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Abstract— Three types of composite quadratic Lyapunov
funtions are used for deriving conditions of stabilization and
for constructing switching laws for switched systems. The
three types of functions are, the max of quadratics, the min
of quadratics and the convex hull of quadratics. Directional
derivatives of the Lyapunov functions are used for the charac-
terization of convergence rate. Stability results are established
with careful consideration of the existence of sliding mode and
the convergence rate along the sliding mode. Dual stabilization
result is established with respect to the pair of conjugate
Lyapunov functions: the max of quadratics and the convex hull
of quadratics. It is observed that the min of quadratics, which
is nondifferentiable and nonconvex, may be a more convenient
tool than the other two types of functions which are convex
and/or differentiable.
keywords: switched system, composite quadratic functions,
stabilization, BMI, sliding mode.

I. I NTRODUCTION

Given a family of linear systems,

ẋ = Aix, i = 1, 2, · · · , N, (1)

two types of switching systems can be defined. In the first
case, the switch among the systems is determined by an
unknown force. At each time instant, we only know that

ẋ ∈ {Aix : i = 1, 2, · · · , N}. (2)

To analyze this linear differential inclusion (LDI) we assume
that the switch is arbitrary and have to expect the worst
situation. For this case, diverging trajectories can be produced
even if allAi’s are Hurwitz (see, e.g., [3], [4]). In the second
case, the switch is orchestrated by the controller/supervisor
which can choose one of the systems at each time instant
based on the measurement of the state or certain output.
As a basic step we assume thatx is available. For this
case, the switching strategy can be optimized for the best
performances. The system can be written as

ẋ = Aσ(x)x, (3)

whereσ(x) = i for x ∈ Ωi and∪N
i=1Ωi = Rn. The design

problem boils down to the construction of the setsΩi. With a
well designed switching law, every trajectory may converge
to the origin even if none of theAi’s is Hurwitz (see, e.g.,
[14], [20]).

To differentiate the above two cases, we simply call the
system (2) the LDI and the system (3) the switched system.
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Stability and stabilization of both the LDI and the switched
system have been extensively studied in recent years (see,
e.g., [1], [4], [14], [15], [16] for some recent surveys). For
the LDI (2), even though the vectorẋ can be discontinuous
at each time instant, the set-valued map fromx to {Aix :
i = 1, 2, · · · , N} is continuous and linear. Because of
the linearity, it was shown in [3] that asymptotic stability
is equivalent to the existence of a common convex and
homogeneous Lyapunov function for every member system
ẋ = Aix. Since quadratic Lyapunov functions are known to
be conservative for LDIs, recent efforts have been dedicated
to the construction of numerically tractable nonquadratic
Lyapunov functions (e.g., [2], [7], [22]).

The situation with the switched system (3) is quite dif-
ferent. With a given switching strategyσ(x), the resulting
system is intrinsically nonlinear and discontinuous. There are
basically two approaches to stability analysis and stabiliza-
tion for switched systems: one based on detailed analysis of
the vector field and the other one based on Lyapunov theory.
For second order systems, some necessary and sufficient
condition for stability/stabilizability have been obtained in
[10], [23] through analysis on the geometric structure of the
vector field. Perhaps the first constructive result by using
quadratic Lyapunov functions on switched systems is the
bilinear matrix inequality (BMI) obtained in [20]:

(αA1 + (1− α)A2)TP + P (αA1 + (1− α)A2) < 0,

for a positive definite matrixP and a real numberα ∈ [0, 1].
Based on this inequality, a switching law can be constructed
such that the system is quadratically stable. As with LDIs, a
single quadratic Lyapunov function can be too conservative
and efforts have been devoted to the development of multiple
Lyapunov functions (e.g., see [17], [21], [24]). In [21], two
types of piecewise quadratic functions were applied and
two pairs of coupled BMIs were derived as conditions for
stabilizability. In [17], further conditions on stabilizability
were derived as BMIs. More results based on Lyapunov
theory can be found, e.g., in [11], [25].

