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Abstract—Three types of composite quadratic Lyapunov Stability and stabilization of both the LDI and the switched
funtions are used for deriving conditions of stabilization and system have been extensively studied in recent years (see,
for constructing switching laws for switched systems. The e.g., [1], [4], [14], [15], [16] for some recent surveys). For
three types of functions are, the max of gquadratics, the min h ,LDI’ > ' ' h ' h th . be di "
of quadratics and the convex hull of quadratics. Directional the (_)’ eyen though the vectar can be discontinuous
derivatives of the Lyapunov functions are used for the charac- @t each time instant, the set-valued map fronto {A;x :
terization of convergence rate. Stability results are established ¢ = 1,2,---,N} is continuous and linear. Because of
with careful consideration of the existence of sliding mode and the linearity, it was shown in [3] that asymptotic stability

the convergence rate along the sliding mode. Dual stabilization s aqyivalent to the existence of a common convex and
result is established with respect to the pair of conjugate

Lyapunov functions: the max of quadratics and the convex hull homernequs Lyapunoy function for eve_ry member system
of quadratics. It is observed that the min of quadratics, which % = A;z. Since quadratic Lyapunov functions are known to
is nondifferentiable and nonconvex, may be a more convenient be conservative for LDIs, recent efforts have been dedicated
tool than the other two types of functions which are convex to the construction of numerically tractable nonquadratic
and/or differentiable. _ _ ~ Lyapunov functions (e.g., [2], [7], [22]).
keyvyprdg: switched ;ystem, composite quadratic functions,” The situation with the switched system (3) is quite dif-
stabilization, BMI, sliding mode. ferent. With a given switching strategy(z), the resulting
l. INTRODUCTION syst_em is intrinsically nonlinear an_q discontiquous. Therglare
basically two approaches to stability analysis and stabiliza-
tion for switched systems: one based on detailed analysis of
N @ the vector field and the other one based on Lyapunov theory.
’ For second order systems, some necessary and sufficient
two types of switching systems can be defined. In the firgtondition for stability/stabilizability have been obtained in
case, the switch among the systems is determined by HID], [23] through analysis on the geometric structure of the
unknown force. At each time instant, we only know that vector field. Perhaps the first constructive result by using
quadratic Lyapunov functions on switched systems is the
bilinear matrix inequality (BMI) obtained in [20]:

To analyze this linear differential inclusion (LDI) we assume (44, + (1 — a)4,)"P + P(ad; + (1 — a)Ay) < 0,

that the switch is arbitrary and have to expect the worst N . )

situation. For this case, diverging trajectories can be producé®f @ positive definite matrix> and a real number € [0, 1].
even if all A;’s are Hurwitz (see, e.g., [3], [4]). In the secondBased on this |nequall|ty, a swnchmg law can be c_onstructed
case, the switch is orchestrated by the controller/supervis3fch that the system is quadratically stable. As with LDIs, a
which can choose one of the systems at each time instsifgle quadratic Lyapunov function can be too conservative
based on the measurement of the state or certain outp@fd efforts have been devoted to the development of multiple
As a basic step we assume thatis available. For this Lyapunov functions (e.g., see [17], [21], [24]). In [21], two
case, the switching strategy can be optimized for the be¥fPes of piecewise quadratic functions were applied and

Given a family of linear systems,

= A, i=1,2,--

?

ie{Aw:i=12--- N} )

stabilizability. In [17], further conditions on stabilizability
&= Ay(2), (3) were derived as BMIs. More results based on Lyapunov

theory can be found, e.g., in [11], [25].
Recently, a pair of conjugate nonquadratic Lyapunov func-

. o . tions have demonstrated great potential in the synthesis of
well deS|grjed SW't?hmg law, every t.rajector.y May CONVEISF b5 and saturated linear systems [7], [8], [12], [13]. One is
Ei;]he[zcg]')gm even if none of thel,’s is Hurwitz (see, e.g., called the convex hull (of quadratics) function and the other

' ) is called max (of quadratics) function. When this pair of

To differentiate the above two cases, we simply call thg : : . -
! onjugate functions are applied for stability and performance
system (2) the LDI and the system (3) the switched SyStent;{haJIygis of LDlIs, a handeIpof dual BMIs gre derFi)ved in [7].
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whereo(z) = i for x € Q; andUY ,Q; = R™. The design
problem boils down to the construction of the s@{s With a



relationship to study stabilization of dual switched systems. For a positive definite matrixP, denote
In addition, we will study another function which is formed -
by taking the pointwise minimum of a family of quadratic £(P):={z €R":a"Px < 1}.

