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On sets of vectors of a finite vector space in which

every subset of basis size is a basis II∗

Simeon Ball and Jan De Beule †

25 January 2012

Abstract

This article contains a proof of the MDS conjecture for k ≤ 2p− 2. That is, that

if S is a set of vectors of Fk
q in which every subset of S of size k is a basis, where

q = ph, p is prime and q is not and k ≤ 2p − 2, then |S| ≤ q + 1. It also contains a

short proof of the same fact for k ≤ p, for all q.

1 Introduction

Let S be a set of vectors of Fk
q in which every subset of size k is a basis.

In 1952, Bush [2] showed that if k ≥ q then |S| ≤ k + 1 and the bound is attained if

and only if S is equivalent to {e1, . . . , ek, e1 + . . .+ ek}, where {e1, . . . , ek} is a basis.

The main conjecture for maximum distance separable codes (the MDS conjecture),

proposed (as a question) by Segre [9] in 1955 is the following.

CONJECTURE 1.1. A set S of vectors of the vector space Fk
q , with the property that every

subset of S of size k ≤ q is a basis, has size at most q + 1, unless q is even and k = 3 or

k = q − 1, in which case it has size at most q + 2.

In this article we shall prove the conjecture for all k ≤ 2p − 2, where q = ph, p is

prime and q is not prime.

We shall also prove the conjecture for q prime, which was first proven in [1]. It may

help the reader to look at the first four sections of [1], although this article is self-contained

(with the exception of the proof of Lemma 2.1) and can be read independently. The proof
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here is based on the ideas of [1] which themselves are based on the initial idea of Segre

in [8].

For a complete list of when the conjecture is known to hold for q non-prime, see [4]

and also [5].

The best known bounds, up to first-order of magnitude (ci are constants), are that

for q an odd non-square, the conjecture holds for k <
√
pq/4 + c1p, Voloch [11]. For

q = p2h, where p ≥ 5 is a prime, the conjecture holds for k ≤ √
q/2 + c2, Hirschfeld

and Korchmáros [3], and here we shall prove the conjecture for k ≤ 2
√
q + c3 in the case

q = p2. The conjecture is known to hold for all q ≤ 27 and for all k ≤ 5 and k = 6 with

some exceptions.

Conjecture 1.1 has implications for various problems in combinatorics, most notably

for maximum distance separable codes (whence the name) from coding theory and the

uniform matroid from matroid theory.

A linear maximum distance separable code is a linear code of length n, dimension k

and minimum distance d over Fq, for which d = n− k + 1. Conjecture 1.1 implies that a

linear maximum distance separable code has length n at most q + 1 unless q is even and

k = 3 or k = q − 1, in which case it has length at most q + 2. For more details on codes

and MDS codes in particular, see [6].

A matroid M = (E, F ) is a pair in which E is a set and F is a set of subsets of E,

called independent sets, such that (1) every subset of an independent set is an independent

subset; and (2) for all A ⊆ E, all maximal independent subsets of A have the same

cardinality, called the rank of A and denoted r(A). The maximal independent sets of the

uniform matroid of rank r are all the r element subsets of the set E. Conjecture 1.1 implies

that the uniform matroid of rank r, with |E| ≥ r + 2, is representable over Fq if and only

if |E| ≤ q + 1, unless q is even and r = 3 or r = q − 1, in which case it is if and only if

|E| ≤ q + 2. For more details on matroids and representations of matroids in particular,

see [7].

2 The tangent function and the Segre product

For any subset Y of k − 2 elements of S, since there are at most k − 1 vectors of S in a

hyperplane, there are exactly

t = q + 1− (|S| − k + 2) = q + k − 1− |S|

hyperplanes containing Y and no other vector of S.

We shall assume throughout that t ≥ 1, which is no restriction since we are trying to

prove |S| ≤ q + 1 for k ≥ 4.
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Let φY be a set of t linearly independent linear maps from F
k
q to Fq with the property

that for each α ∈ φY , Ker(α) is one of the t hyperplanes containing Y and no other

vector of S.