Recently, a pair of conjugate nonquadratic Lyapunov func-
tions have demonstrated great potential in the synthesis of
LDIs and saturated linear systems [7], [8], [12], [13]. One is
called the convex hull (of quadratics) function and the other
is called max (of quadratics) function. When this pair of
conjugate functions are applied for stability and performance
analysis of LDIs, a handful of dual BMIs are derived in [7].
Numerical examples in these works demonstrate that this
pair of nonquadratic Lyapunov functions can significantly
enhance stability and performance analysis results.

In this paper, we would like to apply these two conju-
gate functions to switched systems and use their conjugate



relationship to study stabilization of dual switched systems.
In addition, we will study another function which is formed
by taking the pointwise minimum of a family of quadratic
functions. We will call this function the min (of quadratics)
function. This function was actually used in [21] along
with the max function for deriving two pairs of coupled
matrix inequalities. Unlike the ideas behind [21] where each
quadratic function (or positive definite matrix) is associated
with a particular systemẋ = Aix, we will use the max
function and the min function as a single Lyapunov function.
In particular, the number of positive definite matrices used to
compose the Lyapunov functions needn’t be the same as the
number of linear systems. Moreover, since the max function
and the min function are not everywhere differentiable, their
directional derivatives will be characterized and used for
examining the sliding behavior resulting from switch.

This paper is organized as follows. In Section II, three
composite quadratic functions are briefly reviewed and their
directional derivatives are derived. A switching law is defined
based on a general Lypunov function with some discussion
on the effect of sliding mode. Section III establishes stabiliza-
tion results based on the min function. Section IV establishes
a dual stabilization result for the max function and the convex
hull function and Section V concludes the paper.

Notation:
− I[k1, k2]: the set of integers{k1, k1+1, k1+2, · · · , k2};
− ΓJ : = {γ ∈ RJ : ΣJ

j=1γj = 1, γj ≥ 0};
− ∇V (x): gradient ofV at x;
− ∂V (x): subdifferential ofV at x;
− V̇ (x; ζ): one-sided directional derivative atx alongζ;
− co{S}: convex hull of a setS.

II. COMPOSITE QUADRATIC FUNCTIONS AND SWITCHED

SYSTEMS

A. Three composite quadratic functions

Let J be a positive integer. Define

ΓJ :=
{

γ ∈ RJ : γ1 + γ2 + · · ·+ γJ = 1, γj ≥ 0
}

.

A vectorγ ∈ ΓJ will be used to form a convex combination
of J vectors. GivenJ positive definite matricesPj = P T

j >

0, j ∈ I[1, J ], let Qj = P−1
j .

In [13], three nonquadratic functions are composed from
thesePj ’s:

Vmin(x) = min{xTPjx : j ∈ I[1, J ]}, (4)

Vmax(x) = max{xTPjx : j ∈ I[1, J ]}, (5)

Vc(x) = min
γ∈ΓJ

xT




J∑

j=1

γjQj



−1

x. (6)

All these functions are positive definite and homogeneous of
degree two. It was established thatVmax is strictly convex,
and Vc is convex and continuously differentiable with the

gradient given by∇Vc(x) = 2
(∑J

j=1 γ∗j Qj

)−1

x, where

γ∗ = arg minγ∈ΓJ xT

(∑J
j=1 γjQj

)−1

x.

For a positive definite matrixP , denote

E(P ) := {x ∈ Rn : xTPx ≤ 1}.
Denote the 1-level set of a general Lyaupnov functionV as

LV :=
{

x ∈ Rn : V (x) ≤ 1
}

.

It is easy to see thatLVmin is the union of the ellipsoids
E(Pj)’s andLVmax is the intersection of the same ellipsoids.
In [13], It was shown thatLVc

is the convex hull of the
ellipsoidsE(Pj)’s.

