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Abstract. Nonnal sequences of lengths n = 18. 19 are constructed. It is proved through an exhaustive search 
that nonnal sequences do not exist for n = 17.21.22.23. Marc Gysin has shown that nonnal sequences do not 
exist for n = 24. So the first unsettled case is n = 27. 

Base sequences of lengths 2n - I. 2n - I. n. n are constructed for all decompositions of 6n - 2 into four squares 
for n = 2.4.6 ..... 20 and some base sequences for n = 22.24 are also given. So T-sequences (T-matrices) of 
length 71 are constructed here for the first time. This gives new Hadamard matrices of orders 213. 781. 1349, 
1491. 1633.2059.2627.2769.3479. 3763,4331.4899.5467.5609.5893. 6177.6461,6603,6887. 7739. 8023, 
8591.9159.9443.9727.9869. 

1. Introduction 

Given the sequence A = {a], az, ... , an} of length n the non-periodic autocorrelation 
function N A (s) is defined as 

n-s 

NA(s) = La;a;+s, 
;=1 

s = 0, 1, ... , n - I. (1) 

If A(z) = al + azz + ... + anZn- 1 is the associated polynomial of the sequence A, then 

n n n-I 

A(z)A(z-l) = L L a;ajzi- j = N A (0) + L N A (s)(z" + z-"), z -=1= 0. (2) 
;=1 )=1 ,,=1 

If A * = {an, ... , al } is the reversed sequence, then 

(3) 
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Base, Turyn, Golay and nonnal sequences are finite sequences, with zero autocorrela
tion function, useful in constructing orthogonal designs and Hadamard matrices [6], in 
communications engineering [18], in optics and signal transmission problems [7], [11], etc. 

If A = {a" ... ,an}, B = fbi , ... , bn} are two binary (1, -1) sequences of length nand 

NA(s)+NB(s)=O fors=I, ... ,n-l (4) 

then A, B are called Golay sequences of length n (abbreviated GS(n». See [5], [6], [7]. 
From this definition and relation (2) we conclude that two (1, -1) sequences of length n 

are GS(n) if and only if 

A(z)A(Z-') + B(z)B(z-') = 2n, z i= O. (5) 

Golay sequences GS(n) exist for n = 2a Io"26c (Golay numbers) where a, b, c are non
negative integers [5], [7], [8], [18]. 

The four sequences A, B, C, D of lengths n + p, n + p, n, n with entries + I, -I are 
called base sequences if: 

NA(S) + NB(s) + Nds) + ND(s) 

NA(s) + NB(s) 

Equivalently, (6) can be replaced by 

= {O. s = 1, ... , n - 1 
4n + 2p, s = 0 

(6) 

- o. s = n, ... , n + p - 1. 

A (z)A(z-') + B(z)B(z~') + C(z)C(z-') + D(z)D(z-') = 4n + 2p, z i= 0 (7) 

where A(z), B(z), C(z), D(z) are the associated polynomials. Base sequences of lengths 
n + 1. n + I, n, n are denoted by BS(2n + 1). From (7) and for p = I, if we set z = 1 we 
obtain 

(8) 

where a, b, c, d are the sum of the elements of A, B, C, D respectively. BS(2n + 1) for 
all decompositions of 4n + 2 into four squares for n = 1,2, ... ,24 are given in [I], [I2J, 
[13]. Also BS(2n + I) for n = 25,26,29 and n = 2a IOb26c (Golay numbers) are given in 
Yang [23J. If the sequences A, B, C, Dare BS(2n + I) and satisfy 

NAds -1) + NCA(s) =0, s = I, ... ,n (9) 
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then they are called Turyn sequences (abbreviated as TS(2n + 1», where 

n-s 
NAcCs) = La;c;+s, 

;=1 

are the cross-correlations. 

n+l-s 
NCA(S) = L c;a;+s, 

;=1 

s = 0,1', ... , n 

329 

(10) 

TS(2n + 1) exist for n ~ 7, n = 12,14. They cannot exist for n = 10,11,16,17 and 
for n = 8,9, 13, 15, TS(2n + 1) might exist but an exhaustive machine search showed that 
they do not exist (see [1], [6, pp. 142-143]). Koukouvinos, Kounias and Sotirakoglou [13] 
developed an algorithm and proved through an exhaustive search that Turyn sequences do 
not exist for n = 18, 19, ... ,27. Edmondson [3], [4] has extended this further to show 
they do not exist for any new order ~ 42, so the first unsettled case is 43. 