functions. We will call this function the min (of quadratics) Denote the 1-level set of a general Lyaupnov functioras

function. This function was actually used in [21] along

with the max function for deriving two pairs of coupled Ly = {96 ER": V(z) < 1}-

matrix inequalities. Unlike the ideas behind [21] where eac]) . . . .

guadratic function (or positive definite matrix) is associate ('; ;:?;";OL see itsh?r‘?evrfri]ntelrssgzt?oﬁné??hgfsg];eeg;ﬁssgijjs
i i o A i J Vinax :

with a particular s_ystemc_ Aiz, we will use the max In [13], It was shown thatLy, is the convex hull of the

function and the min function as a single Lyapunov function. e

. » g . éllipsoids&(P;)’s.
In particular, the number of positive definite matrices used to For simplicity, we will call Vi, Vi and V, the min

compose the Lyapunov functions needn't be the same as tpe . . )
. . . function, the max function and the convex hull function,
number of linear systems. Moreover, since the max function

. . : : respectively. The convex hull functiovi, was first used in
and the min function are not everywhere differentiable, the . : .
L o i . 13] for stability analysis of constrained control systems.
directional derivatives will be characterized and used f

L - . ; : It was later used along with;,,., in [7], [12] for various
examining the sliding behavior resulting from switch. - .
. . : . stability and performance analysis problems on saturated
This paper is organized as follows. In Section I, threg . . . )
Isrystems and linear differential inclusions.

composite quadratic functions are briefly reviewed and the The min functionV,, is not considered in these papers

directional derivatives are derived. A switching law is defined. L :
. . . - Since it is not convex and it can be shown thatalways
based on a general Lypunov function with some discussion

o} ;
on the effect of sliding mode. Section Ill establishes stabilizaxleld. better results thani“ for LDIs. As wil 'be Sho".“”

. ; : : . In this paper, when it comes to the synthesis of switched
tion results based on the min function. Section IV establlshess stems, it may be more convenient to &g
a dual stabilization result for the max function and the conveX’ ' y n

hull function and Section V concludes the paper. B. The directional derivatives fov,.x and Vi

Notation: Clearly V.« and Vy,;, are not everywhere differentiable.
— I[k1, ko]: the set of integer$ky, k1 +1, k1 +2,- -+, ko }; The directional derivatives df,,,, andV,,;, will be crucial
—I:={yeR’:X% /v, =1,7; >0} for the characterization of the behavior at nondifferentiable
— VV(z): gradient ojf{/ at z: points and they can be explicitly obtained.
— 9V/(x): subdifferential ofV" at x; Let Vinax and Vi, be constructed frond positive definite
— V(x;(): one-sided directional derivative atalong¢; ~ Matrices as in (4) and (5). For a given define
— cofS}: convex hull of a sefS. Imax (@) = {j € IT1,J] : 27 Pj& = Vipax(2)},

[I. COMPOSITE QUADRATIC FUNCTIONS AND SWITCHED Imin(z) :={j € I[1,J] : 2" Pjx = Viuin(2)}.

SYSTEMS Let

A. Three composite quadratic functions

R g n.,Tp. P .
Let J be a positive integer. Define ®j ={w eR" o' Piw <a'Pex Yk 2 ), (1)

U, ={z eR":2"Pjx > 2"Pyx Yk # j}. (8)

J = J : e = . > } .
r {7 ERT: mARt =120 Then for everyz € ®;, Viyn(z) = 2"Pjz and Vi, is

A vector~ e T/ will be used to form a convex combination differentiable atz. For everyx € Wj, Viax(z) = 2"Pjx

of J vectors. GivenJ positive definite matrice®;, — P >  @NdVmax is differentiable ate. o o
0,j € I[1,J], letQ, — p-1 Given a vector € R", the one-sided directional derivative
) ) 1 J 7 .

