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Abstract

This note considers the problem of paradoxical results in multidimensional item response

theory. This is the possibility that a deliberately incorrect response could be beneficial to an

examinee. An example is created that demonstrates that, when three or more ability dimensions

are considered, paradoxical results can occur for Bayesian estimates even for separable tests

when all the dimensions have positive prior correlation. A discussion of the mathematics behind

the result is given and a computationally feasible means to check for the existence of

paradoxical results is developed.

Key words: item response theory, multidimensional, posterior, paradoxical result, MAP, EAP



1

1. Introduction

A number of recent papers (*****, 2009b,a; Hooker et al., 2009) have considered the phenomenon
labeled “paradoxical results” in multidimensional item response theory. This is the possibility that an
examinee in a test may obtain a higher ability estimate in one ability dimension if one of their correct
responses was changed to incorrect. This situation may be regarded as being unfair – it would be in the
examinee’s best interest to deliberately answer that question incorrectly – and thus it would be useful to
avoid this possibility. This paper extends the results of those cited above by examining the practice of
“borrowing strength” between ability dimensions by using correlated priors in Bayesian estimates. The
term is borrowed from Wainer et al. (2001) in the context of empirical Bayes shrinkage of univariate
estimates of ability. It was used explicitly in Segall (2000) in a fully Bayesian framework and ***** (2009b)
employed it as a means of reducing paradoxical results in two dimensions. We demonstrate that this
practice can have the perverse effect of inducing paradoxical results in seemingly reasonable scenarios when
three or more ability dimensions are used.

Hooker et al. (2009) demonstrated that separable tests, in which every item measures only one of the
ability dimensions, cannot produce paradoxical results if an examinee’s ability is estimated via maximum
likelihood. The same result holds if a Bayesian estimate such as the expected a posteriori estimate (EAP)
is employed with a prior in which all the ability dimensions are independent. That paper further showed
that, in two dimensions, there are fewer items that can produce paradoxical results when the prior
correlation between dimensions is increased. It may therefore seem reasonable to suppose that the use of
separable tests with positively-correlated traits can be guaranteed to avoid paradoxical results. This is
always true for estimates in two-dimensional ability spaces. This note presents a numerical example of a
three-dimensional separable test with positively correlated ability estimates in which MAP and EAP
estimates produce a paradoxical result. It also provides a mathematical explanation for how this occurs
and a means to check on whether paradoxical results are possible in a given test.

2. A Numerical Example

Our example is intended to demonstrate the existence of paradoxical results in this situation rather
than to examine their prevalence in practice. It has therefore been constructed with an emphasis on
simplicity rather than realism. We consider a test that measures 3 abilities: θ = (θ1, θ2, θ3). Each item in
the test follows the two-parameter logistic model for the probability of a correct response:

P (yi = 1|θ) =
1

1 + exp [−ai(θdi
− bi)]

where yi is an indicator of a correct response to item i, θdi is the ability parameter of the dimension
measured by this item, and ai and bi are the discrimination and difficulty parameters for the item,
respectively. Using the above parametrization, bi is the value of θi at which a subject has probability 0.5 of
giving a correct response. These parameters and a response sequence are given for an example seven-item
test in Table 1. We assume a prior distribution

θ ∼ N(0, Σ), Σ =




2.00 1.40 0.45
1.40 1.50 0.90
0.45 0.90 1.50




We also assume that that the ai and bi are given and fixed and that conditional on θ, all responses are
independent.

=========================
Insert Table 1 about here

=========================
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Maximum a posteriori estimates for θ were obtained using a gradient-based method (the optim
function in R). For the this test and response sequence, the estimated ability vector was (-0.0148, 0.0379,
0.2690). When the response for the final item was changed from correct to incorrect, the estimate became
(0.0059, -0.0149, -0.1057). Here the estimates for θ2 and θ3 decreased as would be expected, but the
estimate for θ1 increased. Were the first dimension to be of primary interest, an examinee who had
obtained the responses given for the first six items would benefit themselves by deliberately giving an
incorrect response to item seven.

The same paradoxical result is observed for expected a posteriori estimates. These were obtained
using a 25-point Gauss-Hermite quadrature rule in each dimension. EAP estimates avoid concerns over the
convergence of estimates based on optimization. While the use of quadrature does introduce some bias, the
estimates are exact for a distribution that places point masses at the quadrature points. For this test the
EAP estimate was (-0.0205, 0.0502, 0.2993). When the response to the final item was changed from correct
to incorrect, the estimate became (0.0101, -0.0248, -0.1479). Again, the estimate for θ1 increased after
changing a response from correct to incorrect.

