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PREFACE

The first part of this thesis deals with the uniqueness
of unbiased estimate of p, proportion of defectives in the
(binomial) population; the efficient estimators and sampling

plans; the characterizations of simple binomial sampling plans.

In the second part, we summarize some properties of the
truncated-sequential game and illustrate the construction of
optimal sequential binomial sampling plans for point estimation

problems.
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Part 1 BINOMIAL SAMPLING PLANS

1.1 Introduction

By a sample of size N drawn from a binomial distribution we
mean a vector Y = (ul, Uygees, uN) in which the independent observations
Uyy Usgeeey Uy are to be taken on the random variable [/ so distributed

that
Prob( {(/=1/p) =p, Prob( U =0/p) =q=1-1p
where O0<p <1. By letting

X(Y) = number of zeroes in Y

Y(Y) = number of ones in Y,

samples of this type may be referrea to points in the xy-plane with
nonnegative integral coordinates. The index N(Y) = X(Y) + Y(Y) of

the point Y will be the size of that sample Y. We shall interpret

a sampling plan as a rule that specifies at each stage of a sequential
sampling process whether sampling is to cease or another observation

is to be taken and our main attention will be devoted to the development
of certain criteria for the selection of an appropriate sampling plan

- for the family of binomial distributions.



1,2 Definitions and fundamental facts

Consider the plane lattice & of points Y whose coordinates
X(Y) and Y(Y) are nonnegative integers.

Definition 1.2.1. A sampling plan is a function S defined on X taking

only the values O and 1, and such that

s(e) = s((0,0)) = 1.

Definition 1.2.2. A path to Y is a sequence of points @ = YO' Yl""'
Y, =Y such that S(Yk) =1 for k=0, l,eee, n =1

and either x(Yk+1) = X(Yk) +1, Y(Yk+1) = Y(Yk)

or X(Yk+1> = X(Yk), Y(Yk+l) = Y(Yk) +'1.

Under a given sampling plan S, points of X are decomposed into

the following three mutually exclusive classes:

Definition 1l.2.3. Y is a boundary point if there exists a path to Y
| and S(Y) = O,

Definition 1.2.4. Y is a continuation point if there exists a path

to Y and S(Y) = 1 so that at least one path exists

"through" Y.

Definition 1.2.5. Y 1s an inaccessible point if no path exists to Y

and S(Y) = 1.

It should be noted that the origin ® is always a continuation
point. It is seen that if Yy = (xk, yk) is a continuation point then
(xk +1, yk) and (xk, Ty t 1) are accessible. The values of S at
inaccessible points are irrelevant to the sampling process. However,

it is useful to take S(Y) = 1 for inaccessible points Y to facilitate



the phrasing of certain definitions.

Definition 1.2.6. The boundary B of S is the set of all boundary

points of S.
Let C denote the set of all continuation points of S.
Paths may be regarded as arising by a random process such that

a path reaching Y, = (xi, yi), a continuation point, will be extended

i

to (x + 1) with probability p or to (xi + 1, yi) with probability

30 4
q=1-p, When a path is extended to a boundary point, the process
ceases.

A sampling plan is completely determined by its boundary, so

that any reasonable estimator depends on the observed sample sequence

only through the boundary point reached by the sequence.

Definition 1l.2.7. A sampling plan is said to be bounded if there is an

integer n such that all points Y with
N(Y) = X(Y) + Y(Y) >n

are inaccessible points.
The smallest such n is called the size of the plan.

The probability of reaching a particular point Y is

P(p, 1) = K(1)pr V)X

where K(Y) is the number of distinct paths from the origin to Y.

Definition 1.2.8. A sampling plan with boundary B is said to be closed
it > Plp, Y) =1
" YEB

for all p, 0<p«1l,



For a bounded sampling plan of size n, it is clear from the
definitions that paths from the origin cannot include more than n + 1
points.  This implies that a path from the origin strikes some bhoundary
points with probability one. Thus, bounded sampling plans are closed.

Their connection may be expressed in the following Venn diagram:

sampling plans

Wolfowitz (5) assured the closure of some infinite sampling

plans by proving the assertion that a sampling plan is closed if

Um , o An) , o

n-eo JT)_

where A(n) is the number of continuation points of index n.

Definition 1.2.9. A boundary point Yo of a bounded sampling plan S
is said to be essential if the sampling plan SY
o
where

SYO(Y) = 5(Y) for ¥ # Y,

s, (v.) =1
Yo O '

with YO a continuvation point, is not bounded.

Example l.2.1l. Consider the following sampling plan S where dots denote

boundary points:



0
The boundary point (3,2) is essential, >Indeed, (3,2) is a continuation
point of the sampling plan 8(3’2) so that there is at least one pafh
in 8(3’2) from the‘origin'to (3,2) w?ich can be exténded to (4,2)
or (3,3). Similarly, (4,0), (4,1), (2,3), (1,4), and (0,5) are
essential boundary foints. On the other hand, (1,3) is a non-essential ‘
boundary point, for removal of the boundery point does not destroy

the boundedness of the sampling plan.

Definition 1.2.10, A boundary B is said to be essential if all its

points are ecsential.

Clearly, if (XO’ yo) is an essential boundary pcint, then

(xo +1, yo) and (XO, Yo * 1) cannet both be accessible.

Definition l.2.11. An estimator f is & real-valued fﬁnction defined on B.
The only estimators to be considered are those for

which

g(p) = E(f/p) = > £(1)R(r)pL ) E)
YEB

is absolutely convergent,

Conventions

(i) For every sampling plan to be considered,



E(N2/p) = S ZNZ(Y)K(Y)pY(Y)qX(Y)
YEB

is uniformly convergent on every closed interval of valuea of p.

(i1) For every estimator f to be considered, E(f/p) is differen-
tiable termwise in the open interval, 0<p< 1, and the derived series
is absolutely convergent.

A well-known and useful sufficient condition for the termwisé
differentiability of the series E(f/p) is that the formal termwise
'derivative' be abeolutely:ﬁiformly convergent on every closed subinterval,

The functions defined on B and taking the values X(Y), Y(Y), and

N(Y) are denoted by X, Y, and N, respectively. Then we have the following:

Lemma 1.2.1. E(Y2/p), E(X2/p), and E(XY/p) all exist and are at most
E(Nz/p).

Proof., Since O0¢X<N and 0 €Y<N, the results follow from (i).

Lemma 1.2.2. N, X, and Y, considered as estimators, satisfy (11).

Proof. E(N/p) =S NVIR()pE (T X,
YEB

+ (DK pE T XDy | - lN(Y)K(Y)pY(Y)-qu(Y)-l(qY(Y) - pX(Y))I

= -’}a— N(Y)K(Y)pY(Y)qX(Y)IqI(T) - (0|

y3 il'c'a' NZ(Y)K(Y)pY(Y)qX(Y)

for 0<p<1 and YEB., Then, by Weierstrass' M-test for uniform

convergence and by (i), the series



SO (gll; NNK () pE M XMy
YEB

converges uniformly on every closed interval and, hence, according
to the remark following (ii), E(N/p) is termwise differentiable. The

proofs for X and Y are similar,

Definition 1.2.12. A sampling plan is said to be simple if every set

Ck= {(x,y):x+y=k}

meets the class C of continuation points in an

interval (possibly trivial or empty).

The sampling plan given in Example 1l.2.1 is not simple,
since the intersection of the sets Cy and C is not an interval.

However, the following sampling plans are simple.




1.3 The estimateﬁ

Girshick, Mosteller, and Savage (1) have shown how to construct
an unbiased estimator of the parameter p, the fraction defective, from
samples drawn from a binomial distribution. The estimator constructed
is afplicable to samples whose items are drawn and classified one
at a time until the number of defectives and the number of nondefectives
simultaneously agree with one of a set of preassigned number pairs.

When this agreement takes place, the sampling process ceases and an
*unbiased estimate of the proportion p of defectives in the population
may ‘be made. Several results concerning this construction have also

been discussed.

Construction: For a closed sampling plan S, let p(Y) = K*(Y)/X(Y),

where Y is a boundary point and

K(Y) = number of paths in S from @ to Y.

K*(Y) = number of paths in S from (0,1) to Y.

A .
Theorem 1.3.1: p(Y) is an unbiased estimate of p.

Proof. ‘
E(B/p) = > B(V)P(p,Y)
YEB

- E K"(Y)pY(Y)QX(Y)
YEB

If (0,1)€B, then K*((0,1)) = 1 and K*(Y) = O for Y # (0,1), in which

case
E(B/p) = 1.



1f (0,1)¢ B, consider the plan S' obtained from S by taking the point
(0,1) as a boundary point and K'(Y), the number of paths in S' from

the origin to the boundary'points Y of S. We see that except for (0,1)
every boundary point of S' is a boundary point of S and that K'(Y) = O

except for the boundary points of S'. Now

K*(Y) = K(¥Y) - K*'(Y)

E(B/p) => k(r)pr M) | - k0 (r)pt () K
YEB YEB

1.5 K,(Y)p!(v)qx(v).
YEB

But S* is closed since S contains S'. So

p+35 kMpt MM oy
YeB

- and the proof is complete.

lal
Theorem 1.3.2. A necessary condition that p(Y) be the unique unbiased
estimate of p is that S be simple.
Proof. For a non-simple sampling plan we shall construct a function

m(Y), not identically zero, such that

(1.3.1) E(m/p) =5 m(Y)P(p,Y) = O.
YE€B

However, S(Y) + m(Y) will be an unbiased estimate of p different from

).
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Suppose we have a closed.sampling plan S‘which is not simple,
We consider the lowest index n where the continuation points are
separated. There will be at least one uninterrupted sequence of
poihts between some pair of continuation points that are not continua-
tion points., By assumption of n, the points immediately below the
points in this sequence are continuation points and hence all the
points of this sequence are boundary polnts. Let this sequence be
the points Yy = (x5 -1, ¥5 + 1), £ =20, 5000y & x5+ 3, = ne

A\

While, for those not in this sequence we proceed as follows:

Take
" . - " ' '
Y -(xo t,yo+t+1)andY s(x0+1’y0)

which are accessible,

- Let

£"(Y) = number of paths from Y" to Y€B

L'(Y) = number of paths from Y' to Y€ B,

with
X"(Y") =1 = x'(yt)

if ¥Y" and Y' are boundary points.
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To complete the construction, let

(o) + (1) An)

for all boundary points Y not in the mentioned sequence.

¥ X +1
Note that Z x'(Y)pY(Y)qx(Y) =p oq ©
YEB
Fatt+l x -t
and S x,,(.Y)pur(r)qx(wr) =p° 40 .
YEB

By symmetry, it is enough to show the first equality. Indeed, if
Y'e€B, f'(¥Y') =1 and £'(Y) =0 for Y £ Y', and the sum is the single

Yo xo+1 .
term p “q . 1If Y'¢ B, consider the sampling plan S' obtained

from S by taking Y' as a boundary point and K'(Y), the number of
paths in S' from the origin'to the boundary points Y of S. Every
boundary point of S' except Y' is a boundary point of S and K'(Y) = 0

for ¥ not in the boundary of S*'. Then_it is easy to see that

K(Y) = K*(Y*) 2'(Y) + K (Y),

and .
1= 'Z K(Y)p‘wr(v)qx(wr)
YeB
=K > 1.(Y)pY(Y)qx(Y) £S5 Ko (r)pl (M X (M),
YEB YEB
Thus

K>S Je.(.,)plr(wr)qx(wr) =1-3" K (v)pt (V) XM
Te B . YE€EB o
= K (Yi)pyquO"'l
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| x, + 1
Hence Y & (Y) Ym X(Y) =P qo .
YEB |

We now check that m(Y) satisfies equation (1.3.1):
yojx-j

}:: m(Y)K(Y)pY(Y)qX(Y) E:( )3 q Z}'(Y)pY(Y)qX(Y)-_

YeB ~ YeB

ST (DRt

Y&B
t Fo+t+l x. -t
Yotd x =] Yo Xatl 4yt 70 0
=Z(-1)jp° q"o‘_poqo - (-1)°p a
3=0
v
- 200 :uﬂ Bl (bt
=0
= 0,

Savage (6] found that simplicity is also a sufficient condition
that ensures 3 to be the unique unbiased estimate of p for a c¢losed

sampling plan S,

Theorem l.3.5. If S is simple there is at most one bounded unbiased

estimate of any given function of p.

Proof. If the lemma were false, the difference of two unbiased estimates
would yield a non-trivial bounded unbiased estimate of zero, i.e. m(Y)
such that |m(Y)| 4is bounded by a constant m®, m(Y) not identically zero

and
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(1.3.2) E(m/p) = Z m(Y)K(Y)pY(Y)qX(Y) = 0.
YEB ‘

But this will be shown to be impossible. If m(Y) were not identically

0= (g ¥

(a) m(Y) = O for all boundary points Y of index less than that of Yo

zero, there would be an Y ) € B such that m(Yo) £ 0 and
and (b) one of the coordinates of Yo is less than the corrésponding
coordinate of any other boundary point Y for which m(Y) # O.
This follows from the simplicity requirement which implies that the
boundary points of index n = Xy + ¥ are broken into two sets,
(c) those whose y coordinates are less fhan the y coordinates
of the continuation points of index n.
and (d) those whose x coordinates are less than the x coordinates
of the continuation points of index n.
Since the situations (c¢) and (d) are symmetrical, we may suppose that
Y, i a boundary point such that m(YO) #£0, Y, i8 below all continuation
points of its own index and also below every other Y for which m(Y) # O.

Equation (1.3.2) may be written

V. X
(YK )P %0 0 + 5 mrmp V) 2o,

YEB
Y#Y,

Thus

' y

Y€B
Y(Y))yo

Cur S kgt MEm,

YEB
Y(v)> Yo
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Let M denote the set of all accessible points at which X(Y)( %o

and Y(Y) = + 1. There are at most x, points in M, say Bl’ Bz,..., Bn.

Yo 0

Considering the way in which Y_ has been chosen, every path from the origin

0
to a Y for which Y(Y)> Yo Passes through or to at least one point of M,

Therefore when Y(Y)) Yo

P(p,Y) = K(Y

]

)py(r)qx(v)

(1.3.4) P(p,Y/M)P(M)

n Yatl N
P(p,Y/M) :E:: K(B})p 0 qX(pj)
1

I~

yat+l
p° 3 K(B)P(p, Y/M).

1

[Za)

From inequalities (1.3.3) and (1.3.4),

n
(1.3.5)  |m(v )| k(x)p 70,70 oy [Zj K(p J>J > B(p, /M)
‘ 1 YEB

(v)> Yo

1 n
2’1: K(Bj).

- But this is impossible that (1.3.5) should be satisfied for small p.

Combining Theorems 1l.3.1, 1l.3.2, and l.3.3 we have the

Theorem 1.3.4. A necessary and sufficient condition that D(Y) be the

unique (bounded) unbiased estimate of p for a closed

sampling plan S is that S be simple.



