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Abstract

This thesis is concerned with shape optimization problems under non-linear PDE (partial
differential equation) constraints.

We give a brief introduction to shape optimization and recall important concepts such
as shape continuity, shape derivative and the shape differentiability. In order to review
existing methods for proving the shape differentiability of PDE constrained shape functions
a simple semi-linear model problem is used as constraint. With this example we illustrate
the conceptual limits of each method.

In the main part of this thesis a new theorem on the differentiability of a minimax
function is proved. This fundamental result simplifies the derivation of necessary optimality
conditions for PDE constrained optimization problems. It represents a generalization of
the celebrated Theorem of Correa-Seeger for the special class of Lagrangian functions and
removes the saddle point assumption. Although our method can also be used to compute
sensitivities in optimal control, we mainly focus on shape optimization problems. In this
respect, we apply the result to four model problems: (i) a semi-linear problem, (ii) an
electrical impedance tomography problem, (iii) a model for distortion compensation in
elasticity, and finally (iv) a quasi-linear problem describing electro-magnetic fields.

Next, we concentrate on methods to minimise shape functions. For this we recall several
procedures to put a manifold structure on the space of shapes. Usually, the boundary ex-
pression of the shape derivative is used for numerical algorithms. From the numerical point
of view this expression has several disadvantages, which will be explained in more detail. In
contrast, the volume expression constitutes a numerically more accurate representation of
the shape derivative. Additionally, this expression allows us to look at gradient algorithms
from two perspectives: the Eulerian and Lagrangian points of view. In the Eulerian ap-
proach all computations are performed on the current moving domain. On the other hand
the Lagrangian approach allows to perform all calculations on a fixed domain. The La-
grangian view naturally leads to a gradient flow interpretation. The gradient flow depends
on the chosen metrics of the underlying function space. We show how different metrics may
lead to different optimal designs and different regularity of the resulting domains.

In the last part, we give numerical examples using the gradient flow interpretation
of the Lagrangian approach. In order to solve the severely ill-posed electrical impedance
tomography problem (ii), the discretised gradient flow will be combined with a level-set
method. Finally, the problem from example (iv) is solved using B-Splines instead of level-
sets.
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Chapter 1

Introduction

He who seeks for methods
without having a definite problem in mind

seeks in the most part in vain.

David Hilbert

Shape optimization

Shape optimization has gained an increasing attention from the theoretical and application
points of view. Many problems from real world applications can be recasted as shape
optimization problems. It has proved its indispensability in many applications such as drag
reduction of aircrafts, cars and boats, electrical impedance tomography [32, 54] and image
segmentation [56].

In general, a shape optimization problem consists of a cost/shape function J(Ω, u(Ω))
with arguments Ω⊂Rd and u(Ω), where the state u satisfies the constraint E(Ω, u(Ω))= 0.
The objective then is to minimize the cost function J : Ξ → R over some admissible subset
Ξ of 2R

d
:= {Ω : Ω ⊂ Rd}, i.e.

minimize J(Ω, u(Ω)) over (Ω, u) ∈ Ξ ×X (Ω)

subject to u = u(Ω) solves E(Ω, u(Ω)) = 0,
(1.1)

where X (Ω) is usually a function space. The constraint E(Ω, u(Ω)) = 0 could be a partial
differential equation (PDE) or systems of PDEs such as the Navier-Stokes equation [84] or
Maxwell’s equations [53, 102]. A specific Ξ could be the set of all open subsets of a set D.

A unique characteristic of shape optimization is that it makes bonds from different areas
of mathematics, such as differential geometry, Riemmanian geometry, real and complex
analysis, partial differential equations, topology and set theory. The main difficulty arises
because of the absence of a vector space structure of the set of sets 2R

d
. Thus one cannot

apply standard tools from real analysis such as the Fréchet or the Gateaux derivative to
investigate (1.1). One may circumvent this obstacle by identifying sets with functions and
giving the space of these functions a Lie group or manifold structure as detailed below; cf.
[37, 72, 73, 95].

In order to study the behavior of shape functions with respect to domain variations
shape sensitivity analysis was introduced. In [100] the hereafter described velocity method
was adopted for this purpose. We refer to [90] for the computation of material derivatives
for various PDEs. Let a shape function J : Ξ → R on some admissible set Ξ ⊂ {Ω : Ω ⊂
D ⊂ Rd} and a set Ω ⊂ D contained in a bigger set D be given. Then the domain Ω is

2



3

perturbed by a suitable family of diffeomorphisms Φt : D → D, t ≥ 0, with Φ0 = id. The
result is a family of new domains Ωt := Φt(Ω), t ≥ 0. One may define the diffeomorphisms
Φt as the flow of a vector field θ : D → Rd. We define then the Eulerian semi-derivative
(if it exists) as limit

dJ(Ω)[θ] := lim
tց0

J(Ωt) − J(Ω)

t
.

