ON SEPARABLE EXTENSIONS OF GROUP RINGS AND QUATERNION RINGS

GEORGE SZETO
Mathematics Department
Bradley University
Peoria, Illinois 61625 U.S.A.

(Received November 29, 1977)

Abstract

The purposes of the present paper are (1) to give a necessary and sufficient condition for the uniqueness of the separable idempotent for a separable group ring extansion $R G$ (R may be a non-commutative ring), and (2) to give a full description of the set of separable idempotents for a quaternion ring extension $R Q$ over a ring R, where Q are the usual quaternions i, j, k and multiplication and addition are defined as quaternion algebras over a field. We shall show that $R G$ has a unique separable idempotent if and only if G is abelian, that there are more than one separable idempotents for a separable quaternion ring $R Q$, and that $R Q$ is separable if and only if 2 is invertible in R.

KEY WORDS AND PHRASES. Group Rings, Idempotents in Rings, Separable Algebras

AMS (MOS) SUBJECT CLASSIFICATION (1970) CODES. Major: 16 A26 Minor: 16A16, 16A32

1. INTRODUCTION.

M. Auslander and O. Goldman ([1] and [2]) studied separable algebras over a commutative ring. Subsequently, the investigation of separable algebras (in particular, Brauer groups and Azumaya algebras) has attracted a lot of researchers, and rich results have been obtained (see References). K. Hirata and K. Sugano ([5]) generalized the concept of separable algebras to separable ring extensions; that is, let S be a subring of a ring T with the same identity. Then T is called a separable ring extension of S if there exists an element $\sum a_{i} \otimes b_{i}$ in $T \otimes_{S} T$ such that $x\left(\Sigma a_{i} \otimes b_{i}\right)=\left(\Sigma a_{i} \otimes b_{i}\right) x$ for each x in T and $\Sigma a_{i} b_{i}=1$. Such an element $\Sigma a_{i} \otimes b_{i}$ is called a separable idempotent for T. We note that a separable idempotent takes an important role in mary theorems (for example, see [6], Section 5,6, and 7). It is easy to verify that $(1 / n)\left(\sum E_{i} S_{i}^{-1}\right)$ and $\sum e_{i 1}{ }^{\otimes e}{ }_{1 i}([4]$, Examples II and III, P. 41) are separable idempotents for a group algebra $R G$ and a matrix ring $M_{m}(R)$ respectively, where $G=\left\{g_{1}, \ldots, g_{n}\right\}$ with n invertible in R and $e_{i j}$ are matrix units. We also note that the separable idempotent for a commutative separable algebra is unique ([6], Section 1, P. 722).

2. PRELIMINARIES.

Throughout, G is a group of order n, R is a ring with an identity 1. The group ring $R G=\left\{\Sigma r_{i} g_{i} / r_{i}\right.$ in R and g_{i} in $\left.G\right\}$, which is a free R-module with a basis $\left\{g_{i}\right\}$ and $\left(\sum r_{i} g_{i}\right)\left(\Sigma s_{i} g_{i}\right)=\sum t_{k} g_{k}$ where $t_{k}=$ $\sum r_{i}{ }^{s} j$ for all possible i, j such that $g_{i} E_{j}=g_{k}$. The ring R is imbedded in $R G$ by $r \rightarrow r g_{1}$, where g_{1} is the identity of $G\left(g_{1}=1\right)$. The multiplication map $R G \mathbb{R}_{R} R G \rightarrow R G$ is denoted by π. Clearly, $\left\{E_{i} \operatorname{DE}_{j} / i, j=\right.$
$1, \ldots, n\}$ form a basis for $R G \otimes_{R} R G$. An element $\sum r_{i j}\left(g_{i} g_{j}\right)$ in $R G Q_{R} R G$ is called a commutant element in $R G \otimes_{R} R G$ if $x\left(\sum r_{i j}\left(g_{i} Q_{j}\right)\right)=$ $\left(\sum r_{i j}\left(g_{i} g_{j}\right)\right) x$ for all x in $R G$.

3. MAIN THEOREMS.

We begin with a representation for $\pi(x)$ for a commutant element x in $R G Q_{R} R G$, and then we show that $R G$ has a unique separable idempotent if and only if G is abelian.

LEMMA 1. Let $x=\sum r_{i j}\left(g_{i} \otimes g_{j}\right), i, j=1, \ldots, n$, be a commutant element in $R G Q_{R} R G$. Then $\mathbb{K}(x)=\sum_{i=1}^{m}\left(\sum r_{1 k_{i}^{\prime}}\right) n_{k_{i}} V_{k_{i}}$, where m is the number of conjugate classes of $G, n_{k_{i}}$ is the order of the normalizer of $\varepsilon_{k_{i}}$, and $C_{k_{i}}$ is the sum of different conjugate elements of $g_{k_{i}}$, for some k_{i} and k_{i}^{\prime} in $\{1, \ldots, n\}$.