In [13], three nonquadratic functions are composed frorﬂf Vinax, and that ofVuis, at along¢ are defined as

theser S "/max(x; C) — t 12)I£1>0 V;nax(x + ti) - Vmax(x)7
Viin{e) = min{o o -5 € I, Jl3, ) o Ve 4 10) — Vi)
Vinax (2) = max{z"Pjz : j € I[}, JY, (9 min(21¢) = lim ; :
; )
o P For a nonlinear vector fieldt = h(z), Viax(z; h(z))
Ve(z) = Tyt z;ﬁ Q| o ©)  measures the (forward) time derivative Wf.., at z.
=

Following the definition of [18] (page 215), a subgradient
All these functions are positive definite and homogeneous of a convex functionf : R® — R at z; is a vectorv € R"
degree two. It was established thdt,. is strictly convex, such that
and V, is convex and continuously differentiable with the

) - >0 (x — x0) Vo € R", 9
gradient given byVV_.(z) = 2 (ijl V;Q]) x, where f(@) = f(wo) 2 v'(@ —20) Vo ®)

) ; —1 and the subdifferential, denoted &g (o), is the set of all
" = argmin,cps o' (Zj:l %‘Qj) Z. subgradient at:,. The functionf(z) is differentiable atz



if and only if df(xz) has only one vector. In this case weare involved in the vicinity ofz. In particular, letiy, k €

have 0f(xo) = Vf(zo). We usedViax(z) to denote the
subdifferential ofV,,.« at z.

Lemma 1: Considerzy € R™. We have
1) anax(.’L‘o) = C0{2Pj$0 1 € Imax(a'}o)}.
2) For a vector € R", the directional derivative oV,
at zy along( is

Vinax (203 ¢) = maX{Qm(T)PiC 1j € Imax(xo)}'
Combining items 1 and 2 in Lemma 1, we have

max {£'C}.

£€0Vmax(x)

(10)

Vmax ({,C; C) =

This equality relates the directional derivative gf.... with
its subdifferential. At: whereV;,,.x is differentiable [ ax ()
contains only one integer andVj,.«(z) is single valued.
In this case, we havé/i,..(z;¢)) = (VViax(x))¢
2$TPImax(x)<-

For the non-convex functiof,,;,, we have,

Lemma 2: Considerz, € R™. For a vector( € R", the
directional derivative of;,,;,, at zo along( is

Vinin (203 ) = min{2z(P;( : j € Imin(x0)}- (11)

I[1, K] be integers such that there exist a sequence,of
satisfyinglimy_, ., z¢ = x ando (z,) = i for all £. Thenz =
YK apA;,x for certaina € T'X such thati is tangential
to the sliding surface (see [6]).

As remarked in [19], a sliding motion is an approximation
of the solution of a real system, by letting the nonidealities,
such as time-delay, hysteresis, and other types (e.g., sampling
time), go to zero. Thus it is expected that when a switching
law is implemented by a computer and an nonideal actuator,
the solution of the real system would be closely described by
the sliding motion. Because of the practical importance and
because it is often unavoidable in a switched system, we need
to pay particular attention to sliding motion, especially, when
a switching rule is based on a nondifferentiable Lyapunov
function such ad/,;, and V..

I[Il. STABILIZATION VIA THE MIN FUNCTION

A sliding mode is relatively easier to analyze if it is
within the set of points where the Lyapunov function is
differentiable than the other case.

Proposition 1: Consider theV linear systems given by (12).
Let Vinin(z) = min{z"Pjz : j € I[1,J]} with P; = P} >

C. Switching laws via the directional derivatives and some, j € I[1,.J]. Denote

discussions on sliding motion

Consider a switched system constructed framlinear
systems,

i=Ax, i=1,2--,N. (12)

Let V' be a positive definite function with directional deriva-

tive V (z; ¢) well defined for allz # 0 and¢ € R™. Denote
O = {z € R" : V(w; Aix) < V(x; Apz) Yk € I[1,N]}.

To makeV decrease with the fastest convergence rate,
may construct a switching law as follows,

o(x) =1, if ze,. (13)

Equivalently, we can also write

o(x) = arg ierIIﬁnN] V(x; As).

The resulting switched system is
T = AJ(I)JJ. (14)

If o(z) is multi-valued, sayg(z) = {i1,i2, -+ ,ix }, thenz

could be any one of thesé;, z’s. Suppose that there exists

ann < 0 such that

min{V (z; A;z) : i € I[1,N]} < nV(z) Vo # 0. (15)

Q;={x eR": Vmin(ﬂc;Aix)SVmin(x;Aka:)7k € I[1,N]}.
(16)
Let the switching law be constructed as

o(x) =14 for ze€Q,. a7

Then there exist no sliding mode on the setcofthereV,;,
is not differentiable.