If the map θ 7→ dJ(Ω)[θ] is linear and continuous, then it is termed shape derivative. Shape
sensitivity was first used by Hadamard in his study of elastic plates; cf. [49]. The famous
“structure theorem” of shape optimization states that under certain assumptions the shape
derivative is a distribution acting on the normal part θ · n of the perturbation field θ on
the boundary ∂Ω. In 1907, J. Hadamard [49] used displacements along the normal to
the boundary Γ of a C∞-domain to compute the derivative of the first eigenvalue of the
clamped plate. The structure theorem for shape functionals on open domains with a Ck+1-
boundary is due to J.-P. Zolésio [101] in 1979. The generalization of the structure theorem
to an arbitrary domain was done in the paper [40, Thm. 3.2 and Rem. 3.1, Cor. 1] in 1992.
It says that the shape gradient is a finite order distribution with support the boundary of
the set and normal to the boundary.

In most cases, when the boundary is regular enough the boundary expression may be
written in integral form

dJ(Ω)[θ] =

∫

∂Ω
g̃ n · θ ds, (1.2)

where g̃ : Γ → R is usually the restriction of a function defined in a neighborhood of ∂Ω.
The formula (1.2) is often called the Hadamard formula.

For state constrained shape optimization problems, where the state is a partial differen-
tial equation, the shape differentiability may be difficult to prove depending on the PDE.
One procedure is to derive the shape differentiability as follows. One may express the cost
function g(z) (z being an element of a topological vector space) of PDE constrained shape
optimization problems as a minimax of a Lagrangian function G taken over vector spaces
X and Y , i.e.,

g(z) = min
x∈X

max
y∈Y

G(z, x, y).

The problem of the shape differentiability of the cost function is transported to the differ-
entiability of the minimax. Theorems on the differentiability of a minimax function with
or without saddle point condition have a long history. The pioneering work in this area
was done by Demjanov (cf. [42]) as early as 1968. Correa and Seeger gave in [30] a di-
rect theorem on the differentiability of g(z), where z ∈ Z, Z a locally convex space, and
(x, y) ∈ X × Y , X and Y two Hausdorff topological spaces (see also methods of non-
smooth analysis in their bibliography). Since spaces of shapes or domains are not locally
convex spaces1, [36] reformulated the hypotheses of the previous theorems to make them
readily applicable to the computation of the shape derivative. Some of those theorems were
sharpened by Delfour and Morgan [33, Thm. 3] and extended to ǫ-solutions in [34]. In
[35] an interesting penalization method was introduced where the state is the solution of a
variational inequality. We would like to emphasize that until now none of the mentioned
methods are applicable to non-linear problems without further assumptions, such as that
G has saddle points.

Other methods which may be used to derive the shape differentiability are the following:

1In fact certain spaces of shapes can be identified as infinite dimensional Riemannian manifolds. We
come back to this topic in Chapter 6.
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1. The “chain rule approach” or material derivative method is as follows. In this ap-
proach the material derivative is introduced to derive the shape differentiability. The
material derivative can be interpreted as the derivative of the state with respect to
the domain and only occurs in an intermediate step and is not present in the final
formula of the shape derivative. The terminology of the material derivative originates
from continuum mechanics where it describes the time rate of change of some physical
quantity, such as the mass, for a material element subjected to a time dependent ve-
locity field. From the optimal control point of view this is nothing but the derivative
of the control–solution operator, where the control is the domain and the solution is
some function solving a PDE.

2. Another (formal) method that is often used to derive the boundary expression, which
has to be used with caution because it may yield the wrong formula2 is due to [23].
This method, also known as Céa’s Lagrange method, uses the same Lagrangian as
the minimax formulation, but requires that the shape derivatives of the state and
the adjoint equation exist and belong to the solution space of the PDE. There are
examples (see [82]), where Céa’s Lagrange method fails.

3. In the recent paper [60] a rearrangement method was proposed. This method allows
to prove the shape differentiability under the assumption that the domain-solution
operator is Hölder continuous with an exponent bigger than 1/2 and admits a second
order expansion with respect to the unknown. No convexity of the state or the cost is
needed. However it requires a first order expansion of the PDE and cost function with
respect to the unknown such that the remainder vanishes with order two. Finally, we
mention that there is an interesting penalization method introduced in [35].

Current trends

A natural way to deal with domains is by identifying them with functions. There are several
methods to identify domains with functions, two of these will be further explained for the
planar case of R2.