The tangent function at Y is defined (up to scalar factor) as

TY (x) =
∏

α∈φY

α(x),

and is a map from F
k
q to Fq.

The following is a coordinate-free version of Segre’s lemma of tangents [10] and is

from [1].

LEMMA 2.1. Let D be a set of k − 3 elements of S. For all x, y, z ∈ S \D

T{x}∪D(y)T{y}∪D(z)T{z}∪D(x) = (−1)t+1T{x}∪D(z)T{y}∪D(x)T{z}∪D(y).

Since we wish to write det(A) where A = {a1, . . . , ak} is a subset of S, to mean

the determinant det(a1, . . . , ak), we order the elements of S from now on. We write

det(A1, . . . , Ar) to mean the determinant in which the elements of A1 come first, then

the elements of A2, etc.

The following, which follows from interpolating the tangent function, is also from [1].

LEMMA 2.2. If |S| ≥ k + t > k then for any Y of size k − 2 and E of size t+ 2, disjoint

subsets of S,

0 =
∑

a∈E

TY (a)
∏

z∈E\{a}

det(z, a, Y )−1.

Let A = (a1, . . . , an) and B = (b0, . . . , bn−1) be two subsequences of S of the same

length n and let D be a subset of S \ (A ∪ B) of size k − n− 1.

We define the Segre product of A and B with base D to be

PD(A,B) =

n∏

i=1

TD∪{a1,...,ai−1,bi,...,bn−1}(ai)

TD∪{a1,...,ai−1,bi,...,bn−1}(bi−1)

and PD(∅, ∅) = 1.

The following lemmas are a consequence of Lemma 2.1.

LEMMA 2.3.

PD(A
∗, B) = (−1)t+1PD(A,B),

where the sequence A∗ is obtained from A by interchanging two elements.

Proof. It is enough to prove the lemma for two adjacent elements in A since the trans-

position (j ℓ) can be written as the product of 2(ℓ − j) + 1 transpositions of the form

(n n+ 1).
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The only terms in the Segre product which differ when we interchange aj and aj+1 are

the terms in the product for i = j and i = j + 1. Trivially

TD∪{a1,...,aj−1,bj ,bj+1,...,bn−1}(aj)

TD∪{a1,...,aj−1,bj ,bj+1,...,bn−1}(bj−1)

TD∪{a1,...,aj−1,aj ,bj+1,...,bn−1}(aj+1)

TD∪{a1,...,aj−1,aj ,bj+1,...,bn−1}(bj)

is equal to

T∆∪{bj}(aj)

T∆∪{bj}(bj−1)

T∆∪{aj}(aj+1)

T∆∪{aj}(bj)
,

where ∆ = D ∪ {a1, . . . , aj−1, bj+1, . . . , bn−1}, which is equal to

(−1)t+1T∆∪{bj}(aj+1)

T∆∪{bj}(bj−1)

T∆∪{aj+1}(aj)

T∆∪{aj+1}(bj)
,

by Lemma 2.1.

In the same way the following lemma also holds.

LEMMA 2.4.

PD(A,B
∗) = (−1)t+1PD(A,B),

where the sequence B∗ is obtained from B by interchanging two elements.

The following lemma will also be needed.

LEMMA 2.5. If A and B are subsequences of S and |A| = |B| − 1 then

TD∪B(y)

TD∪B(x)
PD∪{y}({x} ∪A,B) = (−1)t+1PD∪{x}({y} ∪A,B).

Proof. Using the definition of the Segre product and Lemma 2.1,

TD∪B(y)

TD∪B(x)
PD∪{y}({x} ∪ A,B) =

TD∪B(y)

TD∪B(x)

TD∪{b1,...,bn−1,y}(x)

TD∪{b1,...,bn−1,y}(b0)
PD∪{x,y}(A,B \ {b0})

= (−1)t+1 TD∪{b1,...,bn−1,x}(y)

TD∪{b1,...,bn−1,x}(b0)
PD∪{x,y}(A,B \ {b0}) = (−1)t+1PD∪{x}({y} ∪A,B).

