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ON SEMISIMPLE COMMUTATIVE SEMIGROUPS
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ABSTRACT.   This paper presents an application of radical theory to

the structure of commutative semigroups via their semilattice decomposi-

tion.   Maximal group congruences and semisimplicity are characterized

for certain classes of commutative semigroups and zV-semigroups.

The concepts of a radical theory and semisimplicity in semigroups ana-

logous to that of ring theory have been studied by a number of authors, both

as a general theory, and applied to specific classes of semigroups.   (See

e.g. [l], [3]» [5]—[9].)  In this paper we apply these techniques to a study of

the structure of commutative semigroups.

Every semigroup S has a least congruence p such that S/p is a semi-

lattice Y.   Each congruence class of p is a subsemigroup of S, and the

collection ! S  !, a e Y, of congruence classes is called the greatest semi-

lattice decomposition of S.  Conversely, if Y is a semilattice and \S J,

a e Y, is a collection of pairwise disjoint semigroups, then any semigroup

S = UíSa: ae Y\ with the property that   SJ„C Saßfot a, ß e Y is a se7?zz-

lattice composition of the S     Thus a natural approach to the structure of a

given type of semigroup is through a characterization of the semilattice

decompositions, the structure of the S  , and the semilattice compositions.

The semilattice decomposition of commutative semigroups was described by

Tamura and Kimura [12L   In this case the semigroups S  ate the maximal

archimedean subsemigroups, where $   archimedean means given any two

elements of S   each divides some power of the other.   Conversely, the

general solution of the semilattice composition problem is known (see [10,

Theorem III.7.2]).

If t is a congruence on a semigroup S, we say r is modular if there

exists an element e in S such that (ex)r (xe)rx fot all x in S.   The radical
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342 B. D. ARENDT

congruence p is defined to be the intersection of all the maximal, modular

congruences on S, and S is said to be semisimple if p = t, the identity rela-

tion.  We begin here a study of semisimple commutative semigroups.   The

semilattice decomposition of such semigroups is described, and we obtain

partial results on the nature of the S   and semilattice compositions.   As a

related problem, we also obtain conditions for the existence of maximal

group congruences on certain classes of /V-semigroups.   My thanks to the

referee for the suggestion of Theorem 3.

If S is a commutative semigroup, a mapping cp from S into S is a trans-

lation if (xy)cp = x(ycp) fot all x, y in S.   We denote by T(S) the set of all

translations of S.   If the commutative semigroup £ is a semilattice of sub-

semigroups S  and a > ß, then Sa U S* is evidently an ideal extension of

Sg by SjU {0}.   For each a e Sa, let the mapping cp    be defined on S„ by

xcp   = xa fot all x e S..   Then cp   e T(S„) and cp"aa. a —» cf>    is a homomor-

phism from 5  into T(S A.   Further, every such homomorphism determines an

extension S  U S„ with multiplication defined in the obvious way [13L

Oehmke [9] has characterized maximal modular congruences on a com-

mutative semigroup, and we state his result as a lemma.

Lemma 1.  Let S be a commutative semigroup and r a maximal modular

congruence on S.   Then either

(i) S/r is a cyclic group of prime order, or

(ii) S/r is the semilattice {0, lj.

Theorem 2.  Let S be a commutative semisimple semigroup and let S =

US , a e Y, be the greatest semilattice decomposition of S.   Then each S

is semisimple and cancellative, and a > ß implies S   is isomorphically

embedded in T(SA).

Proof.  Let x, y e S , then S semisimple implies there exists a maximal,

modular congruence r on S such that x é y (mod r).   The restriction r& of r

to S  is clearly a congruence on S .   Further, if r is of typé (ii) (Lemma 1)

then r   cannot separate elements of S   since S   ¡s archimedean and has no
a r a a

proper prime ideals.   Thus r and hence ra must be of type (i).   It follows

that r   is a maximal modular congruence on S^, so S   is semisimple.   The

fact that all the maximal, modular congruences on 5  ate cancellative and

their intersection is the identity congruence says S   must be cancellative.

Suppose a > ß and a, b e Sa with a<Pag~ ^*Pa/3» tnat ls» ca = °h for c e 5_.

