ON SEQUENCES WITHOUT GEOMETRIC PROGRESSIONS

BRIENNE E. BROWN AND DANIEL M. GORDON

ABSTRACT. Several papers have investigated sequences which have no k-term arithmetic progressions, finding bounds on their density and looking at sequences generated by greedy algorithms. Rankin in 1960 suggested looking at sequences without k-term geometric progressions, and constructed such sequences for each k with positive density. In this paper we improve on Rankin's results, derive upper bounds, and look at sequences generated by a greedy algorithm.

1. Introduction

Erdős and Turan [1] defined $r_k(n)$ to be the least r for which any sequence of r numbers less than n must contain a k-term arithmetic progression. Roth [7] showed that $r_3(n) = O(n/\log \log n)$, and Szemerédi [8] showed that $r_k(n) = o(n)$ for all k.

We will denote all sets of nonnegative integers without a k-term arithmetic progression by APF_k (for arithmetic progression-free). Erdős conjectured that the sum of reciprocals of the (nonzero) terms of any such sequence converge, and offered \$3,000 for a proof or disproof.

One way to generate an arithmetic progression-free sequence is to use a greedy algorithm: start with 0, and add the smallest number which does not form a k-term arithmetic progression. Variations on the resulting sequences have been studied by several people [2, 3, 5]. For prime k, greedy sequences are just the integers whose base-k representation has no digits equal to k-1. For composite k their behavior is still mysterious.

In [4], the span of a set is defined to be the difference of its largest and smallest elements, and $\operatorname{sp}(k,n)$ to be the smallest span of a set in APF_k with n members, and a table of values for $\operatorname{sp}(k,n)$ for small k and n due to Usiskin is given. The value given for $\operatorname{sp}(3,10)$ in that table is wrong; Table 1 corrects it and gives $\operatorname{sp}(k,n)$ for a larger range of k and n.

The corresponding questions for sequences with no geometric progressions have received little attention. Rankin [6] used sequences in APF_k to form sequences with no k-term geometric progressions, and found their density. In §2 we review his methods, and show how sequences coming from a greedy method are superior to his for k > 3. In §3 we derive upper bounds for the density of such sequences.

Throughout this paper, A will denote an arbitrary sequence of nonnegative integers, A_k will be an arbitrary sequence in APF_k , and A_k^* will be the greedy sequence described above.

Received by the editor May 1, 1995 and, in revised form, August 15, 1995. 1991 Mathematics Subject Classification. Primary 11B05; Secondary 11B83.

Table 1. Smallest span for APF_k

$k \backslash n$	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
3	3	4	8	10	12	13	19	23	25	29	31	35	39	40	50
4		4	5	7	8	9	12	14	16	18	21	22	24	26	27
5			5	6	7	8	10	11	12	13	15	16	17	18	23
6				6	7	8	9	11	12	13	14	16	17	18	19

2. Geometric progression-free sequences

Let GPF_k denote all sets of positive integers with no k-term geometric progressions. The only previous consideration of geometric progression-free sequences we know of is by Rankin [6]. An obvious sequence in GPF₃ is the set of squarefree numbers, which have density $6/\pi^2 \approx 0.608$.

Rankin showed that sequences in APF_k can be used to form denser sequences in GPF_k :

For a nonnegative sequence of integers $A = \{a_1, a_2, \dots\}$, let G(A) be the set of all integers

$$(1) N = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r},$$

where the p_i are distinct primes, r is any nonnegative integer, and $e_i \in A$ for $i = 1, \ldots, r$.

Theorem 1. If A is in APF_k, then G(A) is in GPF_k.

Proof. Let $\{a, as, as^2, \ldots, as^{k-1}\}$ be any set of integers in a geometric progression. (Note that, while $a \in \mathbb{Z}$, s may be a rational noninteger, e.g. the progression 9,12,16). Any prime dividing the numerator or denominator of s occurs to powers $c, c+d, c+2d, \ldots, c+(k-1)d$, for some $c \in \mathbb{Z}^+$ and $d \in \mathbb{Z}$. These powers form a k-term arithmetic progression, which cannot be contained in A, and so the numbers in the geometric progression cannot all be in G(A).

Let G_k^* be the set in GPF_k generated by the greedy algorithm; $g_1 = 1$, and g_i is the smallest integer which does not form a k-term geometric progression with g_1, \dots, g_{i-1} .

Theorem 2. We have $G_k^* = G(A_k^*)$.