1.4 Efficient Estimators and Sampling Plans

The following inequality serves as a basic tool of determining
the efficiency of an estimator. It provides a lower bound for the variance
of an estimator in terms of its expected value and the average sample
size of the sampling plan. If, at po, this lbwer bound is attained for a
particular estimator and sampling plan, we say that they are efficient
of Poe An estimator is efficient at Py if it is unbiased and if it
‘possesses minimum variance among all unbiased estimators at Py

Lemma 1.4.1. For any estimator f,

| o
) var(e/p)> BB | o(p) = B(e/p).

Equality holds at a particular value of p, say Pgs if and

only if there exist constants a and b such that
£0) = afqgt(M - px(M] + b
for all boundary pointé Y, where 9 = l - Py*

A brief history of this inequality with references is given by
Savage in (8) , Pg. 238. It was first proved for sequential plans by

Wolfowitz [7]. Following Savage, (1.4.1) will be called the

information inequality.

15
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De Groot (2] has shown that the only efficient sampling plans are

the single sample plans and the inverse binomial sampling plans. In a

single sample plan, B ={'Y: N(Y) = n} , n being a positive integer, and
any non-constant function of the form a + bY is an efficient estimator
of a + blnp, and these are the only efficient estimators. 1In an inverse
binomial sampling plan, either B = {Y: Y(Y) = c} or B = {Y: Xx(Y) = c) .
¢ being a positive integer., When B = {Y: Y(v) = c} , any non-constant

function of the form a + bN is an efficient estimator of a + be(1l/p), and

these are the only efficient estimators. When B = {Y: X(Y) =¢}, any
non-constant function of the form a # bN is an efficient estimator of a +
bc(1/q), and these are the only efficient estimators.

The name "inverse binomial sampling' was suggested by Tweedie in

(9) and this type of plan was first treated formally by Haldane in [10]
énd (11) .. We see that these plans are closed.
| For the single sample plan with boundary B = {Y: N(Y) = n},

Y/n is an efficient estimator of p with var ( %/p) = pg/n. For any estimator
f n

B(£/p) = 3 £(1) ( )p“”q"m.
(Y

YEB )
which is a polynomial in p of degree at most n, say

2 ¥
E(f/p) = a,+a p+ aap toeee H AP + o0l 4 anpn.

Glearly, polynomials in p of degree at most n are the only functions which

may be estimated unbiasedly. In addition,
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Y(Y-1) ... (Y-Y+1) oy
E[n(n-l) ese (N=Y+1) /p] =p, Y= 1, 2, eee, N

Thus every such polynomial is eétimable uﬁbiasedly.
The analogous properties of‘an inverse binomial sampling plan

are less familiar. De Groot (2] proved the following theorem for inverse
binomial sampling plans which provides a rule for finding unbiased estimator
of a given function h(q). For convenience, the functions are written as
functions of q rather than of p.

| Consider now the plan with boundary B ={Y: Y(Y) = ¢} . For each
noﬁ-negative integer-k, there exists a unique point Yk of B such that

N(Yk) =¢ + k. Then we have:

Theorem 1.4.1. A function h(q) is estimable unbiasedly if and only if

it can be expressed in a Taylor's series in the interval
|a] < 1. If h(q) is estimable unbiasedly, then its unique

estimator is given by

k
‘ (c-1)! d h(q)
£(v,) = n [ 9

k=20 1 2 eees o
(k+c=1)? c] L

Proof, We note that if h(q) can be expanded in Taylor's series in the

given interval, then so also can ZESS%E , and converseiy.
1-q

(1-q)° K | (1-q)¢

, o . ,
Let'—gigl— = :E : bqu vhere b, = d [ h(q) J k!
v k=0 : dq q=0

¢ = k
Then h(Q) =P E bkq .



Taking f (Yk) = b [ kical
('« )
we have 0 Kec-1
c k
E(f/p) = E , f(Yk) ( k Pq
k=0 :
oo
(<] k
k=0
= h(q)o

Conversely, suppose that h(q) is estimable unbiasedly. Then

there exists an estimator f such that
h(q) = E(£/p)

S ey (U5) o
k=0

h(q) > kee-ly
or -(:—L:?Jz = E ’f(Yk).( )q.
k=0
k+c-1 k
Then K )f(Yk) =_§—, dk h(qg
o dq | (1-q)
q=0
or £(Y. ) = (c-1)3 ¥ h(q)
, | R 3 (k+cfl)! qu _(1_q)c
) q = 0.
k
Thus h(q) 1 d h(q) .ok
0° o M oaf | a0

18
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which 1s the required expansion. The uniqueness of f follows from
the uniqueness of the Taylor's series.

We have just discussed unbiased estimators for the efficient
sampling plans. The rest of the present section will be devoted to
the relationships between sampling plans and efficiently estiﬁable
functions. We have stressed before thaﬁ, for a given sampling plan,
the‘only estimators that afe efficient at a given value Py are the non-

constant functions f* of the form

£ = a [gu7(V) = poX(Y)] + b,

for some constants a and b and for all boundary points Y. The next
theorem, developed by De Groot (2] determines the class of functions
that are estimable efficienfly at a given point, simply by evaluating

E(f‘/p)o

Theorem l.4.2. For a given sampling plan, a non-constant function
g(p) is estimable efficiently at Py if and only if there

exists a constant k £ 0, such that

(1.4.2) E(N/p) = k (g(p) - glpg)] /(p - py) for p # B,

Proof. Suppose that g(p) is estimable efficiently at Py» then its

estimator is of the form

£2(Y) = a [ g ¥(Y) - By X()] + 1
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for some constants a and b, a # 0, and all boundary points Y.

g(p) = E(£*/p)

a E(qOY - poX/p) +b

aE(Y-pbY-pOX/p)+b

a E(qY + pY - pN/p) + D

a E(qY - pX +pN-poN/p) +b .

a E(gY - pX/p) + alp - po)E(N/p) + be

By symmetry, qE(Y/p) = pBE(X/p), so that

(1.4.3) g(p) = alp

po)E(N/p) +b

and g(po) = b

Thus E(N/p) = (&(») - &(py)) /alp - pg)

k (glp) - S(Po)]/(p - Pg)s P # Py Kk =% .

Differentiating both sides of (1.4.3) at Pgs gives
f -
g (po) = a E(N/po)

and the proof of necessary part is complete.

The reverse steps prove the sufficient part.

From theorem 1l.4.2 we see that there does not always exist a
_ sampling plan that admits estimation of a given function efficiently
at a given value of p. In order to estiﬁate a function g(p) efficiently
at pd, a sampliné plan must be selected such that (1.4.2) hold. Then

the efficient estimator will be of the form
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(1.4.4) £(Y) = a [ggX(Y) = py X(M] + glpy), a = %

For a given g(p), Py and k, there does exist more than one
sampling plan satisfying (1.4.2). Let R denote the class of such
plans. Since every plan of R yields the same E(N/p), and since, for
every plan of R, the estimator f given by (1l.4.4) is efficient at
Pge it follows from thg information inequality that Var(f/po) is the
same under each plan of R. 1In general, however, for values of p other
then pg, Var(f/p) ;ill be different under the various plans of R.

We are now interested in determining the plan of R for which Var(f/p)
is smallest at some values of p other than Po* De Groot’[zj claimed
vin the following theorem that this is equivalent to determining the

plan for which Var(N/p) is minimized at the relevant values of P

Theorem 1l.4.3., Let f = a(qu - pox) + b.
Let p* be a value of p other than Po°

- Let S, and S, be two sampling plans such that

1 2

E(N/p, s,) = E(N/p, §,) for all p.

Then Var(f/p*, Sl)‘ Vaf(f/p‘, Sz) if and only if

Var(N/p*, S,) = Var(N/p*, S,).

1 2

VA T VL T

Proof. f = a(qu - poX) +b=al(qY - pX) + alp - po)N +b

2 a aa(qx'- px)2 + az(p - po)aN? + 2+ 2a2(p - po)(qY - pX)N

+ 2ab(qY = pX) + 2ab(p - po)N.

We note that (a) E [(qY - px)f/p] = pq g'(p)
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() E ((q¥ - px)%/p] = pa E(W/p).

Indeed, pq g'(p) = pq -(-;ll; [ Z: f(Y)K(Y)pY(Y)qX(Y)J
' YEB

pa S (DK [ % ( PY(wr)qx(\r))J
YEB

ra >, £(NK(Y) [Y(Y)pY(Y_)-qu(Y) - M%) qX(Y)-l]

Y€E€B

’

q = 1-p

57 ar MM MM o ST k-
YEB | YEB

pY(Y)qX(Y)

= E [(af - pX)£/p)

and 2 o
E [(a¥ - PX)°/p] = pa E'(q¥ - pX/p), by (a)

= pq ?145 E(qY - pX/p).
Since, by symmetry, qE(Y/p) = p E(X/p)
E [(qY - pX)Z/p] = pq j‘%; E(pX - q¥/p)
Pq E [-a% (pX - qY/p)]
= pq E{-ad; (pX = Y + pY/p)J

= pq E(X + Y/p)
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= pq E(N/p).
Now, in virtual of the above two equalities,
E(f/p) = a(p - P E(N/p) + b
~and

E(fz/b) = aapq BE(N/p) + az(p - po)ZE(NZ/b) RN 2a2(p - po)pg E'(N/p)

+ 2ab(p - p,y)E(N/p).

Thus

Var(f/p) = azpq B(N/p) + az(p - po)ZVar(N/p) +_2a2(p - po)pq E*(N/p) +

2ab(p - po)E(N/p) .

This expression completes the proof.



1.5 Simple Sampling Plans

In this section, a new characterization of simplicity is given
for bounded sampling plans and it is shown that the dimension of the
linear space of unbiésed estimators of O can be determined simply by
counting the number of boundary points. We further determine the
number of simple sampling plans of size n. It will be helpful to keep
in mindvthat the boﬁndedness of a sampling plan implies its closure.
The following theorem plays an important role in determining a sampling

plan that is simple,

Theorem 1.5.1. A sampling plan of size n is said to be simple if

and only if it contains exactly n + 1 boundary points.

fhis theorem is implied by results of De Groot (2) and Girshick,
Mosteller, and Savage (1) .‘ Hbﬁever, the pfoof given by Brainerd and

Narayana (3] gives insight into the structure of closed bounded sampling

plans. Theorem 1.5.1 will be proved by a series of lemmas.

Lemma 1.5.1. The boundary of a sampling plan of size n contains at
least n + 1 points.

Proof. If n =1, then (0,1) and (1,0) must both bé boundary points.

Suppose the lemma is true for n = m and consider a plan S of size

m + 1 with boundary B. Since m + 132, the pointg (0,1) and (1,0)

cannot both bé boundary points. We may assume that (1,0) is not

a boundary point. By shifting the origin to the point (1,0), we obtain

a8 plan S* of size m and hence its boundary B* involves at least m + 1

2l
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points., But 5 is bounded, so there must also exist a boundary point

of the form (0,y). Hence B contains at least m + 2 points.

* Induction completes the proof.

Lemma 1.5.2. If S is a bounded‘simple sampling flan, then for each
k and for each pair of boundary points Yl and Y2 on
Ck = {(x,y): X +y = k} , there are no inaccessible points
between Yl and Y2 on Ck'

Proof. Let S be simple, bounded, and assume that Y, is above Y,. Figure

1.5.1 illustrates the construction used in the proof.

Ck l
N |
k=1 N ' /

c

B’
’/

naY,
3 \ (figure 1.5.1) |
N

Now Ck_lf\c where C is the set of all continuation points of S is a

non-void interval. In fact, Yi = (xi, yi), i =1, 2, can be reached by
a path, implying that either (xi -1, yi) or'(xi, ¥y - 1) is a continua-
tion point. However, the simplicity condition demands that all points
kel between any two continuation points on Ck-l are continuation
points. We may let y, = (xl, yl-l)éc and the p, = (xz-l, y2)€C,

on C

- and hence all points on Ck_1 between ul,and u, are in C. Therefore,

no points on Ck between Yl and Yz can be an inaccessible point.

Corollary. Either of the boundary points Yl’ YZ in lemma 1.5.2 could

-be a continuation point and the lemma is still valid.
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Lemma 1.5.3. If S is a bounded simple sampling plan, then its boundary
is essential. In other words, if S contains a non-essential
boundary point, then S cannot be simple.
Proof. Let S be simple, bounded, and contain a non-essential boundary
point. Let k be the smallest integer such that Ck contains a non-
essential boundary point Yo. Clearly k21, Let A = Ckn C. Ck contains
at least one continuation point. In fact, if all points on Ck are
boundary points or inaccessible points, then all points of index > k
-are inaccessible which in turn implies that Yo is essential. Thus A
is a non-void interval. Lemma 1.5.2 assures that the point contiguous

to at least one end of A must be a boundary point. Call this point

P = (x,y) and let P be a lower boundary point. (see figure 1.5.2)

ck+1\

Ck\

(figo 1.502)

Suppose'P is essential. Because A is non-void, the point (x, y + 1)

is aécessible. Then the essentiality of P demands that the point |

P! = (x-# 1, y) must be inaccessible and hence all points below P’

on Ck+1 are inaccessible points. It follows that Q = (x + 1, y - 1)

is either an essential boundary point or an inaccessible point. If

Q is an‘inaccessible point, then all points on Ck below Q are inaccessible.
If Q is an essential boundary point; repeat the argument until an.

inaccessible point is reached. The modifications required when p is



an essential upper boundary point are obvious. Hence if P is an
essential upper (lower) boundary point, Ck cannot contain a non-
essential upper (lower) boundary point. We are now left to consider
the case where the non-essential boundary point YO is a lower (upper)
boundary point contiguous with A. We may assume Y. to be a lower

0

boundary point. Then all points on Ck below YO are either boundary

points or inaccessible points. Thus all points (xo + A, yo),1= 1,
'2; ees, are inaccessible points. ;n this situation, YO becomes
essential. This is a contradiction.

Remark: The converse of lemma 1.5.3 is not true.

« Consider the following sampling plan with boundary
B={(o,», 1,3, 1,2), (2,1), (3,1), (4,0}

&l

B is essential but the plan is not simple.

Let S be a bounded sampling plan with essential boundary
B. Let YO = (xo
and (xo, Yo * 1) cannot both be accessible points. Thus three cases

, yo)wbe a point of B. We note that (xo + 1, yo)

- arise:

(a) (xo + 1,'yo) and (x., + 1) both inaccessible.

Yo
(b) One of these points inaccessible and the other a boundary point.

(c) One of these points inaccessible and the other a continuation point.

Definition 1.5.1. S' is said to be a deformation of S at YO if s'(Y) =

S(Y) for all Y f£ Yor (xo +1, yo),(xo, Yo * 1) and

27
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in case (a), -either S'(xo +1, 35 =0 or.5*(x,,

Yo + 1) = O but not both,

in case (b), if Y, is the inaccessible point and Y,

the boundary point, then S'(Yl) = 0 and S'(Ya) = 0,
in case (¢), if Y, is the inaccessible point and Y,
the continuation point, then S'(Yl) = 0 and S'(YZ) =1,

and in all cases S'(YO) = 1.