6-base sequences, denoted BS(n, n, n, n; n - 1, n - I) of lengths n, n, n, n, n - 1, n - 1 
are six sequences of ± 1 with zero non-periodic autocorrelation function. 

Definition I. The four sequences X, Y, Z, W of length n with entries 0, 1, -1 are called 
T-sequences if 

i = I, ... ,n (11) 

(oo) N () N () N () N () {O, s = 1, ... , n - 1 
11 X S + y s + z s + w s = n, S = 0 

Yang [22] gives another name for T-sequences and calls them four-symbol o-codes. He 
also calIs the quadruple Q = X + Y, R = X - Y, S = Z + W, T = Z - W regular o-code 
of length n, where X, Y, Z, W are T-sequences of length n. 

If Williamson type matrices of size w exist and T-sequences of length n exist, then 
Hadamard matrices of size 4nw can be constructed (Cooper and (Seberry) Wallis [2]). 

If X(z), Y(z), Z(z), W(z) are the associated polynomials, then from Definition 1 and (2) 
we see that (ii) can be replaced by 

We use the notation (A / B) for the sequence {ai, b l , ••. , an, bn} and (A, B) for the sequence 
{ai, ... ,an,b l , .•. ,bn}. 

2. On Normal Sequences 

Definition 2. A triple (F; G, H) of sequences is said to be a set of normaL sequences for 
length n (abbreviated as NS(n) if the following conditions are satisfied. 

(i) F = Uk) is a (1, -1) sequence of length n. 
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(ii) G = (gk) and H = (hd are sequences of length n with entries 0,1, -1, such that 
G + H = (gk + 11k) is a (1, -1) sequence of length n. 

(iii) NF(S) + Nc(s) + NH(s) = 0, s = 1, ... , n - 1. 

Condition (iii) is also equivalent to 

z =1= 0. (13) . 

In Theorem 1 we prove that the sequences G and H of Definition 2 are quasi-symmetric, 

i.e. if gk = 0, then gn+l-k = ° and also if hk = 0, then h n+l- k = 0. This theorem means 
that the definition of normal sequences in [23] can be relaxed. 

THEOREM 1 If(F; G, H) are NS(n), then 

gs + gn-s+1 - ° (mod 2) 
s=I, ... ,[~J 

h.< + hn-s+ 1 - ° (mod 2) 

Proof: We have 

11-5 

·'2~)I;j;+.< + gigi+s + hih;+.<) = 0, s = 1, ... , n - 1 
i=1 

but J; = ±I and so J;Ii+,< = J; + J;+,< - 1 + 4p, (p = 0,1) but 

2(gigi+s + hih i+.<) - (gi + hi)(gi+.< + hi+,<) + (gi - hi)(gi+s - hi+s) 

gi + h; + gi+'< + hi+.< + gi - hi + gi+s - hi+,< - 2 + 4q, 

(q = 0,1) 

= 2(gi + gi+s - I) + 4q. 

So we have 

gigi+,< + hih;+.< = gi + gi+s - 1 + 2q - g; + gi+s - 1 (mod 2) 
= hi + hi+s - 1 + 2r - hi + h i+s - 1 (mod 2) 

and so 

and 

Ii Ii+.< + gigi+s + hih i+s - Ii + Ii+.< + gi + gi+s - 2 (mod 2) 

- (J; + Ii+s + gi + gi+.<) (mod 2) 

n-s n n-s n 

L J; + L J; + Lgi + L gi == ° (mod 2), s = 1, ... , n - 1. (14) 
i=1 i=s+1 i=1 
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Similarly, if we set s - I instead of s, we have 

n-s+1 n n'-s+1 n 
L J; + L J; + L gi + L gi == 0 (mod 2), s = 2, ' , , , n, 
;=1 ;=s ;=1 ;=s 

From (14) and (15) «(15) - (14» we obtain 

In-HI + If + gn-HI + gs == 0 (mod 2), s = 2, , .. , n - I. 

