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ABSTRACT. The purposes of the present paper are (1) to give a necessary and
sufficient condition for the uniqueness of the separable idempotent for a
separable group ring extansion RG (R may be a non-commutative ring), and

(2) to give a full description of the set of separable idempotents for a qua-
ternion ring extension RQ over a ring R, where Q are the usual quaternions i,j,k
and multiplication and addition are defined as quaternion algebras over a field.
We shall show that RG has a unique separable idempotent if and only if G is
abelian, that there are more than one separable idempotents for a separable
quaternion ring RQ, and that RQ is separable if and only if 2 is invertible in

R.

KEY WORDS AND PHRASES.  Group Rings, Idempotents in Rings, Separable Algebras

AMS (MOS) SUBJECT CLASSIFICATION (1970) CODES. Major: 16A26  Minor: 16Al6,
16A32




434 G. SZETO

1. INTRODUCTION,

M. Auslander and O, Goldman ([1] and [2]) studied separable alge-
bras over a commutative ring. Subsequently, the investigation of se-
parable algebras (in particular, Brauer groups and Azumaya algebras)
has attracted a lot of researchers, and rich results have been obtained
(see References). K. Hirata and K. Sugano ([5]) generalized the con-
cept of separable algebras to separable ring extensions; that is, let
S be a subring of a ring T with the same identity. Then T is called a
separable ring extension of S if there exists an element Zaiﬁbi in
TQST such that x( Zai@bi) = (Zaiﬁbi)x for each x in T and Zaibi = 1.
Such an element Zaiﬁbi is called a separaktle idempotent for T. We
note that a separable idempotent takes an important role in many theo-
rems (for example, see [6], Section 5,6, and 7). It is easy to verify
that (l/n)(Zgi®g£1) and Fe, Re, . ([41, Examples IT and III, P. 41)
are separable idempotents for a group algebra RG and a matrix ring Mm(R)
respectively, where G = {g1,...,gn} with n invertible in R and eij are

matrix units., We also note that the separable idempotent for a commu-

tative separable algebra is unique ([6], Section 1, P. 722).

2. PRELIMIVARIES.

Throughout, G is a group of order n, R is a ring with an identity
1. The group ring RG = {Zrigi / r, in R and g5 in G}, which is a free
R-module with a basis {gi} and (Zrigi)( Zsigi) = Ztkgk where t, =

Zrisj for all possible i,j such that 88 The ring R is imbed-

iT ke
ded in RG by r—;rg1, where g1 is the identity of G (g1 = 1) The mul-

tiplication map RGR RG —» RG is denoted by ®w. Clearly, {giﬁgj / 1,3 =

R
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1,ee.,n} form a basis for RGR_RG. An element Zrij(giﬁgj) in RGELRG

R
is called a commutant element in RG@RRG if X(Erij(giﬁgj)) =

(Zrij(giﬁgj))x for all x in RG.

5. MAIN THEOREMS.
We begin with a representation for M(x) for a commutant element X

in RG@RRG, and then we show that RG has a unique separable idempotent

if and only if G is abelian.
LEMMA 1, Let x = zrij(gi@gj), i,3 = 1,4ee,0, be a commutant ele-
, m - , , b
ment in RG@RRG. Then 7D(X) = zi:1<Zr1ki)nKiuKi’ where m is the number

of conjugate classes of G, n is the order of the normalizer of &
i

k.
i

and Ck is the sum of different conjugate elements of Bl for some Ki
i i

and k! in {1,...,n%.

PROOF. Since x is a commutant element, g x = xg_ for each g_ in G.

P S b
The coefficient of the term gp@gk in gpx is r1k, and the coefficient of
the same term in xgp is rpq, where gqu = 8. Hence Tk = rpq whenever

gqu = 8. Thus X = Zkr1k(2gp®gq), where p,q run over 1,...,n, such
that gqu = 8,3 that is, x = Zkr1k(ngp®gkg}—)1)’ Taking F(x) =
Zkr1k(ngpgkg;1). For a fixed k, ngpgkg; = n,C, where n_ is the
order of the normaligzer of gk and Ck is the sum of all different conju-
gate elements of g+ Hence x) = 2k:1r1knkck' Since conjugate class-
es form a partition of G, Ci = Cj if and only if g5 is conjugate to gj.
Renumerating elements, we let {gk1,...,gkm} be all non-conjugate ele-
ments of each other; then {CKI""’CK} are all different elements in
the set, {C1,...,Cn}. Thus TK(x) = Ziil(zrmi)nkicki’ where r, , are

coefficients of the same Ck , and m is the number of conjugate classes

i



436 G. SZETO

of G,

THEOREM 2, Let RG be a separable extension of R. Then, RG has a
unique separable idempotent if and only if G is abelian.

