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1. Introduction

The normal distribution with equal mean and variance arises in many applied ar-
eas: collective theory of risk (Ammeter (1962)); contracts and supply assurance
in the UK health care market (Fenn et al. (1994)); estimation of individual asym-
metry (Dongen (1999)); the effect of patenting on the networks and connections
of academic scientists (Forti et al. (2007)); gene expression data biclustering sta-
bility (Badea and Tilivea (2008)); first passage percolation on random graphs
with finite mean degrees (Bhamidi et al. (2010)); postmortem body cooling
(Kaliszan (2011)); detection of ADC clipping, quantization noise, and amplifier
saturation in surface electromyography (Fraser et al. (2012)); rainfall frequency
analysis (E. S. Chung (2013)); finding discriminatory genes (Khan and Greiner
(2013)); impact of pacemaker failover configuration on mean time to recovery for
small cloud clusters (Benz and Bohnert (2014)); interaction networks underlying
the minority game (Caridi (2014)); to mention just a few.

This paper relates to one of the latest estimation problems for the normal
distribution with equal mean and variance. Let X1, X2, . . . , Xn be independent
and identically distributed observations from a normal distribution with both
the mean and variance equal to θ. Mukhopadhyay and Cicconetti (2004) de-
rived (among other things) the MLE and the UMVUE of θ and discussed their
application to purely sequential and two-stage bounded risk estimation of θ. The
MLE of θ was given by

θ̂1n =

√
Tn +

1

4
−

1

2
, (1)

where

Tn =
1

n

n∑

i=1

X2
i .

1 Corresponding author. E-mail: mbbsssn2@manchester.ac.uk
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The UMVUE of θ was given by

θ̂5n = b(u, n)n−1/2I(u, n), (2)

where

I(u, n) =

∫ √
u

−
√
u

y exp
(√

ny
) (

u− y2
)(n−3)/2

dy, (3)

b(u, n) =
1

√

πΓ ((n− 1)/2) q(u, n)
, (4)

q(u, n) =

∞∑

k=0

un/2+k−1nk

22kΓ (n/2 + k) k!
(5)

and

u =

n∑

i=1

X2
i .

Mukhopadhyay and Cicconetti (2004) used the formulas given by the MLE (1)
and the UMVUE (2) for purely sequential and two-stage bounded risk estimation
of θ. Mukhopadhyay and Cicconetti (2004), however, encountered difficulties in
evaluating the UMVUE (2) and this limited the use of (2) as a sequential esti-
mator for θ. Mukhopadhyay and Cicconetti (2004) stated, for instance, that the
UMVUE (2) can be reduced to a “more closed form expression” and evaluated
“quickly and exactly” only when n is odd. Mukhopadhyay and Cicconetti (2004)
also stated that the complexity of the UMVUE (2) “increases as n increases and
quickly renders computation” of the UMVUE (2) intractable. As far as we can
see, much of the discussion in Mukhopadhyay and Cicconetti (2004) concern-
ing the evaluation of the UMVUE (2) appears to be not correct, as shown in
Sections 2 and 3. We feel that it is important that we point this out especially
since Mukhopadhyay and Cicconetti Mukhopadhyay and Cicconetti (2004) has
been cited by several other papers, see Mukhopadhyay (2006), Choi (2005), Kim
et al. (2007), Mukhopadhyay (2008), Mukhopadhyay and Bhattacharjee (2010),
Bhattacharjee and Mukhopadhyay (2011) and S. Banerjee (2016).

The aim of this paper is two folded. Firstly, we derive a much simpler
expression for the UMVUE (2). This expression turns out to be a ratio of
two modified Bessel functions of the first kind, see Section 2. Secondly, using
the derived formula, we compare the performance of the MLE (1) versus the
UMVUE (2) for purely sequential estimation of θ, see Section 3.

Various special functions are used in Sections 2 and 3. Their definitions and
detailed properties can be found in

http://functions.wolfram.com/Bessel-TypeFunctions/BesselI/,
http://functions.wolfram.com/Bessel-TypeFunctions/StruveL/,
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric0F1/,
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/.