It is obvious that a deformation of S at a particular boundary

point is nothing but simply "shift" the boundary point to an inaccessible

point immediately beyond this boundary point. As an example, consider

- the following sampling plan S.

7

AN

A deformation of S at (3,3) is
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The deformation of S at (2,4) is

The deformation of S at (0,5) is

Definition l.5.2. S' is said to be an admissible‘deformation of S if

S!' is bounded and its boundary is essential.

In the above example, Sé and Sé are admissible deformations.

However, S;.is an inadmissible deformation.

Lemma 1.5.4. If S is a simple sampling plan of size n, then there
exists a sequence of sampling plans S = SO’ Sl""' Sk
such that Si+1 is an admissible deformation of Si’ i=0,
1,000y k =1, Sk has exactly the points of index n as
boundary points and each Si has n + 1 boundary points.

Proof. Let B, be the boundary of S,. Let 10 be the smallest

integer such that C‘OITBO £ d@d. (We assume lo £ n). Observe that



BO is essential and the continuation points on Cfo form an interval -

)

o= Xov Yo

on Cg, above A,, then (xo Wiy yo) is an accessible point and the

AO # @. 1If there is a contiguous boundary point Y

point (xo, Y~ + 1) is inaccessible. (Refer figure 1.5.3). Hence

0
the

[

mf(x +1, .ya__hh_

J ( x{-. 'y Y0+lj__.

| B j o (Fig. 1.5.3)

!

G,

deformation s1 of S. at Yo has SI(Y) = S(Y) for all Y # Yo (x,.,

0

+ 1) and Sl(To) =1, Sl(xo, ¥~ + 1) = O, Since there are no

Yo 0
boundary points on C, £ & 20), there are no inaccessible points

on Cxo above Yo. Thus above Y. on c‘O there are only boundary

0

points. Since the only change in S, from S is to shift the

: §
boundary point Yo to the inaccessible point (xb, Yo * 1) making Y
a continuation point, the admissibility of Sl is sbvious. Repeat
shifting the boundary points one by one, whether from above or

below A on QIO' to the line C 1° If C has no continuation

10 [0+1
points, then we are finished. Otherwise contihue the process.

Induction guarantees that we finally reach the region Sk where

30



boundary points are exactly the points of index n. Clearly, Sk
and SO (in fact, every Si) contain the same number of boundary
points, namely n + 1.
So far, we have proved the necessary part of Theorem 1.5.1,
To the sufficient part, we proceed as follows:
Lemma 1.5.5. If S is & non-simple sampling plan of size n, then S
contains more than n + 1 5oundary points.

Proof. If S is non-simple and contains a non-essential boundary

then, by definition, the sampling plan SY obtained from
(o}

as a continuation point is of size n and hence,

point YO’

S by taking YO

by lemma 1.5.1, the boundary of SYO contains at least n + 1 points.
‘Therefore the boundary of S contains more than n + 1 points.

| Now we restrict ourselves to consider the case where S has
eésential boundary. Let £ be the smallest integer such that Cye
intersect 'C, the set of all continuation points, in a configuration

which is not an interval. The following configuration occurs

in Cl , (Refer figure 1.5.4)

Y

\v\i \(X y';"']) Er
'd T ‘
!

i

¢

.- (figure 1.5.4)
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where Y, (x ) is a continuation point,

i

o’ Yo

Y (xo +1i, ¥4 - i) = (xi, yi), i=1,2, oo , k, are

i

*boundary points, and

Vi1 = (xo + k + 1, Yo - k - 1) is a continuation point.
The point (xl, yp + 1) is accessible. If k =1, (x1 + 1, yl)

is also an accessible point implying that'Y1 is non-essential. Thus
the essentiality of boundary demands that k> 2 and hence (x1 + 1, yl)

is an inaccessible point. A deformation S1 of S at Yl is of the form

Sl(Y) = S(Y) for all Y # Yl,(xl +1, yl)

Sl(Yl) =1, Sl(x1 +.1, yl) = O,

Sl is bounded because any path through Yl either coincides with an

S-path from (xl, Yy + 1) onwards or stops at (x1 + 1, yl). In the
same manner, Si can be constructed from Si-l’ i=1, 2, ¢eey k = 1.
;n sk-l’ YO? Yl’ veey Yk—l are continuation points, Yk is a boundary
is a continuation poiﬁt. Clearly, Y, is a non-

k+l k

essential boundary point of Sk 1 which is of size n. Thus Sk_1

point, and Y

contains more than n + 1 boundary points and hence does S.

| Theorem 1.5.1 reflects that for a given n there exists
more than one sampling plan of size n that are simple. How many
such simple sampling plans can we have corresponding to a particular
‘value of n? ,In'answering this question we would like to refer to

a paper written by Brainerd aﬁd Narayana (12].

Theorem 1.5.2. The number of simple sampling plans of size n is

2™ (%),

n-1
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Proof. Let C be the class of continuation points and let Ak = cnck,

K is non-empty if and only

if k<n. For e;rery simple sampling plan of size n, each non-empty

Cy =, Prx+y= k} . Clearly, A

A, is characterized by the distance t. between its top and (0, k)

k
and the distance b

k

\c between its bottom and (k, 0). (Refer figure 1.5.5)

C

k] ¥

(figure 1.5.5)

The only restrictions on i ths bk} are

1) t+ b ¢k k=0,1, co0o, n =1

Oét £¢ 04b sb k=0' 1’ ooo,n-ZO

k “k+l! k  Tk+l?

The number of different solutions of the above set of inequalities
is the number of different simple sampling plans of size n. Now
let (x, y)n denotes the number of simple sampling plans of size n

with t . =xand b , =y, then (1) implies that

x v
(2) (x, y)n = E E (a, b) , forx+y¢n
a=0 b=0

=0 | for x + y2n.

We note that (a, ’b)n = (b, a)n. The condition (0,0)1 = 1 together
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with (2) determines (x, y)n recursively for all non-negative integers
x, ¥ and positive integers n. Then the number of different simple

‘sampling plans of size n with t 1 +b

1 y = k is k(n)’ where
(3)
k(n) = -;. (X,y)n
x+y=k
X J
= j v j ,j ” (a’b)n-]_
x+y=k -a=0 b=0
0 k 1 k-l kel 1 |
=ZZ (a’b)n-l +Z Z (a’b)n-l + oo +ZZ(a,b)n_1 +
a=0 b=0 a=0 b=0 a=0 b=0
"k O
D2 (ad)
a=0 b=
= (k+1) E (a,b)n_l + (k) E ~ (a,b)n_l+ eee + 2 E (a,b)n__1 +
- a+b=0 : a+b=l a+b=k-1
1 E (a'b)n-l
a+b=k
i
= E (k = ¢c +1) E (a,‘u)n:l
c=0 a+b= '
k
= Z (k = ¢ +v1)c(n_1) for k<{n
c=0
,k(n) =Ov : #‘or k2n

'and 0(1) a1, ’ '



These conditions determine k(n) recursively. Experiment leads to
the conjectured solution

2n=2k (2n+k

(%) ' k(u) = Zn+k

= gg:lzck (2n+k )

(2n+k -3 (2n+k-1 ) for kén

O for k2n

k(n)

' We shall make use the following formula which will be proved in

the accompanied remark.

,(5) Z (a+b) - a+c+1> .

Thus the total humber of simple sampling plans of size n is

n-1 n-1 2n'+ k - 1

2 ke =2 (*%%) - 32 k-1
k=0 k=0 |

nsf 1) -3 3:: ;)

1
(n-l *

Remark.

Z(a+b '(a+:+1) .
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Proof. By induction.

When ¢ = O, if is true
k

supposeZ (a;b) - <a+l;+1)
b=0

k+l k

men 37 ("3 =30 (30 ¢ (ki)

b=0 b=0

_Theorem 1.5.,3. If the boundary of a sampling plan of size n contains
n + 1 + k points, k >0, then there exist exactly
"k linearly independent unbiased estimators of O.
Proof. Let Yl' 72’ ceey Yn+1+k

estimator f can be regarded as a vector (fl, coe,

be the boundary points. Each
fn+1+k) where

f(Yj) = fj’ =1, esoy n +1 + k. Thus, the space of estimators
can be considered as an(n + 1 + k)- dimensional vector space V,
Theorem 1.3.1 assures that pm is estimable unbiasedly for all

non-negative integers m<n. Thus pY(Y)qx(Y)

, & polynomial in p

of degree N(Y) is estimable unbiasedly and so is any linear combination
of such forms. It follows that all polynomials in p of degree at

most n‘are estimable unbiasedly. Now, since the expectation of every

estimator is a linear combination of the polynomials P(p; Y),

Y €B, the expectation operator E is a linear mapping from V ONTO



the{n + 1)- dimensional linear space of polynomials in p of degree
at most n. The subspace v° ={ f: E(f/p) = 0} is the null space
of this mappiné and it follows from the standard theorems concerning

rank and nullity that Vo has dimension k. (See figure 1.5.6)

(figure 1.5.6)

Theorem l.5.4. The boundary B of a sampling plan of size n contains

at least two contiguous points of index n,.
Proof. Suppose the contrary, i.e; suppose that there is only one
boundary point on { (x, y): X+y = n} .
~ 'If (n, O) is that boundary point, then (n - 1; O) must be a
continuation point and hence (n - 1, 1) is a boundary point. This
is a contradiction. Similarly for (O, n).' |

(n-i-1, i+1)
A \g (n-1, 1)

(n-i+1, i-1)

AN

Now if (n = 4, i) is in By 4 = 1, 2, ee., n = 1, then, by

hypothesis, (n =i -1, 1 +1) and (n -1 + 1, 1 - 1) are inaccessible

points. It follows that (n - i - 1; i) and (n - ii-l) are not

continuation points and hence (n - i, i) is inaccessible. Again,

37



this is a contradiction.
Hence there are at least 2 contiguous boundary points

of index n.
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Part II SEQUENTIAL SAMPLING PLANS

2,1 Introduction

In part I a description of optimality of binomial sampling
plans haé‘been glven and we claimed that single binomial sample
plans are efficient sampling plans. At present we shall be
concérned with the study of games which enables us to discuss
the optimality problem in a more general situation. Our main
aim will be to show that it is always possible to construct an
optimal sequential-sampling plan. The single-experiment (fixed
sample size experiment) game though often encounfered in statistical-
decision theory and practice,>is'a very Special t&pe of game. In
most real situations, observations are costly, and instead of
exhausting all N (sample size) observations, the experimenter
might greatly improve his situation if at each stage of experi-
mentation he balances the cost of taking future observations against
the expected gain in information from such observations. We shall
thus restrict ourselves to the consideration of truncated sequential

games.
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.2.2 Basic Notions of Truncated Sequential Games

For the sake of completeness we shall summarize a few
definitions. The materials we shall encounter can be found in (4],

A sample space is a triple Z = (Z,ﬂ. , P') where Z, the

outcome space, and ﬂ. , the parameter space, are non-empty sets,
and p' is a function defined on Z2 x ﬂ. such that, for a fixed
w € _ﬂ_ ’ p"' is a probability distribution on Z,

Let Byr Bor eves By be random variables defined on Z. Let
X -= (X,fl,p) be the new sample space in which X = X; x X, X «s0 X
XN' where Xi is the range of By i = 1, 2, ¢¢e, N, and for each we¢ _/l,,
P, is the joint probability distribution of Bys By ecey Bye

Let A be a space of terminal actions. A may be any
arbitrary set.

Let D be a set of functions which map J x X into A, where
J is the set { 0, 1, ¢eo, Nj and such that, if x, y€X and Xy = ¥y
i=1,2, «.cp J, then d(j,x) = a(j, y) for all deD.

Let (8 ‘be a class of partitions of X such that if S€@

then S = (So, Spr ooy SN) where Sj is a cylinder set over

K={veJs: o¢vey}] , d.e., if x, y€X and x, =y, fori=1, 2

seey j then x€ S, if and only if ye S

3 3
The product space (§ x D is the space of sequential-decision
functions. A partition S in (§ determines a sequential-sampling

~plan. The sets S j of S are ‘sometimes referred to as "stopping

regions", Since S j is a cylinder set, it is always known in a

ko



sequence of experiments whether or not the observations belong to a
stopping region, i.e. whether the experiment is to be continued
~or terminated. Thus, a sequential-decision function (5, d)e @ x D
is in fact a procedure that tells the experimenter at each state
whether to take another observation or to stop experimenting and
make a decision.

Perhaps, the following example will illustrate some of the
. concepts mentioned above. An inspector at an Army Proviﬁg Ground
has to decide whether to accept or reject a lot of rocket-propellent
powder on the basis of the performande of 5 randomly selected
rockets which he is to fire. A propellent is called defective if
the pressure developed in the rocket chamber is 3,000 pounds or |
more per square inch. The acceptability of the lot depends on the
proportion of defective items in the lot, and the decision is to
be based on the numﬁer of defective rockets found in the sample
. of size 5. For each rocket fired, let y be the random variable
which has value 1 if the propellent is defective and O other-
wise. Then, if ali 5 rockets are fired, the space of outcomes X

consists of the 32 points xl, x2, coey x32 given below:

x%=(0,0,0,0,0) x° =(0,0,0,1,0) x+7=(0,0,0,0,1) x2°=(0,0,0,1,1)
x2=(0,1,0,0,0) x°=(0,1,0,1,0) x%0=(0,1,0,0,1) x2°=(0,1,0,1,1)
x°=(1,0,0,0,0) x1=(1,0,0,1,0) x'=(1,0,0,0,1) x°/=(1,0,0,1,1)

x28.(1,1,0,1,1)

x*=(1,1,0,0,0) x2=(1,1,0,1,0) x°°=(1,1,0,0,1)
©=(0,0,1,0,0) x13=(0,0,1,1,0) ¥21=(0,0,1,0,1) x29=(0,0,1,1,1)
x°=(0,1,1,0,0) x*=(0,1,1,1,0) x22=(0,1,1,0,1) x°=(0,1,1,1,1)
x'=(1,0,1,0,0) x*?=(1,0,1,1,00 x*=(1,0,1,0,1) x*=(1,0,1,1,1)

x82(1,1,1,0,0) x26=(1,1,1,1,0) *x=(1,1,1,0,1) x32=(1,1,1,1,1)

41



10 85 where 8y

the rejection of the lot. A

The space A of actions consists of only two points a

stands for the acceptance and a2

possible sequential rule is as follows: fire the rockets 1 at a
time and stop as soon as 2 defectives are found; in any case stop
when 5 rockets have been fired. Let n be the number of rockets
fired by this rule, n =2, 3, 4, 5. In order to decide whether to
- accept or reject the lot, a possible criterion may be given as:

otherwise, We shall now

1 2

consider a procedure 6 that to each point x of X assigns two numbers,

take action a, if n2 4, and action a
an integer j = 1, 2, +¢s, 5 which specifies the number of coordinates
of x to observe before terminating experimentation, and an element

a of A which specifies what action is to be taken once experimenta-

tion is terminated.