3 The main lemma

For any subset B of an ordered set L, let σ(B,L) be (t+ 1) times the number of transpo-

sitions needed to order L so that the elements of B are the last |B| elements.



5

LEMMA 3.1. Let A of size n, L of size r, D of size k − 1 − r and Ω of size t + 1 − n be

pairwise disjoint subsequences of S. If n ≤ r ≤ n+ p− 1 and r ≤ t + 2, where q = ph,

then ∑

B⊆L
|B|=n

(−1)σ(B,L)PD∪(L\B)(A,B)
∏

z∈Ω∪B

det(z, A, L \B,D)−1 =

(−1)(r−n)(nt+n+1)
∑

∆⊆Ω
|∆|=r−n

PD(A ∪∆, L)
∏

z∈(Ω\∆)∪L

det(z, A,∆, D)−1.

Proof. By induction on r. The case r = n is straightforward.

Fix an x ∈ L and apply the inductive step to L \ {x} and {x} ∪D,

∑

B⊆L\{x}
|B|=n

(−1)σ(B,L\{x})PD∪(L\B)(A,B)
∏

z∈Ω∪B

det(z, A, L \ (B ∪ {x}), x,D)−1 =

(−1)(r−n−1)(nt+n+1)
∑

∆⊆Ω
|∆|=r−n−1

PD∪{x}(A ∪∆, L \ {x})
∏

z∈(Ω\∆)∪L

det(z, A,∆, x,D)−1.

Let ∆ be a subset of Ω of size r−n−1. The set Ω\∆ has size t+1−n−(r−n−1) = t+2−r

and so since r ≤ t+2 we can apply Lemma 2.2, with E = L∪(Ω\∆) and Y = D∪A∪∆,

and get

0 =
∑

x∈L

TD∪A∪∆(x)
∏

z∈(Ω\∆)∪(L\{x})

det(z, A,∆, x,D)−1

+
∑

y∈Ω\∆

TD∪A∪∆(y)
∏

z∈(Ω\({y}∪∆))∪L

det(z, A,∆, y, D)−1.

Multiply this equation by PD(A∪∆∪d, L)TD∪A∪∆(d)
−1 for some d for which TD∪A∪∆(d) 6=

0. By Lemma 2.4 we can rearrange L so that the last element is x, which changes the sign

by σ(x, L). This gives

0 =
∑

x∈L

(−1)σ(x,L)PD∪x(A ∪∆, L \ {x})
∏

z∈(Ω\∆)∪(L\{x})

det(z, A,∆, x,D)−1+

∑

y∈Ω\∆

PD(A ∪∆ ∪ {y}, L)
∏

z∈(Ω\(∆∪{y}))∪L

det(z, A,∆, y, D)−1,

since

PD(A ∪∆ ∪ {d}, L)TD∪A∪∆(x)TD∪A∪∆(d)
−1 = PD∪x(A ∪∆, L \ x)

and by Lemma 2.5 (and Lemma 2.3)

PD(A ∪∆ ∪ {d}, L)TD∪A∪∆(y)TD∪A∪∆(d)
−1 = PD(A ∪∆ ∪ y, L).
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Note that in the second term we can order ∆∪{y} in any way we please without changing

the sign since, by Lemma 2.3, interchanging two elements of ∆ ∪ {y} in

PD(A ∪∆ ∪ {y}, L) changes the sign by (−1)t+1, exactly the same change occurs when

we interchange the same vectors in the product of determinants.

Therefore, when we sum this equation over subsets ∆ of Ω of size r−n−1 and apply

the induction hypothesis, we get

0 =
∑

x∈L

(−1)σ(x,L)+(r−n−1)(nt+n+1)
∑

B⊂L\{x}
|B|=n

(−1)σ(B,L\{x})PD∪(L\B)(A,B)

∏

z∈Ω∪B

det(z, A, L \ (B ∪ {x}), x,D)−1+

(r − n)
∑

∆⊆Ω
|∆|=r−n

PD(A ∪∆, L)
∏

z∈(Ω\∆)∪L

det(z, A,∆, D)−1.