For simplicity, we will call Vmin, Vmax and Vc the min
function, the max function and the convex hull function,
respectively. The convex hull functionVc was first used in
[13] for stability analysis of constrained control systems.
It was later used along withVmax in [7], [12] for various
stability and performance analysis problems on saturated
systems and linear differential inclusions.

The min functionVmin is not considered in these papers
since it is not convex and it can be shown thatVc always
yield better results thanVmin for LDIs. As will be shown
in this paper, when it comes to the synthesis of switched
systems, it may be more convenient to useVmin.

B. The directional derivatives forVmax and Vmin

Clearly Vmax andVmin are not everywhere differentiable.
The directional derivatives ofVmax andVmin will be crucial
for the characterization of the behavior at nondifferentiable
points and they can be explicitly obtained.

Let Vmax andVmin be constructed fromJ positive definite
matrices as in (4) and (5). For a givenx, define

Imax(x) := {j ∈ I[1, J ] : xTPjx = Vmax(x)},
Imin(x) := {j ∈ I[1, J ] : xTPjx = Vmin(x)}.

Let

Φj = {x ∈ Rn : xTPjx < xTPkx ∀k 6= j}, (7)

Ψj = {x ∈ Rn : xTPjx > xTPkx ∀k 6= j}. (8)

Then for everyx ∈ Φj , Vmin(x) = xTPjx and Vmin is
differentiable atx. For everyx ∈ Ψj , Vmax(x) = xTPjx
andVmax is differentiable atx.

Given a vectorζ ∈ Rn, the one-sided directional derivative
of Vmax, and that ofVmin, at x alongζ are defined as

V̇max(x; ζ) := lim
t→0,t>0

Vmax(x + tζ)− Vmax(x)
t

,

V̇min(x; ζ) := lim
t→0,t>0

Vmin(x + tζ)− Vmin(x)
t

.

For a nonlinear vector fieldẋ = h(x), V̇max(x; h(x))
measures the (forward) time derivative ofVmax at x.

Following the definition of [18] (page 215), a subgradient
of a convex functionf : Rn → R at x0 is a vectorv ∈ Rn

such that

f(x)− f(x0) ≥ vT(x− x0) ∀x ∈ Rn, (9)

and the subdifferential, denoted as∂f(x0), is the set of all
subgradient atx0. The functionf(x) is differentiable atx0



if and only if ∂f(x0) has only one vector. In this case we
have ∂f(x0) = ∇f(x0). We use∂Vmax(x) to denote the
subdifferential ofVmax at x.

Lemma 1: Considerx0 ∈ Rn. We have

1) ∂Vmax(x0) = co{2Pjx0 : j ∈ Imax(x0)}.
2) For a vectorζ ∈ Rn, the directional derivative ofVmax

at x0 alongζ is

V̇max(x0; ζ) = max{2xT
0Pjζ : j ∈ Imax(x0)}. (10)

Combining items 1 and 2 in Lemma 1, we have

V̇max(x; ζ) = max
ξ∈∂Vmax(x)

{ξTζ}.

This equality relates the directional derivative ofVmax with
its subdifferential. Atx whereVmax is differentiable,Imax(x)
contains only one integer and∂Vmax(x) is single valued.
In this case, we haveV̇max(x; ζ)) = (∇Vmax(x))Tζ =
2xTPImax(x)ζ.

For the non-convex functionVmin, we have,

Lemma 2: Considerx0 ∈ Rn. For a vectorζ ∈ Rn, the
directional derivative ofVmin at x0 alongζ is

V̇min(x0; ζ) = min{2xT
0Pjζ : j ∈ Imin(x0)}. (11)

C. Switching laws via the directional derivatives and some
discussions on sliding motion

Consider a switched system constructed fromN linear
systems,

ẋ = Aix, i = 1, 2, · · · , N. (12)

Let V be a positive definite function with directional deriva-
tive V̇ (x; ζ) well defined for allx 6= 0 andζ ∈ Rn. Denote

Ωi = {x ∈ Rn : V̇ (x;Aix) ≤ V̇ (x; Akx) ∀k ∈ I[1, N ]}.
To makeV decrease with the fastest convergence rate, we
may construct a switching law as follows,

σ(x) = i, if x ∈ Ωi. (13)

Equivalently, we can also write

σ(x) = arg min
i∈I[1,N ]

V̇ (x; Aix).