The function & then has the following values:

6(x)=(5,a)  6(x") =(5,8)) 6(x')x(5,8,) 6(x*)=(5,,)
6D=(5,8) 6 N=(h,a)  6(B=(5,0)  8(:P)=(h,a))
6()a(5,8)  8(xD=h,a) G N=(5,a)  6(xF)=(4,8))
blxD=(2,,)  6(x'D=(2,0,) 8(:F=(2,8,) 6(:2%)=(2,8,)
6(x)=(5,4))  6(x2)=(h,a)  8(xF)=(5,8))  6(x*)=(4,a))
6:5)=,8,)  8(x=(3,8,)  8(:FD=(G,a)  B()=(3,8,)
6(x)=(3,a,)  6(x)=(3,a,) 6(:x*)=(3,8,)  6(x°1)=(3,8,)
5(x8)=(2,a2) 6(116)=(2,a2) 6(x2u)=(2;a ) 6(x32)=(2,a2).

Here a partition S is given by (sa, 83, Sy SS) where

8 .12 16

S2 = { xh, X, X , X ,

s X

24 28 32 }

12



b3

S3 = { x6, x7, xlu, xls, x22, x23, x30, x31 }
6 .
S, = { xlo, xll, x13, x2 ,.x27, 22 }
Se = { xl, xa, x3, xs, x9, x17, x18. x19, x21, x25} .

The function d maps the sets Sk and Ss into a,; 32 and 33 into éa.

In order to define a truncated sequential game, we also need

a cost function and a loss function. A cost function is a non-

negative bounded function ¢ defined on J x X such that if x and y
are in X and x, =y, for i =1, 2, ..., j, then c(j,x)=c(j,y» The
sampling cost of experimentation is defined only on the subexperiments

actually performed. A loss function is a bounded non-negative

function L defined on fl x A. L(w,a) represents the loss when
P, is the true distribution on X and the statistician takes action
a. Using these two notions, the risk to the statistician is given

by the function'f which is defined as follows

N
¢ (w,8,d) =Z: Z c(j,x) + L(w.d(j,x))] pw(x).
J=0 xesj '

The triple (_fL, (S x D, § ) is a truncated-sequential game,




2.3 Bayes Procedures for'Sequential Games

In this section we are going to prove the following theorems
2.3,1 and 2.3.2 which are direct consequence of the results of
Blackwell and Girshick (4) .

Let =, be the class of mixed strategies for nature in a
statistical game.v By a mixed strategy for nature is meant a
probability dstribution over fl . Then, for each § in —,

the expected risk is

N |
(2.3.1) §(y .8, =) ) ) [c(j,x) + Lw,d(3,%)) ] 3 (0, ().

j=0 xéS‘_i w

Let '%.'l be the collection of all sets B, such that, for some

3

x€X, y€B, if and only if Yy = %4 for all i ¢ jo That is, B

b J
is a cylinder set over K ={Y€J: o<y Sj} » For any x€X we

also define F,.(x) as the set of all points having the same first

J

j coordinates as x. Thus, for a fixed j, the sets Fj(x) are equal

for all x¢€ B;j’

We -see that '%j s0 defined is a partition of X.

For any bounded function h on Jl x X, let E. . (h) be the

i3

conditional expectation of h given Xypeeey X 5? when w has distribution
J o and, for a fixed w, x has distribution P, For any x, the value

of E,. (h) at x is

33
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\ N

yEF,G0 "W 3w, (1hw,y)

L_, L}(w)p (y)

EF(x)

Ej}(h) =

Denote P (x) = E )’(w)p (x)

then ) ) 3G, ()n(w,y)
4 yeF,(x) w
(2.3.2) E,. (h) = J

33 E PI_(y) ’

yE€ Fj(x)

~For j = 0, ‘%0 = {X}, we write E 3 (h) instead of Eo (h).

The function Ii}‘_j 5 (h) = v(x) is a function of Xy

xa,..., XJ

only'and has the following property: For any bounded function f

on X which depends only on Xps X5y eeey xj,

(2.3.3) ) ) 3(wp, (0fhw,x) = Yy ) 3@p, (O F(x)v(x)
w X . w X

= Z f(x)v(x)P} (x).

X

The second equality is immediate, we shall prove the first one

In fact,
> Y _1(@)py(y)n(e,y)
‘ ' yeF (x) @
Z : J()p, (x)£(x)v(x) = Z:E J(w)p, (x)£(x) i
W x w x : P}(y)

i€ Fj(x)
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> Y ) @py(nie,y)

yeF (x) 12 .
3 f is constant
> Py (x) ’
X

E : PI(y)

y€ Fj(X)

over a given set Fj(x)

2 2 £33 ®)ny(yn(se,y)

- - yeF (x) @ _

=) ) Py (x) i
Bje,gj 4xij | E P](y)

yéFj(x)
Y )5 J@rpg e
€EB, © :
ST (Trw)
Bye By xem, 2 Py
yij

=2, 2 ) £(3)3 @)pg(y)nle,y)
Bj-é G‘Bj y€AB:j e '

: E £(x) 3 (w)p"(x)h(w,x).
x w

In case h is a function of x only, i.e. h(w,x) = g(x), we have,

from equation (2.3.3).

(2.3.4) 3 #(x)g(0Py (x) = T #(x)(By ()] IRy (0.
X

b 4
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Now let h(w, x) = hj(w, x) = ¢(j, x) + L(w, d(j, x)) and

let f(x) = fj(x) be the indicator function of S., i.e. fj(x) =

J,

if xe8 j and zero otherwise; then (2.3.1) can be expressed as

(2.3.5)

?(T, s, @ ‘ZZ 5[0t + 1w, ats, 1] 3 g, 0

j=0 xeS:i w

Z Z [c(j, x) + L(w, d(j, x))] PI (x), by

j=0 xe€S
J

(2.3.3)

. -
= Zz: [c(j, x) + Ej} @(w, (g, X)))]P} (x)

j=0 x€ S,
3‘ j

since c¢(j, x) is constant for x€S.,

h
In most situations ¥ will be fixed. For a given a in A,

we thus define

(2.3.6) - Tj(x, a) = E‘_”, [ L(w, a)]
(2.3.7) T, (x) = = 7,(x, a.

Theorem 2:3:1¢ For a fixed Y + there is a sequence of terminale

decision functions dn such that

Un ¢ (], s, d) =92, 5 ="To(5 s a

n- oo
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uniformly in 5, where

N
9*(J, 8) = > ) [c(j, X) + Ta(x)] Py (x).

j=0 xe€s,
J

Proof. Fix j and x in (2.3.7). Then, for any n we can find a

point a(j, x) in A depending on j and x such that

*(x) +%.

(1) T.(x, a(j, x))STj

J
Since for a fixed n we can define dn by
4,(3, ) = a(§, 1)

satisfying (1) for each j and x, then for this d .,

N
@ g(y,s,4) =y Y [c(:j, x) + By o (W, 4,3, ON]P ;G0
j=0 xesj 4

N
2 E E [c(j, x) + EJI (L(w, a(j, x)))]P; (x)
=0 xés:j

N
I A COE 7,(x, a3, )] Pr(x)

=0 xe_Sj

N . :
QEE [c(j, x) + T.f](x) +%] Py (x)

3=0 xes,




49

Z Y (et 0 + T Py G0 +-Z Y pp

j=0 xéS j=0 J(ES:j
=9y, 5) +2
for all S, Thus
3 B o(y,s, 0 9(y, s, a)se(y, s + 1,

On the other hand, it follows from (2.3.5) that for all d

g(; 5, 4) 2 }: Y (et o+ T*(;g)] Py (x) =9*(3,8)

j=0 xéSJ

so that

(4) inf @ (7,58, d)2 ¢*(}, S).
d

Now, since (3) and (4) hold for all n and S, the theorem is proved.

Theorem 2.3.) says that, for any arbitrary truncated
sequential-sampling plan S and for any a priori probability

| distribution } on [l , there always exists, at least to within

any § »> O, an optimal terminal-decision rule. Moreover, the

Eayes risk for a given ¥ and arbitrary S may be taken to be

'Y '(} » S), since this value can be approximated to arbitrary

accuracy by an appropriate choice of d n®



We shall next show that, for a given T there exists
an optimal sequential-sampling plan. ‘This sampling plan will be
briefly characterized as follows: at any stage of experimenta-
tion, if there exists a continuation that will reduce the risk
below the present level, we perform an additional subexperiment.
If, on the other hand, there exists no such continuation, we
stop experimenting. A constructive proof is given as follows:

Let J be fixed, and for any function h(w, x) we write

Ej(h) for the expression in (2.3.2). We also write

U.(x) = c(4, x) + T*(x).

b h]

We define dN(x) = UN(X)
and dyy (x) = min [0y (0, By (ay(0)

aN_Z(x) = min [UN_Z(x), EN_Z(aN_l(x))]

al(x) = min [Ul(x), E, (a, (X))]

%, = min [U . E(al(x)ﬂ
where

U =':zfA E [L(w, a)] = ;ZfA L(w, a)J (w).

w

Observe that if we had performed all N subexperiments
and obtained x = (xl, eeey %) then %y (x) would represent the

best we can dowth this x. Also, both Uy ,(x) and E , (Uy(x))
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depend only on X9 ...,'xN_.1 and, moreover, (x) represents

Uy
the best we can do with N-1 observations, and EN_l(UN(x))
represents the average of the best that we can do with an
additional observation. Thus aN_l(x) represents the smaller of
two risks - the risk of stopping with N-1 observations and the
éverage risk from an addifional observation. Simiiarly,
aN_Z(x)'depends only on Xyv eeey Xy 5 and stands for the

smaller of two risks - the risk of'stopping with N-2 observations
and the average risk of going on, provided that if we go on
experimenting we do the best Qe can, i.e. Qe stop with one

more observation if aN_l(x) = UN_l(x) and take a second.

observation if GN___l(x) = EN~1(UN(x))' The interpretation of

aN__k(x) for any k is now clear.
Let
(2.3_.8) | SS = {x: Ui(x)> ai(X) for 1< j, Uj(x) = aj(x))

S‘ = (S‘, Si, svey S&)‘

Then S* forms a partition of the sample space X, Indeed, for

any m<n,

s ={ x: Ui(x)> ai(x) for i< m, Um(’,‘) = am(x)k

s» ={x: U, (x)> o, (x) for i< n, U (x) = an(x))

* it follows that

Um(x) ? am(x) | for all xe€ S;

+



and

. [ ]
Um(x) —am(x) for all xé€ s*

so that S;x and Sr‘l are disjoint. Moreover, every point of X

belongs to some 53. We note that aj(x)$U'j(x) for all j, with

equality holding for j = N. Let Y<N be the smallest non-negative
integer for which the equality sign holds in this expression.

Then x € S3.
over K ={v€y: ocrej),

Also the sets Sg(j # 0) are clearly cylinder sets

Thus S* is a possible sequentialesampling plan and is
characterized as follows: at the jth stage of experimentation
j=0,1, ¢os, we compare the present risk Uj(x) with tﬁe average
risk aj(x) resulting from a continuation if at each future
stage we did the best we could with the resuiting observations,
We stop sampling if U, (x) = aj(x) and take another observation |

3

if UJ(x)> dj(x). We shall now show that S* is in fact a Bayes

sequential-sampling plan.

Theorem 2.3.2:; The sequehtial-sampling plan S* defined by

(2.3.8) is Bayes against T , i.e.

min

§(3, 5% =9*(3)="5"¢(3,

and furthermore,

94(1) =§:}: @y (P2 (x)= o,

j=0 xe33

Proof., Let S = (S Sqv eeey SN) be any arbitrary truncated
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sequential-sampling plan, and let

TY = S.YUS.Y+1U ese U SN.

Define YAl -
g(Y) = Z: 2,: 25(0Py (x) + 5 e (x)Py (x)
' j=0 x€8 x€T .
J Y
Y . '
= EE:: E . aj(X)PI (x) + E aY(x)P}-(X)
j=0 xesj . xeT.”:l
then N '
S(N) = Z‘/ E ad(x)PI (X)
j=0 xeSs,
d
and g(0) =3 ao(x)P}- (x)
x € To
= ao Z P}- (x)
X
= aoo
Now the set Ty,y 1s defined by x¢ Sj for j =0, 1, ..., 7,
so that TY+1 depends only on xl,‘xa, ceey Xyo Hence letting

BT+1 represent the characteristic function of the set TY+1

and taking Byyy for f and @y,q for g in (2.3.4), we obtain

PEDELNOL ICEDIDE W EUNE) SN

x€ TY+_1 x€Ty,1




Sk

Thus,
gy +1) = Z_, > o (x)P (x) + E aY+l(X)P}' (x)
j=0 xe.S:j XGTT+I
2 ) aPre) + ) T B oy, 0] P (0
Jj=0 xe Sj x€ TY 1
However,
ay(x) ¢ B, [“‘r+1(")] ‘
Hence :
@ g +1)3 Z : §OPTG) + T a0y () = g(m)
=0 xe¢S xeT .

i Y+l

for Y =0, 1, ..., N-1., Thus g(Y) is a non-decreasing function

of Y. Again by Theorem 2.3.1, we have

N
(2) (3, 8) = Z : Uj(X)PI(X)

- J=0 xGS:j

N
> ZZ: “j(X)PT (x) = g(N).

J=0 xe Sj

Hence, for all S we have

9(T, 8)2g(N)2 gl0) = g

However, if S = S*, for x¢€ TY+1’ xfsa, Si, .'..., S;, it follows

 that UY(X)> aY(x) and hence a.Y(x)' = EY [ a.r+l(x)] o Thus (1) becomes

an equality for ¥ = 0, 1, ..., N = 1, Also inequality (2)
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becomes an equality since Uj(X) = ocj(x) for xess. This

conipletes the proof of the theorem.

Remark., Since each set S"_‘j, J=1, 2, 0., N of the optimal
sequential sampling plan S* is a cylinder set over
K = {Y: 0<r s js » We can justify whether or not
a sequence of j observations is in a stopping region
83. For any point in Ss, we shall cease sampling at

jth stage of experimentation.




2.4 Examples on Construction of optimal Sequential Binomial
Sampling Plans for Point Estimation Problems.

Again, we shall concentrate our attention to the binomial
sampling plans. Let us consider the following point estimation

problems. Suppose

(a) y is a binomial random variable with pw(y =1) = w,
pw(y =0) =1 -w for O¢wé1l.

() T is uniform on the interval (0, 1] , i.e. Fw) =1
for all O£w£1l.

(c) the cost per observation is 1 unit, and

(d) the loss L(w, a) = k(w - av)‘2 for any estimate a, 0<a<1l,

We shall apply the construction developea in the last section
to construct optimal sequential binomial sampling plaris S*
relative to certain numerical values of k.
For any point x in X, let
- J
My = 2 %

i=1

number of ones in the first J observations

xl, ceey xjo
Then, by expressions (2.3.2) and (2.3.6),
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3 [L(w, a)] |
kjl (w - a)a(mj) Wi o dw/
0 h|
jl (mj )wmj(l - w)J-dew
J
0

1 ;
: m j-m
kS (w‘2 - 2aw + a%)w (1 - w) jdw/ ‘
-0

Tj(x, a)

1 m J=-m
S w j(1 -w) Jaw.
o .