The relation (16) is still valid and for s = n, because 

lIin + glgn + hlhn = 0 

but Is + In-s+1 == 0 (mod 2), and so from (16) we obtain 

gs+gn-HI ==0 (mod 2), s= 1, ... ,[~J. 

Similarly, using the same argument as before, we obtain 

hs +h n _ s+I ==0(mod2), S=I, ... ,[~J. 
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(15) 

(16) 

• 
In Theorem 2 we prove that if L = A + B is a sequence of real numbers with symmetric 

A and skew B, then 

L(z)L(z-l) = A(z)A(z-l) + B(z)B(z-I), for all z f= O. 

THEOREM 2 if A = {ai, ... , an}, B = {b l , ... , bn} are two sequences of length n, where 
n is even, A is symmetric i.e. ai = an+l-i, B is skew symmetric i.e. bi = -bn+ l - i and 
L = {II, ... , In}, Ii = ai + bi, then 

L(z)L(z-l) = A(z)A(z-l) + B(z)B(z-I), z f= O. 

Proof: Since A is symmetric and B is skew symmetric we have for n = 2m, writing X* 
for the reverse of the sequence X, 

where AI ={al, ... ,am},BI ={bl, ... ,bm }. 

So we have 

and 

A(z) AI (z) + zm Af(z) 
B(z) = BI (z) - zm B~(z) 

A I (z) + z2m-1 AI (e ' ) 
= BI(z) - z2m-1 BI(z-l) 

A(z)B(z-l) - (AI(z) + z2m-1 AI(z-I») (BI(Z-I) - z-2m+1 BI(z») 

AI(z)BI(z-l) + z2m-1 AI(Z-I)BI(Z-I) 

- z-2m+1 A1(z)BI(z) - AI(Z-I)BI(z) 

- - (A I (Z-I) + z-2m+1 A I (z») (BI (z) - z2m-1 BI (Z-I») 

- -A(z-I)B(z) 
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or 

L(z)L(z-l) - (A(z) + B(z)) (A(Z-I) + B(Z-I») 

= A(z)A(z-l) + A(z)B(z-l) + B(z)A(z-l) + B(z)B(z-l) 

- A(z)A(z-l) + B(z)B(z-I). • 

In Theorem 3 we prove that from a given pair of Golay sequences GS(n): (F, H), we 
can obtain two sets of normal sequences, (F; H, On) and (F; L, M), where Land Mare 
respectively the symmetric and skew parts of H. Therefore, a set of normal sequences can 
be regarded as a generalization of a pair of Golay sequences. 

THEOREM 3 If F, H are Golay sequences of length n, then the following two sets 

(i) (F; H, On), 

(ii) (F; L, M) 

are NS(n), where Land M are respectively the symmetric and skew parts of H. 

Proof: 

(i) The sequences F, H and On (a sequence of n zeros) satisfy the conditions (i) and (ii) 
of Definition 2. Also we have 

(ii) 

= 2n. 

L = (h), where 

M = (mk), where 

i.e. Land M are respectively the symmetric and skew parts of H. Then H (z) 
= L(z) + M(z), H(z)H(z-l) = L(z)L(c l ) + M(z)M(c l ) and so we have 

F(z)F(z-l) + L(z)L(z-l) + M(z)M(z-l) = F(z)F(z-l) + H(z)H(z-l) 

- 2n. • 
In Theorem 4 we prove that we can obtain sets of normal sequences NS(2m + I): 

(AIC; BIOm, Om+IID) from Turyn sequences TS(2m + 1): (A, B; C, D) with lengths 
m + 1, m + I, m, m. Where for even m A is symmetric. and C skew, and for odd m A is 
skew and C symmetric. TS(2m + 1) can be written as: 

1. For m odd 

A = {AI, -A~}, B = {b l , BI, -Bt, bll, 

C= {CI,Cm~I'C~}, D= {DI,dm~"D~} 
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where 

AI = {al, ... ,a!!!±.l}. BI ={b2 , ... ,bw }. 
2 2 

CI = {CI,"" Cm2"1 }, DI = {d l , ... , d'"2"1 } 

2. For m even 

A = {AI,a~+I' Af}, B = {bl, BI,b y+ I ' B~, -bd, 
C = {CI, -Cj}, D = {D I , -Df} 

where 

AI ={al, ... ,a1-}, BI ={b2, ... ,b y}, 
CI ={cI"",C1-}, DI ={dl, ... ,dy }. 