The resulting switched system is

ẋ = Aσ(x)x. (14)

If σ(x) is multi-valued, say,σ(x) = {i1, i2, · · · , iK}, thenẋ
could be any one of theseAik

x’s. Suppose that there exists
an η < 0 such that

min{V̇ (x; Aix) : i ∈ I[1, N ]} ≤ ηV (x) ∀x 6= 0. (15)

It seems that the resulting system (14) should be stable with
the convergence rateη. This is easy to see if there is no
sliding motion, whereẋ = Aix for somei ∈ σ(x) at each
time instant. In this casėV ≤ ηV for all t and we have
V (x(t)) ≤ V (x(0))eηt and the convergence rate is ensured.

When a sliding motion occurs,x(t) stays on a switching
surface and the effectivėx may not equal to any ofAix.
Instead ẋ is a convex combination of thoseAix’s which

are involved in the vicinity ofx. In particular, letik, k ∈
I[1,K] be integers such that there exist a sequence ofx`

satisfyinglim`→∞ x` = x andσ(x`) = ik for all `. Thenẋ =
ΣK

k=1αkAik
x for certainα ∈ ΓK such thatẋ is tangential

to the sliding surface (see [6]).
As remarked in [19], a sliding motion is an approximation

of the solution of a real system, by letting the nonidealities,
such as time-delay, hysteresis, and other types (e.g., sampling
time), go to zero. Thus it is expected that when a switching
law is implemented by a computer and an nonideal actuator,
the solution of the real system would be closely described by
the sliding motion. Because of the practical importance and
because it is often unavoidable in a switched system, we need
to pay particular attention to sliding motion, especially, when
a switching rule is based on a nondifferentiable Lyapunov
function such asVmin andVmax.

III. STABILIZATION VIA THE MIN FUNCTION

A sliding mode is relatively easier to analyze if it is
within the set of points where the Lyapunov function is
differentiable than the other case.

Proposition 1: Consider theN linear systems given by (12).
Let Vmin(x) = min{xTPjx : j ∈ I[1, J ]} with Pj = P T

j >
0, j ∈ I[1, J ]. Denote

Ωi ={x ∈ Rn : V̇min(x;Aix)≤ V̇min(x;Akx), k ∈ I[1, N ]}.
(16)

Let the switching law be constructed as

σ(x) = i for x ∈ Ωi. (17)

Then there exist no sliding mode on the set ofx whereVmin

is not differentiable.

Note that Proposition 1 does not eliminate the possibility
of a piece of trajectory staying within the set of nondiffer-
entiable points. Such a piece of trajectory must overlap with
the trajectory ofẋ = Aix for a certaini. Hence it is not a
sliding motion. Proposition 1 makes it easy for us to derive
a condition on stabilizability by combining the conditions on
each subsetΦj , whereVmin is differentiable.

Proposition 2: Suppose that there exist real matricesPj =
P T

j > 0, j ∈ I[1, J ] and real numbersη, αij ∈ [0, 1], βjk ≥
0, i ∈ I[1, N ], j, k ∈ I[1, J ], such thatΣN

i=1αij = 1 for each
j, and

(
ΣN

i=1αijAi

)T
Pj+Pj

(
ΣN

i=1αijAi

)≤
J∑

k=1

βjk(Pj−Pk)+ηPj ,

(18)
for all j ∈ I[1, J ]. Let Vmin be composed from these
Pj ’s. Under the switching law (17), we haveVmin(x(t)) ≤
Vmin(x(0))eηt for every solution x(·) (including sliding
motion).