Since

σ(B,L) = σ(x, L) + σ(B,L \ {x}) + σ(x, L \ (B ∪ {x})) + n(t + 1),

this equation gives

(−1)(r−n)(nt+n+1)(r − n)
∑

B⊂L
|B|=n

(−1)σ(B,L)PD∪(L\B)(A,B)
∏

z∈Ω∪B

det(z, A, L \B,D)−1 =

(r − n)
∑

∆⊆Ω
|∆|=r−n

PD(A ∪∆, L)
∏

z∈(Ω\∆)∪L

det(z, A,∆, D)−1,

which is what we wanted to prove.

THEOREM 3.2. If k ≤ p then |S| ≤ q + 1.

Proof. If |S| = q + 2 then t = k − 3. If q is prime then, by [1, Lemma 5.1], we may

dualise in F
q+2
q , if necessary, to assume that k ≤ (q + 1)/2 and so k + t ≤ q + 2.

Since k + t ≤ q + 2 we can apply Lemma 3.1 with r = t+ 2 = k − 1 and n = 0 and

get ∏

z∈Ω

det(z, L)−1 = 0,

which is a contradiction.
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4 The case |S| = q + 2 and q is non-prime.

For any subsequence X = {x1, . . . , xm} of S and τ ⊆ {1, 2, . . . , m}, define the subse-

quence Xτ = {xi | i ∈ τ}.

LEMMA 4.1. Suppose that |S| = q + 2 and n ≥ k − p. Let A of size n − m, L of size

k − 1−m, Ω of size k − 2 − n, X of size m, Y of size m be disjoint subsequences of S.

Then

0 =
∑

B⊆L
|B|=n−m

∑

τ⊆M

(−1)σ(B,L)+σ(Xτ ,X)+|τ |P(L\B)∪XM\τ
(A ∪ Yτ , B ∪Xτ )

×
∏

z∈Ω∪B∪Xτ∪YM\τ

det(z, A,XM\τ , Yτ , L \B)−1,

where M = {1, . . . , m}.

Proof. By induction on m. For m = 0 this is Lemma 3.1 with r = t + 2 = k − 1, which

gives the bound n ≥ k − p.

Suppose that X and Y have size m and that x, y ∈ S are not contained in X , Y , L or

A. We wish to prove the equation for X ∪{x}, Y ∪{y}, L and A, where |L| = k−2−m

and |A| = n−m− 1.

Apply the inductive step to {y} ∪ L, A ∪ {x}, X and Y .

Writing the first sum as two sums depending on whether B contains y or not, we have

0 =
∑

B⊆L
|B|=n−m

∑

τ⊆M

(−1)σ(B,L)+σ(Xτ ,X)+|τ |P(L\B)∪{y}∪XM\τ
(A ∪ {x} ∪ Yτ , B ∪Xτ )

×
∏

z∈Ω∪B∪Xτ∪YM\τ

det(z, A, x,XM\τ , Yτ , y, L \B)−1

+
∑

B⊆L
|B|=n−m−1

∑

τ⊆M

(−1)σ({y}∪B,{y}∪L)+σ(Xτ ,X)+|τ |P(L\B)∪XM\τ
(A∪{x}∪Yτ , {y}∪B∪Xτ )

×
∏

z∈Ω∪B∪Xτ∪YM\τ∪{y}

det(z, A, x,XM\τ , Yτ , L \B)−1.

