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Sequential Random Distortion Testing of

Non-Stationary Processes
Prashant Khanduri, Student Member, IEEE Dominique Pastor, Member, IEEE, Vinod Sharma, Senior

Member, IEEE and Pramod K. Varshney, Life Fellow, IEEE

Abstract—In this work, we propose a non-parametric sequen-
tial hypothesis test based on random distortion testing (RDT).
RDT addresses the problem of testing whether or not a random
signal, Ξ, observed in independent and identically distributed
(i.i.d) additive noise deviates by more than a specified tolerance,
τ , from a fixed model, ξ0. The test is non-parametric in the sense
that the underlying signal distributions under each hypothesis are
assumed to be unknown. The need to control the probabilities of
false alarm (PFA) and missed detection (PMD), while reducing
the number of samples required to make a decision, leads to a
novel sequential algorithm, SeqRDT. We show that under mild
assumptions on the signal, SeqRDT follows the properties desired
by a sequential test. We introduce the concept of a buffer and
derive bounds on PFA and PMD, from which we choose the buffer
size. Simulations show that SeqRDT leads to faster decision-
making on an average compared to its fixed-sample-size (FSS)
counterpart, BlockRDT. These simulations also show that the
proposed algorithm is robust to model mismatches compared to
the sequential probability ratio test (SPRT).

Index Terms—Sequential testing, non-parametric testing, ro-
bust hypothesis testing, sequential probability ratio test (SPRT)

I. INTRODUCTION

Over the past few years, with the availability of large

amounts of data, the need to devise novel but simple inference

techniques has surged [2], [3]. Moreover, it is not always

possible to fit the data to predefined models or distribution.

Therefore, it is important to devise methods that are simple

to implement, model-independent and robust [4], [5]. In this

work, we propose one such algorithm, SeqRDT, for binary

hypothesis testing.

In standard binary hypothesis testing problems, fixed-

sample-size (FSS) tests, based on a fixed number of obser-

vations, decide between two possible statistical hypotheses,

the so-called null (H0) and alternative (H1) hypotheses

[6]. The decision is generally made under the Bayesian,

minimax or Neyman-Pearson frameworks. However, many

decision problems are inherently sequential in nature, where

observations are collected sequentially [7]–[9]. In his seminal
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works [10], [11], Wald developed a likelihood ratio based

sequential approach namely the sequential probability ratio

test (SPRT). SPRT is optimal in the sense that it is the

fastest on an average compared to all other sequential and

FSS tests that guarantee the same probabilities of false alarm

(PFA) and missed detection (PMD) [10], [11]. However, this

optimality is lost if there is a mismatch between the assumed

and the true signal models or the hypotheses to be tested

are composite [7], [11]–[14]. SPRT and other composite

hypothesis testing approaches are extensions of likelihood

theory in that they assume prior knowledge regarding the

distributions of the observations under each hypothesis to

derive the likelihood ratio, perhaps up to a vector parameter

in case of nuisance parameters [7], [15], [16]. However, in

practice, prior knowledge or good models for the distributions

under each hypothesis are often not available. This is all the

more detrimental as likelihood ratio tests are not robust to

uncertainty or model mismatch. Moreover, many approaches

in sequential testing make stationarity or independent and

identically distributed (i.i.d.) assumptions on the observed

process under each hypothesis [7], [17]. Such assumptions are

questionable in practice. SPRT and standard sequential testing

solutions in the literature aimed at relaxing stationarity or i.i.d

assumptions are still based on likelihood ratio tests [7] and,

as such, may suffer from the lack of robustness of these tests.

Therefore, it is important to devise robust tests that assume

little knowledge of the underlying signal distributions.

To overcome these limitations, in this work, we propose

one such algorithm, SeqRDT, which is based on an alternative

sequential binary hypothesis testing problem formulation. We

assume that the received observation is a real random process

Y parameterized by ξ and the hypothesis testing problem

considered is H0 : ξ = ξ0 vs H1 : ξ 6= ξ0. We argue that,

in many cases, testing the signal exactly for ξ0 might be too

strict due to measurement errors, environmental fluctuations

other than noise and other factors as mentioned in [18]. It is

reasonable to allow for some distortions around ξ0 and test for

the parameter in the neighborhood of ξ0. Therefore, we model

the hypothesis test as Y being a noisy version of a random

process Ξ, which is a distorted version of ξ0 with unknown

distribution. The hypothesis testing problem is then stated as

H0 : |Ξ− ξ0| 6 τ vs H1 : |Ξ− ξ0| > τ (1)

with τ ∈ [0,∞) representing the distortion. The design of the

hypotheses in (1) implies that we test for the distorted signal

in the small neighborhood of ξ0. This problem is referred to as

random distortion testing (RDT) and was first proposed in [18].
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The authors in [18] assumed that the signal, Ξ, is embedded

in Gaussian noise and proposed the optimal single sample

test for the problem. The RDT problem was extended for

hypothesis testing with multiple samples in [19], in the form

of BlockRDT, where the authors replaced the signal Ξ in (1)

by its empirical mean. However, the need for faster decision-

making and the inherent sequential nature of many problems

lead us to define a novel RDT based framework for sequential

testing, which yields a new sequential algorithm, SeqRDT.

In this work, we show that with a few key assumptions,

SeqRDT guarantees pre-specified PFA and PMD. Importantly,

we show that SeqRDT has an almost surely finite stopping

time. Moreover, we introduce the notion of a buffer that

makes it possible to control the probabilities of error. The

theoretical analysis, the control over the error probabilities and

the notion of buffer were not present in the past works [20].

A preliminary version without any analysis was presented in

[1] and a truncated version of SeqRDT, T-SeqRDT, has been

developed in [21], [22], where the sequential test is forced to

stop if a decision is not made until a certain time. Beyond

biomedical signal processing applications [20], the proposed

theoretical framework can be of interest in many real world

applications, including communications, radar, fault-detection

and structural health monitoring. Below, we summarize the

major contributions of the work:

• We propose a new RDT based framework for non-

parametric sequential hypothesis testing and introduce a

new sequential algorithm, SeqRDT, to solve the binary

hypothesis testing problem.

• We analyze the properties of the thresholds, asymptotic

error probabilities and introduce the notion of a buffer

which helps in controlling the error probabilities of

SeqRDT.

• Without any prior knowledge of the signal distribution,

SeqRDT is shown to guarantee pre-specified PFA and

PMD, whereas, in contrast, the likelihood ratio based tests

need precise knowledge of the signal distributions under

each hypothesis.

• Via numerical simulations, the proposed approach is

shown to be faster on an average compared to its FSS

counterpart, BlockRDT. More importantly, SeqRDT is

shown to be robust to mismatches compared to the

likelihood ratio based tests.

Next, before discussing notations, in Section II we state the

problem and discuss the assumptions. In Section III we discuss

the test statistic. We introduce SeqRDT in Section IV and

analyze PFA and PMD in Section V. In Section VI, the

assumptions made in the previous sections are relaxed. The

performance of SeqRDT is discussed in Section VII. Finally,

Section VIII concludes the paper.

Notation: N is the set of natural numbers and R that of

real numbers. Given N ∈ N, R
N is the vector space of

all N -dimensional row vectors with real components. The

components of x ∈ R
N are denoted by x1, x2, . . . , xN and

we write x = (x1, x2, . . . , xN ).
All the random variables are defined on the same probability

space (Ω,F,P). We denote the set of all real random variables

defined on (Ω,F) by M(Ω,R). Given U ∈ M(Ω,R), PU is

the probability distribution of U : PU (B) = P
[

U ∈ B
]

with
[

U ∈ B
]

= {ω ∈ Ω : U(ω) ∈ B} when B is a Borel set of R.

A domain D of U is any Borel set B of R such that PU (B) =
1. Given ζ ∈ [0,∞), Z ∼ U(ζ) means that Z is uniformly

distributed in [−ζ,+ζ]. Given ξ ∈ R and σ ∈ [0,∞), Z ∼

N(ξ, σ2) means that Z is Gaussian distributed with mean ξ
and variance σ2. The generalized Marcum function [23] with

order 1/2 is denoted by Q1/2. For any Z ∼ N(ξ, 1), we have

[24, Eq. (19) and Remark V.3]:

P
[

|Z| > η
]

= Q1/2(|ξ|, η). (2)

It follows that, for any (a, b) ∈ [0,∞)× [0,∞),

Q1/2(a, b) = 1− Φ(b− a) + Φ(−b− a) (3)

where Φ is the cumulative distribution function (cdf) of Z.

Q1/2 increases with its first argument and decreases with its

second [23]. Given γ ∈ (0, 1) and ρ ∈ [0,∞), λγ(ρ) is defined

as the unique solution in x to Q1/2(ρ, x) = γ [18, Lemma 2,

statement (ii)], so that:

Q1/2(ρ, λγ(ρ)) = γ. (4)

The set of all sequences defined on N (resp. [[1, N ]] =
{1, 2, . . . , N}) and valued in M(Ω,R) is denoted by

M(Ω,R)N (resp. M(Ω,R)[[1,N ]]). Given U in M(Ω,R)N (resp.

U ∈ M(Ω,R)[[1,N ]]), the realization of U at n ∈ N (resp.

n ∈ [[1, N ]]) is called a sample of U and denoted by

Un. Each Un is an element of M(Ω,R). Given N ∈ N,

〈U〉N = (1/N)
∑N

n=1 Un is the sample mean of U over the

N samples U1, . . . , UN . We say that U, V ∈ M(Ω,R)N (resp.

M(Ω,R)[[1,N ]]) are independent if any two finite subsequences

(Ui1 , Ui2 , . . . , Uik) and (Vj1 , Vj2 , . . . , Vjr ) are independent for

i1 < . . . < ik and j1 < . . . < jr. We denote by ✶A(x) the

indicator function of the set A.

II. PROBLEM STATEMENT AND ASSUMPTIONS

We model the random mixture of a distorted signal of in-

terest and possible interferences by some Ξ ∈ M(Ω,R)N. We

suppose that Ξ is observed in additive and independent noise

X with i.i.d samples and unknown cdf F. The observation

process is Y with Yn = Ξn+Xn for any n ∈ N and we write

Y = Ξ+X . We assume that Ξ under the null hypothesis (H0)

is generated from an underlying joint distribution Pξ0 . Under

the alternative hypothesis (H1), Ξ is supposed to be generated

by any underlying arbitrary joint distribution other than Pξ0 ,

i.e., Ξ ≁ Pξ0 . No assumption is made on the stationarity or

the distribution of Ξ. The samples Ξn are thus not necessarily

i.i.d. We summarize the problem as:






























Observation : Y = Ξ+X ∈ M(Ω,R)N

with

{

Ξ, X ∈ M(Ω,R)N,

X1, X2, . . .
i.i.d
∼ F, F unknown.