The stability condition (18) in Proposition 2 includes a
few earlier conditions in [20], [21] as special cases. The
relationship among these conditions is addressed as follows.
Here we consider the case where the number of linear
systems is 2, i.e.,N = 2.



Case 1.WhenJ = 1, Vmin reduces to a quadratic function
and (18) reduces to a single matrix inequality

(αA1 +(1−α)A2)TP +P (αA1 +(1−α)A2) < η0P. (19)

For η0 = 0, this corresponds to the stability condition in
[20]. Let η∗0 be the minimalη0 satisfying the inequality.

Case 2.WhenJ = 2 andα11 = α22 = 1, α12 = α21 = 0,
(18) reduces to the following matrix inequalities

AT
1P1 + P1A1 < β1(P1 − P2) + η1P1

AT
2P2 + P2A2 < β2(P2 − P1) + η1P2

, (20)

whereβ1, β2 ≥ 0. If η1 = 0, we have the stability condition
obtained in [21].

Case 3.For the general case whereVmin is composed from
J positive definite matrices, we useηJ to replaceη in (18)
and letη∗J be the minimalηJ satisfying the inequalities.

Claim 1: η∗0 ≥ η∗1 .
Based on the stability condition in Proposition 2, an

optimization problem can be formulated for the optimization
of the convergence rate as follows

inf
Pj ,αij ,βjk

η (21)

s.t. 1)(18)
2) Pj = P T

j > 0, αij ∈ [0, 1], βjk ≥ 0,ΣN
i=1αij = 1.

The matrix inequality involves bilinear terms as the product
of a scalar variable and a matrix variable. They are similar to
those bilinear matrix inequalities we have encountered in [7],
[12] resulting from usingVc and Vmax on LDIs. Extensive
numerical experience shows that a combination of the path-
following method in [9] and the direct iteration works very
well on this type of BMI problems. We developed a two-
step iterative algorithm. The first step uses the path-following
method to update all the parameters at the same time. The
second step fixesβjk ’s and αij ’s and solves the resulting
“gevp” problem which includes onlyPj ’s as variables. This
procedure is repeated until the improvement is within a small
range.

Example 1: Consider a third-order switched system with

A1 =



−3 −6 3

2 2 −3
1 0 −2


 , A2 =




1 3 3
−1 −3 −3

0 0 2


 .

Both A1 andA2 are neutrally stable. There exist no convex
combination ofA1 andA2 that is Hurwitz.

We turn to useVmin composed from two quadratic func-
tions and minimizeη1 subject to (20). The minimalη1 is
quickly determined through the path-following algorithm as
η∗1 = −0.3375. The sameη∗1 is obtained by sweepingβ1 and
β2 in (20) from 0 to ∞.

If we useVmin composed from more quadratic functions,
the convergence rate can be further increased. WithJ = 3, a
local minimumη∗ for the BMI problem (21) is found to be
η∗3 = −0.3836. With J = 4, a local minimumη∗ is found
to be η∗4 = −0.4656. This shows thatVmin with three or
more quadratic functions can work better than those with

two quadratic functions even for a system that switches be-
tween twoAi’s. To demonstrate that the switching feedback
law corresponding toη∗4 is stabilizing with the guaranteed
convergence rate, we run a set of simulations from different
initial conditions for the system withA1 and A2 replaced
with Ā1 = A1 − η∗4I/2 and Ā2 = A2 − η∗4I/2. It can be
seen thatĀ1 and Ā2 satisfy the matrix inequalities with the
same parameters except thatη = 0, which means that a
guaranteed convergence rate is 0. A typical result is plotted
in Fig. 1 which showsVmin as a function of time and the
dotted line identifies the indexj such thatxTPjx = Vmin. In
Fig. 2, the convergence ratėV /V is plotted as a function of
time. The maximum value oḟV /V is−3.773×10−4, slightly
below 0 (not exactly 0 because of sampling rate). This shows
that the convergence rate is closely reflected from the matrix
equations.
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Fig. 2. The convergence rate as a function of time.