PROOF., Let x = Zrij(giﬁgj) be a separable idempotent for RG.

Then by the lemma, JL(x) = ZiTI(ZrIK')nk CK , where C is the sum of
- i i

. k.
i i
all conjugate elements of ES Let g, = 1, the identity of G. Then
i 1
Ck1 = 1 and nk1 = n, the order of G. Since T(x) =1, (zr'lki)nk]Ck] = 1
)] e} — sl _ - v f o
and (Zr1k"nk Cp = 1 and (Zr1k!)nk,“k. = 0 for each i £ 1. Notingz
1 11 i i1
that Ck1 = 1, we have Er”ii = Tiqs and so the first equation becomes
Tyq0 = 1. Hence the order of G, n, is invertible ir R. Thus ST being
i

a factor of n, is also invertible in R. But conjugate classes form a

nkicxi = O implies that Er‘lki = O for each

i # 1. This system of homogeneous equations Zr1k, = O in the unknowns
i

partition of G, so (g r]k')
i

r1k! with 1 £ 1 has trivial solutions if and only if n = m, and this
holés if and only if G is abelian., Since the uniqueness of the separ-
able idempotent (= (1/n)(§§gi®g;1)) is equivalent to the existence of
trivial solutions of the above system of equations, the same fact is equi-
valent to G being abelian.

The theorem tells us that there are many separable idempotents for
a separable group ring RG when G is non-abelian., Also, we remark that
1f RG is a separable extension of R, the order of G is invertible in R
from the proof of the theorem. Iext, we discuss another popular separ=-
able ring extension, a quaternion ring extension RQ, where RQ =
{r1+rii+rjj+rkk / 1,3, and k are usual quaternions}. (RQ,+.) is a ring
extension of R under the usual addition and multiplication similar to

quaternion algebras over a field. Now we characterize a separable idem-
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Potent for a separable quaternion ring extension RQ.
THEOREM 3. Let RQ be a separable quaternion ring extension. Then
a commutant element x = Zzét(sﬁt), s,t = 1,i,j,k, in RQ@RRQ is a separ-
able idempotent for RQ if and only if ryy o= /b
PROOF. Since x is a commutant element in RQ@RRQ, ix = xi., The co-
efficients of the term 181 on both sides are -r., and -r

i1 1i?

Since jx = xJj, the coefficients of the term k81 on both sides are -r

sor,, = r,.
i1 1i°

i1 ©
_rkj’ SO Ty, = rkj' Also, kx = xk, so the coefficients of the term J®&1

on both sides are Hence r = r = =r

-ri1 = rjk. 1i ri1 = kj jkc

by comparing coefficients of other terms, we have r11 = -rii = -rjj =

Similarly,

-r r., and r =T =

ik 1k = Tk1 = “Fij = Tji°

ot = rpq if ts = gqp, and Ty = —rpq if ts = -gqp. Thus

X = r11(1@1-i®i—j®j-k®k)+r1i(1Qi+iﬁ1-j®k+kﬁj)+r1j(1ﬁj+j91-kﬁi+iﬁk)+

= -r

Kk ? r1j = rj1 = In other words,

ki =

r1k(1®k+kﬁ1—iﬁj+j®i)..-oao-oooooo-ooou..oonoo-.coo.uooo..o.oo(*)
But then W(x) = r114+r1i0+r1j0+r1k0 = 4r11. Consequently, x is a se-

parable idempotent if and only if ryy = 1/4 (for m(x) = 1).

COROLLARY 4. Let RQ be a quaternion ring extension of R. Then RQ
is separable if and only if 2 is invertible in R.
PROOF., The necessity is immediate from the theorem. The sufficien-

cy is clear since the element x with r11 = /i, r1i = = r1k = 0 as

15
given in (*) in Theorem 3 is a separable idempotent for RQ.

REMARK. It is easy to see that every x of the form (*) in Theorem

3 with Ti10 Tqqo r1j and r in the center of R is a commutant element

1k
in RQ@RRQ. Hence, from the proof of Theorem 3, the complete set of com-
mutant elements is: C = {Eyst(sﬁt) / T = rpq if qp = ts, and ey =

_rpq if gp = —ts}. Also, the complete set of separable idempotents for
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RQ is a subset of C such that Tiq = 1/4 and Tyio r1j, Ty, are in the

center of R, Thus there are many separable idempotents.
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