{

H0 : Ξ = (Ξn)n∈N ∼ Pξ0 ,
H1 : Ξ = (Ξn)n∈N ≁ Pξ0

(5)

The problem in its current form (5) is difficult to tackle

since we do not assume any knowledge of the signal distribu-

tions under the two hypotheses. Therefore, we associate with
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each hypothesis a non-parametric distance related criterion

independent of these possible distributions as motivated in

Section I. This criterion then serves as a surrogate to the

actual hypotheses to be tested. This idea was first proposed

in the form of RDT in [18] and was later extended for

multiple samples by BlockRDT [19] as discussed earlier in

the Introduction. We now present the model more specifically.

In our formulation, Ξ models distortion other than noise

around a fixed model ξ0. For instance, such distortion can

result from interferences as encountered in radar, sonar and

telecommunication systems. We, however, expect that, for N
sufficiently large, the empirical mean 〈Ξ〉N remains close to ξ0
under H0 and drifts significantly away from ξ0 under H1. We

can then formalize the foregoing by quantifying the possible

drift between 〈Ξ〉N and ξ0 via |〈Ξ〉N − ξ0|, introducing a

tolerance τ ∈ [0,∞) on this distance to specify the maximal

acceptable drift and assuming the existence of some N0 ∈ N

such that, either |〈Ξ〉N −ξ0| 6 τ for any N > N0 or |〈Ξ〉N −
ξ0| > τ for any N > N0. The former (resp. latter) hypothesis

above becomes the null (resp. alternative) hypothesis H0 (resp.

H1) in the surrogate model for (5). Given the observation

Y , the SeqRDT problem addressed in this paper is then the

sequential testing of H0 against H1, written as:














































Observation : Y = Ξ+X ∈ M(Ω,R)N

with















Ξ, X ∈ M(Ω,R)N,

X1, X2, . . .
i.i.d
∼ F,F unknown.

E [X1 ]=0,Var (X1)=1 and E
[

X3
1

]

<∞
Ξ and X are independent.

∃N0∈N,

{

H0 :∀N>N0, 0 6 |〈Ξ〉N−ξ0|6τ (a-s)

H1 :∀N>N0, τ < |〈Ξ〉N−ξ0|6τH (a-s)

(6)

where, throughout the paper and without recalling it,

τ ∈ [0,∞). The above testing model encompasses the

BlockRDT model [19] for a fixed sample size, N , and X ∼
N(0, 1). Here, N0 and the tolerances τ and τH are known

a priori, based on some prior knowledge about the signal.

The idea is that, although the exact distributions in play

are unknown, the user’s experience on some representative

data may be sufficient to roughly bound the behavior of the

empirical mean with respect to ξ0. Discussion of procedures

suitable for extracting such knowledge is beyond the scope

of this work because they depend on the targeted application.

The generic question is how far we can get if prior knowledge

on the process is limited to such bounds.

Remark 1: The above problem (6) tests whether the de-

viation of the signal mean 〈Ξ〉N around ξ0 is below (or

above) a specified tolerance τ for the null hypothesis (or the

alternate hypothesis) to be true. As indicated above, this non-

parametric criterion then serves as a surrogate to the complete

knowledge of the signal distributions and thus avoids their

prior knowledge. Likelihood ratio based tests are, therefore,

not feasible for the above problem. �

Example 1 (Change-in-mean testing): The SeqRDT prob-

lem (6) embraces the testing of a change in the mean of a

Gaussian process [7] when, given two known real values ξ0
and ξ1, Ξn = ξ0 for all n ∈ N under H0, Ξn = ξ1 for all

n ∈ N under H1, τ = 0, N0 = 1 and X ∼ N(0, 1) in (6). �

Example 2 (Bounded regime testing): Given ξ ∈ R and

h ∈ [0,∞), say that Ξ follows the (bounded) regime (ξ, h)
and write Ξ ∼ (ξ, h) if, for any N ∈ N, |〈Ξ〉N − ξ| 6 h. A

sufficient condition for Ξ ∼ (ξ, h) is that |Ξn−ξ| 6 h (a-s) for

any n ∈ N. Suppose that Ξ satisfies either H∗
0 : Ξ ∼ (ξ0, h0),

where the regime (ξ0, h0) is given, or H∗
1 : Ξ ∼ (ξ1, h1),

where (ξ1, h1) is any possibly unknown regime other than

(ξ0, h0). Say that the regimes (ξ0, h0) and (ξ1, h1) are separate

if |ξ1 − ξ0| > h0 + h1, which amounts to assuming that

(ξ0−h0, ξ0+h0)∩ (ξ1−h1, ξ1+h1) = ∅. When (ξ0, h0) and

(ξ1, h1) are separate, testing H∗
0 against H∗

1 is the particular

problem (6) with h0 6 τ < |ξ1−ξ0|−h1, τH > |ξ1−ξ0|+h1
and N0 = 1. �

Remark 2: Since our results hold for any random signal

sequence, Ξ, they also hold for any deterministic sequence.

The two statements are actually equivalent, as can be seen

by simple conditioning on Ξ. The reader can thus think of Ξ
as being deterministic and arbitrary. Clearly, no independence

assumptions on Ξ are required. The assumptions that really

matter are those on the noise sequence, X . Indeed, since

the main quantity appearing in H0 and H1 is the empirical

average of the distorted signal Ξ, which we observe up to

some i.i.d. noise, we can reduce the problem to a Gaussian

problem through the Berry-Esseen theorem.

A. Assumptions

To solve problem (6) sequentially, we introduce two addi-

tional assumptions. The first one is asymptotic and can be

regarded as a weak notion of ergodicity. The second one

concerns the case of finite sample sizes. Both assumptions

are used below to state different results. Their use depends on

the available amount of prior information on the process.

Assumption 2.1 ((a-s) convergence of 〈Ξ〉N ):

∃ 〈Ξ〉∞ ∈ M(Ω,R), lim
N→∞

〈Ξ〉N = 〈Ξ〉∞ (a-s). (7)

for which exist τ− ∈ [0, τ) and τ+ ∈ (τ,∞) such that:
{

Under H0 : |〈Ξ〉∞ − ξ0| 6 τ− (a-s),

Under H1 : |〈Ξ〉∞ − ξ0| > τ+ (a-s).

Remark 3: Assumption 2.1 is automatically satisfied if Ξ is

stationary and ergodic [25, Ch. 4, Sec. 24]. In this case, there

exists ξ ∈ R such that E [ Ξn ] = ξ for every n ∈ N, so that

Assumption 2.1 holds with 〈Ξ〉∞ = ξ and ξ ∈ {ξ0, ξ1}. �

Basically, Assumption 2.1 will prove helpful to characterize

the relevance of the sequential procedure introduced in Section

IV (see Theorem 4.2) in asymptotic conditions. The next

assumption is aimed at establishing additional results in non-

asymptotic situations.

Assumption 2.2 (Bounded behavior of |〈Ξ〉N − ξ0|):
There exist τ− ∈ [0, τ) and τ+ ∈ (τ,∞) such that:

{

Under H0 : ∀N > N0, |〈Ξ〉N − ξ0| 6 τ− (a-s),
Under H1 : ∀N > N0, |〈Ξ〉N − ξ0| > τ+(a-s).

Remark 4: At this stage, it is crucial to emphasize the

significance of Assumption 2.1 and Assumption 2.2, as well as

the differences between them with respect to the two hypothe-

ses in (6). Assumption 2.1 is asymptotic in nature, whereas
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Assumption 2.2 is not. Moreover, Assumption 2.2 does not

require the existence of an (a-s) convergence of the empirical

mean in contrast to Assumption 2.1. The two assumptions will

be helpful to better control the behavior, specifically, PFA and

PMD of the sequential test. This better control will actually be

rendered possible via the strict inequalities between τ− and τ ,

on the one hand, and between τ+ and τ , on the other hand.

By so proceeding, |〈Ξ〉N −ξ0| is kept away from τ , under H0

and H1. The decision will then turn out to be all the more

reliable as τ− and τ+ drift away from τ , which can be seen

as the frontier between the two hypotheses in (6). Note also

that, if Assumption 2.2 and (7) hold true together, |〈Ξ〉∞−ξ0|
remains bounded away from τ and all the properties stated

under Assumptions 2.1 and 2.2 add to guarantee an even better

grip on the behavior of the sequential testing. �

Remark 5: It must be noted that the Assumption 2.2 was

not required in both RDT [18] and its FSS version, BlockRDT

[19]. The tests proposed in these works were designed to

guarantee PFA below a pre-specified level, while guaranteeing

a minimal PMD for FSS tests, without any control over this

probability. As already emphasized in the previous remark,

Assumption 2.2 gives the algorithm designer control over both

PFA and PMD for FSS tests, as well as for the sequential

testing framework proposed in this work. �

We now give two simple examples to illustrate

Assumption 2.1 and Assumption 2.2.

Example 3: (i) Consider a random variable U with un-

known distribution. We assume, under H0: |U | 6 τ− and

under H1: |U | > τ+. Suppose further that Ξn = U +∆n, for

n ∈ N when the ∆ns are i.i.d with zero mean and unknown

distribution. This translates to Assumption 2.1 with ξ0 = 0
with the application of the strong law of large numbers.

(ii) Consider a random variable Un ∼ N(ξi, 1) for n ∈ N

and i ∈ {0, 1}. We assume, under H0: ξ = ξ0 and under H1:

ξ 6= ξ0. Without loss of generality we assume ξ0 = 0 and if we

have |ξ1| > τ+ > τ−. If Ξn = 1
n

∑n
i=1 Ui, Assumption 2.1 is

verified. Moreover, the above process is a non-stationary

Markov process under both hypotheses and a variant of the

random walk. Similarly, many examples of practical interest

can be framed in terms of Assumption 2.2 also, with little

prior knowledge of the underlying signals. This will become

clearer in the experimental section. �

Next we discuss the structure of the tests used to design

SeqRDT and their asymptotic properties.