IV. STABILIZATION VIA MAX FUNCTION AND CONVEX

HULL FUNCTION

As established in [8],Vmax andVc are conjugate types. In
particular, for

Vmax(x) =
1
2

max{xTPjx : j ∈ I[1, J ]}, (22)

its conjugate function is

Vc(ξ) =
1
2

min
γ∈ΓJ

ξT




J∑

j=1

γjPj



−1

ξ. (23)



Because of the conjugate relationship, we have

ξ∈∂Vmax(x), Vmax(x)=
1
2
⇔ x∈∂Vc(ξ), Vc(ξ)=

1
2
.

(24)
Since Vc is continuously differentiable,∂Vc(ξ) is single
valued and equals its gradient. At a pointx where Vmax

is not differentiable,∂Vmax(x) is a convex set given by
Lemma 1. By (24), for allξ ∈ ∂Vmax(x), their gradient
∇Vc(ξ) = ∂Vc(ξ) = x.

Based on the equivalence relation (24), a set of dual
relationships are easily established in [8] for dual linear
differential inclusions. For dual state-dependent switched
systems, the dual relationship is complicated by the discon-
tinuity of switch and possible sliding motion.

Given A1, A2, · · · , AN and a pair of conjugate functions
Vmax(x) andVc(ξ). Consider the dual switched systems

ẋ = Aσ1(x)x, (25)

whereσ1(x) = arg mini∈I[1,N ] V̇max(x; Aix), and

ξ̇ = AT
σ2(ξ)

ξ, (26)

whereσ2(ξ) = arg mini∈I[1,N ] V̇c(ξ; AT
iξ).

Proposition 3: Let η ∈ R be given. The following two
statements are equivalent:

1) For everyx 6= 0 there existλ ∈ ΓN such that

V̇max

(
x;

(
ΣN

i=1λiAi

)
x
) ≤ ηVmax(x). (27)

2) For everyξ 6= 0 there existλ ∈ ΓN such that

V̇c

(
ξ;

(
ΣN

i=1λiA
T
i

)
ξ
) ≤ ηVc(ξ). (28)

Conditon 2) ensures thatVc(ξ(t)) ≤ Vc(ξ(0))eηt for every
solution of (26) (including sliding motion). In caseN = 2,
condition 1) ensures thatVmax(x(t)) ≤ Vmax(x(0))eηt for
all solutions (including sliding motion) for (25).

SinceVmax is piecewise quadratic andVc is not, it seems
to be easier to establish a matrix condition for (27) via theS
procedure. Because of the dual relationship in Proposition 3,
we can establish a matrix condition forVc by usingVmax on
the dual systemsAT

i. For example, consider the caseN = 2
and J = 2. Using S procedure, a set of matrix inequality
conditions can be established to ensure (27): there exist real
numbersαij ∈ [0, 1], βjk ≥ 0, i ∈ I[1, 2], j, k ∈ I[1, 2] such
that Σ2

i=1αij = 1 and

(Σ2
i=1αijAi)TPj + Pj(Σ2

i=1αijAi)

≤
J∑

k=1

βjk(Pk − Pj) + ηPj j = 1, 2, (29)

and there existai ∈ [0, 1], Σ2
i=1ai = 1, and bj ∈ R, dj ∈

[0, 1], j = 1, 2 such that

(Σ2
i=1aiAi)TPj + Pj(Σ2

i=1aiAi)
≤ bj(P1 − P2) + η(djP1 + (1− dj)P2), j = 1, 2. (30)

The condition (29) ensures (27) forx wherexTP1x 6= xTP2x
and (30) ensures (27) forx wherexTP1x = xTP2x.

The following example demonstrates the dual relationship
in Proposition 3.
Example 2: Consider a second-order switched system with

A1 =
[

0 0
−0.5 −1

]
, A2 =

[
1 2
−1 −1

]
.