Note that Proposition 1 does not eliminate the possibility
6t a piece of trajectory staying within the set of nondiffer-
entiable points. Such a piece of trajectory must overlap with
the trajectory oft = A;x for a certaini. Hence it is not a
sliding motion. Proposition 1 makes it easy for us to derive
a condition on stabilizability by combining the conditions on
each subseb;, whereV,,;, is differentiable.

Proposition 2: Suppose that there exist real matridgs=
Pj >0, j € I[1,J] and real numbers, a;; € [0, 1], Bjx >
0,i € I[1,N],4,k € I[1,J], such that2¥ , o;; = 1 for each
4, and

J
(B10isAi) PPy (S0i40)< Y Bin(Py—Pr)+nP;,

k=1
(18)
for all j € I[1,J]. Let Vi,im be composed from these

It seems that the resulting system (14) should be stable wiffy’s. Under the switching law (17), we hawg,i, (z(t)) <
the convergence ratg. This is easy to see if there is no Vi, (x(0))e” for every solutionz(-) (including sliding

sliding motion, wherei = A;z for somei € o(z) at each
time instant. In this cas& < nV for all t and we have

motion).
The stability condition (18) in Proposition 2 includes a

V(x(t)) < V(z(0))e™ and the convergence rate is ensuredfiew earlier conditions in [20], [21] as special cases. The
When a sliding motion occurs;(¢) stays on a switching relationship among these conditions is addressed as follows.

surface and the effective may not equal to any of4;z.
Instead# is a convex combination of thosd;xz’s which

Here we consider the case where the number of linear
systems is 2, i.eN = 2.



Case 1.WhenJ = 1, Viu;, reduces to a quadratic function two quadratic functions even for a system that switches be-
and (18) reduces to a single matrix inequality tween twoA;’s. To demonstrate that the switching feedback
law corresponding top; is stabilizing with the guaranteed
:

(@d; +(1—a)42)" P+ Plad; +(1-a)Az) <noP. (19) convergence rate, we run a set of simulations from different
For o = 0, this corresponds to the stability condition ininitial conditions for the system wittd, and A, replaced
[20]. Let 7 be the minimaky, satisfying the inequality,. ~ With Ay = Ay —njI/2 and Ay = A, — njI/2. It can be

Case 2WhenJ = 2 andaq; = ag = 1,12 = ag; =0, S€EN thatd; and A, satisfy the matrix inequalities with the
(18) reduces to the following matrix inequalities same parameters except that= 0, which means that a
. guaranteed convergence rate is 0. A typical result is plotted
A}P1 + PLA < Bi(Pr— Py) +mbPy ’ (20) in Fig. 1 which showsV;,, as a function of time and the
AyPy + Py Ay < Bo(Py — Pr) +m P dotted line identifies the index such thate” Pjz = Vipia. In
wheref;, 8, > 0. If 7 = 0, we have the stability condition Fig. 2, the convergence raté/V is plotted as a function of
obtained in [21]. time. The maximum value df /V is —3.773x 104, slightly
Case 3.For the general case whevg,;,, is composed from below 0 (not exactly 0 because of Sampling rate). This shows
J positive definite matrices, we usg to replacen in (18) that the convergence rate is closely reflected from the matrix
and letn’ be the minimaly; satisfying the inequalities. equations.

Claim 1: n§ > ny.

Based on the stability condition in Proposition 2, an
optimization problem can be formulated for the optimization
of the convergence rate as follows

inf  n (21)

Pj,cij,Bk >

s.t. 1)(18)
2) Pj =P} >0,a; €[0,1],8jx > 0,5 a5 = 1.