The integrals' are complete Beta-functions, so that

B (m+3, J-m+1)-2aB, (m 42, J-m.+1)+ a231£21+1, 3om+)

T, (x, a);.-k

J B (mJ+1, J-mj+1)

Recalling the expressions

Bl(m,n) = M . F(m+1) = m?
[ (m+n)
Then [ (m,+3) [( ) (m+2) T ( )
. (m,+3 jem ,+1 m.+2 J-m_ +1
T (x,a) =k r(;1+2) N : i"‘ J j -zar 3j . j
3 [ (n1) P(3-n 1) NED) [ (3+3)

s 2 n (mil) r(j"ifl)
I (3+2)

(i+)8
my ! [ (34301 e G ¢t a® ( j+1) 3

(m +2)} (m_ +1)$ ]



(m,+2)(m . +1) m,+1
. 2
k[j+3j+2 -ZaEJTE‘La]

k ¢(a), say.

1

To find the infimum of Tj(x, a) when a ranges over A = [0,1],

it sufficés to minimize the value of ¢ (a). We have

(f’(a) =0 = =2 —J-—j+2 + 2a
m.+1
=2 (a - J+2 )o
m.+1
It follows that a = -.’-i-lé— and clearly ? ( ) is a minimum value.

o (m_ +2)(m +1) m.+1 2
Thus ?E(x) = k [-Tj+350+25 = ('3%5“ J

m.+1 s, m +2
<3 (35 - 37 )
j+2 ( j+3 ~ j+2

u (mj+;)(j-m£1)
(3+42)2(3+3)
and .
U;j(") = c(j, x) + ?B(x)
(m,+1) (j+1l-m.)
»OI‘ (20401) U.(X) = j + k J 2 Al Y
e (3+2)°(§+3)

We shall next develop a formula for calculating average

risk from taking additional observations. Let p(x = l/mj)

j+1
be the conditional probability that the (j+1)th observation

will be 1 given the value of m Then

j.
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1 1l

x +1=1/mj) = S pw(xj+l=1)pw(mj)} (w)dw/& pw(mj) I (w)dw

0 0

1 . 1
m J-m, m J-m
= S w(n?) v 31-w)”  Haw /3 ('Sj) w 3-w)"  Jaw

0 J 0

B (mj+2, j-m +1) / By (m +1, j-mj+1)

1
m_+1 3 m -
w 3" (1~w) -mjdw /3 v»r"j(l-'«v):j mjdw
0 (o]

1

P(m +2) (3 ;mj-t-l) p(j+2')

FES) Pl Mo o)

(m,+1)8(j+1)8

J
m,+1 '
Thu's,
. k
Ej[UJ+1(x)] = (j+1) + m .'j [(1+mj+x )(3+2 -m ;X +1)]
(2.4.2)
= (j+1) + (j+3)2(j+l+) [(1+mj)(j+2-@j)-(1+mj)Ej(xj+l)
P 2
o '+(J+2'mj)Ej(xj+l)’Ej(xj+l)]
(j+41) X [(1 Yj+2-m.) (.1 N i
= (§41) + = | (14m )(42-m ) ~(14+m )l +
(343)%(guy L3I I3
o m,+1l m_+1
(§+2-my) 335- - i3 ]
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k(1+m.) :
= (j+1) + 2’ d [(j+2Xj+2-m.)-(1+m )+(3+2-m.)-1]
(5+3)2(5+b)(G+2) J J J
k(1l+m,) 5
= (j+1) + - 32 (§°+53=jm ~bim_+4)
(5+2)(G+3)2 (344 g3

k(1+m ) (j+l-m,)
(3+1) + Pl 21 .
(3+2)(3+3)

Again and again, we shall apply formulae (2.4.1) and
(2.4.2) in our calculation. It should be pointed out that if
U;i(x)> ai(x), then Ui_l(x)> ai-—l(X)' Indeed, the ith observation
is an additional observation of the first (i-1) observations
and hence the continuity of the point (i-mi, my ) implies the
continuity of (i-l-mi 1’ ml_l)
Once a value of k is fixed, we may construct its

corresponding optimal sampling plan S*. Suppose k = 400, we have

8§ = { x: Ui(x)> ai(x) for 1< 8, Ua(x) =
a,(x) = min [U,(x), E (ag(x)]

a8(x) }

e 0 1l 2 3 14 5 6 7

Uy

10.95

13.92

15.89

16.880

16.880

15.89

13.92

10.95

E7(a8?¥u 11.55

1k, 22

16.00

16.888

16.888

16.00

14,22

11.55

Thus 5§ and hence S* for n>8 are empty.



5

a6(x) = min [U6(x), E6(a7(X))]

={x: Ui(x)>ai(>c) for 1< 7, U7(x) = a7(x)}

U6 10.87 | 14.34 | 16.43 | 17.12 | 16.43 | 14.34 | 10.87
E6(a7) 11.33 | 1b4.42 | 16.27 | 16.89 | 16.27 [ 14.42| 11.33
Thus S,‘7 ={x: mg = 2, 3, h)

¢ ={x: Ui(x) >'ai(x) for 146, U6(x) = a6(x)}
ag(x) = min [U5(x), Eglag(x))]

m5 0 1 2 3 b 5

U 11.13 | 15.21 | 17.26 17.26 | 15.21 |11.13
Es(as) 11.36 | 14.93 | 16.72 | 16.72 | 14.93 | 11.36
Thus S¢ = {x: mg = 1, b, me =.1, 5}

sy =.{x: Uy (x)> @, (x) for i< 5, Us(x) = a5(x)}

ah(X) =

min [Uu(x) . El”(as(x) )]

" |

0

1

2

3

L

Uy

" 11,94

16.70

18.28

16.70

11.94

B |

11.80

15.88

17.24

15.88

11.80

Thus S3 ={Ax: mg = 0, 5

The partition S* = (S?,

Sg,

and §* = § for n =0, 1, 2, 3, L,

S;) determines an optimal

sequential binomial sampling plan which can be illustrated
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graphically as follows: (dots stand for boundary points). .
7

50 0 0

v b6 o

0 7

We are interested to know the relation between the
values of k and the sizes of the plans. In other words,

we shall try to find out the restriction on the values of k

such that the optimal sampling plan so constructed is of certain

j(x) = aj(x)

fixed size. We have claimed before that if U
we stop sampling while if.Uj(x)>~aJ(x) we take another
observation. Hence x = (j-mj, mj) is a boundary point

of an inaccessible point if

U, (x) - E

P (x)] £o0.

3%

Observe that if we stop sampling at the jth etage then the

(j+1)th stage is inaccessible. Thus

Uj(x) = aj(x) = Uj+1(x) = aj_'_l(x).'

It follows that (j-mj, my

) is a boundary or an inaccessible

point if

'Uj(x) -E

j [Uj+1(x$] £ o.

In virtual of formulae (2.,4.1) and (2.4.2) we reduce the above
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condition to
. 2. 2
(3+2)°(3+3)

¢
k"(mj+I7(j+l-mj) '

Set

‘ 2 2
Cy L Ge)en?
(3, mj) - mj+l j+1-mj

Since'D(j, mj) = D(j, j-mj), we see that this kind of sampling
plans are symmetric. A symmetric sampling plan is defined as
one in which the boundary points are symmetric about the line
Y = x. Thus we eventually arrived the following result

20“01.

Result 2.4.1: If k&D(j, mj), then (j-mj, mj) and (mj, j-mj)
are boundary or inaccessible points, mj =0, 1, 2, e0o0, [j/?]_
Table A in the Appendix gives the values of D(j, mj) for

3=0,1, eeo, 50 and m, =0, 1, e.., (i/2). The reason zero

J
is included in the values of j is to permit making a decision
Qithout taking any observation. |
Since a sampling plan is completely determined by its
boundary, Table A in the appendix as well as result 2.4.1 enable
us to figure out the Table B in the appendix which gives
a series of values of k showing how these values affect the
sizes of the optimal sampling plans so constructed. For
simplicity, we only figured ouf such plans of size 1 up to 16,
We shall next investigaté some properties of such plans in the

rest of this section.

Let a, = (i, n-i), 1 =0, 1, ..., n be the n+l points
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of index n of a sampling plén of size n. Then ay is either a

boundary or an inaccessible point. Now consider the following

(n+l)-vectors
(do, ceey A 1y d gy eeey dn) when n is odd,
2 2
and
(do, ooy Ay Ay dl, eesy dn) when n is even.

n
2 2 1

)

0, 1, L Y 12"-1

(respective 1 = 0, 1, ..., n-l be the least "distance' between
2 ===z

For n being even (respective odd) let dy, i

a; and a boundar& point ¥ with X(Y) = i, while dj' j= % +1, eo0,
#_ (respective j =5E§l , ese, N) be the least "distance"
between a4 and a boundary point Y with Y(Y) = n-j.
aoq'\\
o
LN
e TR
A N
--r--a
R
"‘il ‘\
H o
0 a
n
Note that when n.is even, X(an) = Y(an) = g, it is immaterial
2 2 |
which direction distance dn is measured., For example, with

2 .
respect to sampling plan (39) (resp. (34)) we have the vector
(6, y’ 3y 2y 1, 1, 0, O, O, 1, 1, 2, BQ'h’ 6) (resp. (6, L,

2,2,1,0,0,0,0,1, 2, 2, 4 6)).
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For convenience, we call such a (n+l)-vector a

B _-vector in which the subscript n denote the size of the
-n-—_—

corresponding optimal binomial sampling plans. From now
onwards, we shall simply write '"a sampling plan' instead

of "an optimal binomial sampling plan so constructed" and our
Bn-vectors that follow will refer to those optimal plans. We
have shown that these sampling plans in consideration are

symmetric.

Proposition 1. If n is even, the ‘% + 1)th component of a B -
vector is zero. |

Proof. Suppose the contrary. Then (0/2, n/2) is an inaccessible
point and it follow; thatA(rg -1, n/2) and (n/2, 7% ~1) are

non-continuation points. 'Thus, by Result 2.4.1,
n n
D(n-1, -5) = D(n-1, E-l))k.

But

D(n-1, 2)<¢D(n-1, t) for all t = 0, 1, ..., n-l.
2

Hence o
D(n-1, t)2k for all t =0, 1, ..., n-l.

Therefore the size of the plan is less than n, which is a

contradiction.

Proposition 2. If n is even (resp. odd), the cbmponents

a dn, a (resp.

n ) of each Bn-
71 3 3t

-1 %nnd
2 2

vector are zero.



Proof. When n is even, by Proposition 1,

is a boundary point. If (%—1, §+1) and (%+1,

(n/2, n/2)

n

-2--1 )

were inaccessible points, it follows that (2-1, 11-) and

(n —hl) are non-continuation points and

inaccessible. This is a contradiction.

n
E) is

Thus ( =-1, —+1)

in turn (

and (-+1 ——1) are boundary points and hence d =

d =d = 0-
1 3
2 2

-é'-l

When n is odd, we shall show that (n—l Eil) and

(n+1 n—l) are boundary points. Indeed,

inaccessible, then (n-l n-l
point and, by Result 2.4.1
D(n-1, n'1) 2 ke

But‘

D(n-1, t)» D(n-1, 25—’-'-) for t = 0, 1, e..,

n-1

So D(n-l, t);k for t = O, 1, voey -"'2-"0

2
if they were

—=) is a non-continuation

It follows

that the size of the plan is less than n which is a

contradiction. Thus (25 n+1) and (nol 2 1) are
boundary points and hence dn-l = dn+1 0.
2 2

Proposition 3. The components of a Bn-vector are non-

decreasing from the middle to both ends.

Proof. First let n be even and let

(dgy +oes dg-a, 0, 0, 0, d2+2,.
2 2

e00y dn)

n-l

-
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67

be a Bn-vector. By symmetry, it is enough to prove that

for i = O, LI 2“20

d,>d >

i” i+l

Suppose that there exists an £, 0 £ % -’2‘--2. ‘such that dy & A4y
ne .
AN
S (g, 1)
4 "9\““‘ n-tt)
e ui\
[ U
——l;l_—o AN
N
N
\\
N
N\
0 n

The boundary point of ({, n-f-d, ') implies that either ({-1, n-f-d, )
or (f, n-f-d, -1) is a continuation point. If ({-1, n-A-d, ) is

a continuation point, then

k>D(n-d, -1, L-1).
But

D(n-dl -1, 1-1) > D(n-d‘ -1, 1 )o

It follows that k>D(n-d, -1, £), i.e. ([, n-l-dl -1) is a continuation
point. Hence in either case (f, n- L -4y ~1) must be a continuation
point. Repeating this kind of argument we finally show that

(2, n-,l-dlﬂ) is a continuation point, i.e.

k>p(n-d,(+l’ £4)> D(n-dl+1, £41).

However, the boundary point of ( [ +1, n-f<l-d, .) demands that

1+1



k< D(n-d £+1).

£+1°

This is a contradiction.
Similarly, we can prove for odd integers n.

Proposition 4. There are no boundary points other than the

‘n+l boundary points defining the Bn-vector of a sampling
plan of size n.

Proof. Let Y. = (x ) be an arbitrary boundary point.

o o’ 7o
Without loss of generality, we may take X(Yo)( Y(Yo).

N
\\

do | AN (
L\\\ \i\ Xy n-xo)
NN N
N Ov N
\\\ . \\ : N
b’o \\ \\
N M
\\ \\
o n-d0 n
If Y, is of index less than n-d,, then (o, Xg + yo) is a

non-continuation point. This follows from Result 2.4.1
and the inequalities

D(xO + g xo)} k |
and

D(xo * Yo 0) > D(xo + Yo xo).
This is impossible for (O, n—do) is a'boundary, point.

Thus N(Yo)) n-d.. Since Y. is a boundary point,

(o) 0

' >
D(x0 + yo, xo)/ ke
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Thus

” D(xo + Jo t:))D(x0 + Yo xb)?k,for t=0,1, ..., %4

This shows that (xO - i, +i),i=1, ..., x., are non-_

Yo %o
continuation points and hence (xo, Yo +1) is inaccessible,

By similar reasoning, (xo, Yo * )y 3 =1, eeey, n = Xq = Yo

are ipaccessible. it follows that the distance between YO
and (xo, n - xo) defines the (xo + 1)th component of the
Bn-vector. Hence YO is a boundary point defining the Bn-
vector of the sampling plan.