A1 has one eigenvalue at0 and A2 has a pair of complex
eigenvalues on the imaginary axis. LetVmax be constructed
from

P1 =
[

0.45 0.6
0.6 1.1

]
, P2 =

[
0.7 0.7
0.7 0.9

]
.

The inequality (27) is satisfied for every differentiablex with
η = −0.5263, as can be seen in Fig. 3, where the directional
derivatives V̇max(x; A1x) and V̇max(x; A2x) are plotted
along the boundary of the 1-level setLVmax from ∠x = 0 to
∠x = 2π. The solid curve corresponds tȯVmax(x;A1x) and
the dash-dotted corresponds toV̇max(x;A2x). Both of these
curves are discontinuous. At one pair of nondifferentiable
points, we havemin{V̇max(x;Aix) : i = 1, 2} ≤ ηVmax(x).
At another pair of nondifferentiable points,V̇max(x;Aix) >
0 for both i = 1, 2, but there exist a convex combination
of A1x andA2x, such thatV̇max(x; (λA1 + (1− λ)A2x) <
−0.25Vmax(x). This is also illustrated in Fig. 4, where the
boundary ofLVmax is plotted in thick solid curve and the
directions of A1x and A2x are indicated by dashed line
segments pointing from the boundary. At the lower-right (or
upper-left) vertex of the level set,A1x andA2x both point
outward of the level set but a convex combination ofA1x
and A2x points inward of it. By Proposition 3, the system
under the corresponding switching law is stable and has a
guaranteed convergence rateη1 = −0.25 even if sliding
motion occurs, as confirmed by a trajectory in Fig. 4. This
trajectory starts at a point marked with “∗” and enters a
sliding mode on the line wherexTP1x = xTP2x.
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Fig. 3. Directional derivatives along the boundary ofLVmax

By Proposition 3, we can useP1 and P2 to construct
a function Vc(ξ) = min{ξT(γP1 + (1 − γ)P2)−1ξ : γ ∈
[0, 1]} so that the dual switched system withAT

1 and AT
2

is stable andVc(ξ(t)) has a convergence rateη1 = −0.25.
This is confirmed by Figs. 5 and 6. The directional deriva-
tives V̇c(ξ; AT

1ξ) and V̇c(ξ;AT
2ξ) are plotted in Fig. 5 along

the boundary of the 1-level setLVc from ∠ξ = 0 to
∠ξ = 2π, where the solid curve corresponds toV̇c(ξ; AT

1ξ)
and the dash-dotted curve corresponds toV̇c(ξ;AT

2ξ). Both
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of these curves are continuous and it can be seen that
min{V̇c(ξ;AT

iξ) : i = 1, 2} ≤ −0.25Vc(ξ) is satisfied for
all ξ. In Fig. 6, the boundary of a level set and a trajectory
starting from a point marked with “∗” are plotted. This
trajectory also enters a sliding mode after some time.
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Fig. 5. Dual system: Directional derivatives along the boundary ofLVc
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Fig. 6. Dual system: Boundary ofLVc and a converging trajectory

V. CONCLUSIONS

The three types of Lyapunov functions studied in this
paper are directly constructed from a family of quadratic
functions (without additional parameters) and are natural
extensions of quadratic functions. They can be used to
approximate a wide variety of convex/non-convex functions
which are homogeneous of degree 2. They lead to matrix
inequalities as conditions for stability/stabilization. Since
switched systems are intrinsically nonlinear and discontin-
uous, a nondifferentiable and non-convex Lyapunov function
may work better than convex and/or differentiable Lyapunov

functions. Furthermore, non-convex optimization problems
and tools are expected to incorporate much greater design
freedoms than an overly simplified convex optimization
problem. As numerical examples demonstrate in this paper,
composite quadratic functions can effectively reduce the con-
servatism in stability conditions via solving BMI problems.
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