THEOREM 4 If A, B, C, Dare Turyn sequences of lengths m + 1, m + 1, m, m (TS(2m+ I)), 

i.e. 

(i) A(z)A(C I) + B(z)B(c l ) + C(Z)C(Z-I) + D(z)D(c i ) = 4m + 2 

(ii) A(Z)C(Z-I) + zC(Z)A(Z-I) = ° 
for all Z ¥= 0. 

Then the sequences F = AIC, G = BIOm, H = Om+1 I Dare N S(2m + 1), where 

AIC - {al,CI.a2,C2,.··,am,Cm,am+I} 

BjOrn - {b l , 0, bz, 0 .... , bm , 0, bm+ I } 

Om+ljD - {O,dl,O,dz,· .. ,O,dm,O} 

Proof: 

F = AIC, so F(z) = A(Z2) + ZC(Z2) 

G = BIOm, so G(z) = B(Z2) 

H = Om+1 I D, so H(z) = ZD(Z2). 

So we have 

F(z)F(z-l) + G(Z)G(Z-I) + H(z)H(z-l) 

= A(Z2)A(z-2) + C(Z2)C(Z-2) + B(z2)B(z-2) + D(Z2)D(z-2) 

+zC(z2)A(z-2) + Z-I A(Z2)C(Z-2) 

= 4m + 2. • 
Normal sequences do not exist for n = 22(/-1 (8b + 7), a, b non-negative integers as 

the numbers 4(/ (8b + 7) cannot be written as the sum of three squares. In particular 
n ¥= 14,30,46,56,62,78,94, ... It is known that NS(6) does not exist. Yang [23] has 
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given these sequences for n = 3, 5, 7, 9, 11, 12, 13, 15, 25, 29 and he notes they exist for 
n = 2a lOh26c (Golay numbers). . 

NS(n) have not been found for n ~ 17 (except n = 25,29 and g where g is a Golay 
number). This means we can construct T-sequences of length (2n + I)t, if a new set of 
NS(n) can be found, where t = 2s + 1 is the length of base sequences (BS(2s + I». 

In this paper we construct NS(n) for n = 18, 19. It is also proved through an exhaustive 
search that NS(n) do not exist for n = 17, 21, 22, 23. Marc Gysin [9], [10] has shown that 
normal sequences do not exist for n = 24. Hence the first unsettled case is n = 27. 

Therefore we know these sequences 

(i) exist for n E {I, 2, .... 5,7,8, ... ,13,15.16,18,19,20,25,26,29,32, ... J; 

(ii) do not exist for n E {6, 14,17,21,22,23,24,30,46,56,62,78,94, ... J. 

(iii) n E {27. 28, 31, ... , J are undecided. 

We now formally prove Theorem 5: 

THEOREM 5 If (F; G, H) are N5(n). then the following (I, -1) sequences A = (F, I), 
B = (F, -1). C = G + H. D = G - H of lengths Il + I, n + I, n, n respectively are 
B5(2n+ I) and vice versa. 

Proof: We have 

A(z) = F(z) + zn 

B(z) = F(z) - zn 

C(z) = G(z) + H(z) 

D(z) G(z) - H(z) 

From (17) we obtain 

A(z)A(z-l) + B(z)B(z-l) + C(Z)C(Z-I) + D(z)D(z-l) 

= (F(z) + zn)(F(z-l) + Z-II) + (F(z) - zn)(F(z-l) - z-n) 

+(G(z) + H(z»(G(Z-I) + H(Z-I» + (G(z) - H(z»(G(Z-I) - H(Z-I» 

= 2(F(z)F(z-l) + G(Z)G(Z-I) + H(z)H(z-I» + 2 

= 4n + 2, 

i.e. A. B, C, Dare BS(2n + I). 