Propositions 3, 4 and Theorem 1.5.1 together imply
the :following: /

Proposition 5. ' The optimal sampling plans so constructed

are simple.
Let Sy (resp. Sz)‘be a sampling plan with B -

vector (ao, cony an) (resp. B -vector (bo, cony bm))' Then

we say that S1 is larger then S, if n>m. When n = m,

2

S, ie larger than S for all 4 =0, 1, ¢eey, n

1 2 i
with inequality holding for at least one value of i.

if aiS b

Consider the inedualities

(a) D(n-1, 3)<¢ k< D(n, 321- )

(b) D(n, g)< k < D(n+l, -’é'-
where n being any positive even integer. Inequality (a)
says that the sampling plan corresponding to each value of k

satisfying (a) is of size n since points of index n are
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either boundary or inaccessible points and at the same time
there are continuation points of index n-1l. Similarly,
inequality (b) determines sampling plans of size n+l.

| For positive odd integers n, we have the following
corresponding inequalities

n-1

(¢) D(n-1, T)< k £D(n, n-l

2
(d) D(n, %‘—1-)4 k€ D(n+1, 9-12'-1- .

Between D(n-1, %) and D(n, _1_21 ) there may exist
certain values D(m, j), m<£n-l, js[m/a]. If there exist £t/

> such values, arrange them in order such that

n ' . ' n
D(n-1, )< D(mo, ao)< D(m13 31)< ...(D(mt, jt)<D(n, -é-).
We see that every real k in the half open interval
I, = (D(n-1, n/2), D(mo,. jo)] corresponds to a fixed

sampling plan S. of size n (even) with B -vector say,

0

v, = (d

o 0,00 ***" do’jo, eeey d. _ , 0, 0,0, d ) eee,

o B _ ' RS
0 > 2 0 2+2

d )

o’n-jo’ L N I do’n.

As k increases and falls into I, = (D(mo, jo), D(ml, jl)],

again, every real k in I, defines another fixed sampling

1

S
plan, of size n with Bn-vector, say,

Vo = (d, y eeey di .4 eee,d _ , 0,0, 0,4 _ ,
1 L0 Lo 1'5-2 1,5+2

d, )

se00, dl,n-jo’ ved, 1sn
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Observe that as k varies from IO to Il' it turns only the

non-continuation points (30, mO-JO) and (mo—ao, 30) of
1° Thus Y5 differs from
only in the (j0+1)th and (n-jo+1)th components. By

So to continnation points of S

Yy

symmetry, we have

d = 2(n=-j })=(m_.~j.) = n-m_.
0’3, dO’n-jo 3 (n-jg)~(my-3,) = n-m,

) is a continuation point of S, which

However, (jO‘ m 1

o~Jo
implies that

d = d n-m..
‘1’:}0 1911-.']0( 0
Thus
d £d.,, ..
, 9 \
1 jo 0 jo
Hence S, is larger than S Repeating this argument

1 o’

we shall eventually show that as k increases from D(n-1, n/2)
to D(n, n/2) its corresponding sampling plan -though
preser§es size n becomes larger and larger. If k goes
beyond D(n, n/2), then its corresponding sampling plan
is of size larger than n.
Similarly, we can show the pre?ious result for odd

integers n.

Hence we have proved the following:

Proposition 6. The increasing values of k enlarge the

optimal sampling plans so. constructed.
In fact, we have seen that the size of the optimal

sampling plan does not increase strictly with the increasing k.



The following figure illustrates the effect of k on the
size of its corresponding sampling plan when k goes from

0 to 2500.
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sizé of sampling plan
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Appendix

TABLE A
Values of D(j, mj), j=0,1, eee, 50, my = 0, 1, «ssy (3/2) -
D(0,0) = 36 _ D(9,0) = 17h2.4
D(9,1) = 968
D(1,0) = 72 D(9,2) = 726
S D(9,3) = 622.286
D(2,0) = 133.333 D(9,4) = 580.8
Dp(2,1) = 100
‘ D(10,0) = 2212.364
D(3,0) = 225 D(10,1) = 1216.8
D(3,1) = 150 _ D(10,2) = 901.333
: D(10,3) = 760.5
D(4,0) = 352.8 _ - D(10,4) = 695.314
D(4,1) = 220.5 D(10,5) = 676
D(4,2) = 196
D(11,0) = 2760.333
D(5,0) = 522,667 . D(11,1) = 1505.636 °
D(5,1) = 313.6 D(11,2) = 1104.133
D(5,2) = 261.333 D(11,3) = 920.111
D(11,4) = 828.1
- D(6,0) = 740.571 D(11,5) = 788.667
D(6,1) = 432 . :
D(6,2) = 345.6 D(12,0) = 3392.308
D(6,3) = 324 D(12,1) = 1837.5
D(12,2) = 1336.364
D(7,0) = 1012.5 D(12,3) = 1102.5
D(7,1) = 578.571 D(12,4) = 980
D(7,2) = 450 D(12,5) = 918.75
'D(7,3) = koS D(12,6) = 900
D(8,0) = 1344,4kL D(13,0) = 4114.286
D(8,1) = 756.25 D(13,1) = 2215.385
D(8,2) = 576.191 ‘ D(13,2) = 1600
D(8,3) = 504.167 , D(13,3) = 1309.091
D(8,4) = 484 ' D(13,4) = 1152
D(13,5) = 1066.667
D(1396) =

1028.571
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D(14,0)
D(14,1)
p(1k4,2)
D(14,3)
D(1k,4)
D(14,5)
D(14,6)
D(14,7)

D(15,0)
D(15,1)
D(15,2)
D(15,3)
'D(15,4)
D(15,5)
D(15,6)

. D(15,7)

D(16,0)
D(16,1)
D(16,2)
D(16,3)
D(16,4)
- D(16,5)

D(16,6)
D(16,7)
D(16,8)

D(17,0)
p(17,1)
D(17,2)
D(17,3)
D(17,4)
D(17,5)
D(17,6)
D(17,7)
p(17,8)

D(18,0)
D(18,1)
D(18,2)
D(18,3)
D(18,4)
D(18,5)
D(18,6)
D(18,7)
D(18,8)
D(18,9)

oW R Nn [ S | B S |} now o u

Lo32,267
2642.286
1897.026
1541.333
1345,164
1233,067
1174,.349
1156 -

5852.25
3121.2
2229.429
1800.692
1560.6
1418,727
1337.657
1300.5

6880.235

3655.125

2599.2
2088, 643
1799. b6
162h.5
1519.013
1462.05
14l

8022,222
4247.059
3008.333
2106.667
2062.857
1815.282
1719.048
1640.909
1604 . 44k

9284,21

4900
3458, 824
2756.25
2352
2100
1938.462
1837.5
1781.818
1764

D(19,0) = 10672.20
D(19,2) = 3952.667
D(19,3) = 3138.882
D(19,4) = 2668.05
D(19,5) = 2371.6
D(19,6) = 2178
D(19,7) = 2052.346
D(19,8) = 1976.333
D(19,9) = 1940.4
D(20,0) = 12192.19
D(20,1) = 6400.9
D(20,2) = 4491.86
D(20,3) = 3556.056
D(20,4) = 3012.188
D(20,5) = 2667.042 .
D(20,6) = 2438.438
D(20,7) = 2286.036
D(20,8) = 2188.342
D(20,9) = 2133.633
D(20,10) = 2116
Dp(21,0) = 13850.18
D(21,1) = 7254.857
D(21,2) = 5078.4 -
D(21,3) = 4009.263
D(21,4) = 3385.6
D(21,5) = 2987.294
D(21,6) = 2720.571
D(21,7) = 2539,2
D(21,8) = 2418.286
D(21,9) = 2343.877
D(21,10) = 2308.364
D(22,0) = 15652.17
p(22,1) = 8181.818
D(22,3) = 4500
D(22,4) = 3789.474
D(22,5) = 3333.333
D(22,6) = 3025.21
D(22,7) = 2812.5
D(22,8) = 2666.667
D(22,9) = 2571.429
D(22,10) = 2517.483
D(22,11) = 2500

-~ D(25,3)

D(23,0)
D(23,1)
D(23,2)
D(23,3)
D(23,4)
D(23,5)
D(23,6)
D(23,7)
D(23,8)
D(23,9) =

[ AN A SO £ N NS | I |

17604.17
9184,783
6401.515
5029. 762
Loo2s
3706.14
3353.175
3106.618
2934,028
2816.667

D(23,10) = 2743.507
D(23,11) = 2708.333

D(24,0)
D(24,1)
D(24,2)
D(24,3)
D(Zl#,ll») =
D(ZLF,S) =
D(24,6)
D(24,7)
D(24, 8)
D(24,9)
D(24,10)
D(24,11) -
D(24,12)

D(25,0)
D(25,1)
D(25,2)

D(25,4)
D(25,5)
D(25,6)
D(25,7)
D(25,8)
D(25,9)
D(25,10)
D(25,11)
D(25,12)

LI | A I A}

19712.16

10266.75

7142.087
5600.045
4693.371
4106.7

3705.293
- 3422.25
3220.941
3080.025

2916

21982.15
J11430.72
7938
6212.348
5195.782
4536
L4o82.4
3760.105
3528

3361.976

=3247. 364
=3175.2
=3140.308

2986.691
129334357
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D(26,0) = 24420.15
- D(26,1) = 12679.69
D(26,2) = 8791.253
D(26,3) = 6868.167
D(26,4) = 5733.426
D(26,5) = 4995.03
D(26,6) = L4u485.333
D(26,7) = 4120.9
D(26,8) = 3855.813
D(26,9) = 3663.022
D(26,10) = 3525.904
D(26,11) = 34354,083
D(26,12) = 3381.251
D(26,13) = 3364
D(27,0) = 27032.1h4
D(27,1) = 14016.67
D(27,2) = 9703.846
D(27,3) = 7569
D(27,4) = 6307.5
D(27,5) = 5484.783
D(27,6) = 4914.935
D(27,7) = 4505.357
D(27,8) = 4205
D(2799) = 39830684

D(27,10) =3822.727
D(27,11) =3710.294

D(27,12) =3638.942

D(27,13) =3604.286

D(28,0) = 29824.14
D(28,1) = 154kk4, 6k
D(28,2) = 10677.78
D(28,3) = 8316.346
D(28,4) = 6919.2
D(28,5) = 6006.25

D(28,6) = 5372.05

D(28,7) = 4914.205

D(28,8) = 4576.19
D(28 9) = 4324.5

D(28 10) = 4138.277
D(28 11) = 4004.167
D(28 12) = 3913.575
D(28 13) = 3861.161
D(28,14) = 384 '

D(29,0) = 32802.13
D(29,1) = 16966.62
D(29,2) = 11715.05
D(29,3) = 9111.704
D(29,4) = 7569.723
D(29,5) = 6560.427
D(29,6) = 5857.524
D(29,7) = 5348.174

D(29,8) = 4970.02
D(29,9) = 4686.019
D(29,10) = 4473,018
D(29,11) = 4316.07
D(29,12) = 4205.402

D(29,13) - L134,723

D(29,14) = 4100.267
D(30,0) = 35972.13
D(30,1) = 18585.60
D(30,2) = 12817.66
D(30,3) = 9956.571
D(30,4) = 8260.267
D(30,5) = 7148.308
D(30,6) = 6372.206
D(30,7) = 5808
D(30,8) = 5387.13
D(30,9) = 5068.8
D(30,10) = 4827.429

D(30,12)= 4514,.721
D(30,13)= 4425.143
D(30,1“)=:h373.082

'D(30,15)= 4356

D(31,0) = 39340.13
D(31,1) = 20304.58
D(31,2) = 13987.60
D(31,3) = 10852.45
D(31,4) = 8992.029
D(31,5) = 7770.889
D(31,6) = 6916.945

D(31,7) = 6294.42
D(321,8) = 5828.167
D(31,9) = 5473.409
D(31,10) = 5202
D(31,11) = 4995.571
D(31,12) = 4841,862
D(31,13) = 4732.647
D(31,14) = 4662.533
D(31 15) = 4628.25

D(32,0) = L2912.12
D(32,1) = 22126.56
D(32,2) = 15226.88
bD{32,3) = 11800.83
D(32,4) = 9766.207
D(32,5) = 8429.167
D(32,6) = 7492.593
D(32,7) = 6808.173
D(32,8) = 6293.778
D(32,9) = 5900.417
D(32,10)= 5597.233
D(32,11)= 5364.015
D(32,12)= 5187.179
D(32,13)= 5057.5
D(32,14)= 4968.772
D(32,15) = 4917.014
D(32,16)= 4900
D(33,0) = 46694,12
D(33,1) = 2405k4.55
D(33,2) = 16537.50
D(33'3) = 12803023
D(33,4) = 10584
D(33,5) = 9124.138
D(33,6) = 8100
D(33,7) = 7350
D(33,8) = 6784.615
D(33,9) = 6350.4
D(33,10)= 6013.636

" D(33,11)= 5752.174

D(33,12)= 5551.049
D(33,13)= 5400
D(33,14)= 5292
D(33,15)= 5222.368
D(33,16)= 5188.235

- D(34,0) = 50692.11
D(34,1) = 26091.53
D(34,2) = 1792.45
D(34,3) = 13861.12
D(34,4) = 11446,61
-D(34,5) = 9856.8
D(34,6) = 8740.02
D(34,7) = 7920.643
D(34,8) = 7301.333

n(3h 9) = 6823,938
D(34,10) = 6451.72k
D(Bh,11)= 6160.5
D(34,12) = 5933.859
D(34,13) = 5760.467
D(34,14) = 5632.457
D(}"", 15) = 55’4-‘}.105
Dé}‘i,l6) = 5492,954

D(34,17) = 5476
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http:22126.56
http:16966.62
http:42912.12
http:32802.13
http:10677.78
http:15444.64
http:29824.14
http:14016.67
http:27032.14
http:12679.69
http:24420.15

D(35,0)

= 54912.11
‘D(35,1) = 28240.51
D(35,2) = 19380.75
D(35,3) = 14976.03
D(35,4) = 12355.22
D(35,5) = 10628.15
D(35,6) = 9413.505
D(35,7) = 8520.845
D(35,8) = 734,587
D(35,9) = 7321.615
D(35,10)= 6912.014
D(35111)= 65890h53
D(35,12)= 6336.013
D(35,13)= 6139.2k2
D(35,14)= 5990.412
D(35,15)= 5883.44
D(35,16)= 5814.22h
D(35,17)= 5780.222
D(36,0) = 59360.11
D(36,1) = 30504.50
D(36,2) = 20917.37
D(36,3) = 16149.Lk4
D(36,4) = 13311.05
D(36,5) = 11439,19
D(36,6) = 10121.31
D(36,7) = 9151.35
D(36,8) = 8415.034
D(36,9) = 7844.014
D(36,10)= 7395.03

D(36,11)= 7039.5
p(36,12)= 6757.92
D(36,13)= 6536.679
D(36,14)= 6366.156
D(36,15)= 6239.557
D(36,16)= 6152.168
D(36,17)= 6100.9
D(36,18)= 6084