By Lemma 2.3, then Lemma 2.5 and then Lemma 2.3 again, we have

TL∪X(y)

TL∪X(x)
P(L\B)∪{y}∪XM\τ

(A ∪ {x} ∪ Yτ , B ∪Xτ ) =

(−1)(n−m+1)(t+1) TL∪X(y)

TL∪X(x)
P(L\B)∪{y}∪XM\τ

({x} ∪A ∪ Yτ , B ∪Xτ ) =

(−1)(n−m)(t+1)P(L\B)∪{x}∪XM\τ
({y} ∪ A ∪ Yτ , B ∪Xτ )
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= (−1)t+1P(L\B)∪{x}∪XM\τ
(A ∪ {y} ∪ Yτ , B ∪Xτ ),

and by Lemma 2.3 and the definition of the Segre product

TL∪X(y)

TL∪X(x)
P(L\B)∪XM\τ

(A ∪ {x} ∪ Yτ , {y} ∪ B ∪Xτ ) =

(−1)(n−m+1)(t+1) TL∪X(y)

TL∪X(x)
P(L\B)∪XM\τ

({x} ∪A ∪ Yτ , {y} ∪ B ∪Xτ ) =

(−1)(n−m+1)(t+1)P(L\B)∪XM\τ∪{x}(A ∪ Yτ , B ∪Xτ ).

Thus, multiplying the equation before by TL∪X(y)TL∪X(x)
−1 and noting that

σ({y} ∪ B, {y} ∪ L) = σ(B,L) + (k − n− 1)(t+ 1),

we have

0 =
∑

B⊆L
|B|=n−m

∑

τ⊆M

(−1)σ(B,L)+σ(Xτ ,X)+|τ |P(L\B)∪{x}∪XM\τ
(A ∪ {y} ∪ Yτ , B ∪Xτ )

×
∏

z∈Ω∪B∪Xτ∪YM\τ

det(z, A, x,XM\τ , Yτ , y, L \B)−1

+
∑

B⊆L
|B|=n−m−1

∑

τ⊆M

(−1)σ(B,L)+σ(Xτ ,X)+|τ |+(k−m−1)(t+1)P(L\B)∪XM\τ∪{x}(A ∪ Yτ , B ∪Xτ )

×
∏

z∈Ω∪B∪Xτ∪YM\τ∪{y}

det(z, A, x,XM\τ , Yτ , L \B)−1.

Applying the inductive step to {x} ∪ L, A ∪ {y}, X and Y and writing the sum as two

sums depending on whether B contains x or not, gives an equation similar to the above.

The first sum in both equations vary only in the position of x and y in the determinants.

Switching these in the above, multiplying by (−1)t+1, and equating the two second sums

gives,

∑

B⊆L
|B|=n−m−1

∑

τ⊆M

(−1)σ(B,L)+σ(Xτ ,X)+|τ |+(k−m)(t+1)P(L\B)∪XM\τ∪{x}(A ∪ Yτ , B ∪Xτ )

×
∏

z∈Ω∪B∪Xτ∪YM\τ∪{y}

det(z, A, x,XM\τ , Yτ , L \B)−1.

=
∑

B⊆L
|B|=n−m−1

∑

τ⊆M

(−1)σ(B,L)+σ(Xτ ,X)+|τ |+(k−n−1)(t+1)P(L\B)∪XM\τ
(A∪{y}∪Yτ , {x}∪B∪Xτ )

×
∏

z∈Ω∪B∪Xτ∪YM\τ∪{x}

det(z, A, y,XM\τ , Yτ , L \B)−1.
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Note that on the right-hand side of the equality we use

σ({x} ∪B, {x} ∪ L) = σ(B,L) + (k − n− 1)(t+ 1)

Rearranging the order of the vectors in the Segre product of the right-hand side (applying

Lemma 2.3 and Lemma 2.4) and the vectors in the determinants gives

∑

B⊆L
|B|=n−m−1

∑

τ⊆M

(−1)σ(B,L)+σ(Xτ ,X)+|τ |−|τ |(t+1)P(L\B)∪XM\τ∪{x}(A ∪ Yτ , B ∪Xτ )

×
∏

z∈Ω∪B∪Xτ∪YM\τ∪{y}

det(z, A,XM\τ , x, Yτ , L \B)−1.

=
∑

B⊆L
|B|=n−m−1

∑

τ⊆M

(−1)σ(B,L)+σ(Xτ ,X)+|τ |P(L\B)∪XM\τ
(A ∪ Yτ ∪ {y}, B ∪Xτ ∪ {x})

×
∏

z∈Ω∪B∪Xτ∪YM\τ∪{x}

det(z, A,XM\τ , Yτ , y, L \B)−1.

