) = g(X, \varphi Y)$ for all vector fields X, Y on M, then the almost contact metric structure (φ, ξ, η, g) is a *contact metric structure*. In this case, the manifold M^{2n+1} with the contact metric structure (φ, ξ, η, g) is called a *contact metric manifold*. A normal contact metric manifold is called a *Sasakian* manifold [4]. An almost contact metric manifold M is called a *Kenmotsu manifold* [11] if

$$(\nabla_X \varphi) Y = g(\varphi X, Y) \xi - \eta(Y) \varphi X,$$

where ∇ is the Levi-Civita connection. A Kenmotsu manifold is normal but not a contact manifold.

An almost contact metric manifold M is called a *cosymplectic manifold* [12] if $\nabla \varphi = 0$, which implies that $\nabla \xi = 0$. Hence, ξ is a Killing vector field for a cosymplectic manifold.

An almost contact metric manifold is called a λ -Sasakian manifold [10] if

$$(\nabla_X \varphi) Y = \lambda \left[g(X, Y) \xi - \eta(Y) X \right]$$

If $\lambda = 1$, a λ -Sasakian manifold is a Sasakian manifold.

The sectional curvature of a φ -section is called a φ -sectional curvature. A Sasakian (resp. Kenmotsu, cosymplectic, λ -Sasakian) manifold with constant φ -sectional curvature c is called a Sasakian (resp. Kenmotsu, cosymplectic, λ -Sasakian) space form; see [4, 11, 12, 10], respectively.

The notion of a generalized Sasakian space form was introduced by Alegre et al. in [1]. An almost contact metric manifold $M^{2n+1} = M(\varphi, \xi, \eta, g)$ whose curvature tensor satisfies

$$R(X,Y)Z = f_1\{g(Y,Z)X - g(X,Z)Y\}$$

$$+f_2\{g(X,\varphi Z)\varphi Y - g(Y,\varphi Z)\varphi X + 2g(X,\varphi Y)\varphi Z)\}$$

$$+f_3\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\}$$
(2)

for certain differentiable functions f_1, f_2 , and f_3 on M^{2n+1} is called a generalized Sasakian space form [1]. The natural examples of generalized Sasakian space forms with constant functions are a Sasakian space form $(f_1 = \frac{c+3}{4}, f_2 = f_3 = \frac{c-1}{4})$ [4], a Kenmotsu space form $(f_1 = \frac{c-3}{4}, f_2 = f_3 = \frac{c+1}{4})$ [11], and a cosymplectic space form $(f_1 = f_2 = f_3 = \frac{c}{4})$ [12]. If M is a λ -Sasakian space form then $f_1 = \frac{c+3\lambda}{4}$, $f_2 = f_3 = \frac{c-\lambda}{4}$ [10].

Let M be an n-dimensional submanifold of a Riemannian manifold \widetilde{M} . We denote by $\widetilde{\nabla}$, ∇ the Riemannian and induced Riemannian connections in \widetilde{M} and M, respectively, and let σ be the second fundamental form of the submanifold. The equation of Gauss is given by

$$\widetilde{R}(X, Y, Z, W) = R(X, Y, Z, W)$$

$$-g(\sigma(X, W), \sigma(Y, Z)) + g(\sigma(X, Z), \sigma(Y, W))$$
(3)

for all vector fields X, Y, Z, W tangent to M, where \widetilde{R} and R denote the curvature tensors of the connections $\widetilde{\nabla}$, ∇ , respectively. The mean curvature vector field H is given by $H = \frac{1}{n} \operatorname{trace}(\sigma)$. The submanifold M is totally geodesic in \widetilde{M} if $\sigma = 0$, and minimal if H = 0 [6].

Using (3), the Gauss equation for the submanifold M^n of a generalized Sasakian space form \widetilde{M}^{2m+1} is

$$\widetilde{R}(X, Y, Z, W) =$$

$$f_1\{g(Y, Z)X - g(X, Z)Y\}$$

$$+f_2\{g(X, \varphi Z)\varphi Y - g(Y, \varphi Z)\varphi X + 2g(X, \varphi Y)\varphi Z)\}$$

$$+f_3\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X, Z)\eta(Y)\xi - g(Y, Z)\eta(X)\xi\},$$

$$+g\left(\sigma(X, W), \sigma(Y, Z)\right) - g\left(\sigma(X, Z), \sigma(Y, W)\right).$$
(4)

A submanifold M of a generalized Sasakian space form \widetilde{M}^{2m+1} is called *anti-invariant* if and only if $\varphi(T_x M) \subset T_x^{\perp} M$ for all $x \in M$ [2]. For more information about anti-invariant submanifolds we refer to [17].