Some of the properties in these links are used for the derivations in Section 2.
The computations for Sections 2 and 3 were performed using the R and Maple soft-

ware in a Windows 10 environment. The R version used was R 3.3.0 (R Development
Core Team (2016)). The Maple version used was Maple 2015.
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2. Simpler expression for the UMVUE (2)

Here, we would like to show that the UMVUE (2) can be reduced in terms of a well
known special function for any real number n > 1. Note that

I(u, n) =

{∫ √
u

0

y exp
(√

ny
) (

u− y
2)(n−3)/2

dy

−
∫ √

u

0

y exp
(
−
√
ny

) (
u− y

2
)(n−3)/2

dy

}

= 2

∫ √
u

0

y
(
u− y

2
)(n−3)/2

sinh
(√

ny
)
dy

=
√
πu

n/42n/2−1
n
1/2−n/4Γ

(
n− 1

2

)
In/2

(√
un

)
, (6)

where the last step follows by equation (2.4.3.11) in Prudnikov et al. (1986) and Iν(·)
denotes the modified Bessel function of the first kind of order ν defined by

Iν(x) =
∞∑

k=0

1

k!Γ (k + ν + 1)

(
x

2

)2k+ν

. (7)

The equality in (6) holds for any real number n > 1. Using the definition in (7), one
can express q(u, n) in (5) as

q(u, n) = u
n/4−1/2

n
1/2−n/42n/2−1

In/2−1

(√
un

)
. (8)

Combining (2)-(4), (6) and (8), one obtains the simple form

θ̂5n =

√
u

n

In/2

(√
un

)

In/2−1

(√
un

) . (9)

The closed form expression in (9) is not only mathematically simpler than (2) which
involves an infinite series and an integral. The closed form expression can also lead to
more efficient computation of θ̂5n in terms of computational time and computational
accuracy. In-built routines are usually based on efficient algorithms. The direct com-
putation of infinite sums or integrals is usually not so efficient and can lead to round
off errors.

There are many in-built routines for computing the modified Bessel function of the
first kind. In the R software, it can be computed using besselI. In Maple, it can be
computed using BesselI. The following code in R was used for computing the UMVUE
(9).

f=function (u,n)

{

t1=besselI(sqrt(u*n),nu=(n/2),expon.scaled=TRUE)

t2=besselI(sqrt(u*n),nu=((n/2)-1),expon.scaled=TRUE)

tt=sqrt(u/n)*t1/t2

return(tt)

}

This code was able to compute the UMVUE (9) for a wide range of values of u and
n without any computational problems. Figure 1 plots the UMVUE (9) versus n =
1, 2, . . . , 100 for a range of different values of u. The UMVUE (9) appears to be a
decreasing function of n and an increasing function of u.
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Figure 1 – θ̂5n versus n for u = 0.01 (solid line), u = 0.1 (dashed line), u = 1 (dotted
line), u = 5 (dotdash line), u = 50 (longdash line) and u = 100 (twodash line). The y

axis is in log scale.

To check the accuracy of the R code, we also computed the UMVUE (9) using
BesselI in Maple. Maple like most other algebraic manipulation packages allows for
arbitrary precision, so the accuracy of the values computed using Maple was not an
issue. These values were plotted on the same axes of Figure 1. There appears to be no
visual distinction between the values computed using Maple and R. Hence, the values
computed using the R code can be considered accurate enough.

Mukhopadhyay and Cicconetti (2004) claimed that θ̂5n can be computed much
more accurately for odd n and that the accuracy “also appears to be affected adversely
when u is either large or small”. But there is no evidence of this in Figure 1. According
to this figure, θ̂5n can be computed equally accurately for all n = 1, 2, . . . , 100 and for
a range of values of u including small u and large u.

Mukhopadhyay and Cicconetti (2004) also claimed that θ̂5n “can be evaluated
quickly and exactly based on observed data only when n is odd” and the computational
complexity of θ̂5n “increases many fold as n increases and quickly renders computation
of θ̂5n” intractable. To verify this, we plotted the central processing unit time taken
for ten thousand computations of θ̂5n versus n = 1, 2, . . . , 100 for a range of values of
u, see Figure 2. We see that the central processing unit times increase only slightly
with increasing n. There are no significant changes in the central processing unit
time between n odd and n even. There are also no significant changes in the central
processing unit time with respect to u.
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Figure 2 – Central processing unit time taken to compute θ̂5n ten thousand times
versus n for u = 0.01, 0.1, 1, 5, 50, 100.
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It is well known that Iν(·) takes an elementary form if ν is a half integer. Actually,
if ν − 1

2
is an integer then

Iν(z) = −
√

2

πz
exp

[
πi

2

(
1

2
− ν

)]{

sinh

[
πi

2

(
1

2
− ν

)
− z

]

·

[

2|ν|−1

4

]

∑

k=0

(
| ν | +2k − 1

2

)
!