3. Mathematical Explanation

We can explain the mathematical mechanisms creating this phenomenon through the theoretical
results of Hooker et al. (2009). There it was observed that the phenomenon is attributable to the structure
of item response functions creating negative posterior correlation between items. When this is the case,
increasing the estimate of ability in one dimension – by giving a correct response to an item that loads
heavily onto it – will tend to decrease the estimates in the other dimension. When separable tests are used
and no prior correlation is given between items, each ability may be viewed as being estimated
independently of the others and the posterior correlation between abilities remains zero. However, in three
or more dimensions, positive prior correlation can have the perverse effect of inducing negative posterior
correlation.

In order to make this precise we consider the more abstract setting of k ability dimensions with some
positive-definite prior correlation matrix Σ with non-negative entries. We form the “design matrix” A−n

for a test of n items not including the final item such that Aij specifies the discrimination of item i in
dimension j. Due to the separability of the test, A will have zero entries apart from

[A−n]idi
= ai.

That is, the ith row of A has only one non-zero entry: ai appears in the column corresponding to the
ability dimension, di being measured. We also let W (θ) be a diagonal matrix with diagonal entries

wi(θ) = P (yi = 1|θ) [1− P (yi = 1|θ)] . (1)

These are the second derivatives with respect to t of the log likelihood terms
log[P (yi = 1|aiθdi = t)yiP (yi = 0|aiθdi = t)1−yi ]. In the common case of items following the logistic model
the second derivative does not depend on yi. For other models, this dependence complicates the means to
check for paradoxical results below. For the sake of simplicity, we will focus on the final item which we
assume to measure the dnth ability; our estimates are clearly invariant to the item order and the ordering
of the ability vector.

From a geometric perspective, we can consider the MAP for θ−dn (the ability dimensions other than
dn) conditional on θdn . Note that this conditional MAP will not change after the nth item since it loads
only onto θdn . When the final item is answered correctly, the MAP for θdn must increase. If the
conditional MAP for some θi decreases as θdn increases its unconditional MAP will therefore be smaller
after the additional correct response. The converse argument demonstrates that a larger MAP for θi will
occur after an incorrect response.
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In the case of compensatory models with log-concave item response functions as explored here, Hooker
et al. (2009) provide the following sufficient condition for a MAP estimate to produce a paradoxical result.
***** (2009a) observed that a similar condition may also be given for when a MAP estimate can be
guaranteed to avoid paradoxical results.

Theorem 3.1. Hooker et al. (2009) Theorem 6.3 and ***** (2009a) Theorem 4.1

A sufficient condition for the MAP estimate of θi to behave paradoxically when the final response is
changed between correct and incorrect is that

[(
AT
−nW (θ)A−n + Σ−1

)−1
]

idn

< 0 (2)

for all θ.

A sufficient condition for the MAP estimate of θi not to behave paradoxically is that
[(

AT
−nW (θ)A−n + Σ−1

)−1
]

idn

≥ 0 (3)

for all θ.

***** (2009a) gave conditions of a similar form for paradoxical results to occur for EAP estimates, but
these are somewhat more complex and will not be considered here.

The left hand side of (2) is the derivative of the MAP for θj conditional on θdn . Since θdn increases
after a correct response, the MAP for θj decreases. The conditions as stated require the entries in this
second derivative matrix to retain the same sign over all values of θ. This guarantees the presence (or
absence) of a paradoxical result at the final item whatever the previous n− 1 responses were. It is possible
for (3) to be satisfied for some θ and not others. So long as it is satisfied for the conditional MAP on all
points between the estimates of θdn with correct and incorrect responses, integrating between these two
values demonstrates that a paradoxical result will still occur. However, if the entries change sign it is also
possible that some response sequences yield paradoxical results while others do not. (3) is also
conservative; its satisfaction guarantees that no paradoxical results can occur, but it may be the case that
it does not hold for some test that still does not produce paradoxical results.

It is easy to see that for separable tests, AT
−nW (θ)A−n is a diagonal matrix with positive entries. If Σ

is also diagonal, so is the matrix on the left hand side of (3) and its off-diagonal elements are exactly zero.
If k = 2, it can be shown to be always positive. However it is not always the case that the entries of
(D + Σ−1)−1 are always positive for positive diagonal matrices D and positive definite matrices Σ with
positive entries. Our test falls precisely into such a pairing.