3. Semiparallel anti-invariant submanifolds of a generalized Sasakian space form

In this section, we give the main results of the paper.

For an *n*-dimensional submanifold M of a (2n + 1)-dimensional Riemannian manifold \widetilde{M}^{2n+1} , it is known that the Laplacian $\Delta \sigma_{ij}^{\alpha}$ of σ_{ij}^{α} is defined by

$$\Delta \sigma_{ij}^{\alpha} = \sum_{i,j,k=1}^{n} \sigma_{ijkk}^{\alpha}.$$
(5)

Then

$$\frac{1}{2}\Delta(\|\sigma\|^2) = \sum_{i,j,k=1}^n \sum_{\alpha=n+1}^{2n+1} \sigma_{ij}^{\alpha} \sigma_{ijkk}^{\alpha} + \|\overline{\nabla}\sigma\|^2, \qquad (6)$$

(see [17]), where

$$\|\sigma\|^{2} = \sum_{i,j,k=1}^{n} \sum_{\alpha=n+1}^{2n+1} (\sigma_{ij}^{\alpha})^{2},$$
(7)

and

$$\left\|\overline{\nabla}\sigma\right\|^2 = \sum_{i,j,k=1}^n \sum_{\alpha=n+1}^{2n+1} (\sigma_{ijkk}^{\alpha})^2 \tag{8}$$

are the square of the length of second and the third fundamental forms of M, respectively.

A simple calculation gives us the following proposition:

Proposition 1 Let M be an n-dimensional minimal anti-invariant submanifold of a (2n+1)-dimensional generalized Sasakian space form \widetilde{M}^{2n+1} with ξ normal to M. Then we have

$$\frac{1}{2}\Delta(\|\sigma\|^2) = \|\overline{\nabla}\sigma\|^2 + (f_2 + nf_1) \|\sigma\|^2 - \left[\sum_{\alpha,\beta=n+1}^{2n+1} tr(A_\alpha \circ A_\beta)^2 + \|[A_\alpha, A_\beta]\|^2\right].$$
(9)

798

Theorem 2 Let M be an n-dimensional minimal anti-invariant semiparallel submanifold of a (2n+1)dimensional generalized Sasakian space form \widetilde{M}^{2n+1} with ξ normal to M. If

$$f_2 + nf_1 \le 0,$$

then M is totally geodesic.

Proof Let $\{e_1, e_2, ..., e_n, \xi, \varphi e_1, \varphi e_2, ..., \varphi e_n\}$ be an orthonormal frame in \widetilde{M}^{2n+1} such that $e_1, e_2, ..., e_n$ are tangent to M. By definition, the semiparallelity of M, for $1 \le k, l \le n$, gives us

$$\overline{R}(e_l, e_k) \cdot \sigma = 0. \tag{10}$$

By (1), we can write

$$(\overline{R}(e_l, e_k) \cdot \sigma)(e_i, e_j) = (\overline{\nabla}_{e_l} \overline{\nabla}_{e_k} \sigma)(e_i, e_j) - (\overline{\nabla}_{e_k} \overline{\nabla}_{e_l} \sigma)(e_i, e_j) = 0,$$
(11)

where $1 \leq i, j, k, l \leq n$.

Hence, equation (6) turns into

$$\frac{1}{2}\Delta(\|\sigma\|^2) = \sum_{i,j,k=1}^n g((\overline{\nabla}_{e_k}\overline{\nabla}_{e_k}\sigma)(e_i,e_j),\sigma(e_i,e_j)) + \|\overline{\nabla}\sigma\|^2.$$
(12)

Furthermore, using equations (5) and (6), we have

$$\frac{1}{2}\Delta(\|\sigma\|^2) = \sum_{i,j,k=1}^n \sum_{\alpha=n+1}^{2n+1} \sigma_{ij}^{\alpha}(\overline{\nabla}_{e_i}\overline{\nabla}_{e_j}H^{\alpha}) + \|\overline{\nabla}\sigma\|^2.$$
(13)