(17) 

The converse of the theorem is immediate from the first part and need not be proved 
separately. • 

We carried out a computer search by appropriately modifying the algorithm given in [13]. 
The original searches were carried out on an IBM 4361 running VM/CMS at the University 
of Thessalonica, Greece in 1989. 
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Results: With the application of our algorithm and using Theorem 5, the following normal 
sequences NS(n) have been found for n = 18 and 19. 

11= 18. F=(+++++--++--+-++-+-) 
G = (+00 - 0 - 00 + +00 + 0 + 00+) 
H = (0 + +0 - 0 + +00 + -0 - 0 - +0) 

n= 19. F=(+--+++----+++++++-+) 
G = (00 - 0 + - + 0 + - + 0 + + - 0 + 00) 
H = (-+0-000+000+000+0-+) 

where + stands for I and - for - 1 . 
We note that these normal sequences of lengths 18 and 19 are unique up to equivalence. 
Also with the application of our algorithm it is proved through an exhaustive search that 

normal sequences do not exist for 11 = 17,21, 22, 23. 

3. On Base Sequences 

We give a formal proof of a well-known result. 

THEOREM (Turyn[18]) ljX, Y,Z, Ware(I,-I)sequencesoflengthsl1.n,nandn-1 
respectively and satisfy the condition 

Nx(s) + Ny(s) + 2Nz (s) + 2Nw(s) = O. s i= 0 

i.e. if the sequences X, Y, Z, Z; W, W are6-basesequences (6-B5(n, n, 11. 11; n-\, n- I» 
then the following (1, - 1) sequences 

A = (Z; W), B = (Z; -W), c=X, D = Y, 

of lengths 2n - I, 2n - 1, n, n respectively are base sequences (B 5 (3n - I». 

Proof: We have 

A(z) - Z(z) + Zll W(z) 

B(z) = Z(z) - Zll W(z) (18) 

c(z) - X(z) 

D(z) = Y(z) 

Since X, Y, Z, Z; W, Ware 6-BS(n, n, n, n; n - 1, n - 1) we have 

X(Z)X(Z-I) + Y(Z)Y(Z-I) + 2Z(Z)Z(Z-I) + 2W(Z)W(Z-I) = 6n - 2, 

z i= O. (19) 
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From (18) we obtain 

A(z)A(z-l) + B(z)B(z-l) + C(Z)C(Z-I) + D(z)D(CI ) 

= (Z(Z) + ZnW(Z») (Z(Z-I) + Z-nW(Z-I») 

+ (Z(Z) - ZnW(Z») (Z(Z-I) - Z-nW(Z-I») 

+X(Z)X(Z-I) + Y(Z)Y(Z-I) 

= X(Z)X(Z-I) + Y(Z)Y(Z-I) + 2Z(Z)Z(Z-I) + 2W(Z)W(Z-I) 

= 6n - 2, Z =1= 0 (because of (19», 

i.e. A, B, C, Dare BS(3n - 1). • 
Remark 1. We note that from the 6 - B5(24, 24, 24, 24; 23,23) X, y, Z, Z, W, W, 

T-sequences (T-matrices) TI = (Z, 047 ), T2 = (024 , w, 024), T~ = (047, (X + n/2), and 
T4 = (047 , (X - n 12), oflength 71 are constructed here for the first time (Or is the sequence 
of t zeros). These give new Hadamard matrices of orders 213, 781, 1349, 1491, 1633,2059, 
2627,2769,3479,3763,4331,4899,5467,5609,5893, 6177, 6461, 6603, 6887, 7739, 
8023,8591.9159,9443,9727,9869 see also [15] and [16, p. 452, pp. 481-482]). 

THEOREM 7 Suppose there are four (1, - 1) sequences X, Y, Z, W of lengths n, n, n, n - 1 
respectivel)' which satisfy the condition 

Nx(s) + Ny(s) + 2Nz (s) + 2Nw(s) = 0, s =1= O. 