III. TEST STATISTIC

Given γ ∈ (0, 1) and τ > 0, let us define TN,γ : RN →
{0, 1} for any sequence x = (xn)n∈N ∈ R

N by :

TN,γ (x) =

{

0 if |〈x〉N − ξ0| 6 λγ(τ
√
N)/

√
N

1 otherwise
. (8)

Proposition 3.1 below describes the asymptotic behavior of

such tests under Assumption 2.1. These tests play a crucial

role in the design of SeqRDT for the problem stated in (6).

Throughout, δN =cE
[

|X1 − E [X1 ] |3
]

Var (X1)
−3/2N−1/2

and (2π)−1/2 6 c < 0.8 as specified in Lemma A.1.

Proposition 3.1: Given γ ∈ (0, 1) and τ > 0, TN,γ satisfies

the following asymptotic behavior for testing H0 against H1

in (6):

(i) we have

under H0 : lim
N→∞

P [TN,γ(Y ) = 1 ] 6 γ, (9)

under H1 : lim
N→∞

P [TN,γ(Y ) = 0 ] 6 1− γ. (10)

(ii) under Assumption 2.1, we have,

lim
N→∞

P [TN,γ(Y ) = 1 ] =

{

0 under H0

1 under H1
. (11)

Proof: Proof of statement (i): From (8) and Lemma A.1,

P [TN,γ(Y ) = 1 ]

6 E

[

Q1/2

(√
N |〈Ξ〉N − ξ0|, λγ(τ

√
N)

) ]

+ 2δN . (12)

Therefore, under H0 and for any N > N0, we have:

P [TN,γ(Y ) = 1 ] 6 Q1/2

(

τ
√
N,λγ(τ

√
N)

)

+ 2δN .

According to (4), the upper-bound in the second inequality

above equals γ + 2δN . As N grows to ∞, δN vanishes and

(9) follows.

We prove (10) similarly. We begin by combining (8) and

Lemma A.1 to get

P [TN,γ(Y ) = 0 ]

6 1− E

[

Q1/2

(√
N |〈Ξ〉N − ξ0|, λγ(τ

√
N)

) ]

+ 2δN .

(13)

It then suffices to particularize (13) under H1 for N > N0

and make N grow to ∞ to complete the proof.

Proof of statement (ii): Under H0 and Assumption 2.1,

lim
N

|〈Ξ〉N −ξ0| = |〈Ξ〉∞−ξ0| 6 τ− < τ (a-s). It then follows

from Lemma A.2 that:

lim
N
Q1/2

(√
N |〈Ξ〉N − ξ0|, λγ(τ

√
N)

)

= 0 (a-s).

We then derive from (12) and the Lebesgue dominated con-

vergence theorem that, under H0:

lim
N

P [TN,γ(Y ) = 1 ] = 0.

Similarly, under H1 and Assumption 2.1 lim
N

|〈Ξ〉N−ξ0| =
|〈Ξ〉∞ − ξ0| > τ+ > τ (a-s). Lemma A.2 induce that

lim
N
Q1/2

(√
N |〈Ξ〉N − ξ0|, λγ(τ

√
N)

)

= 1 (a-s).

By injecting this equality into (13) and using the Lebesgue

dominated convergence theorem again, we obtain:

lim
N→∞

P [TN,γ(Y ) = 1 ] = 1.

under H1, which concludes the proof.

Proposition 3.1 enhances the interest of the tests defined in

(8). Proposition 3.1 (i) implies that with the use of only one

threshold, λγ(τ
√
N)/

√
N , PFA is guaranteed to stay below

γ, but PMD is only guaranteed to be below 1− γ. Therefore,

with only one threshold, we can design a test which simply

controls PFA, without any control over PMD. In contrast,

with the use of two thresholds along with Assumption 2.2,
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the designer can control both PFA and PMD of the algorithm.

Moreover, one of these thresholds should be small enough to

diminish PFA. In contrast, the other one should be sufficiently

high so as to make PMD small. Such a strategy naturally

leads to a sequential approach. Also, Proposition 3.1 (ii)

highlights the importance of Assumption 2.1 in achieving

arbitrarily low PFA and PMDs for large but fixed sample

sizes. However, we need to control the number of samples,

which again highlights the need for a sequential approach. As

a matter of fact, with the thresholds designed according to

(8), we can design a sequential test capable of reducing the

decision-making time for the testing problem defined in (6),

while guaranteeing certain performance levels. This sequential

approach is described below.

IV. ALGORITHM: SeqRDT

Section III motivates a sequential approach involving two

thresholds designed using (8). One of these thresholds must

guarantee an upper-bounded PFA, while the other aims at

upper-bounding PMD. Given any natural number M > N0−1,

the sequential procedure SeqRDT suggested by Proposition 3.1

for testing H0 against H1 in (6) is specified by defining the

stopping time:

T = min
{

N ∈ N : DM (N) 6= ∞
}

, (14)

with:























DM (1) = DM (2) = . . . = DM (M) = ∞,

for N > M,DM (N)=











0 if |〈Y 〉N−ξ0| 6 λL(N),

∞ if λL(N)< |〈Y 〉N−ξ0|6λH(N),

1 if |〈Y 〉N−ξ0| > λH(N),
(15)

with λL(N) = λγ(τ
√
N)/

√
N , λH(N) = λγ′(τ

√
N)/

√
N ,

τ ∈ (0,∞) and γ, γ′ ∈ (0, 1) must be such that γ′ < γ,

which implies λL(N) < λH(N). Here, DM (N) represents

the decision variable with DM (N) = 0 equivalent to saying

that H0 is decided, DM (N) = 1 equivalent to saying that

H1 is decided and DM (N) = ∞ equivalent to saying that

no decision is made at the N th sample and that the algorithm

will update the statistic and repeat the test with the (N +
1)th sample. Note that M is the number of samples SeqRDT

waits for before starting the test. We refer to this M as the

buffer size. An appropriate M can be chosen based on some

elementary knowledge of the signal. This will be made clearer

in the coming section and Section VII.

The choice for γ and γ′ can be figured out as follows. The

PFA of SeqRDT is:

PFA(DM )
def
= P [DM (T ) = 1 ] under H0. (16)

In the same way, the PMD is:

PMD(DM )
def
= P [DM (T ) = 0 ] under H1. (17)

Since the goal of the sequential algorithm is to guarantee

PFA(DM ) and PMD(DM ) below certain pre-specified levels α
and β, respectively, Proposition 3.1 leads us to choose γ =
1 − β and γ′ = α with α, β ∈ (0, 1/2). This assumption is

required to ensure λL(N) < λH(N) (refer to Proposition 4.1

(i)). Moreover, typical values of α and β are of the order of

10−1 to 10−4, so the assumption is not particularly restrictive.

Henceforth, we always assume α, β ∈ (0, 1/2) and set:

λL(N)=λ1−β(τ
√
N)/

√
N,λH(N)=λα(τ

√
N)/

√
N. (18)

Next, we analyze the properties of the proposed thresholds.

A. Threshold properties

Proposition 4.1 below validates that such thresholds are

appropriate for SeqRDT under both asymptotic and non-

asymptotic conditions.

Proposition 4.1: We have:

(i) ∀N ∈ N, λL(N) < λH(N),
(ii) λH(N) is decreasing in N ∈ N and lower bounded by τ ,

(iii) for N large enough, the threshold λL(N) is increasing in

N and upper bounded by τ ,

(iv) both thresholds approach τ as N increases:

lim
N→∞

λH(N) = lim
N→∞

λL(N) = τ.

Proof: Apply Lemmas B.4, B.5 and B.6.

Proposition 4.1 (i) & (ii) imply that, as N → ∞ and thus,

in vanishing noise, the test will resemble a non-sequential test

as both thresholds become equal to τ .

The question addressed now is then “Can this choice of

thresholds give some performance guarantees?”.

Before stating several theorems to answer this question, we

establish the following straightforward inequalities, which will

prove useful at several places in the sequel. With the same

notation as above, for any given ε ∈ {0, 1}, we have:

P
[

DM (T ) = ε
]

= P
([

DM (T ) = ε
]

∩
[

T ≥M + 2
])

+ P
[

DM (M + 1) = ε
]

. (19)

Now using [DM (T ) = ǫ] ⊂ [DM+1(M + 1) 6= 1− ǫ]

P
[

DM (T ) = ε
]

6 1− P
[

DM (M + 1) = 1− ε
]

. (20)

Theorem 4.2 (Asymptotics: T , PFA(DM ) and PMD(DM )):
If α, β ∈ (0, 1/2) and Assumption 2.1 holds true, then:

(i) P [T <∞ ] = 1 under both H0 and H1;
(ii) lim

M→∞
PFA(DM ) = lim

M→∞
PMD(DM ) = 0.

Proof: Proof of statement (i): We have [T = ∞] if

and only if DM (N) = ∞ for each N > M . Therefore,

P [T = ∞ ] 6 P [DM (N) = ∞ ] for any N >M + 1. Since
[

DM (N) = ∞
]

=
[

λL(N) < |〈Ξ〉N+〈X〉N−ξ0| 6 λH(N)
]

,

we have:

P [DM (N) = ∞ ]

= P

[

Tλ1−β(τ
√
N)/

√
N (Y ) = 1

]

− P

[

Tλα(τ
√

N)/
√
N (Y ) = 1

]

.

According to Proposition 3.1(ii), lim
N→∞

P [DM (N) = ∞ ] = 0.

Hence the result.

Proof of statement (ii): The PFA is PFA(DM ) = P
[

DM (T ) =
1
]

under H0. According to (20), PFA(DM ) 6 1−P
[

DM (M+
1) = 0

]

. The right hand side (rhs) in this equality can be

rewritten P
[

|〈Y 〉M+1 − ξ0| > λL(M + 1)
]

. It follows from

(18) and Lemma A.1 that, regardless of Assumption 2.1:
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PFA(DM ) 6 E

[

Q1/2

(√
M + 1|〈Ξ〉M+1 − ξ0|, λ1−β(τ

√
M + 1)

) ]

+ 2δM+1. (21)

We then derive from Assumption 2.1 & Lemma A.2 that,
under H0,

lim
M→∞

Q1/2

(√
M + 1 |〈Ξ〉M+1 − ξ0|, λ1−β(τ

√
M + 1)

)

= 0 (a-s).