Since M is minimal, equation (13) can be written as

$$\frac{1}{2}\Delta(\|\sigma\|^2) = \left\|\overline{\nabla}\sigma\right\|^2 \tag{14}$$

(see [18]). Comparing (9) and (14), we find

$$-(f_2+nf_1) \|\sigma\|^2$$

$$+\sum_{\alpha,\beta=n+1}^{2n+1} tr(A_{\alpha} \circ A_{\beta})^{2} + \|[A_{\alpha}, A_{\beta}]\|^{2} = 0.$$

From the assumption, if

$$f_2 + nf_1 \le 0,$$

then $tr(A_{\alpha} \circ A_{\beta}) = 0$. In particular, $||A_{\alpha}||^2 = tr(A_{\alpha} \circ A_{\alpha}) = 0$, and thus $A_{\alpha} = 0$, which means that $\sigma = 0$. Then M is totally geodesic.

Using Theorem 2, we have the following corollaries:

Corollary 3 [18] Let M be an n-dimensional minimal anti-invariant semiparallel submanifold of a (2n+1)dimensional Sasakian space form \widetilde{M}^{2n+1} with ξ normal to M. If

$$n(c+3) + c - 1 \le 0,$$

then M is totally geodesic.

Corollary 4 Let M be an n-dimensional minimal anti-invariant semiparallel submanifold of a (2n + 1)dimensional cosymplectic space form \widetilde{M}^{2n+1} with ξ normal to M. If

 $c \leq 0$,

then M is totally geodesic.

Corollary 5 [5] Let M be an n-dimensional minimal anti-invariant semiparallel submanifold of a (2n+1)dimensional λ -Sasakian space form \widetilde{M}^{2n+1} with ξ normal to M. If

$$c - \lambda + n(c + 3\lambda) \le 0,$$

then M is totally geodesic.

1

If M is an (n+1)-dimensional minimal anti-invariant submanifold of a (2n+1)-dimensional generalized Sasakian space form \widetilde{M}^{2n+1} with ξ tangent to M, then we have the following proposition:

Proposition 6 Let M be an (n+1)-dimensional minimal anti-invariant submanifold of a (2n+1)-dimensional generalized Sasakian space form \widetilde{M}^{2n+1} with ξ tangent to M. Then we have

$$\frac{1}{2}\Delta(\|\sigma\|^2) = \|\overline{\nabla}\sigma\|^2 + (f_2 + (n+1)f_1 - f_3)\|\sigma\|^2$$
$$-f_3\sum_{i=1}^{n+1} \|\sigma(e_i,\xi)\|^2 - \left[\sum_{\alpha,\beta=n+2}^{2n+1} tr(A_\alpha \circ A_\beta)^2 + \|[A_\alpha,A_\beta]\|^2\right].$$
(15)

Theorem 7 Let M be an (n+1)-dimensional minimal anti-invariant semiparallel submanifold of (2n+1)dimensional generalized Sasakian space form \widetilde{M}^{2n+1} with ξ tangent to M. If

$$f_2 + (n+1)f_1 - f_3 \le 0$$

and

$$f_3 \ge 0,$$

then M is totally geodesic.

Proof Let $\{e_1, e_2, ..., e_n, \xi, \varphi e_1, \varphi e_2, ..., \varphi e_n\}$ be an orthonormal frame in \widetilde{M}^{2n+1} such that $e_1, e_2, ..., e_n, \xi$ are tangent to M. Then for $1 \le i, j \le n+1$ and $n+2 \le \alpha \le 2n+1$. Similar to the proof of Theorem 2, using the minimality condition, we obtain

$$\frac{1}{2}\Delta(\|\sigma\|^2) = \left\|\overline{\nabla}\sigma\right\|^2.$$
(16)

800

Comparing (15) and (16) we find

$$-(f_2 + (n+1)f_1 - f_3) \|\sigma\|^2 + f_3 \sum_{i=1}^{n+1} \|\sigma(e_i, \xi)\|^2 + \sum_{\alpha,\beta=n+2}^{2n+1} tr(A_\alpha \circ A_\beta)^2 + \|[A_\alpha, A_\beta]\|^2 = 0.$$

From the assumption, if

$$f_2 + (n+1)f_1 - f_3 \le 0$$

and

 $f_3 \ge 0$,

then $tr(A_{\alpha} \circ A_{\beta}) = 0$. Similar to the proof of Theorem 2, this gives us $\sigma = 0$. Then M is totally geodesic. Using Theorem 7, we have the following corollaries:

Corollary 8 Let M be an (n+1)-dimensional minimal anti-invariant semiparallel submanifold of a (2n+1)dimensional Sasakian space form \widetilde{M}^{2n+1} with ξ tangent to M. If

$$c \in (-\infty, -3] \cup [1, \infty),$$

then M is totally geodesic.