Then n can only be even or 1. lfn is even, x + y == 2 (mod 4) where x, yare the sum of the 
elements of sequences X and Y respectively. Further 

X"Xn-,,+1 + Y,,)'n-,,+I = 0, s = 2, ... , [iJ . 
Proof: Write X = {Xi}, Y = {y;}, Z = {Zi}, i = 1,2 .... , n, W = {Wj}, j = 
1, 2, ... ,n - I. We consider the autocorrelation function and use the fact that if x, y 
are ±1, x + Y == xl' + 1 (mod 4). N(n - I) = XIXn + )'I)'n + 2z Izn = O. Hence 

XI +)'1 +xn + Yn - 2 + 2z l zn == 0 (mod 4) 

XI + YI + Xn + )'n == 0 (mod 4) (20) 

N (n - 2) = XIXn_1 + X2Xn + Yl YII-I + Y2Yn + 2Z1 Zn-l + 2z2zn + 2Wl Wn-l 

Hence 

XI + 1'1 +X2 + Y2 +Xn-l + Y,,-1 +Xn + Yn == 2 (mod 4) 
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and using (20) we have 

X2 + )'2 + Xn-I + YI1-1 == 2 (mod 4). (21) 

N (n - 3) gives 

XI + X2 + X3 + YI + )'2 + )'3 + Xn-2 + Xn-I + Xn + Yn-2 + Yn-I + Yn == 0 mod 4) 

and hence 

X3 + Y3 + Xn-2 + Yn-2 == 2 (mod 4). 

Assume that for t > 1, t < [~] 

Xt + )'t + Xn-t+1 + Yn-t+1 == 2 (mod 4). 

Then noting N(n - t), for t < [~], is 

XI + ... + Xt + YI + ... Yt + Xn-r+1 + ... + Xn + Yn-r+1 + ... + Yn 

== 2(t - 1) (mod 4) 

we consider N (n - t - 1) which gives, after noting that the Z and W sequences contribute 
2t + 1 terms each twice or a total of 2(mod 4), 

XI + ... +Xt+1 + YI + ... + Yr+1 +xn- t + ... +xl1 + )'n-r + ... +)'n == 2t (mod 4). 

Using the assumption we have 

Xt+1 + )'t+1 +xn- r + )'n-t == 2 (mod 4) 

for t > I, t :s [1] . 
Now suppose n ~ 2k + 1 then N(k + 1) where t = k is 

XI + ... + Xk + )'1 + ... + )'k + Xk+2 + ... + X2k+1 + )'k+2 + ... + Y2k+1 

== 2(k - 1) (mod 4). 

then, as before, we get 

Xk + Yk + xk+2 + Yk+2 == 2 (mod 4). 

However for n = 2k + 1 and t = k + 1 we have N(k) is 

(22) 

XI + ... +Xk+1 + YI + ... + Yk+1 +Xk+1 + ... +X2k+1 + )'HI + ... + Y2HI 

== 2 (mo~ 4) 

which gives, under the assumption, 

which is impossible. So n is not odd and> 1. 
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For n = 2k we see that (22) means exactly three of Xt+I' )'t+l, Xn-t, Yn-t are one and 
one is minus one or exactly three are minus one and one is one, in either case we have, by 
induction, 

XsXn-s+1 + )'s)'n-s+1 = 0, s = 2, ... , [~J. 

The remark that for n even, x + )' == 2 (mod 4) where x, )' are the sum of the elements 
of sequences X and Y respectively follows immediately from the equations (20) and (22) . 

• 
Remark 2. BS(3n - 1) for all decompositions of 2(3n - 1) into four squares for n = 
2, 4, ... , 20 are given in Table 1. Some BS(3n - 1) for n = 22, 24 are also given in 
Table 1. These results were found by computer search using an appropriately modified 

Table I. Sequences X. Y. Z. W which give base sequences BS(3n - I) where A = Z: W. B = Z: - W. C = X. 
D = Y of lengths 2n - I. 2n - I. n. n. 