The Lebesgue dominated convergence theorem then implies

that lim
M→∞

PFA(DM ) = 0.

Similarly, we derive from (20), (18) and Lemma A.1 that,

regardless of Assumption 2.1:

PMD(DM ) 6

1−E

[

Q1/2

(√
M + 1|〈Ξ〉M+1−ξ0|, λα(τ

√
M + 1)

) ]

+2δM+1.

(22)

It then suffices to apply Assumption 2.1, Lemma A.2 and the

Lebesgue dominated convergence theorem to obtain the second

equality in (ii).

The above theorem implies that under Assumption 2.1,

i.e., if the empirical mean of the signal centered around

ξ0 converges away from τ , the sequential test (15) takes a

decision in finite time with probability one. The theorem also

implies that PFA and PMD diminish with the increasing buffer

size, M . Next, we give some performance guarantees for the

non-asymptotic regime. In this regard, the next theorem shows

that without any assumption on the signal model, the bounds

on PFA and PMD can be loose. Therefore, we make use of

Assumption 2.2 to derive tighter bounds on PFA and PMD

and use these bounds to choose an appropriate buffer size,

M , such that PFA and PMD can be controlled. We derive two

bounds in the next section.

V. ANALYSIS: PFA AND PMD

In this section, we derive bounds on PFA and PMD of

SeqRDT in the next two theorems.

Theorem 5.1 (Non-Asymptotics: PFA(DM ) and PMD(DM )):
PFA(DM ) and PMD(DM ) are bounded as:



















Q1/2

(

0, λα(τ
√
M + 1)

)

− 2δM+1

6 PFA(DM ) 6 1− β + 2δM+1,

1−Q1/2

(

τH
√
M + 1, λ1−β(τ

√
M + 1)

)

− 2δM+1

6 PMD(DM ) 6 1− α+ 2δM+1.

Proof: Under H0, we derive from (15), (16), (18), (19)

& Lemma A.1 that:

PFA(DM ) > P [DM (M + 1) = 1] >

E

[

Q1/2

(√
M + 1|〈Ξ〉M+1 − ξ0|, λα(τ

√
M + 1)

) ]

− 2δM+1.

(23)

The bounds on PFA(DM ) result from the inequalities satisfied

by |〈Ξ〉M+1−ξ0| under H0 and (23), for the lower bound, and

(21) along with (4), for the upper bound.

Similarly, for the probability of missed detection, under H1,

(15), (17), (18), (19) & Lemma A.1 yield

PMD(DM ) > P [DM (M + 1) = 0]

> 1− E

[

Q1/2

(√
M + 1|〈Ξ〉M+1 − ξ0|, λ1−β(τ

√
M + 1)

) ]

− 2δM+1. (24)

We obtain the bounds on PMD(DM ) from the inequalities

satisfied by |〈Ξ〉M+1 − ξ0| under H1 and (24), for the lower

bound, and (22) along with (4), for the upper bound.

The lower bounds for PFA(DM ) and PMD(DM ) derived in

Theorem 5.1 always stay below levels α and β, respectively.

Theorem 5.1 also states that, without any assumption, the

upper bounds on PFA(DM ) and PMD(DM ) although bounded

by unity, are loose. Hence, by assuming further knowledge of

the signal through Assumption 2.2 and noise to be Gaussian

distributed, which is of practical interest in many applications

and which induces δk = 0 for all k ∈ N, we derive tighter

upper bounds on PFA(DM ) and PMD(DM ) in the next theorem.

These bounds will be used to choose appropriate buffer sizes

for SeqRDT.

Theorem 5.2 (Non-Asymptotics: PFA(DM ) and PMD(DM )):
(i) Under Assumption 2.2 and Gaussian noise, X ∼ N(0, 1),
PFA(DM ) and PMD(DM ) are bounded as:






















Q1/2

(

0, λα(τ
√
M + 1)

)

6 PFA(DM ) 6 UB1FA(M)
∧

UB2FA(M),

1−Q1/2

(

τH
√
M + 1, λ1−β(τ

√
M + 1)

)

6 PMD(DM ) 6 UB1MD(M)
∧

UB2MD(M).

(25)

where a1
∧

a2 = min(a1, a2) for a1, a2 ∈ R. UB1FA(M),
UB2FA(M), UB1MD(M) and UB2MD(M) are finite and are

given in (26) (27), (28) and (29), respectively.

(ii) UB1FA(M)
∧

UB2FA(M) and UB1FA(M)
∧

UB2FA(M)
decrease with M .

Proof: Proof of statement (i): When Assumption 2.2 holds

true, 0 6 |〈Ξ〉M+1 − ξ0| 6 τ− under H0. Injecting these

inequalities into (23) and (21) and using δk = 0 for all k ∈ N

for Gaussian noise yields the bounds:

Q1/2

(

0, λα(τ
√
M + 1)

)

6 PFA(DM ) 6 UB1FA(M).

We obtain UB2FA(M) by writing first:
[

DM (T ) = 1
]

=
[

DM (M + 1) = 1
]

∞
⋃

N=M+2

(

[

DM (N) = 1
]

∩
[

DM (K) = ∞, ∀K ∈ [[M + 1, N − 1]]
]

)

.

Now using the union bound and from the Frechet inequality

it follows that:

P
[

DM (T ) = 1
]

6 P
[

DM (M + 1) = 1
]

+
∞
∑

N=M+2

P
[

DM (N) = 1
]

∧

( N−1
∧

K=M+1

P
[

DM (K) = ∞
]

)

.

(30)

For any N >M + 1, Lemma A.1 and Assumption 2.2 along

with δk = 0 for all k ∈ N imply that under H0;

P
[

DM (N) = 1
]

6 Q1/2

(

τ−
√
N,λα(τ

√
N)

)

. (31)
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UB1FA(M) = Q1/2

(

τ−
√
M + 1, λ1−β(τ

√
M + 1)

)

, (26)

UB2FA(M) = Q1/2

(

τ−
√
M + 1, λα(τ

√
M + 1)

)

+
∞
∑

N=M+2

[(

Q1/2

(

τ−
√
N,λα(τ

√
N)

)

)

∧

( N−1
∧

K=M+1

(

Q1/2

(

τ−
√
K,λ1−β(τ

√
K)

)

−Q1/2

(

0, λα(τ
√
K)

)

))]

, (27)

UB1MD(M) = 1−Q1/2

(√
M + 1 τ+, λα(τ

√
M + 1)

)

, (28)

UB2MD(M) = 1−Q1/2

(

τ+
√
M + 1, λ1−β(τ

√
M + 1)

)

+
∞
∑

N=M+2

[(

1−Q1/2

(

τ+
√
N,λ1−β(τ

√
N)

)

)

∧

( N−1
∧

K=M+1

(

Q1/2

(

τH
√
K,λ1−β(τ

√
K)

)

−Q1/2

(

τ+
√
K,λα(τ

√
K)

)

))]

. (29)

For any K ∈ [[M + 1, N − 1]], we can write:

P
[

DM (K) = ∞
]

= P
[

〈Y 〉K − ξ0| > λL(K)
]

− P
[

〈Y 〉K − ξ0| > λH(K)
]

. (32)

Again from Lemma A.1, Assumption 2.2 and δk = 0 for all

k ∈ N under H0 we have:

P
[

DM (K) = ∞
]

6 Q1/2

(

τ−
√
K,λ1−β(τ

√
K)

)

−Q1/2

(

0, λα(τ
√
K)

)

. (33)

The bound UB2FA(M) follows by injecting (31) and (33) into

(30). The bounds UB1MD(M) and UB2MD(M) on PMD(DM )
follow similarly from (22), (24), (32) and Lemma A.1, under

H1 and Assumption 2.2. Because of space limitations, the

details are left to the reader. The proof of the convergence of

UB1MD(M) and UB2MD(M) are given in Appendix C.

Proof of statement (ii): For any given ρ ∈ [0,∞) such that

ρ 6= τ and for all γ ∈ (0, 1), it follows from Lemma B.3 that

the map N ∈ N 7→ Q1/2

(

ρ
√
N,λγ(τ

√
N)

)

is decreasing if

ρ < τ and increasing if ρ > τ . Therefore, UB1FA(M) and

UB1MD(M) also decrease with M . A careful inspection of

UB2FA(M) and UB2MD(M) reveals that each term involved

in these bounds is decreasing with M . Statement (ii) follows

since the minimum of two decreasing terms is decreasing.

Theorem 5.2 makes it possible to choose the least buffer

size M guaranteeing specified values for the upper bounds

UB1FA(M)
∧

UB2FA(M) and UB1MD(M)
∧

UB2MD(M).
Therefore, with the choice of an appropriate buffer size

M , we can expect to control PFA(DM ) and PMD(DM )
under desired levels. More precisely, if we want a test

that guarantees PFA(DM ) 6 α and PMD(DM ) 6 β for

specified 0 < α < 1/2 and 0 < β < 1/2, we can choose

an appropriate M as follows. First, choose M1 such that

UB1FA(M1)
∧

UB2FA(M1) 6 α. Afterwards, choose M2

such that UB1MD(M2)
∧

UB2MD(M2) 6 β. The buffer size

can then be fixed to M = max(M1,M2). In Section VII,

we will proceed in this manner to choose the buffer size. It

is, however, important to emphasize that the upper bounds

given in Theorem 5.2 could still be loose in some scenarios,

as the terms UB2FA(M) and UB2MD(M) are derived from

the intersection of multiple events. However, according to

Theorem 5.2 (i) and (25) these bounds will always stay

below UB1FA(M) and UB1MD(M) even if UB2FA(M) and

UB2MD(M) are loose. Moreover, UB1FA(M) and UB1MD(M)
are always guaranteed to stay below one.