4. Checking for Paradoxical Results

The results of Theorem 3.1 suggest a means of checking whether a paradoxical result is possible. If

inf
θ

[(
AT
−jW (θ)A−j + Σ−1

)−1
]

idj

≥ 0, ∀j, ∀i 6= dk (4)

the theorem can be used to guarantee that the test will be free of paradoxical results. The condition can
therefore be tested explicitly by removing each item k in turn and minimizing the left hand side of (4) for
each i. This approach was taken in ***** (2009a) in the context of item bundles.

The context of separable tests leads to a very different approach, however. We define Ã(θ, j) to be the
diagonal matrix AT

−jW (θ)A−j . Note that Ãii(θ, j) only depends on θi. We now observe that the standard
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adjunct formulation of a matrix inverse gives

[
(Ã(θ, j + Σ−1)−1

]
idj

=
(−1)i+dj

|Ã(θ, j) + Σ−1|
∣∣∣[Ã(θ, j) + Σ−1]−i−dj

∣∣∣ , (5)

where C−i−dj
represents the matrix C after deleting the ith row and djth column and |C| is the

determinant of C. Note that |Ã(θ, j) + Σ−1| > 0 so the sign of (5) is entirely determined by the (i, dj)th
cofactor of Ã(θ, j) + Σ−1. In particular, this co-factor does not incorporate Adjdj

(θdj
, j): the only entry

that depends on the jth item and the only entry that depends on θdj ! It also does not incorporate Aii(θj).
Moreover, if one item loading onto dk is found to violate (3) all other items that load onto that dimension
will violate it also.

In the context of the example test above,

Σ−1 =




1.87 −2.20 0.76
−2.20 3.63 −1.52

0.76 −1.52 1.35




and ∣∣∣[Ã(θ, j) + Σ−1]−i−dj

∣∣∣ = 2.2 ∗ 1.52− 0.76 (3.63 + A22(θ2, j)) (6)

and we see that whether an item that loads onto θ3 causes θ1 to behave paradoxically entirely depends on
how much information is available about θ2 as measured by

A22(θ2) =
∑

di=2

a2
i wi(θ2).

Formally, considering the minimum of (6) over θ2 provides a conservative means of checking for paradoxical
results; if the minimum is positive Theorem 3.1 guarantees that paradoxical results cannot occur. However,
it is possible that (6) is positive at the MAP for θ2 for all response sequences, only becoming non-zero in a
short interval. In this case, Theorem 3.1 can be refined to demonstrate that no paradoxical results are
possible; see Hooker et al. (2009). In the example test above, however, the case is exactly the opposite – all
response vectors yield paradoxical results.

From these observations it is clear that checking whether an individual item can produce a paradoxical
result will not be useful in designing tests that avoid them. In our example test, changing the response to
every item loading onto θ1 or θ3 yielded paradoxical results, yet our analysis above demonstrates that it is
those items that load onto θ2 that are responsible for them.

In order to obtain a computationally efficient means of checking both whether a test can produce
paradoxical results, and to select tests that are free of them, we restate these observations formally:

1. For all θ

sgn
([(

AT
−jW (θ)A−j + Σ−1

)−1
]

idj

)
= sgn

(
(−1)i+dj

∣∣[AT
−jW (θ)A−j + Σ−1]−i−dj

∣∣)

2. For any j
(−1)i+dj

∣∣[AT
−jW (θ)A−j + Σ−1]−i−dj

∣∣ = (−1)i+dj
∣∣[AT W (θ)A + Σ−1]−i−dj

∣∣

3. [AT W (θ)A]jj =
∑

di=j a2
i wi(θj) can take any value in its range independently of the other entries in

AT W (θ)A. Typically, the minimum value is 0.

Combined, these observations state that checking (4) can be reduced to the following algorithm:
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Algorithm 4.1. Checking for paradoxical results

1. For each i compute
w+

i = max
θi

∑

dj=i

a2
jwj(θi).

2. For each i and j test whether

inf
0≤wi≤w+

i ,i∈1,...,k
(−1)i+j

∣∣[diag(w) + Σ−1]−i−j

∣∣ > 0 (7)

Note that while for items with a logistic response function wj(θi) as given in (1) is independent of yj , for
other types of response functions, maximization may need to also be undertaken over the values of yj . This
can be done by simply choosing the yj that maximizes wj(θi) at each value of θi. Finding w+

i may also
require optimizing a multi-modal criterion. However, since the optimizing value for each wj(θi) is usually
known and the problem is one-dimensional, a grid search will generally be sufficient.