Corollary 9 Let M be an (n+1)-dimensional minimal anti-invariant semiparallel submanifold of a (2n+1)dimensional cosymplectic space form \widetilde{M}^{2n+1} with ξ tangent to M. If c = 0, then M is totally geodesic.

Corollary 10 [15] Let M be an (n + 1)-dimensional minimal anti-invariant semiparallel submanifold of a (2n + 1)-dimensional Kenmotsu space form \widetilde{M}^{2n+1} with ξ tangent to M. If $c \in [-1,3]$, then M is totally geodesic.

Corollary 11 Let M be an (n+1)-dimensional minimal anti-invariant semiparallel submanifold of a (2n+1)-dimensional λ -Sasakian space form \widetilde{M}^{2n+1} with ξ tangent to M.

i) If λ is a positive function on M and

$$c \in (-\infty, -3\lambda] \cup [\lambda, \infty)$$

or

ii) If λ is a negative function on M and

$$c \in [\lambda, -3\lambda],$$

then M is totally geodesic.

References

- [1] Alegre P, Blair DE, Carriazo A. Generalized Sasakian space-forms. Israel J Math 2004; 141: 157–183.
- [2] Alegre P, Carriazo A. Submanifolds of generalized Sasakian space forms. Taiwanese J Math 2009; 13: 923–941.
- [3] Asperti AC, Mercuri F. Semi-parallel immersions into space forms. Boll Un Mat Ital 1994; 8B: 883–895.
- [4] Blair DE. Riemannian Geometry of Contact and Symplectic Manifolds. Boston: Birkhauser, 2002.
- [5] Brasil A, Lobos GA, Mariano M. C-totally real submanifolds with parallel mean curvature in λ-Sasakian space forms. Mat Contemp 2008; 34: 83–102.
- [6] Chen BY. Geometry of Submanifolds. Pure and Applied Mathematics. New York: Marcel Dekker, 1973.
- [7] Deprez J. Semiparallel hypersurfaces. Rend Sem Mat Univ Politec Torino 1986; 44: 303–316.
- [8] Deprez J. Semi-parallel immersions. In: Morvan JM, Verstraelen L, editors. Geometry and Topology of Submanifolds. Singapore: World Scientific, 1989, pp. 73–88.
- [9] Dillen F. Semi-parallel hypersurfaces of a real space form. Israel J Math 1991; 75: 193–202.
- [10] Janssens D, Vanhecke L. Almost contact structures and curvature tensors. Kodai Math J 1981; 4: 1–27.
- [11] Kenmotsu K. A class of almost contact Riemannian manifolds. Tohoku Math J 1972; 24: 93–103.
- [12] Ludden GD. Submanifolds of cosymplectic manifolds. J Differential Geometry 1970; 4: 237–244.
- [13] Özgür C, Murathan C. On invariant submanifolds of Lorentzian para-Sasakian manifolds. Arab J Sci Eng Sect A Sci 2009; 34: 177–185.
- [14] Sular S. Kenmotsu manifolds and their some submanifolds. PhD, Balıkesir University, Balıkesir, Turkey, 2009.
- [15] Sular S, Özgür C, Murathan C. Pseudoparallel anti-invariant submanifolds of Kenmotsu manifolds. Hacettepe J Math Stat 2010; 39: 535–543.
- [16] Van der Veken J, Vrancken L. Parallel and semi-parallel hypersurfaces of $S^n \times \mathbb{R}$. Bull Braz Math Soc (NS) 2008; 39: 355–370.
- [17] Yano K, Kon M. Structures on Manifolds. Series in Pure Mathematics. Singapore: World Scientific, 1984.
- [18] Yıldız A, Murathan C, Arslan K, Ezentaş R. C -totally real pseudo-parallel submanifolds of Sasakian space forms. Monatsh- Math 2007; 151: 247-256.