If r is any maximal, modular congruence on S of type (i) then obviously

(ca)r (cb) and thus arb since r is cancellative.   If r is a type (ii) congruence
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SEMISIMPLE COMMUTATIVE SEMIGROUPS 343

then again arb holds since a and b are in the same archimedean component.

It follows that arb fot all maximal, modular congruences r on S, and by

semisimplicity, a = b.   Thus cf>aa ls one-to-one, proving the theorem.

Each S  of the theorem is thus a commutative, cancellative, archime-
a ' '

dean semigroup. If S  contains an idempotent then it is an abelian group.

If such a semigroup does not contain an idempotent it is called an N-semi-

group.   To complete a characterization of commutative semisimple semi-

groups it is now necessary to describe the semisimple archimedean com-

ponents S , and then determine those semilattice compositions of the S

which are semisimple.   It is evident that an abelian group G is semisimple

if and only if the Frattini subgroup of G is trivial, that is, MÍG . p is a

prime! = le}.   If, in addition, G is periodic (torsion), then G is semisimple

if and only if each of its p-primary components is elementary abelian.   If G

is finitely generated, it is semisimple if and only if its torsion subgroup is

semisimple.

Theorem 3.  Let S be a semilattice of abelian groups \G : a e Y\, with

linking homomorphisms d>    R.   Then the following are equivalent.

(i) S is semisimple.

(ii) Each cf>    o, öl > ß, Is one-to-one and the direct limit lim G   is

semisimple.

(iii) 5 is the subdirect product of a semilattice and a semisimple group.

Proof. We show (i) «=» (iii) «=> (ii).   (i) <=» (iii) is obvious.

Suppose (iii).   Then, by Theorem 2, each cpa a is 1-1.   Further the

maximum group homomorphic image S/a is isomorphic to lim G^; here o =

i (a, b) e S x S: ea = eb fot some e   = e e S\.

Suppose S Ç E x G where G is semisimple.   Then the projection it of S

onto G is a group homomorphism so that o~ C rr ° tr~ .   On the other hand,

let a = (a , a A, b = (b , b A be in S and suppose an = brr.   Then a   = b

and so aa~ bb~ a = aa~ bb~ b; that is 77 ° 77~   Ç o.   Hence er = 77 ° rr~

and G ^ S/a ^ lim Ga.   Thus (ii) holds.

Assume (ii).  Since each Ga is a group, T(Ga) is isomorphic to G^, so

for a > ß we have G  is embedded in G„.   Let a and b be distinct elements

of S.  lía and b are in different G   then it is clear that there is a maximal modular
a

congruence of type (ii) (Lemma 1) which separates a and b, so assume a,

b e Ga.   If e„ is the identity of G„, then ae„ = ar£a    „, and since the linking

homomorphisms are one-to-one, (a, b) ¿ er, so that (iii) holds. S is in fact

the subdirect product of V and lim Ga.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



344 B. D. ARENDT

Similarly, one can obtain a global characterization of commutative

semisimple semigroups as follows.   A commutative semigroup S is semi-

simple if and only if it can be embedded in the direct product of a semi-

lattice and a semisimple group.

In general the converse of Theorem 2 does not hold without additional

assumptions, even in the case where each Sa is a group.   Jordan has given

a converse of Theorem 2 for //-semigroups that are inverse semigroups or

periodic in 16, Theorem 3l and [7, Theorem 5u respectively, by assuming

the existence of a collection of subsemigroups with certain properties.   In

each case the semisimple semigroups are necessarily semilattices of

abelian groups, hence a special case of Theorem 2.   For the periodic case

the following corollary sharpens Theorem 5 of [7] by eliminating the extra

condition to give a converse of Theorem 2.

Corollary 4.  Let S be a periodic semigroup which is a semilattice of

semisimple abelian groups G , a e Y, such that the multiplication homomor-

phisms are one-to-one, then S is semisimple.

Proof.  Each G  is periodic abelian and semisimple so its p-primary

components are elementary abelian for each prime p.   It follows that the p-

primary components of lim Ga ate elementary, so lim Ga is semisimple and

hence so is S.

Another finiteness condition that yields a converse for a semilattice of

groups is that the semilattice y has a zero.   (See [7, Corollary 5.5].)