The matrix inequality involves bilinear terms as the product
of a scalar variable and a matrix variable. They are similar to
those bilinear matrix inequalities we have encountered in [7],
[12] resulting from usingV, and V;,.., on LDls. Extensive Fig. 1. Vinin as a function of time.
numerical experience shows that a combination of the path-

following method in [9] and the direct iteration works very

well on this type of BMI problems. We developed a two- 04 —
step iterative algorithm. The first step uses the path-following SRR R R
method to update all the parameters at the same time. The L -
second step fixeg;,’s and a;;'s and solves the resulting ]
“gevp” problem which includes only’;’s as variables. This
procedure is repeated until the improvement is within a small
range.

t (sec)

/dt)/ V
min

(dvmln
o
IS

Example 1: Consider a third-order switched system with
-3 =6 3 1 3 3 o 5 10 15
Al = 2 2 73 5 A2 = -1 *3 *3 . t (sec)
1 0 -2 0 0 2

Fig. 2. The convergence rate as a function of time.
Both A; and A, are neutrally stable. There exist no convex

combination of4; and A, that is Hurwitz.

We turn to useV,,;, composed from two quadratic func- IV. STABILIZATION VIA MAX FUNCTION AND CONVEX
tions and minimizen; subject to (20). The minimah; is HULL FUNCTION
quickly determined through the path-following algorithm as As established in [8]V,.x andV. are conjugate types. In
n} = —0.3375. The same; is obtained by sweeping; and particular, for
B2 in (20) from 0 to co. 1

If we useV,,m composed from more quadratic functions, Vinax(z) = 3 max{z'P;z : j € I[1,J]}, (22)
the convergence rate can be further increased. With3, a
local minimumn* for the BMI problem (21) is found to be
n; = —0.3836. With J = 4, a local minimump* is found
to ben; = —0.4656. This shows that/},;, with three or Ve(§) = = min &' Z% 3 (23)
more quadratic functions can work better than those with 2 yer/

its conjugate function is
-1



Because of the conjugate relationship, we have The following example demonstrates the dual relationship
in Proposition 3.

1 1
€€ Wmax(2), Vimax(2) =5 & 2€IVe(E), Vel§) =3 Example 2: Consider a second-order switched system with
(24)
Since V. is continuously differentiablegV.(¢) is single A = { _85 _01 }, Ay = { _11 _21 }

valued and equals its gradient. At a pointwhere V.«
is not differentiable,0V,,.x(x) is a convex set given by A; has one eigenvalue &tand A, has a pair of complex
Lemma 1. By (24), for allf € 0Viax(z), their gradient eigenvalues on the imaginary axis. Lét., be constructed

VVe(§) = 0V.(§) = . from
Based on the equivalence relation (24), a set of dual
. . . . . . 0.45 0.6 0.7 0.7
relationships are easily established in [8] for dual linear P = [ 06 1.1 }, P, = { 07 0.9 ]

differential inclusions. For dual state-dependent switched
systems, the dual relationship is complicated by the discorthe inequality (27) is satisfied for every differentiabievith
tinuity of switch and possible sliding motion. n = —0.5263, as can be seen in Fig. 3, where the directional
Given A;, A,, -+, Ay and a pair of conjugate functions derivatives Vi,ax(2; A12) and Viax(z; A2z) are plotted
Vinax () and V,(€). Consider the dual switched systems ~ along the boundary of the 1-level skt;,,. from Zz =0 to
Zx = 27. The solid curve corresponds 9. (z; A;x) and
&= Ag ()7, (25)  the dash-dotted corresponds Q.. (z; Apz). Both of these
where oy (z) = arg minye v Vmax(x;Ai-r)y and curves are discontinuous. At one pair of nondifferentiable
’ points, we havenin{Viax(z; Aix) 1 i = 1,2} < nVipax(2).

£ =A%, 06 (26) At another pair of nondifferentiable point&,., (z; A;z) >
. ) . 0 for bothi = 1,2, but there exist a convex combination

where o, (§) = arg min;e p1,n) V(&5 A56). of Az and Az, such thatV,ay (z; (AL + (1 — N\ Agz) <
Proposition 3: Let n € R be given_ The fo”owing two *0-25anax(x)- This is also illustrated in F|g 4, where the
statements are equivalent: boundary ofLLy, s plotted in thick solid curve and the

directions of A;x and Asx are indicated by dashed line

. segments pointing from the boundary. At the lower-right (or

Vinax (23 (SN A7) 2) < nVinax(z).  (27)  upper-left) vertex of the level setl;z and A»z both point

outward of the level set but a convex combinationAfz

and A,z points inward of it. By Proposition 3, the system

V. (g; (Zg\;l)\iAI) 5) < nV.(€). (28) under the corresponding switching law is stable and has a

. guaranteed convergence rajge = —0.25 even if sliding

Conditon 2) ensures that.(£(¢)) < V.(£(0))e™ for every  mtion occurs, as confirmed by a trajectory in Fig. 4. This

solution of (26) (including sliding motion). In cas¥ = 2,  yajectory starts at a point marked with™and enters a

condition 1) ensures thaty,..(2(t)) < Viax(2(0))e" for sliding mode on the line where P,z = a7 Pya.
all solutions (including sliding motion) for (25).