VI. AN EXTENSION

Suppose that, instead of (6) where the inequalities are

assumed to be satisfied in (a-s) sense, we have H∗
0 : P

[

∀N >

N0, |〈Ξ〉N − ξ0| 6 τ
]

> 1 − ε vs H∗
1 : P

[

∀N >

N0, |〈Ξ〉N − ξ1| > τ
]

> 1− ε with a small positive constant

ε 6 min(α, β). Under the assumptions of Theorem 5.2,

SeqRDT can still be used as follows to test H∗
0 against H∗

1 with

guaranteed bounds on PFA and PMD. Indeed, given α, β ∈
(0, 1/2), choose M so that UB1FA(M)

∧

UB2FA(M) 6 α and

UB1MD(M)
∧

UB2MD(M) 6 β in (25). Under H∗
0, the PFA,

P
∗
FA, of SeqRDT satisfies:

P
∗
FA = P [DM (T ) = 1 ] 6 P(Ωc

0) + P
[

DM (T ) = 1
∣

∣Ω0

]

P(Ω0)

6 ε+ P
[

DM (T ) = 1
∣

∣Ω0

]

P(Ω0),

with Ω0 =
[

∀N > N0, |〈Ξ〉N − ξ0| 6 τ
]

. Consider the

probability space
(

Ω0,FΩ0
,P (•|Ω0)

)

, where FΩ0
is the trace

σ-algebra of F on Ω0 and P (•|Ω0) is the conditional proba-

bility that assigns to each A ∈ FΩ0 the probability P (A|Ω0).
According to Theorem 5.2, P

[

DM (T ) = 1
∣

∣Ω0

]

6 α − ε
and thus P

∗
FA 6 α. Similarly, we have P

∗
MD 6 β. This easy

extension is very useful in practice. For example, Ξ can be

any i.i.d (or not) random variable sequence with unbounded

support under H0 and H1 and such that 〈Ξ〉N → ξ0 under

H0 and 〈Ξ〉N → ξ1 under H1, with ξ0 6= ξ1.

VII. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we perform some simulations to highlight the

advantages of SeqRDT compared to BlockRDT [19] and SPRT

[10], [11]. We first present the detection problem considered to

carry out the experiments, then we outline each algorithm and

finally, carry out the comparison of the presented algorithms

for different parameter values.

A. The Gaussian mean detection problem

In the classical Gaussian mean detection problem [7], the

observation is Yn = Ξn+Xn, with Xn
i.i.d
∼ N(0, 1) for n ∈ N,

Ξn = ξ0 under H0 and Ξn 6= ξ0 under H1, where ξ0 is a

deterministic constant. This problem can be formulated in the

SeqRDT framework (6) with τ = 0 and N0 = 1. But, in many

applications, there might be a mismatch between the model
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Fig. 1: Upper bound on PFA(DM ) and PMD(DM ) vs M for

N curtailed to 500 in Theorem 5.2.

and the actual signal observed in practice. In reality, under

either hypothesis, the actual signal would not be a constant

assumed by the model, but rather a perturbed version of this

constant. Such unavoidable perturbation may be hard to model

in a parametric setup and likelihood ratio based tests can fail

to guarantee reliable performance in the presence of model

mismatches [18]. However, the BlockRDT setup [19] and the

SeqRDT setup as given in (6) and (15) are not limited by these

drawbacks. Therefore, instead of dealing with the somewhat

unrealistic model described above, we consider the case when

the signal is Ξn = ξi + ∆n under Hi for i ∈ {0, 1} and

for all n ∈ N. Here, ∆n models possible additive distortion

with unknown distribution. In what follows, we compare

different algorithms for mean testing of the distorted signal Ξ.

Specifically, we consider two cases: first the bounded regime

(bounded distortion) case introduced in Example 2 and then,

the unbounded regime case (the distortion is not bounded).

In the second case, we show that, even if the assumptions of

SeqRDT are not strictly satisfied, SeqRDT will still be able to

provide sufficient performance guarantees.

B. Bounded Distortion

We consider the case where there exist positive real values

h0, h1 and H such that 2h0 < h1 < H and ∀n ∈ N, |∆n| 6
h0 and h1 6 |ξ1 − ξ0| 6 H . We thus have |〈∆〉N | 6 h0 and

h0 < h1 − h0 < |∆n + ξ1 − ξ0| 6 h0 +H, which imply:

{

H0 :∀N > 1, 0 6 |〈Ξ〉N−ξ0| 6 h0, (a-s)

H1 :∀N > 1, h0 < h1−h0 6 |〈Ξ〉N−ξ0| 6 h0+H (a-s).

(34)

This makes it possible to test the distorted signal using

SeqRDT with tolerances τ− = h0, τ+ = h1 − h0, τ ∈
(τ−, τ+), τH ∈ [h0+H,∞) and N0 = 1. This is all SeqRDT

needs to know to conduct the test, irrespective of the distortion

distribution (please see Assumption 2.2).

For experimental illustration, we first choose ∆n ∼ U(h0),
(n ∈ N), with h1 ∈ (2h0,|ξ1 − ξ0| −h0] and H ∈ [|ξ1 − ξ0|+
h0,∞). This distortion distribution has to be fully known for

SPRT, whereas SeqRDT and BlockRDT are unaware of it and

need to know only a few parameters. We now discuss the

algorithms in the considered bounded regime.

α = β = 0.01

SNR = |ξ1 − ξ0| 0.4 0.5 0.6 0.8

BlockRDT, using τ NB-RDT 2165 542 241 87

BlockRDT, using τ− NB-RDT 542 241 136 61

SeqRDT, Bounded Regime E [T ] 167.28 142.83 137.31 136.78

SeqRDT, Unbounded Regime E [T ] 171.34 145.83 141.12 140.26

TABLE I: SeqRDT vs BlockRDT.

SeqRDT: By referring to (34) and Example 2, one potential

choice for the tolerances in the SeqRDT framework can be

τ− = h0, τ+ = 3h0, τ = 2h0 and τH = |ξ1 − ξ0| + h0.

With this choice, H0 and H1 specify bounded and separate

regimes with N0 = 1. The choice of these values is not

rigid. These values were chosen for ease of presentation

and illustration purposes, but infinitely many others could

have been considered to yet guarantee bounded and separate

regimes. Note also that we need not know the distortion

distribution to design the tolerances. These tolerances can be

learned over time or can be available a priori to the user, as

discussed earlier in Section II.

BlockRDT: In the BlockRDT framework, problem (6) is

tested for a fixed number of samples N > N0. Specifically, we

have N observation samples as Y = Ξ +X ∈ M(Ω,R)[[1,N ]]

with XN
i.i.d
∼ N(0, 1). A solution to this problem is proposed

in [19] & [26]. Given N ∈ N, any (measurable) map

T : RN → {0, 1} is called an N -dimensional test. The size of

such a test T is defined as

αT = sup
Ξ∈M(Ω,R)[[1,N]]: P[|〈Ξ〉N−ξ0|6τ ] 6=0

P
[

T(Y ) = 1
∣

∣ |〈Ξ〉N − ξ0| 6 τ
]

,

and T is said to have level γ ∈ (0, 1) if αT 6 γ. No Uniformly

Most Powerful (UMP) test with level γ exists for BlockRDT.

By UMP test with level γ, we mean an N -dimensional test

T∗ such that αT∗ 6 γ and P
[

T∗(Y ) = 1 |〈Ξ〉N − ξ0| > τ
]

>

P
[

T(Y ) = 1 |〈Ξ〉N − ξ0| > τ
]

for any N -dimensional test

T and any Ξ ∈ M(Ω,R)[[1,N ]]. We thus exhibit the subclass

of BlockRDT-coherent tests [26], among which a “best” test

exists. An N -dimensional test T is BlockRDT-coherent if:

[Invariance in mean] For all y, y′ ∈ R
N , if 〈 y〉N = 〈 y′〉N ,

then T(y) = T(y′)
[Constant conditional power] For all Ξ ∈ M(Ω,R)[[1,N ]]

independent of X , there exists a domain D of |〈Ξ〉N−ξ0| such

that, for any ρ ∈ D ∩ (0,∞), P
[

T(Y ) = 1 | |〈Ξ〉N − ξ0| = ρ
]

is independent of P|〈Ξ〉N−ξ0|.

The rationale behind [Invariance in mean] is straightfor-

ward. [Constant conditional power] encapsulates the idea

that T should not yield different results for different distribu-

tions of |〈Ξ〉N − ξ0|, conditionally to |〈Ξ〉N − ξ0| = ρ. The

notion of domain is required for mathematical correctness.

Let Kγ denote the class of all BlockRDT-coherent tests with

level γ. This class can be partially ordered as follows: given

T,T′ ∈ Kγ , write that T � T′ if, for any Ξ ∈ M(Ω,R)[[1,N ]],

(i) T and T′ satisfy [Constant conditional power] on the

same domain D and (ii) For all ρ ∈ D ∩ (τ,∞),

P
[

T(Y )=1 | |〈Ξ〉N−ξ0|=ρ
]

6P
[

T
′(Y )=1 | |〈Ξ〉N−ξ0|=ρ

]

.
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α = β = 0.01

SNR = |ξ1 − ξ0| 0.4 0.5 0.6 0.8

SeqRDT

E [T ] 167.28 142.83 137.31 136.78

PFA(DM ) 2.1×10−4 2.3×10−4 3.1×10−4 1.8×10−4

PMD(DM ) 2.4×10−4 < 10−5 < 10−5 < 10−5

SPRT

E [TSPRT ] 59.78 38.91 27.48 15.94

P SPRT
FA 7.8×10−3 7.7×10−3 6.7×10−3 5.8×10−3

P SPRT
MD 7.5×10−3 7.5×10−3 7.4×10−3 6.7×10−3

SPRT-MM

E [TSPRT-MM ] 59.62 38.74 27.37 15.89

P SPRT-MM
FA 1.2×10−2 8.4×10−3 7.9×10−3 6.9×10−3

P SPRT-MM
MD 1.1×10−2 8.0×10−3 7.5×10−3 7.4×10−3

α = β = 0.05

SNR = |ξ1 − ξ0| 0.4 0.5 0.6 0.8

SeqRDT

E [T ] 123.13 112.77 111.63 110.54

PFA(DM ) 9.1×10−4 1.7×10−4 7.2×10−4 7.4×10−4

PMD(DM ) 3.5×10−4 6×10−5 < 10−5 < 10−5

SPRT

E [TSPRT ] 36.94 24.32 17.29 10.26

P SPRT
FA 3.9×10−2 3.8×10−2 3.6×10−2 3.1×10−2

P SPRT
MD 4.0×10−2 3.8×10−2 3.5×10−2 3.3×10−2

SPRT-MM

E [TSPRT-MM ] 36.74 24.23 17.24 10.22

P SPRT-MM
FA 5.8×10−2 4.0×10−2 3.8×10−2 3.6×10−2

P SPRT-MM
MD 5.2×10−2 4.9×10−2 3.8×10−2 3.4×10−2

TABLE II: SeqRDT vs SPRT for bounded regime.