Corollary 5.  Let the semigroup S be a semilattice of semisimple abelian

groups G , a e Y, where Y has a zero, and such that the multiplication

homomorphisms are one-to-one, then S is semisimple.

Proof. In this case lim Ga is isomorphic to GQ which is semisimple,

and the semisimplicity of S follows.

We now turn our attention to the other possibility for the subsemigroups

Sa, a commutative, cancellative, archimedean semigroup without idempotent,

or /V-semigroup.   Examples of such semigroups are the positive integers,

positive rationals and positive reals under addition.   Tamura [ll] has given

the following characterization of ¡V-semigroups.   Let N denote the set of

nonnegative integers and let G be any abelian group.   Let I be a mapping

from G x G to N satisfying:

(i) I(a,b)aI(b,a),a,beG,

(ii) /(a, b) + I(ab, c) = ¡(a, be) + I(b, c), a, b, c e G,
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SEMISIMPLE COMMUTATIVE SEMIGROUPS 345

(iii) for a eG, I(am, a) > 0 for some ttz > 0,

(iv) I(e, e) = 1 where e is the identity of G.

Denote by (G, I) the set N x G with the binary operation (m, a)(n, b) =

(772 + 72 + /(a, b), ab).   Then (G, I) is an zV-semigroup, and every N-semigroup

is obtained in this manner.   We note that neither G nor / is uniquely deter-

mined by S.

If S = (G, /) is an /V-semigroup then its maximal modular congruences

must all be of type (i) since it is archimedean.   Hall [4] has characterized

homomorphisms of an N-semigroup into an abelian group G as follows.   Let

<p be any mapping from G into G satisfying

(1) (acpAdcp) = (ecb)1(a-bXab)<p,      a, b e G.

Define d,  from S into G by

(2) (ttz. a)d(j> = (ecp)m(acfA.

Then  d^  is a homomorphism of S into G , and every homomorphism is of

this type.   Thus, to characterize maximal congruences on N-semigroups, and

thereby the semisimple N-semigroups, we need to determine the existence of

mappings satisfying (1) onto a cyclic group of prime order.   In general this

is difficult without additional assumptions on either G or /.   Note that a map-

ping cp satisfying (1) will be a group homomorphism if and only if ecp = e ,

the identity of G'.   Otherwise, ecp will be a generator of G since it is of

prime order.  It is the latter case that is our primary interest since the homo-

morphism theory is well known.   For S = (G, I) and a eG with \a\ am, the

order of a, we denote 1(a) = 1m_l¡(a, ak).

Theorem 6.  Let S = (G, I) with G generated by a and let G' be a group

of order p, a prime.   There exists a mapping cf> from G onto G satisfying (1)

which is not a homomorphism except for the case where G is finite, p

divides \G\, and p does not divide 1(a).   The value of ecp' in G' is arbitrary

(¡¿ e').   If G is finite and p does not divide \G\ then acf> is uniquely deter-

mined by ecp, otherwise it may also be chosen arbitrarily.

Proof. If G is infinite cyclic, then let ecp = g j¿ e' in G' and let acp = gl

for some 1 < i < p.   Inductively we define for tz > 1,

n-l

(3) a"cp = gk(n),    where ¿(72) = ni- Z *(«• *')>

7 = 1

and a_1<7j = g\ where k =. /(a, a"1)— z + 1 (mod p) and hence is uniquely
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346 B. D. ARENDT

determined modulo p given z.   If G has order 72, then using (3) we see that

a q!> a ecp if and only if

(4) 72z = 1(d)    (mod p).

Obviously (72, p) = 1 implies a unique solution », while (72, p)= p = (1(a), p)

implies i may be chosen arbitrarily.   No solution exists in the single case

of the hypotheses.   To check (1) for any two elements a , a7 in G, the con-

ditions on the exponents of g give equality if and only if

k+j-l k-1 ;-l

I(ak, a') =    Z    /(a' af)~ Z  l{-a- <*r) - Z  /(a« a')    (mod P>-

r=l r=l r=l

From Lemma 2 of [2],

k-2 k-2

¡iak, a') = lia, ah*>~1) + £ /(a. a' + 0 -  £ /(a, a*"1"'),

r=0 r=0

which is easily seen to be equal to the right side of the congruence, so this

congruence holds for all p, and (1) is satisfied if G is infinite or j + k < n.