In the first approach simply connected domains Ω in the plane, with boundary Γ,
are identified with immersed or embedded3 curves γ which map from the circle S1 onto
the boundary Γ as done in [72]. Since a reparametrization of the curve does not af-
fect the image Γ one is led to consider equivalence classes of curves. Two curves are
equivalent, written γ ∼ γ̃, if there exists ϕ ∈ Diff(S1) such that γ = γ̃ ◦ ϕ. The space
Be := Emb(S1;R2)/Diff(S1) comprising equivalence classes of embedded curves is a special
case of a manifold of mappings. It can be given a Riemannian structure by introducing
appropriate metrics; [71, 73, 93, 98]. With the identification of domains Ω ⊂ R2 with
functions γ ∈ Be, we may identify a shape function J(Ω) with J̃(γ) := J(int(c)), where
int(γ) is the interior of Γ := ∂Ω, that is, Ω. The link between the shape derivative in
the form (1.2) and the derivative of Ĵ on the shape space Be was given by [86]. The main
benefit of this view is that on Riemannian manifolds minimization methods such as BFGS4,
steepest descent, Newton and quasi-Newton methods as well as their convergence analysis
are available; cf. [2, 85, 86].

2We come back to this method in Subsection 3.5.
3The quotient Bi := Imm(S1;R2)/Diff(S1) is no manifold, but only an orbifold.
4 Is an abbreviation for Broyden-Fletcher-Goldfarb-Shanno.
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An alternative approach of [70] defines admissible domains Ω ⊂ R2 by Ω = (f+id)(ω0),
f ∈ Ck0 (R2,R2), k ≥ 1 and some fixed open domain ω0 ⊂ Rd. Formally, setting Θ :=
C0,1
b (Rd,Rd)5, an appropriate space is given by

F(Θ) := {id + f : f ∈ Θ, f + id is bijective and (f + id)−1 − id ∈ Θ}.

Since one is usually interested in the image of the mappings, we consider the group Sω0 :=
{F ∈ F(Θ) : F (ω0) = ω0}. Now we introduce the equivalence relation between two
functions F, F̃ ∈ F(Θ), written F ∼ F̃ by F ◦h = F̃ for some h ∈ Sω0 . As for the space Be
the important role plays the quotient He := F(Θ)/Sω0 on which a right invariant metric,
called Courant metric, can be introduced to make the space He a complete metric group
[37]. The equivalence relation is nothing but the right action of Sω0 on the group F(Θ) and
induces a natural projection π : F(Θ) → F(Θ)/Sω0 , by f 7→ f ◦ Sω0 . By construction, we
may identify the quotient F(Θ)/Sω0 with the image set Z(ω0) := {F (ω0) : F ∈ F(Θ)} via
the bijection F 7→ F (ω0).

In 1993, the problem of comparing medical scans arising in medical imaging led to the
construction of deformations defined by ϕ(x) := x−u(x), where u is a smooth displacement
in the plane [69] which is smoothed by a Sobolev type energy minimization. Since this
displacement allows not for arbitrary large deformations the velocity method was used by
[14, 95] to construct deformations via the flow of a vector fields. More precisely the authors
considered the group G := {Φθ

1 : θ vector field} of all flows evaluated at t = 1. Also in
this case a right invariant metric may be introduced making the space G a complete metric
group.

Finally, we mention that spaces of shapes can also be generated by distance functions,
signed distance functions and characteristic functions, but lead to less differentiable struc-
tures.

The previous considerations show that by identifying sets with functions, we can employ
most of the features from smooth analysis on infinite dimensional manifolds. This will
be a cornerstone for future numerical and theoretical investigations of constrained shape
optimization problems.

The objective of this thesis

The main contributions of this thesis are:

• In this thesis, we present a novel approach to the differentiability of a minimax, with-
out a saddle point assumption when the function G is a Lagrangian, that is, a utility
function plus a linear penalization of the state equation. Until now the assumptions to
apply the minimax theorems required that the Lagrangian is a concave-convex func-
tion or other hypotheses have to be satisfied that are not easy to be proved or even
fail to be true. The novelty of the new approach is to replace the usual adjoint state
equation by an averaged adjoint state equation. For problems where the function is
a Lagrangian this result allows us now to compute sensitivities for a very broad class
of shape optimization problems contained by linear, semi-linear and also quasi-linear
partial differential equations.

• Most numerical simulations use the boundary expression (1.2) or to be more precise
the pointwise descent direction θ := −g n. It is well known that due to low regularity of

5The space C0,1
c (Rd,Rd) comprises all bounded Lipschitz continuous functions f : Rd → R

d. This space
is a Banach space when endowed with the usual norm.
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g the algorithm may be unstable and can lead to oscillations of the moving boundary.
The low regularity of g may occur if Ω is less regular or the cost function involves
high order derivatives of the solution of the PDE or the solution of the PDE has
low regularity. Besides introducing penalizations, one way to get around this is to
consider the alternative representation of the shape derivative as a domain integral,
i.e. dJ(Ω)[θ] =

∫
Ω F (θ) dx, where F is an operator acting on θ. This expression is

more general than the boundary expression and is even defined for quite irregular
domains Ω, where no boundary expression is available. It has been overlooked for
mainly two reasons:

- the difficulty to obtain descent directions,

- the computational effort seems to be bigger since a space dimension is added.