According to [19] & [26], the N -dimensional test T∗
N,γ :

R
N → {0, 1} defined for every x ∈ R

N by:

T
∗
N,γ (x) =

{

0 if |〈x〉N − ξ0| 6 λγ(τ
√
N)/

√
N

1 otherwise
, (35)

is maximal in Kγ : for any T ∈ Kγ , T � T∗
N,γ .

Let P
B-RDT
FA (N, γ) and P

B-RDT
MD (N, γ) be PFA and PMD for

BlockRDT, respectively, when the testing on Y is performed

by T∗
N,γ , so that T∗

N,γ(Y ) is the accepted hypothesis in (6).

Proposition 7.1: P
B-RDT
FA (N, γ) 6 γ & P

B-RDT
MD (N, γ) 6 1−γ.

Under Assumption 2.2, H0 and H1 in (6) are satisfied for

τ− instead of τ . Thereby, λγ(τ
√
N)/

√
N can be replaced

by λγ(τ
−√N)/

√
N in (35). The resulting better performance

guaranteed by BlockRDT is given by the next proposition.

Proposition 7.2: Under Assumption 2.2, PB-RDT
FA (N, γ) 6 γ

& P
B-RDT
MD (N, γ) 6 1−Q1/2

(

τ+
√
N,λγ(τ

−√N)
)

.

Given γ, the upper bound on P
B-RDT
MD (N, γ) is decreasing

with N , therefore N can be chosen large enough to guarantee

a specified P
B-RDT
MD (N, γ). BlockRDT applies to the detection

of a change in the mean of Ξ with bounded distortions by

choosing τ− = h0 and |∆n| 6 τ−. Given α, β ∈ (0, 1), we

can compute the block size NB-RDT required to drive the upper

bound on P
B-RDT
MD (N,α) below β. The decision is made by T∗

N,γ

with N = NB-RDT and γ = α in (35).

Sequential Probability Ratio Test (SPRT): Suppose that the

probability density function fi of the observation is known

under Hi for i = 0, 1. Given α, β ∈ (0, 1), and with

initialization N = 1, SPRT has the following form:










If ΛN 6 λSPRT
L , decide H0 and stops;

If ΛN > λSPRT
H , decide H1 and stops;

If λSPRT
L < ΛN < λSPRT

H , compute ΛN+1 and repeat;

, (36)

with ΛN =
∏N

n=1
f1(Yi)
f0(Yi)

, λSPRT
L = β

1−α and λSPRT
H = 1−β

α . The

PFA, PSPRT
FA and the PMD, PSPRT

MD of SPRT are guaranteed to stay

α = β = 0.01

SNR = |ξ1 − ξ0| 0.4 0.5 0.6 0.8

SeqRDT

E [T ] 171.34 145.83 141.12 140.26

PFA(DM ) 1.5×10−4 2×10−4 2×10−4 2.1×10−4

PMD(DM ) 4.4×10−4 1.3×10−4 4×10−5 < 10−5

SPRT

E [TSPRT ] 68.74 44.74 31.52 18.27

P SPRT
FA 7.5×10−3 7.6×10−3 6.6×10−3 6.6×10−3

P SPRT
MD 7.5×10−3 8.2×10−3 7.4×10−3 6.3×10−4

SPRT-MM

E [TSPRT-MM ] 58.98 38.40 27.18 15.84

P SPRT-MM
FA 1.5×10−2 1.46×10−2 1.3×10−2 1.2×10−2

P SPRT-MM
MD 1.5×10−2 1.4×10−2 1.4×10−2 1.2×10−2

α = β = 0.001

SNR = |ξ1 − ξ0| 4 5 6 8

SeqRDT

E [T ] 252.55 198.51 185.17 181.80

PFA(DM ) 3×10−5 1×10−5 4×10−5 2×10−5

PMD(DM ) 1.1×10−4 3×10−5 1×10−5 < 10−5

SPRT

E [TSPRT ] 103.34 66.80 46.78 26.80

P SPRT
FA 9.6×10−4 5.9×10−4 5.3×10−4 6.6×10−4

P SPRT
MD 8.8×10−4 9.2×10−4 7.0×10−4 5.7×10−4

SPRT-MM

E [TSPRT-MM ] 89.24 57.82 40.56 23.32

P SPRT-MM
FA 2.2×10−3 1.9×10−3 1.8×10−3 1.6×10−3

P SPRT-MM
MD 2.3×10−3 2.0×10−3 1.9×10−3 1.8×10−4

TABLE III: SeqRDT vs SPRT for unbounded regime.

below α and β, respectively [10], [11]. In our case, ΛN =

∏N
n=1

∫ h0

−h0

exp
(

−(Yn − (ξ1 +∆))2/2
)

d∆

∫ h0

−h0

exp
(

−(Yn − (ξ0 +∆))2/2
)

d∆

. SPRT requires

the knowledge of distortion distribution. But in many practical

scenarios, it is unaware of the distortion. In this case, we

represent the algorithm by SPRT-MM and denote by TSPRT-MM,

P
SPRT-MM
FA and P

SPRT-MM
MD , its stopping time, PFA and PMD,

respectively. SPRT-MM has same thresholds as SPRT and log-

likelihood ratio is: log ΛN = N
ξ20−ξ21

2 + (ξ1 − ξ0)
∑N

n=1 YN .

C. Unbounded Distortion

Because Assumption 2.2 might not be satisfied for all

types of distortion, we relax Assumption 2.2 by considering

unbounded distortions ∆n ∼ N(0, σ2) for n ∈ N. The notation

below remains the same as in the bounded regime case.

SeqRDT: For τ− = h0 = σ/4, τ+ = 3h0, τ = 2h0
and τH = |ξ1 − ξ0| + h0, P[|〈∆〉N | 6 τ ] > 0.9545,

P[|〈∆〉N | 6 τ−] > 0.6827, P[|〈∆〉N + ξ1 − ξ0| > τ ] > 0.9772
and P[|〈∆〉N + ξ1 − ξ0| > τ+] > 0.8413 for all N > N0 with

N0 = 16 and |ξ1− ξ0| > 4h0. Although the (a-s) convergence

in (34) (Assumption 2.2) is not satisfied, simulations show that

SeqRDT is still able to guarantee performance.

BlockRDT: For τ− = h0, the probabilities stay the same as

derived above for SeqRDT.

SPRT: Because SPRT is aware of the distortion distribution

∆n ∼ N(0, h20) (n ∈ N), the log-likelihood ratio in (36)

becomes ΛN = N
ξ20−ξ21

2(1+h2
0)

+ ξ1−ξ0
1+h2

0

∑N
n=1 Yn. Unaware of

the distortion distribution, SPRT-MM remains the same as

specified for the bounded regime.

D. Comparison: SeqRDT, BlockRDT and SPRT

For both the bounded distortion case described in Section

VII-B and the unbounded distortion case described in Section
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VII-C, we define |ξ1− ξ0| as the Signal-to-Noise Ratio (SNR)

and we choose h0 = 0.1 in our simulations. First, to perform

SeqRDT, we must first choose an appropriate buffer size M >

N0−1. We fix M such that PFA(DM ) and PMD(DM ) are below

specified levels α and β, respectively, by making use of the

upper bounds derived in Theorem 5.2 (i). Figure 1 plots the

upper bounds on PFA(DM ) and PMD(DM ) given by Theorem

5.2 (i), when M increases. Note that the terms UB2FA(M)
and UB2MD(M) in Theorem 5.2 are infinite sums over N =
M + 2 to ∞. For simulation purposes, we curtail the sum to

N = 500 terms, which approximates the bounds sufficiently

well. From Figure 1 we choose M = 90.

First, in Table I we analyze the average number of samples

taken by SeqRDT compared to its FSS counterpart BlockRDT

for level α = β = 0.01 and for two cases one when

BlockRDT utilizes τ− and second when it uses τ to design

the threshold. We compare NB-RDT needed for BlockRDT to

guarantee that PB-RDT
MD (NB-RDT, β) stays below β against T of

SeqRDT designed to guarantee that PFA(DM ) and PMD(DM )
stay below α and β, respectively. For BlockRDT, we choose

τ+ = |ξ1−ξ0|−h0 to compute NB-RDT. This is the best τ+ we

can choose to have the smallest possible NB-RDT. Note from

Table I that SeqRDT is faster compared to BlockRDT for both

bounded and unbounded distortions, even when BlockRDT

has knowledge of τ−, specially at low SNRs.

In Tables II and III, we compare the average stopping times

and PFA and PMD of SeqRDT against SPRT and SPRT-

MM, for different SNRs and for levels α = β = 0.01 and

α = β = 0.05 for bounded distortions and for α = β = 0.01
and α = β = 0.001 for unbounded distortions. We average

the stopping times, PFA and PMD over 105 Monte Carlo

iterations. The stopping time is taken to be the average of

the stopping times under the two hypotheses. As expected,

SPRT is optimal if the distortion and noise distributions are

completely known. On the other hand, when SPRT is unaware

of the distortions, we notice that for SPRT-MM, PFA and

PMD cannot be guaranteed to stay below the levels α and β,

for unbounded distortions, especially at low SNRs. SPRT is

sensitive to model mismatches, whereas SeqRDT is robust and

requires knowledge of a few parameters only. The results of

Table III imply that Assumption 2.2 need not be satisfied in a

strict (a-s) sense. If the assumption is satisfied with sufficiently

high probability, SeqRDT still provides sufficient performance

guarantees. This means that SeqRDT is also robust to mis-

matches with respect to the choice of parameter values and

can be expected to perform well even if the tolerances are not

known precisely or are merely known approximately.

VIII. CONCLUSION

In this work, we proposed a new algorithm SeqRDT for

non-parametric sequential hypothesis testing. We studied the

properties of the thresholds and showed that the chosen

thresholds are appropriate for conducting the sequential test.