Proof. Let m be the smallest number in G_k^* which is not in $G(A_k^*)$. We will show that m is in a geometric progression with k-1 numbers in $G(A_k^*)$. This contradicts the definition of G_k^* , since G_k^* is equal to $G(A_k^*)$ up to m, proving that no such m exists

Let $m = \prod_j p_j^{e_j} \prod_l q_l^{f_l}$, where the e_j are in A_k^* , and the f_l are not. Then for each f_l , there is an arithmetic progression $\{f_{l,1}, f_{l,2}, \dots, f_{l,k} = f_l\}$ with $f_{l,1}, \dots, f_{l,k-1} \in$

 A_k^* . Then

$$N_{1} = \prod_{j} p_{j}^{e_{j}} \prod_{l} q_{l}^{f_{l,1}},$$

$$N_{2} = \prod_{j} p_{j}^{e_{j}} \prod_{l} q_{l}^{f_{l,2}},$$

$$\vdots$$

$$N_{k-1} = \prod_{j} p_{j}^{e_{j}} \prod_{l} q_{l}^{f_{l,k-1}},$$

together with m would form a geometric progression. All of N_1, \ldots, N_{k-1} are less than m and in $G(A_k^*)$, and so are in G_k^* . They form an arithmetic progression with m, contradicting $m \in G_k^*$.

Rankin also gave a method to compute the density of a sequence $G(A) \in \mathrm{GPF}_k$ of the form (1). The Dirichlet series

$$f_{G(A)}(s) = \sum_{n \in G} n^{-s}$$

has the Euler product

$$f_{G(A)}(s) = \prod_{p} F_A(p^{-s}),$$

where, for |x| < 1,

(2)
$$F_A(x) = \sum_{q \in A} x^q.$$

When k is prime, $A = A_k^*$ consists of numbers with no digits equal to k-1 base k, and (2) becomes

$$F_{A_k^*}(x) = \prod_{v=0}^{\infty} \left(1 + x^{k^v} + x^{2k^v} + \dots + x^{(k-2)k^v} \right)$$
$$= \prod_{v=0}^{\infty} \frac{1 - x^{(k-1)k^v}}{1 - x^{k^v}},$$

which implies

(3)
$$f_{G_k^*}(s) = \prod_{k=0}^{\infty} \frac{\zeta(k^v s)}{\zeta((k-1)k^v s)}.$$

The asymptotic density of G equals the residue at s=1 of $f_G(s)$. For $G=G_3^*$, this is 0.7197 (Rankin gave the same sequence). Even for composite k, where there is no known closed form for $f_{G_k^*}(s)$, we may still compute the residue to any desired precision. For example, for k=4, $A_4^*=\{0,1,2,4,5,\ldots\}$, and

$$f_{G_4^*}(s) = \prod_p \left(1 + p^{-s} + p^{-2s} + p^{-4s} + \cdots \right)$$

= $\zeta(s) \prod_p \left(1 - p^{-3s} + p^{-4s} - p^{-6s} + \cdots \right),$

which has residue ≈ 0.895 .

This is better than the density 0.8626 GPF_4 sequence Rankin found. In fact, we can show that the greedy sequence is the best of the form (1):

Theorem 3. If $G = G(A_k)$ for $k \geq 3$ and some APF_k sequence A_k , then its density is no greater than the greedy sequence.

Proof. Any sequence G = G(A) has a Dirichlet series of the form

(4)
$$f_G(s) = \prod_p \left(a_0 + a_1 p^{-s} + a_2 p^{-2s} + \cdots \right),$$

where $a_i = 1$ if $i \in A$, and $a_i = 0$ otherwise. As stated above, the residue at s = 1 of this function gives the density of the corresponding sequence.

Suppose there is another sequence A' for which G' = G(A') has density greater than the greedy sequence G(A). Let a'_i be the coefficients for the Dirichlet series $f_{G'}(s)$. The density of G' is greater than G if and only if the residue of $f_{G'}(s)$ at s = 1 is greater than the residue of $f_{G}(s)$.

At some point A' diverges from the greedy sequence, and we have $a_i = 1$ and $a'_i = 0$ for some i. Let H be the greedy sequence truncated at i, and H' be the same sequence with i removed and containing all j > i. Then H has density less than G and H' has density greater than G', so it suffices to show that

(5)
$$f_H(s) = \prod_{p} \left(a_0 + a_1 p^{-s} + \dots + a_{i-1} p^{-(i-1)s} + p^{-is} \right)$$

has a larger residue at s = 1 than

(6)
$$f_{H'}(s) = \prod_{p} \left(a_0 + \dots + a_{i-1} p^{-(i-1)s} + p^{i+1)s} + p^{-(i+2)s} + \dots \right)$$
$$= \prod_{p} \left(a_0 + \dots + a_{i-1} p^{-(i-1)s} + \frac{p^{-(i+1)s}}{1 - p^{-s}} \right).$$

This is equivalent to showing that

$$\lim_{s \to 1} \frac{f_H(s)}{f_{H'}(s)} > 1.$$

But this is obvious, since for p=2 the terms in (5) and (6) are equal at s=1, and for all p>2 and $s\geq 1$ the term in (5) is larger.

This leaves open the question of whether geometric progression-free sequences not of the form (1) have better density than greedy sequences. They can certainly do better over finite ranges; the greedy GPF₃ sequence:

may be improved by removing 5 and adding 25 and 45.

3. Upper bounds

It is easy to show that the density of a GPF_k sequence is strictly less than one:

Theorem 4. For any k > 3, the density of a sequence in GPF_k is at most $1 - 2^{-k}$.