Length Sums of Squares 

n 21 = 2(3n - I) 

2 
4 

6 

8 

10 

12 

14 

= a2 + b2 + cl + d 2 

02 + 02 + 12 + 32 

02 + 22 + 32 + 32 

12+12+42 +42 

Sequences 

x = Y = (+-l. Z = (++). W = (r+) 

X = (- + ++). y = (- + -+). z = (- + +-). W = (+ + +) 
X = (+ + - + ++). y = (+ - + + ++). 
Z = (- - + - ++). W = (- + + +-) 
X = (+ - - + ++l. y = (+ - + + -+). 
Z = (- + + + -+). W = (+ + + +-) 
X = (- + + + + + ++). y = (+ - - - + + +-), 
Z = (- + - + + + +-). W = (+ - + + - - +) 
X = (- - - - + + + + ++). y = (- + - + + - + - ++l. 
Z = (+ + + - - + + - ++), W = (- + + + - + - + +) 
X = (- - - + - + + + +-), y = (+ - - - + + + - -+), 
z = (- + - - + + - + ++). W = (+ + - + - + + + +) 
X = (- - + + + - + - + + ++). 
y = (- + + - - + + - + - ++). 
Z = (+ + + + - - + + - + -+). 
W=(-++++++--+-) 
X = (- - + + + + + - + - ++), 
y = (- + + + - - + - - + ++). 
Z = (- - + - + + - + + + --). 
W=(++++-+++-+-) 
X = (- - - + + + + + - + + + -+). 
y = (- + + - - + - + + + + + -+l. 
Z = (+ + + + - - - + + - + + -+l. 
W = (+ + + - + + + - - + - +-) 
X = (- + + + - + - + + + - + +-). 
Y = (+ + - - + + + + - + - + -+), 
Z = (- - - - + + + + - + + - -+). 
W = (+ + + - + + + + - + - - +) 
can be obtained by changing the signs of 
odd elements of each sequence in 
21 = 82 = 12 + 42 + 42 + 72 
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Table 1. Continued. 

Length Sums of Squares 

n 2t = 2(3n - I) 

= a2 + b2 + c2 + d 2 

16 

18 

20 

22 

24 

Sequences 

x = (+ + - + + + + + - + + - - - +-). 
y = (- + - + - - - + + + + - + + -+), 
Z = (+ - + + + + - - - + + + + + -+), 
w = (- + + + - + + + - - + - - +-) 
can be obtained by changing the signs of 
odd elements of each sequence in 
2t = 94 = 22 + 42 + 52 + 72 

X = (+ + + + - - + + + + + + + - + + +-), 
Y = (+ - + - + + - - - + + + + - + - +-), 
Z = (- - - + - + + - + + - + - - + + +-), 
W = (+ - - - - - + + - + + + - + + +-) 
can be obtained by changing the signs of 
odd elements of each sequence in 
2t = 106 = 12 + 12 + 22 + 102 

X = (+ + + + + + - - - + - - + + + - --), 
Y = (- - + - + + - - + + + + - - + + -+), 
Z = (- + - - + + + - + + - + + + - - --), 
w = (+ + + + - + + - + - + + + - + - +) 
X = (+ + + - + + + + + + - - + + - + - + +-), 
y = (- - - - + + + - + + + + + - + - + + ++), 
Z = (- + - + - + - - + - + + + + - - + + --), 
w = (+ + + + + - - - + - - + + - + - - + +l 
can be obtained by changing the signs of 
odd elements of each sequence in 

2t = 118 = 32 + 32 + 62 + 82 

X = (- - - - + + + - + + - + - - + + + + - + --), 
y = (- - - + - - - + + + - - + + + + + + - - +-), 
Z = (- - + + - + + + + + + - + + - + - + + + -+). 
W = (+ + - + + - - - + - + - + - - + + + + --) 
X = (+ + + + - - - + - + + -.+ + - + - + - + + - --). 
y = (+ + + + - + + - - + + + + - + - - + - - - + +-), 
Z = (+ - - + + + - + + + - - - - + + - + + - + + ++l, 
W = (+ + + + - + + - + + + - + - + - + - - - - + +) 

algorithm from that described in [13]. The results for n = 4, 6, 8 were first given in [18]. 
We recall that BS(3n - 1) can be used to construct T -sequences of lengths 3n - 1 and 
Hadamard matrices of order 4(3n - 1). 
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