We introduced the concept of a buffer; the size of this buffer

helps control PFA and PMD of the proposed test. Simulations

showed that the SeqRDT approach leads to faster decision-

making on an average compared to its FSS counterpart,

BlockRDT [19]. Moreover, we showed that SeqRDT is robust

to model mismatches compared to SPRT [10], [11]. Exten-

sion of SeqRDT to multi-dimensional observations may be

addressed in future work.
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APPENDIX A

USEFUL LEMMAS

Lemma A.1: For any N ∈ N and any η > 0, we have:

E

[

Q1/2

(√
N |〈Ξ〉N − ξ0|, η

√
N
) ]

− 2δN

6 P [ |〈Ξ〉N + 〈X〉N − ξ0| > η ]

6 E

[

Q1/2

(√
N |〈Ξ〉N − ξ0|, η

√
N
) ]

+ 2δN ,

with δN = cE
[

|X1 − E [X1 ] |3
]

Var (X1)
−3/2N−1/2 and

(2π)−1/2 6 c < 0.8.

Proof: Using Berry-Esseen inequality [27, Chap. 3]:

sup
x∈R

∣

∣

∣
P
[
√
N〈X〉N 6 x

]

− Φ(x)
∣

∣

∣
6 δN . (37)

Since 〈Ξ〉N and 〈X〉N are independent, we have:

P[|〈Ξ〉N + 〈X〉N − ξ0| 6 η]

=

∫

R

P [ |x+ 〈X〉N | 6 η ]P〈Ξ〉N−ξ0(dx).

It then follows from (37) that, for all x ∈ R:

ψ(x
√
N, η

√
N)− 2δN 6 P

[

|x+ 〈X〉N | 6 η
]

6 ψ(x
√
N, η

√
N) + 2δN , (38)

with ψ(a, b) = Φ(b− a)−Φ(−b− a) for any (a, b) ∈ R×R.

We derive from the foregoing that:

E

[

ψ

(√
N

(

〈X〉N − ξ0
)

, η
√
N

)

]

− 2δN

6P[|〈Ξ〉N + 〈X〉N − ξ0| 6 η]

6 E

[

ψ
(√

N
(

〈X〉N − ξ0
)

, η
√
N
) ]

+ 2δN ,

and conclude since ψ(a, b) = ψ(|a|, b) = 1−Q1/2(a, b).
Lemma A.2: If Ξ satisfies Assumption 2.1, then, for any

γ ∈ (0, 1), we have:

lim
N→∞

Q1/2

(√
N |〈Ξ〉N − ξ0|, λγ(τ

√
N)

)

=

{

0 under H0

1 under H1
.

Proof: Under Assumption 2.1, lim
N→∞

|〈Ξ〉N − ξ0| =

|〈Ξ〉∞ − ξ0| (a-s). Therefore, there exists Ω′ ∈ F such that

P(Ω′) = 1 and for all ω ∈ Ω′, lim
N→∞

|〈Ξ〉N (ω) − ξ0| =

|〈Ξ〉∞(ω)−ξ0|. It follows that, for any ε > 0 and any ω ∈ Ω′,
there exists N0(ε, ω) ∈ N such that, for any N > N0(ε, ω),

|〈Ξ〉∞(ω)− ξ0| − ε 6 |〈Ξ〉N (ω)− ξ0| 6 |〈Ξ〉∞(ω)− ξ0|+ ε.

Because Q1/2(•, λγ(τ
√
N) increases, we can also write that,

for all ε > 0 and all ω ∈ Ω′, there exists N0(ε, ω) ∈ N such

that, for any N > N0(ε, ω):
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Q1/2

(√
N
(

|〈Ξ〉∞(ω)− ξ0| − ε
)

, λγ(τ
√
N)

)

6Q1/2

(√
N |〈Ξ〉N (ω)− ξ0|, λγ(τ

√
N)

)

6 Q1/2

(√
N (|〈Ξ〉∞(ω)− ξ0|+ ε) , λγ(τ

√
N)

)

. (39)

Under H0, (7) implies the existence of Ω0 ∈ F such that,

for any ω ∈ Ω0, |〈Ξ〉∞(ω) − ξ0| 6 τ−. Choose ε > 0 such

that τ− + ε < τ . For any ω ∈ Ω0, |〈Ξ〉∞(ω) − ξ0| + ε < τ .

Therefore, for any ω ∈ Ω0, it follows from Lemma B.2 that:

lim
N→∞

Q1/2

(√
N (|〈Ξ〉∞(ω)− ξ0|+ ε) , λγ(τ

√
N)

)

= 0. (40)

Since P(Ω′ ∩ Ω0) = 1, Eqs. (39) and (40) imply that:

lim
N→∞

Q1/2

(√
N |〈Ξ〉N − ξ0|, λγ(τ

√
N)

)

= 0 (a-s).

Under H1, the proof is similar. From (7), there exists Ω1 ∈ F

such that: ∀ω ∈ Ω1, |〈Ξ〉∞(ω) − ξ0| > τ+. For ε > 0 such

that τ+ − ε > τ , Lemma B.2 induces that, for any ω ∈ Ω1:

lim
N→∞

Q1/2

(√
N (|〈Ξ〉∞(ω)− ξ0| − ε) , λγ(τ

√
N)

)

= 1. (41)

Since P(Ω′ ∩ Ω1) = 1, it follows from (41) and (39) that:

lim
N→∞

Q1/2

(√
N |〈Ξ〉N − ξ0|, λγ(τ

√
N)

)

= 1 (a-s),

which concludes the proof.

APPENDIX B

PROPERTIES OF THE THRESHOLDS

Lemma B.1: For any γ ∈ (0, 1):

(i) lim
ρ→∞

(

λγ(ρ)− ρ
)

= Φ−1(1− γ);

(ii) lim
ρ→∞

λγ(ρ)/ρ = 1;

Proof: We only prove (i) since it directly implies (ii). Pose

g(ρ) = λγ(ρ)−ρ and θ = Φ−1(1−γ). Since Φ(x)+Φ(−x) =
1, (3) and the definition of λγ(τ) induce that:

Φ(g(ρ)) + Φ(g(ρ) + 2ρ) = 1 + Φ(θ). (42)

To prove that g(ρ) tends to θ when ρ → ∞, we proceed by

contradiction. If g(ρ) does not tend to θ when ρ → ∞, there

exists some positive real number ε such that, for all n ∈ N,

there exists some real number ρn > n such that either g(ρn) >
θ + ε or g(ρn) < θ − ε. Basically, lim

n→∞
ρn = ∞. Consider

any η ∈ (0,Φ(θ)−Φ(θ−ε)). Since lim
n→∞

Φ(2ρn+θ+ε) = 1,

there exists N0 ∈ N such that, for all n > N0:

Φ(2ρn + θ + ε) > 1− η. (43)

Similarly, since lim
n→∞

Φ(2ρn+θ−ε) = 1, there exists N1 ∈ N

such that, for all n > N1:

Φ(2ρn + θ − ε) < 1 + η. (44)

Let n be any integer above max(N0, N1). If g(ρn) < θ − ε,
we then have Φ(g(ρn)) < Φ(θ − ε) and Φ(2ρn + g(ρn)) <
Φ(2ρn + θ − ε). Eqs. (42) and (44) then imply that:

1 + Φ(θ) < Φ(θ − ε) + Φ(2ρn + θ − ε) < Φ(θ − ε) + 1 + η,

which is impossible because of our choice for η. Therefore,

we cannot have g(ρn) < θ−ε. We cannot have g(ρn) > θ+ε
either because, via (42) and (43), this inequality implies:

1+Φ(θ) > Φ(θ+ε)+Φ(2ρn+θ+ε) > Φ(θ+ε)+1−η, (45)

which is contradictory to our choice for η.

Lemma B.2 (Asymptotic behavior of Q1/2 in vanishing noise):

Consider τ ∈ |0,∞) and ρ ∈ (0,∞) such that ρ 6= τ .

∀γ ∈ (0, 1), lim
σ→0

Q1/2

(

ρ/σ, λγ(τ/σ)
)

= ✶(τ,∞)(ρ).

Proof: Let (σn)n∈N be a sequence of positive real

values such that lim
n→∞

σn = 0 and set ρn = τ/σn for

each n ∈ N. According to (2), Q1/2

(

(ρ/τ)ρn, λγ(ρn)
)

=
P
[∣

∣(ρ/τ) +X/ρn
∣

∣ > λγ(ρn)/ρn
]

for any X ∼ N(0, 1).
It follows from Lemma B.1 (ii) that |(ρ/τ) + (X/ρn)| −
λγ(ρn)/ρn = (ρ/τ)− 1 (a-s). Therefore, the cdf of

∣

∣(ρ/τ) +
(X/ρn)

∣

∣ − λγ(ρn)/ρn converges weakly to ✶[(ρ/τ)−1,∞).

Since ρ 6= τ , this weak convergence implies that

lim
n→∞

P
[∣

∣(ρ/τ) +X/ρn
∣

∣ > λγ(ρn)/ρn
]

= ✶(τ,∞)(ρ). Thence

the result since (σn)n∈N is arbitrary.

Lemma B.3 (Non-Asymptotic behavior of Q1/2): Given

τ ∈ [0,∞), ρ ∈ (0,∞) and γ ∈ (0, 1), the map:

σ∈ [0,∞) 7→Q1/2

(

ρσ, λγ(τσ)
)

is











constant γ if ρ = τ

decreasing if ρ < τ

increasing if ρ > τ

.

Proof: Given ρ and τ , we want to study the behavior of

Q(σ)=Q1/2

(

ρσ, λγ(τσ)
)

=1−Φ(r−(σ))+Φ(−r+(σ)), (46)

with r+(σ) = λγ(τσ) + ρσ and r−(σ) = λγ(τσ) − ρσ. For

ρ = τ , it follows from (4) that Q is constant equal to γ. We

thus have 1 − Φ(λγ(τσ) − τσ) + Φ(−λγ(τσ) − τσ) = γ.

After differentiating the two members of this equality above

and after some routine algebra, we obtain:

λ′γ(τσ) = (1− e−2τσλγ(τσ))/(1 + e−2τσλγ(τσ)), (47)

where λ′γ is the first derivative of λγ . We now differentiate Q

defined by (46). Some easy computation yields:

Q
′(σ)=

1√
2π

(

e−r2−(σ)/2−e−r2+(σ)/2
)

(

ρ− τλ′
γ(τσ)

1 + e−2ρσλγ(τσ)

1− e−2ρσλγ(τσ)

)

.