If 7 + k > 72 then j + k- n= t < n when G  is finite of order 72, and a'+   =

a .   Then (4) gives

72 j + k-t-l

ij+k- t)i m ni > Z K«. «0 =      Z      Jia> «r) •
r=l r=t

so that a'*k<p = a'<£ and (1) holds in this case as well.

The next result allows us to extend our definition of <p" to a large class

of groups.

Theorem 7.  Let   S = (G, I)  where   G   is   the   direct   product   H x K.

Assume   cp.   and  cp     are  defined  on   H  and   K   respectively   to satisfy

(1) such   that  ecp'.  = ecp .    Set   ecp = ecp     and for  hk e G  define

(hk)cf> = (ecß)-Hh'k)(hcf>l)(k(f>2), then cf> satisfies (1) 072 G.

Proof. Let x = ab and y = cd be elements of G, where a, c e H and

b,d e K.  Then

(x<p)(ycp) = (e0)-/<a'*>-/<e'dW1)(602)(c¿l)W,¿2)

and

(xy)rA = (acbd)cf,a(ecp)-nac-bd)(ac)cp;i(bd)cp2
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Multiplying (xy)cf> by (ecp)  x'y   makes the exponent of ecp equal to l(ab, cd)-

l(ac, bd) - I(a, c) - I(b, d).   By Lemma 6 of [2], this is equal to - /(a, b) -

l(c, d), so (1) is satisfied.

If G is semisimple then there are lots of maximal congruences on G and

it is natural to expect a relationship to the semisimplicity of S = (G, I).  The

next result shows that this is the case at least when G is finitely generated.

Theorem 8.  Let S = (G, I) where G is a finitely generated semisimple

abelian group, then S is semisimple.

Proof. If (ttz, a) and (tz, b) ate two elements of 5 with a ¡¿ b then any

homomorphism cp separating a and b will give a homomorphism dA  separating

(ttz, a) and (rz, b).   Thus consider (ttz, a) /z (n, a) in S and write G = II' _ jGfe

where G, = (a, ).  Let p be a prime such that (p, m — n)=(p, |Gj) = (p, /(a. )) - 1 for

k a I,..., t.   By Theorems 6 and 7 we can define a mapping çS which is not

a homomorphism from G onto a cyclic group G of order p.   Further, (ttz, a)0. ^

(tz, a)0. since (p, ttz — 72) = 1, so S is semisimple.

If G is any abelian group and we define /(a, b) = 1 for all a, è in G, then

S = (G, /) is an Af-semigroup.   These /V-semigroups are of interest since they

give lots of examples, are relatively easy to study, and they turn out to be

fundamental in a sense to the general theory.   For this class we are able to

obtain a converse to Theorem 8, though it is not true in general.

Theorem 9.   Let S = (G, I) be an N-semigroup with G finitely generated

or periodic and l(a, b) = 1 for all a, b in G.   If S is semisimple, then G is

semisimple.

Proof. The torsion subgroup of G is the direct product of p-primary sub-

groups G . Let a e G with |a| = p", 72 > 1. If 72 > 1 then a ¿ ap + 1 so there

is a homomorphism ôj  onto a group G of prime order a separating (0, a) and

(0, ap + !).  Thus acp = (0, a)d<p /= (0, ap + :)d(j) = ap + l<p so that <p is not a homomor-

phism.  Since (1) holds, ecp = g is not the identity of G and must therefore

generate G'.   Letting acp = g', 1 < z < a, we have akcp = gfel~*+1 for ¡jj

k e N by induction.   If a ¡¿ p then g = ecp a ap çS = g    í-í> implies p"z —

p" + 1 = 1 (mod a) so z = 1 (mod a).   But then i = 1 so açS = ap     0, a con-

tradiction.   On the other hand, if q = p, then z = (p + 1) z - (p + 1) + 1 (mod p)

gives acp a ap+ cp again.   We conclude that »«• 1, so G    is elementary

abelian and G is semisimple.