D(37,0) = 64042.10
D(37,1) = 32886.49
D(37,2) = 22533.33
D(37,3) = 17382.86
D(37,4) = 14315.29
D(37,5) = 12290.91
D(37,6) = 10864.29
D(}?y?) = 9812‘903
D(37,8) = 9013.333
D(37,9) = 8391.72k
D(37,10)= 7901.299
D(37,11)= 7511.111
D(37,12)= 7200
D(37,13)= 6953.143
D(37,14)= 6760
D(37,15)= 6613.043
D(37,16)= 6506.952
D(37,17)= 6438.095
D(37,18)= 6404.21
D(38,0) = 68964.10
D(38,1) = 35389.47
D(38,2) = 24230.63
D(38,3) = 18677.78
D(38,4) = 15369.14
D(38,5) = 13184.31
D(38,6) = 11643.29
D(38,7) = 10506.25
D(38,8) = 9640.143
D(38,9) = 8965.333
D(38,10)= 8431.348
D(38,11)= 8004.762

D(38,12)= 7662.678
D(38,13)= 7389.011
D(38’14)= 71720267
D(38,15)= 7004.167
D(38,16)= 6878.772
D(38,17)= 6791.919

D(38,18)= 6740.852

D(38,19)= 672k

D(39,0) = 74132.10
D(39,1) = 38016.46
nN(39,2) = 26011.26
D(39,3) = 20035.70
D(39,4) = 16473,80
- D(39,6) = 12459.18
D(39,7) = 11232.14
D(39,8) = 10296.12
D(39,9) = 9565.432
D(39,10)= 8985.709
D(39,11)= 8520.931
D(39,12)= 8146.385
D(39,13)= 7344.667
D(39,14)= 7603.292
D(39,15)= 7413.21
D(39,16)= 7267.853
D(39,17)= 7162.522
D(39,18)= 7093.981
D(39g19)= 706002
D(k0,0) = 79552.10
D(40,1) = 40770.45
D(ko,2) = 27877.23
D(40,3) = 21458.13
p(4o,b4) = 17630.47
p(40,5) =.15100.17
D(40,6) = 13312.80
p(40,7) = 11991.31
Diho,s) = 10981.94
DY40,9) = 10192.61
D(40,10)= 9564.915
D(40,11)= 9060.1
D(40,12)= 8651.554

D(40,13)= 8320.5
D(40,14)= 8053.422
D(%40,15)= 7840.471
D(40,16)= 7674.438
DEA0,17)= 7550.083
Dl40,18)= 7463.698
D(40,19)= 7412.809
D(40,20)= 7396

7


http:10192.61
http:10981.94
http:13312.80
http:15100.17
http:17630.47
http:21458.13
http:27877.23
http:40770.45
http:79552.10
http:10296.12
http:11232.14
http:12459.18
http:20035.70
http:26011.26
http:38016.46
http:7l�l32.10
http:10506.25
http:11643.29
http:13184.31
http:15369.14
http:18677.78
http:24230.63
http:35389.47
http:68964.10
http:10864.29
http:12290.91
http:14315.29
http:17382.86
http:22533.33
http:32886.49
http:64()1+~.10
http:10121.31
http:11439.19
http:13311.05
http:16149.44
http:20917.37
http:30504.50
http:59360.11
http:10628.15
http:14976.03
http:19380.75
http:2821�0.51
http:54912.11

D(41,0) = 85230.09
D(41,1) = 4365h4.44
D(41,2) = 29830.53
D(41,3) = 22946.56
D(41,4) = 18840.34
- D(M1,5) = 16124.61
- D(41,6) = 14205.02
D(41,7) = 12784.51
D(41,8) = 11698.25
D(41,9) = 10847.47
D(41,10)= 10169.50
D(41,11)= 9622.753
D(41,12)= 9178.626
- D(41,13)= 8816.906
D(41,14)= 8523.009
D(41,15)= 8286.259
D(41,16)= 8098.787
D(41,17)= 7954.809
D(41,18)= 7850.14
D(41,19)= 7781.878
D(41,20)= 7748.19
D(42,0) = 91172.09
D(42,1) = 46671.43
D(k2,2) = 31873.17
D(42,3) = 24502.50
‘D(42,4) = 20104.62
D(42,5) = 17194.74
D(42,6) = 15136.68
D(L42,7) = 13612.50
" p(42,8) = 12445.71
D(42,9) = 11530.59
D(42,10)= 10800
D(42,11)= 10209.38
D(42,12)= 9728.04
D(42,13)= 9334,286
D(k2,14)= 9012.414

_D243,3)

- D(43,8)

D(44,0)

D(42,15)= 8750.893
D(42,16)= 8541.176
D(42,17)= 8376.923
D(42,18)= 8253.474
D(42,19)= 8167.5
D(42,20)= 8116.77
D(42,21)= 8100

D(43,0)
D(43,1)
D(43,2)

D\43 4)
D(43,5)
D(43,6)
D(43,7)

D(43,9)
D(43,10) =
D(43,11) =
D(43,12)=
D(43,13) =
D(43,14) =
D(43,15) =
D(43,16) =

D(43,21)=

D(4k4,1)
D(44,2)
D(l4, 3)
D(44,4)
D(44,5)
D(44, 6)
D(44,7)
D(44,8)
D(44,9)
D(44,10)=
D(44,11)=
D(4h4,12)=
D(L4k,13)=
D(4b,1h)=
D(44,15)=

97384.09
Lo824 42
34007.14
26127.44
21424, 50
18311.54
16108.65
14476, 01
13225

12242,57
11456.95
10820.45
10300, 24
9873, 041
9522

9234 .698
9001.891

8816.667

8673.887
8569.8

8501. 786
8468.182

10387é.1»

53116.41
36234.45
27822.88
22801.19
19476.02
17121.77
15375.80
14036.77
12984,01
12140.89
11456, 48
10895.67
10433.58
10052. 14
9738.008

vD(h6 8)

D(45,0) - 110642.1
D(45,1) = 56550.40
D(45,2) - 38557.09
D(45,3) - 29590.33
D(L45,4) - 24235,89.
D(45,5) = 20689.17

- D(45,6) = 18176.91

D(hs 7) = 16312.62

D(45,8) = 14881.68

D(h5,9)= 13755.50

D(45,10)% 12852, %6

D(45,11)%k 12117.94
D(45,12) 11514.79
D(45,13)% 11016.31
D(45,14) 10603.20
D(45,15) 10261.16
D(45,16) 9979.482
D(45,17): 9750.069
D(45,18) 9566.797
D(45,19) 9425.067
D(45,20)% 9321.494
D(45,21) 9253,702
D(45,22) 9220.174

D(46,0)
D(46,1)
D(46,2)
D(hs '3)
D(46. o)
p(k6, »5)
D(46. ,6)
D(h6 ?7)

117700.1

%0977.07
31431.27

21952

19274.93
17287.20
15760.41
14557.64

D(h6 ,9)

60129.39

25729.79 .

D(4k4,16)= 9481.225
D(4k4,17)= 9274.294
D(44,18)= 9111.587
D(44,19)= 8988.931
D(4h4,20)= 8903.322
D(4h,21)= 8852.735
D(kk,22)= 8836

D(hs 10)=-
- D46, y11)=

D(h6 12)=
D(h6 s13)=
D(hs 1h4)=-
D(hs ,15) =
D(46,16)=
D(46,17)=
D(us 18)=
D(46 »19)=

13591.90
12805.33
12158.03
11621.65
11175.56
10804.50
10496,97

1024h4,27 |

10039.75
9878. 4

D(b6 ,20)= 9756.444
D46, ,21)= 9671.161
D(46. ,22)= 9620.702
D(46. s23)= 9604
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http:10039.75
http:10244.27
http:lo496.97
http:l08o4.50
http:D(46,14)::11175.56
http:11621.65
http:12158.03
http:12805.33
http:D(46,lO):�l3591.90
http:14557.64
http:15760.41
http:17287.20
http:19274.93
http:25729.79
http:31431.27
http:40977.07
http:60129.39
http:10261.16
http:10603.20
http:11016.31
http:11514.79
http:12117.94
http:12852.36
http:14881.68
http:16312.62
http:18176.91
http:20689.17
http:24235.89
http:29590.33
http:38557.09
http:56550.40
http:10052.14
http:10433.58
http:10895.67
http:11456.48
http:12140.89
http:12984.0l
http:14036.77
http:15375.Bo
http:17121.77
http:19476.02
http:228ol.19
http:27822.88
http:36234.45
http:53116.41
http:10300.24
http:10820.45
http:11456.95
http:12242.57
http:14476.0l
http:16108.65
http:18311.54
http:21424.50
http:26127.44
http:34007.14
http:49824.42
http:97381+.09
http:10209.38
http:11530.59
http:12445.71
http:13612.50
http:15136.68
http:17194.74
http:20104.62
http:24502.50
http:31873.17
http:46671.43
http:91172.09
http:10169.50
http:1081+7.47
http:11698.25
http:12784.51
http:14205.02
http:16124.61
http:18840.34
http:22946.56
http:29830.53
http:43654.44
http:85230.09

D(47,0)
D(47,1)
D(L47,2)
D(47,3)
D(47,4)
D(47,5)
D(47,6)
p(47,7)
D(47,8)
D(h7§9)
D(47,10)
D(47,11)=
D(47,12)=
- D(47,13)=
D(47,14)=

[ | | ¢ SN (Y [ SO | N | N { I 1]

o
~
£
o
-

N
~

g u nnun N

D(48,10)
D(48,11)=
D(48,12)=
D(48,13)=
D(48,14)=
D(48,15)=
D(48,16)=
D(48,17)=
D(48,18)=
D(48919)=
D(48,20)=
D(48,21)=
D(48,22)=
D(48,23)=
D48, 24)=

i

125052.1
63856.38
43496.38
33347,22
27284.09
23265.50
20416.67
18300. 30
16673.61
15391.03
14360.05
13519.14
12825, 85
12250 -

11769.61

= 113%68.37

11034.01
10757.17
10530.70

-10349,14

10208.33
10105.22
10037.63
10004.17

132704.1
67734.37
46117.02
35339.67
23900

24630.68
21602.99
19352.68
17621.95

16256.25 -

15157. 34
14259.87
13518.71
12901.79
12385.71
11953.13
11590.91
11289.06
11039. 90
10837.50
10677.34
10556.01
10471.01
10420.67
10404

D(49,0)
D(49,1)
D(49,2)
D(49, 3)
D(k9, k)
D(49,5)
D(49,6)
D(49,7)
D(%49,8)
D(49,9)
D(49,10)
D(49,11)=
D(49,12)=
D(49,13)=
D(49,14)=
D(49,15)=
D(49,16)=
D(49,17)=
D(49,18)=
D(49,19)=
p(49, 20)=
D(49,21)=
D(49,22)=
D(49,23)=
D(49,24)=

1L N L | A T (O | SO { I | B 1

140662.1
71766.37
48841

37410.13
30578.71
26048.53
22834.75
20l445,07
18606.10
17153.91
15984 .33
15028

14237.05

13577.42
13024, 27
12559.11
12168

11840.24

11567.61

11343.72
11163.66
11023.67
10920.97
10853.56
10820.16

D(50,23)=
D(50,24)=
D(50’25)=

148932.1
75955. 36
51670. 31
39560.08
32%21.43
27520.06
2b112.81
21578, 23
19626.71
18034,61
16841.54
15824.03
14981.33
14277.32
13685.65
13186.69
12765.61
12411.01
12114.09
11868.02
11667.49
11508. 39
11387.61
11302, 88
11252.65
11236
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http:11252.65
http:11302.88
http:11387.61
http:11508.39
http:11667.49
http:11868.02
http:12114.09
http:12411.01
http:12765.61
http:13186.69
http:13685.65
http:14277.32
http:14981.33
http:15824.03
http:16841.51
http:19626.71
http:21578.23
http:24112.81
http:27520.06
http:32321.43
http:39560.08
http:51670.31
http:75955.36
http:10820.16
http:10853.56
http:10920.97
http:11023.67
http:11163.66
http:11343.72
http:11567.61
http:11840.24
http:12559.11
http:13024.27
http:13577.42
http:14237.05
http:15984.33
http:201~45.07
http:26048.53
http:30578.71
http:37410.13
http:71766.37
http:lo420.67
http:10471.0l
http:10556.0l
http:10837.50
http:11289.06
http:11590.91
http:11953.13
http:12385.71
http:12901.79
http:13518.71
http:14259.87
http:15157.34
http:16256.25
http:17621.95
http:19352.68
http:21602.99
http:24630.68
http:35339.67
http:46117.02
http:67734.37
http:10004.17
http:10037.63
http:10105.22
http:10208.33
http:10349.14
http:10530.70
http:10757.17
http:11034.0l
http:11368.37
http:11769.61
http:12825.85
http:13519.14
http:14360.05
http:15391.03
http:16673.hl
http:18300.30
http:20416.67
http:23265.50
http:27284.09
http:33347.22
http:43496.38
http:63856.38

Appendix

Optimal Sampling Plans for L(w,a) = k(w-a)?

Plan's Size

W N = O

&

10

11

TABLE B

Values of k

o<k§36
36< k£72
72 ¢ k £100

100< k £133.333
133.333¢ k<150

150 ¢ k €196
196 < k & 220.5
220.5 ¢ k £ 225
225< k £261.333

261.333< k €313,6
313.6 < k £ 324

Bah Lk $345.6

345,6 ¢ k4 352.8
352.8 <k €405

LosS< k& 432
432 ¢ k< 450
450< k < 484

484 < k £504,167

504,167 < k £ 522,667
522.667 < k £ 576,191
576.191< k¢ 578,571

- 578,571 < k< 580.8

622.286 ¢ k¢ 676

676 < k% 695.314

8o



12

13

W

15

16

17

18

695.31h4 L k £ 726
726 < k £ 740.571
740.571 € k £756.25
756.25 < k € 760.5

- 760.5< k £ 788,667

788.667 < k £ 828.1
828.1 < k £ 900

900< k £901.333
901.333< k £918.75
918.75 <k £920.111
920.111 < k £968

968 ¢ k £980

980< k £1012.5
1012.5 < k £1028.571

1028.571 < k £ 1066.667
1066.667 < k ¢ 1102.5
1102.5 < k €1104.133
1104.133 < k €1152
1152 <k $£1156

1156 < k £1174.349

1174.349 ¢ k £1216.8
1216.8< k € 1233.067
1233.067< k £1300.5

1300.5< k £1309.091
1309.091 < k £ 1336.364
1336.364 < k £ 1337.657
1337.657 < k & 1344 444
1344, 440 < k £ 1345.164
1345,164 < k < 1418.727
1418.727 < k < 1444

1h4h4 < k € 1462.05
1462.05 < k £1505.636

1505.636 < k £1519.013

1519.013 < k ¢ 1541.333
1541.333 < k £ 1560.6
1560.6 < k £1600

1600 < k & 1604, bhlh

1604, bhl C k £1624.5
1624.5 < k £ 1640.909
1640.909 < k £ 1719,048
1719.048 ¢ k €1742.4
17424 < k £ 1764
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19

20

2l

22

23

2k

1764 < ¥ £1781.818
1781.818 < k£ 1799.446
1799, 446 < k < 1800.692
1800.692 < k £1837.5
1837.5< k< 1851.282
1851.282<¢ k £ 1897.026