In the case of a three-dimensional ability space, (4) can be reduced to a simple condition.

Theorem 4.1. Let Σij = [Σ−1]ij . If

Σs1s3Σs2s3 > Σs1s2(Σs3s3 + w+
s3

) (8)

for all permutations s of the integers (1,2,3), then (4) is true.

Proof. (4) is equivalent to (7) being true for all distinct i and j. (7) is in turn equivalent to

Σs1s3Σs2s3 > max
ws3

Σs1s2(Σs3s3 + ws3)

for s1 = i and s2 = j. When ws3 = 0, this condition must be true because

sgn(Σs1s2) = sgn(Σs1s3Σs2s3 − Σs1s2Σs3s3) > 0

by assumption. Hence if Σs1s2 ≤ 0 (8) is always true for ws3 > 0. If Σs1s2 ≥ 0, the right hand side of (8) is
maximized at ws3 = w+

s3
.

Since w+
i can be arbitrarily increased by adding more items that load onto dimension i, it is also

evident that if any off-diagonal element of Σ−1 is positive, there will be a test for which (4) does not hold,
and hence in which a paradoxical result is possible. Correspondingly, no three-dimensional test will
produce paradoxical results if all the off-diagonal elements of Σ−1 are non-positive. The latter condition
can be be reduced to

Corollary 4.1. No maximum a posteriori estimate of θ will behave paradoxically in a separable
three-dimensional test if the prior correlations ρij are all positive and

ρs1s2 ≥ ρs1s3ρs2s3

for all permutations s of (1,2,3).
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Proof. We require that the off-diagonal elements Σs1s2 of the correlation matrix Σ be non-positive.
Since

sgn(Σs1s2) = sgn(Σs1s3Σs2s3 − Σs1s2Σs3s3)

we require

Σs3s3 ≥
Σs1s3Σs2s3

Σs1s2

=
ρs1s3ρs2s3

ρs1s2

Σs3s3

which is equivalent to the condition in the corollary.

Corollary 4.1 amounts to a condition that no pair of dimensions have much weaker correlation than the
other pairs. In our example, the 0.45 correlation between dimensions 1 and 3 violated this condition.

This result motivates the following theorem for higher dimensions which examines the “exchangeable”
case in which all pairs of dimensions have the same correlation. Here we intend 1k to represent a column
vector of length k with entries that are all 1.

Theorem 4.2. If Σ is of the form (σ2 − α)I + 1kα1T
k , no maximum a posteriori estimate of θ will

behave paradoxically in a separable test.

Proof. We observe that Σ−1 = gI − 1ke1T
k for g = (σ2 −α)−1 and e = α/[(σ2 −α)(σ2 + (k− 1)α)]. Let

B(θ) = AT W (θ)A + gI. By the Woodbury identity, we are interested in the off-diagonal elements of

(
B(θ)− 1ke1T

k

)−1
= B(θ)−1 −B(θ)−11k

(−g + 1T
k B(θ)−11k

)−1k 1T
k B(θ)−1.

Since B(θ) is diagonal with positive entries, the off-diagonal elements will be positive so long as the term
inside the brackets on the right hand side is negative. That is

−e +
k∑

i=1

1
Bii(θ)

< 0.

Now, observing that since Bii(θ) > g, the summand is bounded above by d/g and that −e + d/g = −α < 0.

While these conditions suggests a class of “safe” prior correlations, it would be philosophically difficult
to justify choosing a prior based on the properties of the resulting estimator, rather than on the actual
distribution of the quantities in question.

For specific tests, more general covariance structures may still be guaranteed to avoid paradoxical
results, as in Theorem 4.1. In higher dimensional spaces, an exact formulation of (5) becomes algebraically
intractable for general covariances. However, the following theorem demonstrates a tractable solution.

Theorem 4.3. The minimizing value of

H(w) = (−1)i+j
∣∣[diag(w) + Σ−1]−i−j

∣∣ (9)

over w in the hyper-rectangle
⊗k

j=1[0, w+
j ] occurs at a vertex.