PROOF. Since x is a commutant element, $E_{p} x=x g_{p}$ for each g_{p} in G. The coefficient of the term $g_{p} g_{k}$ in $\tilde{E}_{\mathrm{p}} \mathrm{x}$ is r_{l}, and the coefficient of the same term in Xg_{p} is r_{pq}, where $g_{q} g_{p}=g_{k}$. Hence $r_{1 k}=r_{p q}$ whenever $g_{q} g_{p}=g_{k}$. Thus $x=\sum_{k} r_{k}\left(\Sigma g_{p} g_{q}\right)$, where p, q run over $1, \ldots, n$, such that $g_{q} g_{p}=g_{k}$; that is, $x=\sum_{k} r_{1 k}\left(\sum_{p} g_{p} \otimes g_{k} g_{p}^{-1}\right)$. Taking $\pi(x)=$ $\sum_{k} r_{1 k}\left(\sum_{p} g_{p} E_{k} g_{p}^{-1}\right)$. For a fixed $k, \sum_{p} g_{p} g_{k} \tilde{E}_{p}^{-1}=n_{k} C_{k}$ where n_{k} is the order of the normalizer of g_{k} and C_{k} is the sum of all different conjugate elements of ε_{k}. Hence $\pi(x)=\sum_{k=1}^{n} r_{k} n_{k} C_{k}$. Since conjugate classes form a partition of $G, C_{i}=C_{j}$ if and only if g_{i} is conjugate to \mathcal{S}_{j}. Renumerating elements, we let $\left\{g_{k_{1}}, \ldots, \varepsilon_{k_{m}}\right\}$ be all non-conjugate elements of each other; then $\left\{C_{k_{1}}, \ldots, C_{k_{m}}\right\}$ are all different elements in the set, $\left\{C_{1}, \ldots, C_{n}\right\}$. Thus $\pi(x)=\sum_{i=1}^{m}\left(\sum r_{1 k}\right)$ $n_{k_{i}} C_{k_{i}}$, where $r_{1 k}$, are coefficients of the same $C_{k_{i}}$, and m is the number of conjugate classes
of G.
THEOREM 2. Let $R G$ be a separable extension of R. Then, RG has a unique separable idempotent if and only if G is abelian.

PROOF. Let $x=\Sigma r_{i j}\left(g_{i} g_{j}\right)$ be a separable idempotent for RG. Then by the lemma, $\pi(x)=\sum_{i=1}^{m}\left(\sum r_{1 k_{i}}\right) n_{k_{i}} C_{k_{i}}$, where $C_{k_{i}}$ is the sum of all conjugate elements of $g_{k_{i}}$. Let $g_{k_{1}}=1$, the identity of G. Then $C_{k_{1}}=1$ and $n_{k_{1}}=n$, the order of G. Since $\pi(x)=1,\left(\sum r_{1 k!}\right) n_{k_{1}}{ }^{C_{k}}=1$ and $\left(\sum r_{1 k_{i}^{\prime}}\right) n_{k_{1}} \widetilde{c}_{k_{1}}=1$ and $\left(\sum r_{1 k_{i}}\right) n_{k_{i}} C_{k_{i}}=0$ for each $i \neq 1$. Noting that $C_{k}=1$, we have $\sum r_{1 k}=r_{11}$, and so the first equation becomes $r_{11}=1$. Hence the order of G, n, is invertible in R. Thus n_{k}, belng a factor of n, is also invertible in R. But conjugate classes form a partition of G, so $\left(\sum r_{1 k_{i}}\right) n_{k_{i}} C_{i}=0$ implies that $\sum r_{1 k}{ }_{i}=0$ for each $i \neq 1$. This system of homogeneous equations $\sum r_{1 k_{i}^{\prime}}=0$ in the unknowns $r_{1 k}$ with $i \neq 1$ has trivial solutions if and only if $n=m$, and this holds if and only if G is abelian. Since the uniqueness of the separable idempotent $\left(=(1 / n)\left(\sum g_{i} g_{i}^{-1}\right)\right)$ is equivalent to the existence of trivial solutions of the above system of equations, the same fact is equivalent to G being abelian.