Proof. For any N, let a be an odd number less than $N/2^{k-1}$. Then the k numbers $a, 2a, 4a, \ldots, 2^{k-1}a$ cannot all appear in a GPF_k sequence. There are $N/2^k$ different a's, so this excludes $N/2^k$ numbers less than N from the sequence.

Theorem 4 can be improved slightly:

Theorem 5. For any $k \geq 3$, the density of a sequence in GPF_k is at most

$$1 - 2^{-k} - \frac{5^{-(k-1)} - 6^{-(k-1)}}{2}.$$

Proof. Let b be an odd number, $N/6^{k-1} < b < N/5^{k-1}$. Then the numbers $3^{k-1}b, 3^{k-2}5b, \ldots, 5^{k-1}b$ cannot all appear in the sequence. There are $N/(2 \cdot 5^{k-1}) - N/(2 \cdot 6^{k-1})$ such b's, and none of them are the numbers $a, 2a, \ldots, 2^{k-1}a$ from Theorem 4, since they are all odd, and $3^{k-1}b > a$ for a and b in the ranges chosen. Moreover, since $6^{k-1}/5^{k-1} < 5/3$, the numbers $3^{k-1}b, 3^{k-2}5b, \ldots, 5^{k-1}b$ are distinct for different b in the range.

Table 2. Densities for geometric progression-free sequences

k	greedy density	upper bound
3	0.71974	0.868889
4	0.89537	0.935815
5	0.95805	0.968336
6	0.98085	0.984279
7	0.99116	0.992166

The bounds can be further improved by taking fractions of larger primes over smaller ranges, but the improvements become marginal very quickly.

Table 2 gives the best known upper and lower bounds for the density of sequences in GPF_k for $k \leq 7$. For k = 3 and 4 they are still far apart, but as k gets large they approach each other.

Theorem 6. As $k \to \infty$, the optimal density for a sequence in GPF_k is $1 - 2^{-k}(1 - o(1))$.

Proof. From Theorem 4, we have that the density is no greater than $1 - 2^{-k}$. Therefore, it suffices to show that the greedy sequence $G(A_k)$ has the stated density. It is easy to see that the greedy APF_k sequence A_k starts off

$$\{0,1,\ldots,k-2,k,k+1,\ldots,2k-3,2k-1\}$$

for k even and

$$\{0,1,\ldots,k-2,k,k+1,\ldots,2k-2,2k\}$$

for k > 3 odd. For simplicity, we will handle the odd case (the even case is virtually identical). The density of $G(A_k)$ is the residue at s = 1 of

$$\prod_{p} \left(1 + p^{-s} + \dots + p^{-(k-2)s} + p^{-ks} + \dots + p^{-(2k-2)s} + p^{-2ks} + \dots \right)$$

$$= \prod_{p} \frac{1}{1 - p^{-s}} \left(1 - p^{-(k-1)s} + p^{-ks} - p^{-(2k-1)s} + \dots \right)$$

$$= \zeta(s) \prod_{p} \left(1 - p^{-(k-1)s} + p^{-ks} - p^{-(2k-1)s} + \dots \right).$$

The residue of $\zeta(s)$ is one, so the density is

$$\prod_{p} \left(1 - p^{-(k-1)} + p^{-k} - p^{-(2k-1)} + \cdots \right)
\ge (1 - 2^{-k} - 2^{-(2k-1)}) \prod_{p>2} \left(1 - p^{-(k-1)} \right)
= \frac{1 - 2^{-k} - 2^{-(2k-1)}}{(1 - 2^{-(k-1)})\zeta(k-1)}.$$

For large k, we have $\zeta(k-1) \to 1 + 2^{-(k-1)}$, and the density becomes

$$1 - 2^{-k}(1 - o(1))$$
. \square

ACKNOWLEDGMENT

We would like to thank Carl Pomerance for suggesting Theorem 6.

References

- P. Erdős and P. Turán, On some sequences of integers, J. London Math. Soc. 11 (1936), 261–264.
- 2. Joeseph L. Gerver and L. Thomas Ramsey, Sets of integers with nonlong arithmetic progressions generated by the greedy algorithm, Math. Comp. 33 (1979), 1353–1359. MR 80k:10053
- Joseph Gerver, James Propp, and Jamie Simpson, Greedily partitioning the natural numbers into sets free of arithmetic progressions, Proc. Amer. Math. Soc. 102 (1988), 765–772. MR 89f:11026
- Richard K. Guy, Unsolved problems in number theory, second ed., Springer-Verlag, 1994. CMP 05-02
- A. M. Odlyzko and R. P. Stanley, Some curious sequences constructed with the greedy algorithm, Bell Labs internal memo, 1978.
- R. A. Rankin, Sets of integers containing not more than a given number of terms in arithmetical progression, Proc. Roy. Soc. Edinburgh Sect. A 65 (1960/61), 332–344. MR 26:95
- 7. K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104–109. MR 14:536g
- 8. E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199–245. MR 51:5547

9211 MINTWOOD STREET, SILVER SPRING, MARYLAND 20901

Center for Communications Research, 4320 Westerra Court, San Diego, California 92121

E-mail address: gordon@ccrwest.org