Proof. We observe that H(w) can be written in the form

H(w) =
∑

S

cS

∏

i∈S

wi (10)



7

for some constants cS where the sum is taken over subsets S of the integers 1, . . . , k. H(w) is therefore
linear in each wi with the others held fixed.

Therefore, for any interior point w of
⊗k

j=1[0, w+
j ], H(w) must be increased by changing w1 to one of

0 or w+
1 . With this value of w1 fixed, H(w) is now a linear function of w2 and hence is maximized for w2

either 0 or w+
2 . Continuing, until wk, we observe the result.

Using Theorem 4.3 we can check (4) by simply testing the values 0 and w+
l for each dimension l in each

condition i and j. Using the algorithm described in the proof, this requires 2k evaluations for each of the
k(k − 1)/2 pairs of ability dimensions. Since k is typically small, this remains a computationally easy task.

5. Selecting Regular Tests

If a test fails condition (4) it is reasonable to ask whether a small modification would produce a test
that passed it. In order to find tests that avoid paradoxical results the following greedy strategy can be
used.

Algorithm 5.1. Item selection in separable tests

Repeat until (4) is true

1. Let i∗ and j∗ be the indices giving the smallest minimum value of (9) with corresponding minimum w∗.
Let l∗ be the index of the maximum element in w∗.

2. For each item t that loads onto dimension l∗, let

rt = max
θ

∑

ds=l∗, s 6=t

a2
sws(θl∗)

3. Remove the item with the smallest value of rt.

Each step in the above algorithm is greedy; the first step tries to fix the largest violation of (4). The
second step then looks for the dimension that most contributes to that violation, given heuristically by the
maximum value in w∗; note that this will not be either of i∗ or j∗. Finally, we seek the largest reduction
possible in this maximum value. The algorithm attempts to retain large tests by only throwing out one
item at a time.

It is worthwhile noting that Algorithm 5.1 takes no account of design criterion that may favor more
items loading onto one dimension or with a particular spread of difficulty and discrimination parameters. It
may also not result in the longest possible test that avoids paradoxical results. In the context of “borrowing
strength” it will tend to make short tests even shorter. For short tests, it is, of course, feasible to check all
possible subsets of the items and use a design criteria to select these. For very short tests it would also be
possible to explicitly enumerate all possible response sequences and check for paradoxical results directly.

For the example test above, observe that Σ13 is the only negative entry in the off-diagonal elements of
Σ−1 and (9) has minimum value -4.19. Step 1 therefore selects i∗ = 1, j∗ = 3 and the only remaining index
is l∗ = 2 and w∗ = 6.291. For Step 2, there are only two items that can be removed, each of which reduces
w∗ to 4. However, with either one removed (9) still has minimum value -2.45. We must therefore remove
both, at which point, (9) has minimum 0.584 and the test is regular, but no items now load onto θ2.
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6. Assessing Conservatism

Our test for paradoxical results is conservative in the sense that tests satisfying (4) are guaranteed to
avoid them. However, an overly-conservative criterion will result in the needless rejection of tests that
would not have produced them.

We begin by examining the test above. Geometrically, in order to fail (4) but nonetheless avoid
paradoxical results, we require that at least one of the conditions be violated but that all violations occur
in a region of ability-space in which MAP estimates do not fall for any response vector. Following Theorem
4.1 for our example, this will be the case if w+

2 is much larger than the value of w2(θ2) for any MAP
estimate θ2.

Figure 1 presents an exploration of conservativism. The example test is used with only one item for
dimension 2. The figure plots difficulty and discrimination parameter combinations for the item loading
onto dimension 2 along with whether paradoxical results occur for the test and whether (4) rejects the test.
A typical example of conservativism is also given; (4) needlessly rejects for large difficulty parameters when
the maximal curvature of the item response falls outside the range of MAP estimates and where the
discrimination parameter is still small enough that the inequality for (4) does not hold for parameter values
at the MAP estimates.

The use of a single item implies a straight line at the 1.754 where (8) changes value. There is a thin
band of unnecessary rejections for values of ai up to 1.768 where (8) is violated in a small region in which
few or no MAP estimates occur. The broader area of unnecessary rejections occur only for |bi| > 1.4. By
way of interpretation, items with this value of bi are located so that subjects with probability 1/2 of giving
a correct response are 1.16 prior standard deviations away from the prior mean. Note that the range of
values for ai ∈ [1.6 2.2] is also very narrow and chosen to focus on regions where the conservativism of (4)
becomes apparent.