A general characterization of semisimple /V-semigroups appears to be
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quite complicated due to two factors.   First is the complicated structure of

G itself when it is not torsion or finitely generated.   Secondly, the condi-

tions on the function / are quite general so that large numbers of them exist

and not much can be said about them [2],   For this reason, the conditions

for semisimplicity turn out to be number theoretical restrictions on /.   We

conclude with a characterization for the two cases where G is finitely gener-

ated or  c/(p   ) for some prime p.

Theorem 10.  Let S = (G, /) where G is finitely generated abelian with

torsion subgroup Il|fe_ yG k, G k = (a.) of order r, = pk   and II. _ ^r, = M.   For

each k, let M, = Wr, and I, = I(a¡).   Then S is semisimple if and only if

given any collection of integers  l,,k=l,...,s, satisfying  \lA < s, and

I, = 0 (mod p.), if S     i^M,/, = Mz for some z e N, then there exist a

prime p and some collection ik satisfying r^i^ = ¡k (mod p), k = 1,..., s,

such that z £ 27   ,Z, t. (m°d P).

Proof.  Let (ttz, x) and (72, y) be distinct elements of S.   A homomorphism

d. of S onto a cyclic group of prime order where cp is also a homomorphism

will separate (772, x) and (72, y) if and only if <p separates x and y.   Thus if
m, n,

x = Ila^   a and y = Ha^ iz, where zz, v ate from the torsion free part of G, are

not separated by a maximal group homomorphism, then we may assume zz =

t; and P¡^(mL ~ nAl, k= 1,..., s.   If cp' satisfies (1) and is not a homomor-

phism then ecf> = gj¿ e' and a^cp = g    where z'fe satisfies 'r¡i^ = ¡k (mod p)

by (4).   From (2) and (3) we get (ttz, x)d .  is the element g raised to the

power ttz + ^'¿_i?72¿z¿ + P   where F   is an integer depending only on x.

Thus (ttz, x)d , = (72, y)d .   if and only if

s

(5) 772 - 72 =   Z ink - mk)Ík +  Fy " FX      ̂ m0d P^

Set lk = ttz, — 72, and assume Mjf S  -i^J^lJk'   '^ie terms °^ tne summation

depend only "on x and y, so for any 772, 72 we must have M(t72 — «) j= S-^^k^k +

M(F   — F ).   Thus we can choose a prime p K M so that the conditions of

Theorem 6 hold for each Gk, there are unique solutions z'¿ to r^ = /fe

(mod p), and M(tt2 - 72) ,= 2 lk^k'k + M(Fy - Fx) (mod p).   M = rfc/Mfc and ¡k =

r,ik (mod p) imply M(tt2 - tz) 4 'S. Ml i   + M(F   - Fx) (mod p), and since

(M, p) = 1, (5) cannot hold.   If on the other hand, 2/^Mfe/fe = Mz for some
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integer z then M divides 2/fe/M¿/fe + M(F   - F ).   The above argument will

work to give separation of (ttz, x) and (72, y) except when 77z and 72 satisfy

772 - 72 = z + F'   — F .   Now (5) fails for such a pair tt2, 72 if and only if z £

S l^i^ (mod p) which is the condition of the theorem.

Theorem 11.  Let G = o(p   ) for some prime p and S = (G, /) for some

index function I.   G a (a , a , a ,...), where ap = e and a   = a _. for

T2 > 1.   Let /   = /(a ).   Then S maps homomorphically onto a group of order

q for every prime q ¿ p.   Further, S maps onto a group of order p if and only

if p divides ly

Proof. If a /= p and G   = («r) then Theorem 6 gives a unique i    satis-
i ,

fying (4) and we define a   cp = g " where (g) a G of order a.   This is well

defined on G if and only if a cp' a (a^     )cp.   Using (3) and letting Kn =

2ysJl/(«n+1, flJ, + 1), we get equality if and only if z'n = pin + l - Kn (mod a)

for all 72.   Since p /= q, this holds if and only if

p"i   = pn+1i   .. - pnK   (mod a) ~ /   = /  J.,-pnK   (mod a).