Finally, note that

σ((X ∪ {x})τ , X ∪ {x}) = |τ |(t+ 1) + σ(Xτ , X)

and that

σ((X ∪ {x})τ∪{m+1}, X ∪ {x}) = σ(Xτ , X),

from which we deduce that

∑

B⊆L
|B|=n−m−1

∑

τ⊆M

(−1)σ(B,L)+σ(X+
τ ,X+)+|τ |P(L\B)∪X+

M+\τ
(A ∪ Y +

τ , B ∪X+
τ )

×
∏

z∈Ω∪B∪X+
τ ∪Y +

M+\τ

det(z, A,X+
M+\τ , Y

+
τ , L \B)−1.

=
∑

B⊆L
|B|=n−m−1

∑

τ⊆M

(−1)σ(B,L)+σ(X+

τ+
,X+)+|τ |P(L\B)∪X+

M+\τ+
(A ∪ Y +

τ+
, B ∪X+

τ+
)

×
∏

z∈Ω∪B∪X+

τ+
∪Y +

M+\τ+

det(z, A,X+
M+\τ+ , Y

+
τ+
, L \B)−1,

where X+ = X ∪ {x}, Y + = Y ∪ {y}, τ+ = τ ∪ {m + 1} and M+ = M ∪ {m + 1},

which is what we wanted to prove.
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5 The main theorem

The following follows from Laplace’s formula for determinants.

LEMMA 5.1. Suppose thatW∪L is a basis of Fk
q and |X| = n andW = {w1.w2, . . . , wn+1}.

Then

n+1∑

j=1

(−1)j−1 det(y,W \ wj, L) det(wj, X, L) = det(W,L) det(y,X, L).

THEOREM 5.2. If q is non-prime and k ≤ 2p− 2 then |S| ≤ q + 1.

Proof. By Theorem 3.2, we can restrict ourselves to the cases k ≥ p+ 1.

Suppose |S| = q + 2 and apply Lemma 4.1 with n = m = k − p. Then

0 =
∑

τ⊆{1,...n}

(−1)|τ |+σ(Xτ ,X)PL∪XM\τ
(Yτ , Xτ)

∏

z∈Ω∪Xτ∪YM\τ

det(z,XM\τ , Yτ , L)
−1

where |L| = p− 1, Ω = p− 2 and |M | = k − p.

Let W = {w1, w2, . . . , w2n} be a subsequence of S disjoint from L ∪ X ∪ Y ∪ E,

where E is a subset of Ω of size p− 2− n = 2p− k− 2. Define Wj = {w1, w2, . . . , wj}.

We shall prove the following by induction on r ≤ n,

0 =
∑

τ⊆{1,...n}

(−1)|τ |+σ(Xτ ,X)PL∪XM\τ
(Yτ , Xτ )

r∏

i=1

det(yn+1−i, XM\τ , Yτ , L)

∏

z∈E∪Xτ∪YM\τ∪Wn+r

det(z,XM\τ , Yτ , L)
−1.

For r = 0 this is the above with Ω = E∪Wn. Applying the inductive step with Wn+r−1 =

Wr+n \ {wj}, where j ∈ {r, r + 1, . . . , r + n}, we have

0 =
∑

τ⊆{1,...n}

(−1)|τ |+σ(Xτ ,X)PL∪XM\τ
(Yτ , Xτ )

r−1∏

i=1

det(yn+1−i, XM\τ , Yτ , L)

det(wj, XM\τ , Yτ , L)
∏

z∈E∪Xτ∪YM\τ∪Wn+r

det(z,XM\τ , Yτ , L)
−1.

Multiplying by (−1)j−1 det(yn+1−r,Wn+r\(Wr−1∪{wj}), L), summing over j ∈ {r, r+
1, . . . , r + n} and applying Lemma 5.1 proves the induction.