(2k)!
(
| ν | −2k − 1

2

)
!(2z)2k

+cosh

[
πi

2

(
1

2
− ν

)
− z

]

·

[

2|ν|−3

4

]

∑

k=0

(
| ν | +2k + 1

2

)
!

(2k + 1)!
(
| ν | −2k − 3

2

)
!(2z)2k+1

}

, (10)

where i =
√
−1 and [x] denotes the largest integer less than or equal to x. In particular,

I−1/2(z) =

√
2

π

cosh(z)√
z

,

I1/2(z) =

√
2

π

sinh(z)√
z

,

I3/2(z) =

√
2

π

zcosh(z)− sinh(z)

z3/2
,

I5/2(z) =

√
2

π

(
z2 + 3

)
sinh(z)− 3zcosh(z)

z5/2
,

and so on. So, the UMVUE (9) reduces to an elementary form if n is a positive odd
integer.

Mukhopadhyay and Cicconetti (2004) also claimed that θ̂5n reduces to a “closed-

form expression solution for odd values of n ≥ 5”. Actually, θ̂5n reduces to a closed-form
expression for all odd values of n ≥ 1. For n = 1, 3, the UMVUE (9) reduces to

θ̂5n =
√
utanh

(√
u
)

and

θ̂5n =
1√
3

[√
ucoth

(√
u
)
− 1

]
,

respectively.
Equivalent representations for the UMVUE (9) in terms of other special functions

are

θ̂5n =

√
u

n

L−n/2

(√
un

)

L1−n/2

(√
un

) ,

θ̂5n =
u

n

0F1

(
;
n

2
+ 1;

un

4

)

0F1

(
;
n

2
;
un

4

)

and

θ̂5n =
u

n

1F1

(
n+ 1

2
;n+ 1; 2

√
un

)

1F1

(
n− 1

2
;n− 1; 2

√
un

) ,
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where Lν(·) denotes the Struve L function defined by

Lν(z) =
(z
2

)ν+1
∞∑

k=0

1

Γ

(
k +

3

2

)
Γ

(
k + ν +

3

2

)
(z
2

)2k

while 0F1 (· · · ) and 1F1 (· · · ) denote hypergeometric functions defined by

0F1(; a; z) =
∞∑

k=0

1

(a)k

z
k

k!

and

1F1(a; b; z) =

∞∑

k=0

(a)k
(b)k

z
k

k!
,

respectively, where (e)k = e(e+ 1) · · · (e+ k − 1) denotes the ascending factorial.

3. Sequential estimation of θ

Here, we compare the performance of the UMVUE (2) versus the MLE (1) for purely
sequential estimation of θ. The MLE-based and the UMVUE-based sequential esti-
mators of θ are given by (1) and (2), respectively, with the sample size n defined by

the stopping rule: the smallest integer n ≥ m such that n ≥ a∗w−12θ̂21n

(
2θ̂1n + 1

)−1

,

where a∗ is a constant and w and m are determined by the equations

w =
a
∗2θ2

(2θ + 1)n∗ (11)

and

m = 1 +

[
a
∗2θ2L

w (2θL + 1)

]
, (12)

respectively, for given n∗, θ and θL.
Mukhopadhyay and Cicconetti (2004) provided extensive tabulations of the sequen-

tial estimators given by the MLE (1) and the UMVUE (2) for various combinations
of n∗, θ and θL with a∗ = 1. For n∗ = 25 and n∗ = 35, Mukhopadhyay and Cic-
conetti argued that the MLE (1) was the better estimator of the two. For the other
values of n∗ considered, Mukhopadhyay and Cicconetti were unable to compute the
UMVUE (2). Here, we provide a more comprehensive investigation of the relative
performance of the MLE (1) versus the UMVUE (2) by using the derived formula (9).
We computed 2,000 replications of both the MLE (1) and the UMVUE (9) for each
of the following combinations: a∗ = 1, n∗ = 25, 50, 100, 200, θ = 0.1, 0.2, . . . , 1.5 and
θL = 0.01θ, 0.02θ, . . . , 0.99θ. For each set of 2,000 replications, we computed the risks
of estimation as

R1 = a
∗
Ê

[(
θ̂1n − θ

)2
]

and

R5 = a
∗
Ê

[(
θ̂5n − θ

)2
]
.