1897.026 < k ¢ 1938.462

1938.462<¢ k < 1940. 4

1940.4 < k € 1976.333
1976.333 < k& 2052.346
2052.346 < k £ 2062.857

2062.857 « k¢ 2088,643

2088.643 < k £ 2100
2100<¢ k£ 2116

2116 ¢ k £2133,633
2133.633< k ¢ 2178
2178 < k £ 2188. 342
2188.342 < k £ 2212, 364
2212.364 < k £ 2215, 383
2215.385< k¢ 2229.429
2229.429 ¢ k £ 2286.036
2286.036 < k ¢« 2308, 364

2308, 364 < k £ 2343.877
2343,877 ¢ k4 2352

T 2352< k< 2371.6

2371.6 < k £ 2406.667
2406.667 < k < 2418,286
2418.286 < k< 2438.438

- 2438.438 < k¢ 2500

| 2500< k & 2517, 483

2517.483 ¢ k € 2539,2
2539.2< k £ 2571.429
2571.429 ¢ k € 2599.2
2599,2 < k £ 2642,286
2642.286 ¢ k € 2666.667
2666.667 £ k & 2667.042
2667.042 < k& 2668.05

2668.05 < k £ 2708.333

2708.333 ¢ k £2720.571
2720.571 ¢ k £ 2743,507
2743.507 < k & 2756.25
2756425 < k £ 2760.333
2760.333 ¢ k £ 2812.5
2812.5 ¢ k €« 2816.667
2816.667 ¢ k < 2916
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25

26

27

28

29

2916 ¢ k £ 2933, 357

29%3.357 < k< 2934,028
2934.028 < k ¢ 2986.691
2986.691< k £ 2987.294

2987.294 < k £ 3008.333

3008.333< k < 3012.188
3012.188 < k ¢ 3025.21
3025.21 < k < 3080.025
3080.025 < k ¢ 3106.618
3106.618< k< 3121.2
3121.2< k €3138.882

3138.882 < k ¢ 3140.308

3140.308 < k £3175.2
3175.2< k € 3220. 941
3220.941 < k <3247, 364
3247.364 < k £ 3333333

- 3333.333< k £3353.175

3353.175 < k £ 3361.976

3361.976 < k ¢ 3364

3364 < k €3381.251
3381.251 < k £3385.6
3386.5< k £ 3392, 308

3392.308 < k £ 3422.25
3422,25 ¢ k £ 3434,083

3434.083<¢ k & 3458.824
" 3458,824 < k & 3525.904

3525.904< k< 3528
3528 < k £ 3556.056
3556.056 < k ¢ 3604.286

| 3604 ,285 ¢ k £3638.942

3638.942 < k & 3655.125
3655.125< k ¢ 3663.022

3663.022 < k & 3705.293

3705.293 < k & 3706.14
3706.14 < k £ 3710.294
3710.29% < k < 3760.105
3760.105 < k < 3789.474

27289.474 < k 4 3822,727

3822.727 < k3844

3844 ¢ k £ 3855,813

3855.813 ¢ k ¢ 3861.161
3861.161< k € 3913.575
3913.575< k & 3952,667
3952.667< k ¢ 3983.684

3983.684 < k < 4004, 167

Look.167< k < 4009.263
4009.263 < k < 4082.4
Lo82.4 < k <« 4100.267
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31

32

33

4100.267 ¢ k $4106.7
4106.7< k £ 4114.286
4114%,286 < k ¢ 4120.9
4120.9< k£ 4134,723
4134,723 < k£ 4138.277
4138,277< k £4205
4205 < k £ 4205, 402
4205.402 ¢ k £ 4225
b225 ¢ k €4247.059
bok7,059 ¢ k $¢4316.07
4316.07¢< k £ 4324,5
4324,5< k £4356

4356 < k $4373,082
4273,082< k < 4h25,.143
b425,1473 <k <4473,018
L473,018 < k < 4485.333
4485,333¢ k< 4491,86
L491.86 < k <4500
4500< k £ 4505, 357
4505.357 ¢ k ¢ 4514.721
h514,721< k £4536
45326 <k £ 4576.19
4576,19¢ k <4628.25

4628.25 ¢ k € L6L6. bt

Lo, < k < 4662.533

4686.019 < k ¢ 4693.371
4693.371 < k¢ 732,647
4732,647 <« k <4827.429

- 4827.429 <« k « 4841.862

4841.862 ¢ k ¢ 4900 -

4900 ¢ k < 4914, 205

4914 ,205 < k <4914.935

4914,935 ¢ k < 4917,.014
4917.01h < k £ 4932,267

- 4932,267 ¢ k€ 4968,.772

4968.772 < k ¢ 4970.02
4970.02 < k £ 4995.03
4995,03% < k ¢ 4995,571
4995,571 ¢ k ¢ 5029, 762
5029.762 < k € 5057.5
5057.5 < k ¢ 5068,8
5068.8 < k &€ 5078.4
5078.4 < k ¢ 5187.179
5187.179 < k ¢ 5188.235

. 5188.235¢ k £ 5195.782

8l


http:4693.371<k{.4732.64

35

37

5195.782 < k £ 5202
5202 ¢ k £ 5222.368
5222.368 < k £ 5292
5292 < k €5348.174
S348,174 < k ¢ 5364,015
5364.015 < k £ 5372.05
5372.05 < k £5387.13
5387.13 < k £5400

5400 < k £5473.409
5473,409 ¢ k ¢ 5476

5476 ¢ k € 5484,783
5484,783 ¢ k ¢ 5492,952
5492.952 < k & 5544 .45
5544 ,45 < k € 5551.049
5551.049 < k £ 5597.233
5597.233 < k £ 5600.045
5600.045 < k £ 5616.947
5616.947 < k € 5632.457
5632.457< k ¢ 5714.286
5714.286 ¢ k ¢ 5733.426
5733426 ¢ k ¢ 5752,174

5752.174 < k € 5760.467

5760.467 < k € 5780.222
5780.222 < k ¢ 5808

. 5808 ¢k ¢ 5814,224
- 5814.224 ¢ k¢ 5828.167

5828.167 < k £ 5852.25
5852.25 < k ¢ 5857.524
5857.524 ¢ k ¢ 5883.4k4
5883.44 < k £5900.417
5900.417 < k ¢ 5933, 859

5933.859 < k ¢ 5990.412

5990,412 < k « 6006.25
6006,25 ¢ k £6013.636
6013.636 ¢ k < 6084

6084 < k £ 6100.9

- 6100.9< k £ 6139.242
6139.242 < k £ 6152.168 |

6152.168 < k< 6160,5
6160.6 < k £ 6212.348
6212.348 < k £ 6239,557
6239.557 < k £ 6293,778
6293,778 < k £ 6294.42
6294 .42 < k € 6307.5

- 6307.5< k £ 6336,013

6336.013 < k £ 6350, 4
6350.4 < k £ 6366.156

85


http:k!:5852.25

38

-39

ko

41 -

6366.156 ¢ k £ 6372.206
6372.206 < k ¢ 6400.9
61400.9 ¢ k ¢ 6401.515
6401.515 < k £ 6404.21

6404, 21 ¢ k £ 6438.095
6438.095 ¢ k £ 6451.724
6451.724 < k £ 6506.952
6506.952 ¢ k £ 6536.679
6536.679 < k & 6560.427
6560.427 < k ¢ 6589.453
6589.453 ¢ k £ 6613.043
6613.043 ¢ k ¢ 6724

. 67244 ¢ k £ 6740, 852

6740.852 < k £6757.92
6757.92 < k £ 6760

6760 < k £6784.615
6784,615 < k £6791.919
6791.919 < k £6803.173
6808.173 < k £6823,938
6823,938 < k £ 6868.167
6868.167< k £ 6878.772

6878.772 < k ¢ 6880.235

6880.235< k¢ 6912,014

6912,014 < k € 6916.945

6916.945 < k € 6919.2

©6919.2¢ k ¢ 6953.143

6953.143 < k € 7004,167
7004.167 < k € 7039.5

2060.2 < k £7093.981
7093.981 < k ¢ 7142.087

. 7142,087 < k ¢ 7148.308
"7148,308 € k £ 7162.522

7162.522 < k & 7172.267
7172.267 < k € 7200
7200< k €¢7254.857

- 7254,867 < k ¢ 7267.853

7267.853 < k ¢ 7301.333
7301.333 < k ¢ 7321.615
7321.615¢ k € 7350
7350 < k £7389.011
7389,011 < k & 7395,03
7395.03 < k € 7396

7396 < k ¢7412,809

- 7412.809 < k ¢ 7413.21
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7413,21 < k € 7463.698
7463.698 < k € 7492.593
7492.593< k< 7511.111
7511.111 < k £ 7550.083
7550.083 < k £7569
7569 < k £ 7569.723
7569.723 < k € 7603.292
7603.292 < k £ 7662.678
7662.678 < k ¢ 7674. 438
7674, 438 < k £7748.19

7748,19 ¢ k £7770.889"
7770.889 ¢ k ¢ 7781.878
7781.878 < k € 7840.471
7840.471 ¢ k < 7844.014
72844 ,014 < k & P044.587
7844 ,587 < k 4 7844.667
72844 ,667< k 4 7850.14

7850.14 < k € 7901.299

7901.299 < k € 7920.643

7920.643 < k € 7938
7938 < k ¢7954.809
7954 .809 < k £ 8004.762
8004.762 < k ¢ 8022.222
8022.,222 ¢ k & 8053.422
8053.422 < k & 8098.787
8098.787 ¢ k & 8100

8100¢ k £ 8116.77
8116.77< k <8146.385
8146.385 < k £8167.5
8167.5 < k «8181.818

8181.818 < k & 8253, 47k

8253.474 < k € 8260.267

- 8260.267 ¢ k ¢ 8286.259.

8286.259 ¢ k ¢ 8316.346
8316.346 < k £ 8320.5
8320.5 < k £ 8376.923
8376.923 < k ¢ 8391.724

- 8391.724 < k € 8415.034
8415.034 < k £ 8429,167

8429.167 < k £ 8431,348
8431.348 < k £8468.182

8468,182 <« k £ 8501.786
8501.786 < k « 8520.845
8520. 845 < k £ 8520.931
8520.931 ¢ k 4 8523.009

- 8523.009 ¢ k & 8541.176

8541.176 <k #8569.8
8569.8 < k «8651.554
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8651.554 < k ¢ 8673.887
8673.887 < k ¢ 8740.02
8740.02 ¢ k £8750.893

8750.8953 < k £8791.253 -

8791.253 ¢ k £ 8816.667
8816.667 < k ©8816.906
8816.906 ¢ k <8836

8836 < k £8852.735
8852.735 < k £ 8903.322
8903.322 < k £ 8965.333
8965.333 < k ¢£8985.709
8985.709 < k & 8988.931
8988.931 < k £8992.029
8992.029 < k £ 9001. 891
9001, 891 < k £ 9012. 414
9012.414 < k £ 9013.333
9013.333 < k £9060.1
9060.1 < k £ 9111.587
9111.587 < k £9111.704
9111,704 < k £ 9124.138
9124.138 < k € 9151.35
9151.35 < k £9178.626
9178.626 < x £ 9184.783
9184.783 < k £ 9220.174

9220.17% <k ¢ 9234.698

9234,698 < k £ 9253.702
9253,702 < k € 9274 .,294
9274,294 < k €9284,21
9284,21 < k £9321.494

9321,494 <k £9334,286°

9334,286 ¢ k £ 6413.505

. 9413,505 < k ¢ 9425.067.

9425.069 < k €9481.225
9481,225 < k £ 9522

.9522< k £ 9564,915

9564.915 ¢ k £ 9565.432

19565,432 < k £ 9566.797

9566.797 < k < 9604
9604 < k £ 9620, 702

. 9620.702 < k £ 9622.753

9622.753 < k € 9640.143
9640.143 ¢ k £9671.161

9671.161< k & 9703, 846

9703. 846 < k « 9728.04
9728.04 <k £9738.008
9738.008 < k £9750.069
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9750.069 ¢ k £ 9756. 444
9756. 44k < k € 9766.207

19766.207 < k ¢ 9812.903

9812.90% < k £ 9856.8
9856.8 < k £9873.041
9873.041 ¢ k ¢ 9878.4
9878.4¢ k ¢ 9956,571
9956.571 < k £ 9979. 482
9979,482 ¢ k ¢ 10004.17

10004.17 < k £ 10037.63
10037.63 < k £ 10039.75
10039.75< k ¢ 10052. 14
10052.14 < k € 10105.22
10105.22 ¢ k £10121.31
10121.31 < k £ 10169.50
10169.50< k £ 10192.61
10192.61 ¢ k £10208. 33
10208.33 ¢ k £ 10209.38
10209.38 < k « 10244, 27
10244,27 ¢ k £10261.16
10261.16 € k & 10266.675
10266.675 ¢ k ¢ 10296.12
10296.12 < k £ 10300. 24
10300.24 ¢ k £ 10349.14
10349.14 ¢ k ¢ 10404

1040k ¢ k € 10420.67

10420.67 ¢ k £ 10433.58
10433.58 < k ¢ 10471.01
10471.01 4 k € 10496.97
10496.97 < k £ 10506.25
10506. 25 ¢ k £10530.70

10530.70 < k £ 10556.01 °

10556.01 < k ¢ 10584
10584 < k £10603.20

10603.20 < k ¢ 10628.15 -

10628.15 <€ k & 10672, 20
10672.20 < k 4 10677. 34
10677.34 < k £10677.78
10677.78 ¢k & 10757.17
10757.17< k £10800
10800 ¢k ¢ 10804.50
10804.50 ¢ k £10820.16

10820.16 < k € 10820.45

10820.45 ¢ k € 10837.50 -

10837.50 < k « 10847.47
10847.47 ¢ k ¢10852.45

89


http:10847.47
http:10837.50
http:410820.45
http:10820.16
http:10820.16
http:10757.17
http:10757.17
http:10677.34
http:10672.20
http:106?2.20
http:10628.15
http:10628.15
http:10556.01
http:lo496.97
http:10471.01
http:lo471.0l
http:10433.58
http:lo433.58
http:1o420.67
http:10420.67
http:10349.14
http:10349.14
http:10300.24
http:10296.12
http:10296.12
http:10261.16
http:10261.16
http:10244.27
http:10192.61
http:10169.50
http:10169.50
http:10121.31
http:10121.31
http:10105.22
http:10052.14<:k~10105.22
http:10052.14
http:10037.63
http:1ooo4.17

10852.45 ¢ k £10853.56
1085%,.56 < k ¢ 10864,29
10864.29 ¢ k £10895.67
10895,67 € k £ 10920.97
10920.97 & k < 10981.94
10981.94 < k £11016.31
11016.31 ¢ k £11023%.67
11023.67< k £11034.01
11034.01 < k £ 11039.90
11039.90 < k £11163.66
11163.66 < k £11175.56
11175.56 < k £11232,14
11232.14 ¢ k £11236
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FIGURES (Optimal Sampling Plans)
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