Substituting a   = ap   , in / , the last congruence is

Pn

ZH+V^+l^'n+l-P^n    ^od^
7 = 1

We now claim that we actually have equality in this last expression, that

is, simplifying the notation a little, if a e G has order p       , then

bn f>"+1 ö-l

Z Hap. apj) =   Z   Ka, a') - pn Z Kft «').

7=1 7=1 7=1

From Lemma 2 of [2] we have

p-2 p-2

I(ap, ap')al(a. ap + pi~1)+  Z  K«, ai"' + fe)-  £  /(a, a»-1"*).

/fe=0 z«=0

Simplifying gives

. zz . n  j,    , 71 — 1

Z '(«p. api) = Z Z  K* «•i"'+fe) - P" Z  H«- «kï-
jal jal   fe=0 fe = l

Using the fact that ap        = e, the first expression on the right becomes
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S.■_ i   l(a, a') and our claim is proved.   This implies cf> is well defined and

so a homomorphism onto G' exists.   In particular we note that the above

equality implies

(6) ln-ln+l-PnKn     fof a11 *

If q a p then Theorem 6 requires /„ - 0 (mod p) for all 72 and i   is

arbitrary.   However cp is well defined if and only if i   = — K   (mod p) which

has a unique solution for each 72, giving the mapping d .   and conversely.

Finally, (6) says /„ - 0 (mod p) for all 72 if and only if p divides I .

Corollary 12. pn divides I   if and only if p" divides I     , for all posi-

tive integers n.

Theorem 13.  Let  G = o(p   ) for some prime p and S =(G, l) for some index

function I.   G = (a,, a ,...) where ap = e and ap = a     ,forn>1.   Let I   =
' 12 1 n        n—1 ' n

I(a ).   Then S is semisimple if and only if for each positive integer n, given

u such that 1 < u < p", if pn divides ul , then pn+    does not divide ul     ••

Proof. Let (t, x), (s, y) be distinct elements of S, then for some mini-

mal tz we have x = a? , y = a  , where (say) ; > k.   If ; = k then t >= s   and to

separate these two elements by (3) we need only satisfy t — 5 4 0 (mod a)

which is possible by Theorem 11.   Thus assume jp k.   Again using (3), we

are able to separate (t, x) and (s, y) if and only if there exists a prime a

such that

7-1

(7) (f- k)i   i t - s + y  Ka , a7)    (mod a).

r=k

If p" does not divide (j - k)ln, then (/-*)/„ ¿P*it- s)+ p"^íí(«„» <£)

for any t and s, so there exists a prime q ¿ p such that

7-1

(/ - k)ln 4 p"(t -s) + p" Z  X V an]    (mod $•
r = k

Choosing z    to satisfy (4) gives

7-1

(/ _ k)pnin i pnit -s) + pn Z  H«n- <)    (mod a),

r = k

and since a ¡¿ p,- (7) holds.   If, on the other hand, (/ - k)l   = p z for some

integer z, then we obtain separation as above except for those integers t, s
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such that (/' - k)Jn = p"(r -s)+ pn S'~A /(a^, a^), that is, z = t - s +

Sr_fc/(fln» aTn).   It follows that we can separate (/, x) and (s, y) fot such t, s

if and only if there exist a prime a and i   satisfying (4) such that (j - k)i 4

z (mod a).   We show that a must equal p.   Obviously (/ - k)l   = pnz (mod a)

for every prime a, and if a ^ p, then * = (pn)~l(j - k)l   (mod a).   If z

satisfies (4), that is p"z'n a I   (mod a), then (/- A)z   = (/- k)(pn)~ll   = z

(mod a), so we must choose q a p.   Since j - k< p" and (;' - &)/n = p"z we

must have p|/   so S maps homomorphically onto a group of order p by Theo-

rem 11.   From the proof of Theorem 11 we observe í   = — K^ (mod p), so we

get separation if and only if - (j - k) Kn £ z (mod p) or z + (j - k) Kn £ 0

(modp).   Now p"z=(j-k)Ina(j-k)In + i-(j-k)pnKn   by   (6)  so

(;' - k)In   j = p"(2 + (;' - k) K ).   From this equation, z + (j - k) K   =0

(mod p) if and only if pn+   divides (j- k)I     ,, proving the theorem.
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