By injecting (47) into the equality above, we obtain:

Q
′(σ)=

τ√
2π

(

e−r2−(σ)/2− e−r2+(σ)/2
)

(

ρ

τ
− ∆−1(ρ, τ)

∆+1(ρ, τ)

)

. (48)

with ∆ε(ρ, τ) = (1 + εe−2τσλγ(τσ))/(1 + εe−2ρσλγ(τσ)) and

ε ∈ {−1,+1}. For all σ > 0, the sign of Q′ is therefore that

of (ρ/τ)− (∆−1(ρ, τ)/∆+1(ρ, τ)) We verify easily that:
{

ρ < τ ⇔ ∆−(ρ, τ) > 1 ⇔ ∆+(ρ, τ) < 1
ρ = τ ⇔ ∆−(ρ, τ) = ∆+(ρ, τ)) = 1

Therefore, if ρ < τ , ρ/τ < 1 < ∆−(ρ, τ)/∆+(ρ, τ), which

implies that Q′(σ)< 0 and, thus, that Q decreases. On the other

hand, if ρ > τ , we have ρ/τ > 1 > ∆−(ρ, τ)/∆+(ρ, τ), so

that Q increases in this case.
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Lemma B.4: Given ρ ∈ (0,∞), the map γ ∈ (0, 1) 7→
λγ(ρ) is decreasing.

Proof: A straightforward consequence of (4) and the

decreasing nature of Q1/2 with its second argument.

Lemma B.5:

(P1) For any τ ∈ [0,∞) and any η ∈ (τ,∞), the map σ ∈
(0,∞) 7→ Q1/2

(

τ/σ, η/σ
)

is increasing.

(P2) The map ρ ∈ (0,∞) 7→ Q1/2

(

ρ, ρ
)

is decreasing, lower-

bounded by 1/2 and lim
ρ→∞

Q1/2

(

ρ, ρ
)

= 1/2.

(P3) For any γ ∈ (0, 1/2), the map ρ ∈ (0,∞) 7→ λγ(ρ)/ρ is

decreasing and lower bounded by 1.

Proof: Proof of (P1): Using (3), define Q(σ) as:

Q(σ) = Q1/2

(

τ/σ, η/σ
)

= 1− Φ(η/σ − τ/σ) + Φ(−η/σ − τ/σ).

We now differentiate Q and some easy computation yields:

Q
′(σ) = (1/

√
2πσ2)e

− (η−τ)2

2σ2

[

(η − τ) + (η + τ)e
− 2ητ

σ2

]

.

Thence the result, since η ∈ [τ,∞) implies that Q′(σ) > 0.

Proof of (P2): The map ρ ∈ (0,∞) 7→ Q1/2

(

ρ, ρ
)

is

decreasing as a consequence of (P1). Given ρ ∈ (0,∞),
Q1/2(ρ, ρ) = 1/2 + Φ(−2ρ) from (3). Hence the result.

Proof of statement (P3): Let ρ and ρ′ be two positive real

numbers such that 0 < ρ < ρ′. According to (4), we have:

Q1/2

(

ρ, λγ(ρ)
)

= Q1/2

(

ρ′, λγ(ρ
′)
)

= γ. (49)

Since γ < 1/2, it follows from (P2) and (49) that

Q1/2(ρ, ρ) > 1/2 > Q1/2(ρ, λγ(ρ)). The decreasing behavior

of Q1/2 with its second argument implies that λγ(ρ) > ρ,

so that λγ(ρ)/ρ is lower bounded by 1. We then derive

from (P1) that x ∈ (0,∞) 7→ Q1/2

(

ρ/x, λγ(ρ)/x
)

is an

increasing map. Since ρ/ρ′ < 1, we have Q1/2

(

ρ, λγ(ρ)
)

>
Q1/2

(

ρ′, ρ′λγ(ρ)/ρ
)

. This inequality and (49) induce that

Q1/2

(

ρ′, λγ(ρ′)
)

> Q1/2

(

ρ′, ρ′λγ(ρ)/ρ
)

. The decreasing na-

ture of Q1/2(ρ
′, •) then implies that λγ(ρ

′) < ρ′λγ(ρ)/ρ.

Thereby, ρ ∈ (0,∞) 7→ λγ(ρ)/ρ is decreasing in ρ.

Lemma B.6: For γ ∈ (1/2, 1) and ρ large enough, the map

ρ ∈ (0,∞) 7→ λγ(ρ)/ρ is increasing and upper bounded by 1.

Proof: According to statement (i) of Lemma B.1, λγ(ρ)−
ρ = Φ−1(1− γ) + κ(ρ) where κ is such that lim

ρ→∞
κ(ρ) = 0.

Since γ > 1/2, Φ−1(1− γ) < 0. Given η such that 0 < η <
−Φ−1(1−γ), there exists ρ0 such that, for all ρ > ρ0, κ(ρ) 6
η. Therefore, for all ρ > ρ0, λγ(ρ)−ρ 6 Φ−1(1−γ)+η < 0.

We have hence proved that λγ(ρ) < ρ for ρ large enough.

Pose f(ρ) = λγ(ρ)/ρ so that Φ(ρ(f(ρ)−1))−Φ(−ρ(f(ρ)+
1)) = 1 − γ. By differentiation of this equality with respect

to ρ and since f is differentiable via the implicit function

theorem, we find that f ′(ρ) has the same sign as Υ(ρ) =
(

1−
f(ρ)

)

(

e2ρλγ(ρ) +
λγ(ρ)+ρ
λγ(ρ)−ρ

)

. For ρ large enough, f(ρ) < 1

by the first part of the proof and Lemma B.1 implies that

lim
ρ→∞

Υ(ρ) = ∞. Therefore, Υ(ρ) > 0 for ρ large enough and

the proof is complete.

APPENDIX C

CONVERGENCE OF THE UPPER BOUNDS IN THEOREM 5.2

Let us consider UB2FA(M) given in (27), we have:

UB2FA(M) 6
∞
∑

N=1

Q1/2

(

τ−
√
N,λα(τ

√
N)

)

.

Each term of the above summation is positive and t > 0 7→
Q1/2

(

τ−
√
t, λα(τ

√
t)
)

is decreasing since τ− < τ , as a

consequence of Lemma B.3. Therefore, to show that the above

series converges, it suffices to show that

IFA(ζ) =

∫ ∞

ζ

Q1/2

(

τ−
√
t, λα(τ

√
t)
)

dt, (50)

is finite for some ζ > 0, with α ∈ (0, 1/2) and τ− < τ . From

the definition of Q1/2(a, b) given in (3), we have:

Q1/2(a, b) = Φc(b− a) + Φc(b+ a), (51)

where Φc(x) = 1√
2π

∫∞
x

e
−z2

2 dz, also known as the standard

Q function, is the complementary cdf of a standard normal

distributed random variable. Using (51) in (50) and the fact

that we have Φc(λα(τ
√
t) + τ−

√
t) 6 Φc(λα(τ

√
t)− τ−

√
t)

for any t, we get

IFA(ζ)62

∫ ∞

ζ

Φc(λα(τ
√
t)− τ−

√
t)dt

(a)

6 2

∫ ∞

ζ

e
−(λα(τ

√
t)−τ−√

t)2

2 dt,

where (a) results from Φc(x) 6 e−x2/2 for x > 0 as, for

α < 1/2, λα(τ
√
t) − τ−

√
t > 0 according to Lemma B.5

(P3). Therefore, to show that IFA(ζ) <∞, it suffices to show

JFA(ζ)
def
=

∫ ∞

ζ

e
−u(t)2

2 dt <∞, (52)

with u(t)
def
= λα(τ

√
t)− τ−

√
t.

To prove (52), we need the following properties.

(C1) For any t > 0, u(t) > (τ − τ−)
√
t.

(C2) For any t > 0, u′(t) = 1
2
√
t

[

τ 1−Gα(t)
1+Gα(t) − τ−

]

where:

∀γ ∈ (0, 1), Gγ(t)
def
= e−2τ

√
tλα(τ

√
t).

(C3) There exists A > 0 such that, for any t > A, u′(t) > 0.

(C4) Given any a ∈ (0, τ − τ−), there exists B > 0 such that,

for any x > B, τ
1−Gα(u

−1(x))

1 +Gα(u−1(x))
− τ− > a.

Proof: (C1) Lemma B.5 (P3) implies λα(τ
√
t) > τ

√
t.

Hence (C1)

(C2) This property follows from (47) in Lemma B.3.

(C3) Lemma B.5 (P3) implies Gα(t) 6 e−2τ2t. Thus,

lim
t→∞

(

τ
1−Gα(t)

1+Gα(t)
−τ−

)

=τ−τ−>0. Whence the result.

(C4) From (C3) u(t) increases for t > A > 0, which

implies that u−1(x) increases for x > u(A). It follows that

lim
x→∞

(

τ
1−Gα(u

−1(x))

1 +Gα(u−1(x))
− τ−

)

= τ − τ−. Thence (C4).

Choose any a ∈ (0, τ − τ−) and ζ > max(A, u−1(B))
where A and B are given by (C3) and (C4), respectively. By

the Jacobi’s transformation formula (see [28, Theorem 12.6],

among others) and the fact that u′(u−1(x)) > 0 for any x >
u(ζ) since ζ > A, we have:

JFA(ζ) =

∫ ∞

u(ζ)

1

u′(u−1(x))
e−x2/2dx. (53)
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By (C2), ∀x > u(ζ) we have:

u′(u−1(x)) =
1

2
√

u−1(x)

[

τ
1−Gα(u

−1(x))

1 +Gα(u−1(x))
− τ−

]

. (54)

On the other hand, (C1) implies ∀x > u(ζ) we have:

1
√

u−1(x)
>
τ − τ−

x
. (55)

Finally, (C4) induces that ∀x > u(ζ):

τ
1−Gα(u

−1(x))

1 +Gα(u−1(x))
− τ− > a. (56)

By injecting (55) and (56) into (54), we obtain u′(u−1(x)) >
a(τ − τ−)/2x for all x > u(ζ). Therefore, it results from

(53) that JFA(ζ) 6
2

a(τ − τ−)

∫ ∞

0

xe−x2/2dx < ∞ and that

(52) holds. The convergence of UB2MD(M) in (29) is proved

similarly via Lemma B.6 and (47) in Lemma B.3.
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