=========================
Insert Figure 1 about here

=========================

While providing a geometric intuition, the use of a single item above is unrealistic and the geometry of
conservative regions will be increasingly complicated for larger numbers of items. Moreover, item
parameters for the other ability dimensions were held fixed. While these other items will not affect (8),
they will affect the location of MAP estimates for dimension 2 and hence may change whether the test was
needlessly rejected. In order to better assess how frequently needless rejected occurs, a simulation study
was conducted using tests of length six with two items loading onto each dimension. Each ai was randomly
generated uniformly in the range [10−4, 5] with the bis chosen uniformly on the range [-5, 5]. The prior
given for our example test was used. For each test (4) was evaluated, all possible response sequences were
also generated and the existence of paradoxical results was then checked directly.

Of 100,000 simulated tests, 2,734 were rejected by (8) but did not produce paradoxical results, meaning
the conservatism of the condition affected 2.75% of the volume of the 12-dimensional hypercube containing
the test parameters. Nine tests were found to produce paradoxical results that were not detected by our
methods. On closer examination, all of these were the result of convergence failures when obtaining the
MAP: creating “false” paradoxical results. Seven were readily verified as being non-paradoxical by reducing
the convergence tolerance. The remaining two each had at least one item with |bi| > 4.98 and associated
ai > 4.5. Such item response curves are essentially flat in regions of large posterior probability and the
estimates of ability vectors were strongly dependent on initialization values for the optimization routines.

Figure 2 plots a histogram of the maximum absolute difficulty of the items in each falsely rejected test
that loaded onto θ2. The figure also presents an analysis of conservativism as a function of the maximum
allowable |bi|. This was calculated by the number of needlessly rejected tests in the simulation with |bi| < c
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for each c normalized by (c/5)6 – the ratio of the volumes of the hypercubes defined by |bi| < c and
|bi| < 5. Only 104 tests (or 0.1% of the simulation) had |bi| < 3 for both items that load onto θ2; meaning
that for almost all erroneously rejected tests at least one item had a difficulty parameter outside the central
98% of prior mass and would be relatively uninformative about ability for the majority of the subject pool.

=========================
Insert Figure 2 about here

=========================

This study focuses on short tests because the combinatorial explosion in the number of possible
response sequences renders a study of longer tests computationally infeasible. The use of two items on each
dimension allows for some interaction between items; we argue that adding more items will tend to broaden
the range of values for θ that violate (4) making the criterion less conservative as tests become longer.

7. Conclusion

This paper presents a numerical example of a separable test with positive prior correlation between
abilities that nonetheless produces paradoxical results. The existence of such results has important
implications for attempts to “borrow strength” from known prior correlation between ability dimensions to
improve the estimation accuracy of a test.

In addition to providing a numerical example, we have given a mathematical justification for the
existence of these results and a means of verifying whether they can occur for a given test. Our results do
not cover all popular methods; item response functions with guessing parameters are not covered by the
theorems in Hooker et al. (2009), for example and conditions for the existence of paradoxical results for
expected a posteriori estimates are more complex. While the use of correlation between dimensions will
reduce the potential for paradoxical results in a non-separable bivariate tests, we expect that this will not
always be the case for higher dimensions.
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bi ai1 ai2 ai3 yi

-1/4 4 0 0 1
1/4 4 0 0 0

-1/4 0 4 0 1
1/4 0 4 0 0

-1/4 0 0 4 1
1/4 0 0 4 0

-1/4 0 0 4 1

Table 1.
Parameters and responses for a separable 3-dimensional test which produces paradoxical results under a positively correlated
prior correlation when the final response is changed from 1 to 0.
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Figure 1.
An exploration of conservativism in testing for paradoxical results. Left: a plot of item difficulty and discrimination parameters
indicating where paradoxical results occur (black), (4) is violated but paradoxical results do not occur (grey) and (4) is not
violated and no paradoxical results occur (white). Right: an example of conservativism. The solid line gives Σ12Σ23−Σ13(Σ22+
A22(θ2)). (4) is violated if this is function is every less than zero: in a small region at the right of the plot. Vertical lines give
MAP estimates for all possible response sequences. All these fall outside in a region where the violation occurs.
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Figure 2.
Left: A histogram of maxid=2 |bi| for tests rejected unnecessarily. For comparison, the curve represents the prior density of
|θ2|. Right: the proportion of tests needlessly rejected as the range of possible |bi| is increased.