1) For everyz # 0 there exist\ € I'V such that

2) For every¢ # 0 there existA € I'V such that

Since V.« IS piecewise quadratic arld. is not, it seems 1
to be easier to establish a matrix condition for (27) viaghe
procedure. Because of the dual relationship in Proposition 3,
we can establish a matrix condition fof by usingVy,.x on
the dual systems!]. For example, consider the cade= 2
and J = 2. Using S procedure, a set of matrix inequality
conditions can be established to ensure (27): there exist real
numbersa;; € [0,1], B;x > 0,i € I[1,2],4,k € I[1,2] such

that 212:104” =1and 2% 1 2 3 4 5 6 7
6=0 x

Idt(x, Azx)

(X, Alx), deax

ax

dv__/dt
m

(B2, 0i; A)P; + Pj(S7_ s Ay
=1 z) ’ J( =1 l> Fig. 3. Directional derivatives along the boundaryof;

J ‘max
< Bik(Pe — P;)+nP; j=1,2, (29)
kz::l i (P QRN By Proposition 3, we can us®; and P, to construct
, ) B a function V(&) = min{¢" (WP, + (1 — y)P) "¢ : v €
and theie exist; he r[]O,l], Yimei =1, andb; € R,d; € [0,1]} so that the dual switched system withi and A}
[0,1},5 =1,2 such that is stable andV.(£(¢)) has a convergence ratg = —0.25.
(212_1aiAi)ij + Pj(E§—1aiAi) This is confirmed by Figs. 5 and 6. The directional deriva-
_ B . tives V,(&; AT€) and V,(&; ALE) are plotted in Fig. 5 along
<b;(P,— P d; P 1—4d;)P =1,2.(30 0l 172
< b;(Br = Po) ;P14 2)P2), 5 =1,2.(30) the boundary of the 1-level sety, from Z{ = 0 to
The condition (29) ensures (27) forwherex™ Pz # 2" Pz /& = 2w, where the solid curve corresponds to(; A¢)
and (30) ensures (27) far wherex™Pyx = 2" Pyx. and the dash-dotted curve correspondd/t¢e; ALE). Both



functions. Furthermore, non-convex optimization problems
and tools are expected to incorporate much greater design
freedoms than an overly simplified convex optimization
problem. As numerical examples demonstrate in this paper,
composite quadratic functions can effectively reduce the con-
servatism in stability conditions via solving BMI problems.

(1]

[2]

Fig. 4. Boundary of the level sdty, and a converging trajectory

(3]

of these curves are continuous and it can be seen th%
min{V,(& A%E) i = 1,2} < —0.25V,(¢) is satisfied for
all £. In Fig. 6, the boundary of a level set and a trajectory
starting from a point marked with«" are plotted. This
trajectory also enters a sliding mode after some time.

(5]

(6]

1
\ N 7]
Q 05 el Iy A
F(N I Iy
g T P ‘ (8]
> -05 N ‘ A
s N | N
< n [o]
< )
g -15 :
"o
S
[10]
s ‘
1 2 3 4 5 6 7

[11]

Fig. 5. Dual system: Directional derivatives along the boundary. of
[12]
15 [13]
1
05 (14]
w0 [15]
-05
i [16]
-15 : : :
-1 -0.5 0 0.5 1
g [17]
Fig. 6. Dual system: Boundary dfy,, and a converging trajectory [18]

(19]

[20]
V. CONCLUSIONS

The three types of Lyapunov functions studied in thig21]
paper are directly constructed from a family of quadratic
functions (without additional parameters) and are natur?jz]
extensions of quadratic functions. They can be used to
approximate a wide variety of convex/non-convex functionf2 3
which are homogeneous of degree 2. They lead to matriX
inequalities as conditions for stability/stabilization. Sincg24]
switched systems are intrinsically nonlinear and discontin-
uous, a nondifferentiable and non-convex Lyapunov functioﬁs]
may work better than convex and/or differentiable Lyapunov
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