For r = n every term in the sum is zero apart from the term corresponding to τ = ∅,

which gives

0 =

n∏

i=1

det(yn+1−i, X, L)
∏

z∈E∪Y ∪W2n

det(z,X, L)−1,

which is a contradiction.
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COROLLARY 5.3. If q is non-prime and q − 2p+ 4 ≤ k ≤ q then |S| ≤ q + 1.

Proof. Suppose that |S| = q+2. Then by [1, Lemma 5.1] we can construct a set of vectors

S ′ of Fq+2−k
q of size q + 2 with the property that every subset of S ′ of size q + 2− k is a

basis of Fq+2−k
q .

6 Appendix

Using the Segre product and the lemmas from Section 2 we can give a short proof of [1,

Lemma 4.1], the main tool used to prove that |S| ≤ q+1 and classify the case |S| = q+1,

for k ≤ p, in [1].

LEMMA 6.1. Let L of size r, D of size k − 1− r and Ω of size t+ 2 be pairwise disjoint

subsequences of S. If 1 ≤ r ≤ t+ 2 and r ≤ p− 1, where q = ph, then

0 =
∑

∆⊆Ω
|∆|=r

PD(∆, L)
∏

z∈(Ω\∆)∪(L\ℓ0)

det(z,∆, D)−1,

where ℓ0 is the first element of L.

Proof. By induction on r. The case r = 1 follows by dividing the equation in Lemma 2.2,

with E = Ω and Y = D, by TD(ℓ0).

Fix x ∈ L and apply the induction step to L \ {x} and {x} ∪D,

0 =
∑

∆⊆Ω
|∆|=r−1

PD∪{x}(∆, L \ {x})
∏

z∈(Ω\∆)∪(L\{ℓ0,x})

det(z,∆, x,D)−1.

Let ∆ be a subset of Ω of size r−1. Applying Lemma 2.2 with E = (Ω∪L)\ (∆∪{ℓ0})
and Y = ∆ ∪D, we get

0 =
∑

x∈L\{ℓ0}

TD∪∆(x)
∏

z∈(Ω\∆)∪(L\{ℓ0,x})

det(z,∆, x,D)−1

+
∑

y∈Ω\∆

TD∪∆(y)
∏

z∈(Ω\(∆∪{y}))∪(L\{ℓ0})

det(z,∆, y, D)−1.

Multiplying by PD(∆ ∪ d, L)TD∪∆(d)
−1 for some d for which TD∪A∪∆(d) 6= 0. By

Lemma 2.4 we can rearrange L so that the last element is x, which changes the sign

by σ(x, L). This gives

0 =
∑

x∈L\{ℓ0}

(−1)σ(x,L)PD∪{x}(∆, L \ {x})
∏

z∈(Ω\∆)∪(L\{ℓ0,x})

det(z,∆, x,D)−1+

∑

y∈Ω\∆

PD(∆ ∪ {y}, L)
∏

z∈(Ω\(∆∪{y}))∪L\{ℓ0}

det(z,∆, y, D)−1,
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since

PD(∆ ∪ {d}, L)TD∪∆(x)TD∪∆(d)
−1 = PD∪{x}(∆, L \ {x})

and by Lemma 2.5 (and Lemma 2.3)

PD(∆ ∪ {d}, L)TD∪∆(y)TD∪∆(d)
−1 = PD(∆ ∪ {y}, L).

Note that in the second term we can order ∆ ∪ {y} in any way we please with-

out changing the sign since, by Lemma 2.3, interchanging two elements of ∆ ∪ {y} in

PD(∆ ∪ {y}, L) changes the sign by (−1)t+1, exactly the same change occurs when we

interchange the same vectors in the product of determinants.

Therefore, when we sum this equation over subsets ∆ of Ω of size r− 1 and apply the

induction hypothesis, the first sum is zero and the second sum gives

0 = r
∑

∆⊆Ω
|∆|=r

PD(∆, L)
∏

z∈(Ω\∆)∪(L\{ℓ0})

det(z,∆, D)−1.
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