Figure 3 shows how the difference in the estimated risk, R1 − R5, varies with respect
to θL for n∗ = 25, 50, 100, 200 and θ = 0.1, 0.2, . . . , 1.5. The following function in R
was used to compute R1 −R5 for given a∗, n∗, θ and θL.
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Figure 3 – The difference in the estimated risk, R1 − R5, versus θL for θ =
0.1, 0.2, . . . , 1.5, n∗ = 25 (solid line), n∗ = 50 (dashed line), n∗ = 100 (dotted line) and
n∗ = 200 (dotdash line).
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ff=function (astar,nstar,theta,thetaL)

{

tt=astar*2*theta**2*(2*theta+1)**(-1)

w=tt/nstar

m=trunc(astar*(1/w)*2*thetaL**2*(2*thetaL+1)**(-1))+1

for (i in 1:2000)

{

x=rnorm(m,mean=theta,sd=theta**2)

tn=mean(x**2)

theta1n=sqrt(tn+0.25)-0.5

n=m

repeat

{

tt=astar*(1/w)*2*theta1n**2*(2*theta1n+1)**(-1)

if (n>=tt) break

n=n+1

x=c(x,rnorm(1,mean=theta,sd=theta**2))

tn=mean(x**2)

theta1n=sqrt(tn+0.25)-0.5

}

theta1[i]=theta1n

u=sum(x**2)

theta5[i]=sqrt(u/n)*besselI(sqrt(u*n),nu=n/2,expon.scaled=TRUE)

/besselI(sqrt(u*n),nu=n/2-1,expon.scaled=TRUE)

}

ttt=astar*mean((theta1-theta)**2)-astar*mean((theta5-theta)**2)

return(tt)

}

We can observe the following from Figure 3: the UMVUE is the better of the two
estimators for θ ≤ 1; the UMVUE performs relatively better as θ increases to 1; the
UMVUE performs relatively better as θL decreases; the UMVUE performs relatively
better as n∗ decreases; the MLE is the better of the two estimators for θ > 1 and θL not
too small; the MLE performs relatively better as θ > 1 increases; the MLE performs
relatively better as θL increases; the MLE performs relatively better as n∗ decreases.

The estimates given in the tables in Mukhopadhyay and Cicconetti (2004) for
n∗ = 25, 35 do coincide with the estimates we obtained up to the decimal places given.
The codes given in this paper can be used to compute the estimates to any decimal
place.

4. Conclusions

Given a normal random variable with both mean and standard deviation equal to θ,
we have derived a simple expression for the UMVUE of θ. This is the simplest known
to date, hence it can be applied efficiently to sequential problems involving the normal
random variable.

We have compared the performances of the UMVUE and MLE in terms of risk.
Some of the main findings are that the UMVUE is the better for θ ≤ 1, the UMVUE
performs relatively better as θ increases to 1, the MLE is the better for θ > 1 and the
MLE performs relatively better as θ > 1 increases.

A future work is to see if some expressions can be derived for sequential estimation
involving other distributions like the gamma, beta, Gumbel, lognormal, Weibull and
inverse Gaussian distributions.
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Summary

Mukhopadhyay and Cicconetti (2004) derived the Maximum Likelihood Estimator
(MLE) and the Uniformly Minimum Variance Unbiased Estimator (UMVUE) of θ in
N(θ, θ) and discussed their application to purely sequential and two-stage bounded risk
estimation of θ. In this paper, a much simpler expression is derived for the UMVUE
of θ. Using this expression, a comprehensive investigation is provided for comparing
the performances of the sequential estimators based on the MLE and the UMVUE.
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