The theorem tells us that there are many separable idempotents for a separable group ring $R G$ when G is non-abelian. Also, we remark that if $R G$ is a separable extension of R, the order of G is invertible in R from the proof of the theorem. Next, we discuss another popular separable ring extension, a quaternion ring extension $R Q$, where $R Q=$ $\left\{r_{1}+r_{i} i+r_{j} j+r_{k} k / i, j\right.$, and k are usual quaternions $\}$ ($R Q,+$.) is a ring extension of R under the usual addition and multiplication similar to quaternion algebras over a field. Now we characterize a separable idem-
potent for a separable quaternion ring extension $R Q$.
THEOREM 3. Let $R Q$ be a separable quaternion ring extension. Then a commutant element $x=\sum r_{s t}(s \otimes t), s, t=1, i, j, k$, in $R Q Q_{R} R Q$ is a separable idempotent for $R Q$ if and only if $r_{11}=1 / 4$.

PROOF. Since x is a commutant element in $R Q Q_{R} R$, $i x=x i$. The coefficients of the term $1 \otimes 1$ on both sides are $-r_{i 1}$ and $-r_{1 i}$, so $r_{i 1}=r_{1 i}$. Since $j x=x j$, the coefficients of the term $k 1$ on both sides are $-r_{i 1}=$ $-r_{k j}$, so $r_{i 1}=r_{k j}$. Also, $k x=x k$, so the coefficients of the term $j \otimes 1$ on both sides are $-r_{i 1}=r_{j k}$. Hence $r_{1 i}=r_{i 1}=r_{k j}=-r_{j k}$. Similarly, by comparing coefficients of other terms, we have $r_{11}=-r_{i i}=-r_{j j}=$ $-r_{k k}, r_{1 j}=r_{j 1}=-r_{k i}=r_{i k}$ and $r_{1 k}=r_{k 1}=-r_{i j}=r_{j i}$. In other words, $r_{s t}=r_{p q}$ if $t s=q p$, and $r_{s t}=-r_{p q}$ if $t s=-q p$. Thus
$x=r_{11}(1 \otimes 1-i \otimes i-j \otimes j-k 0 k)+r_{i j}(1 \otimes i+i \otimes 1-i \otimes k+k \otimes j)+r_{1 j}(1 \otimes j+j \otimes 1-k \otimes i+i \otimes k)+$

$$
r_{1 k}(1 \otimes k+k \otimes 1-i \otimes j+j \otimes i)
$$

But then $\pi(x)=r_{11^{4+r}} 1 i^{0+r}{ }_{1 j}{ }^{0+r} r_{1 k^{0}}^{0}=4 r_{11}$. Consequently, x is a separable idempotent if and only if $r_{11}=1 / 4$ (for $\pi(x)=1$).

COROLLARY 4. Let $R Q$ be a quaternion ring extension of R. Then $R Q$ is separable if and only if 2 is invertible in R.

PROOF. The necessity is immediate from the theorem. The sufficiency is clear since the element x with $r_{11}=1 / 4, r_{1 i}=r_{1 j}=r_{1 k}=0$ as given in (*) in Theorem 3 is a separable idempotent for RQ.

REMARK. It is easy to see that every x of the form (*) in Theorem 3 with $r_{11}, r_{1 i}, r_{1 j}$ and $r_{1 k}$ in the center of R is a commutant element in $R Q Q_{R} R Q$. Hence, from the proof of Theorem 3, the complete set of commutant elements is: $C=\left\{\Sigma r_{s t}(s \otimes t) / r_{s t}=r_{p q}\right.$ if $q p=t s$, and $r_{s t}=$ $-r_{p q}$ if $\left.q p=-t s\right\}$. Also, the complete set of separable idempotents for
$R Q$ is a subset of C such that $r_{11}=1 / 4$ and $r_{1 i}, r_{1 j}, r_{1 k}$ are in the center of R. Thus there are many separable idempotents.

REFERENCES

1. Auslander, M. and O. Goldman. The Brauer Group of a Commutative Ring, Trans. Amer. Math. Soc. 97 (1960) 367-409.
2. Auslander, M. and O. Goldman. Maximal Orders, Trans. Amer. Math. Soc. 27 (1960) 1-24.
3. Bass, H. Lectures on Topics in Algebraic K-Theory, Tata Institute of. Fundamental Research, Bombay, 1967.
4. DeMeyer, F. and E. Ingraham. Separable Algebras Over Commutative Rings, Springer-Verlag, Berlin-Heidelberg-New York, 181, 1971.
5. Hirata, K. and K. Sugano. On Semisimple Extensions and Separable Extensions over Non-Commutative Rings, J. Math. Soc. Japan 18 (1966) 360-373.
6. Villamayor, O . and D. Zelinsky. Galois Theory for Rings with Finitely Many Idempotents, Nagoya Math. J. 27 (1966) 721-731.
7. Zelinsky, D. Brauer Groups, Springer-Verlag, Berlin-HeidelbergNew York, 549, 1976.