We will make the volume expression accessible for numerical simulations. Also we
discuss why the volume expression is advantageous when combined with the level-set
method.

• With the volume expression it is possible to interpret gradient algorithms as gradient
flows taking values in certain groups of diffeomorphisms. This interpretation allows us
to distinguish between two different ways to look at gradient algorithms: (i) from the
Eulerian and (ii) from the Lagrangian. In the Eulerian approach all computations in
an algorithm are performed on the current domain. On the other hand the Lagrangian
approach allows to perform all calculations on a fixed domain. The gradient flow
depends on the chosen metric of the underlying space. We present several possible
metrics and different regularity of the resulting domains.

The structure of this thesis

Outline:

Chapter 2: This chapter gives a brief introduction to shape optimization is given and recalls
some basic material from shape calculus. The essential notation used throughout this thesis
is introduced. We introduce the notion of the shape derivative and the structure theorem
of Zolésio. Many useful properties of the flow associated with vector field are derived.

Chapter 3: In this chapter various methods available to calculate the so-called shape deriva-
tive are reviewed. The methods range from the classical material derivative method [90]
(also called chain rule approach), over the minimax approach of Correa-Seeger applied to
shape optimization by Delfour and Zolésio ([36]), to the recent rearrangement method of
[60]. Finally, we consider a theorem on the differentiability of a min function, that allows
the calculation of sensitivities for energy functionals. In order to illustrate the methods a
simple quasi-linear partial differential equation is used.

Chapter 4: A novel approach to the differentiability of a minimax, without a saddle point
assumption when the function is a Lagrangian, that is, a utility function plus a linear pe-
nalization of the state equation, is presented. Its originality is to replace the usual adjoint
state equation by an averaged adjoint state equation. When compared to the former the-
orems in [36, Sect. 4, Thm. 3, p. 842] and in [33, Thm. 3, p. 93], all the hypotheses are
now verified for a Lagrangian function without going to the dual problem and it relaxes
the classical continuity assumptions on the derivative of the Lagrangian involving both the
state and adjoint state to continuity assumptions that only involve the averaged adjoint
state.
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Chapter 5: The results from Chapter 4 are applied to three transmission problems and
the semi-linear problem from Chapter 3: (i) a sharp interface model of distortion com-
pensation in elasticity (ii) an electrical impedance tomography problem, (iii) a quasi-linear
transmission problem and (iv) a simple quasi-linear problem. For the examples (i) – (iii)
the existence of optimal shapes via a standard perimeter and a Gagliardo penalization (also
called fractional perimeter penalization) is discussed.

Chapter 6: This chapter deals with the theoretical treatment of shape optimization prob-
lems. The novel part is the usage of the volume expression of the shape derivative, which
has been ignored so far. We compare different metrics generating gradient flows in the
spaces of shapes.

Chapter 7: The methods introduced in Chapter 3 are applied to the examples introdcued
before. It is shown that the volume expression is superior when compared to the boundary
expression.



Chapter 2

Introduction to shape optimization

In this chapter, we introduce shape functions along with an appropriate notion of continuity
and differentiability. We recall the celebrated structure theorem of Hadamard-Zolésio which
provides us with the canonical structure of shape derivatives. Finally, we study flows
generated by vector fields. For the convenience of the reader, we list below all used symbols
and function spaces.

2.1 Notation

We mostly use notations and definitions of the Amman-Escher book series [7, 8, 9]. Some
definitions can be found in [37]. Let f : Ω ⊂ Rd → Rd and φ : Ω ⊂ Rd → R be given
functions defined on a set Ω with boundary Γ.

• Measures and sets:

N,Z,R natural numbers, integers, real numbers

R,R
+

extended (non-negative) real numbers R ∪ {±∞}
and {x ≥ 0} ∩R ∪ {∞}

Rd d - times product of R

E,F Banach spaces with norms ‖ · ‖E , ‖ · ‖F
int(Ω), ∂Ω, Ω interior, boundary and closure of a set Ω ⊂ Rd

2Ω set of all subsets of Ω, i.e., {Ω̃ : Ω̃ ⊂ Ω}
TD(x), CD(x) Bouligand and Clarke tangent cone of D at x ∈ D

supp(φ) support of a function φ, i.e., {x ∈ Rd : φ 6= 0}
Y X set of all functions from X into Y

⌊s⌋ the biggest integer less or equal to s

df(x; v) directional derivative of f : Ω ⊂ E → F

at x ∈ Ω in direction v

dHf(x; v) Hadamard semi-derivative at x ∈ Ω in direction v ∈ E

∂f(x) Fréchet derivative at x; it is an element of L(E,F )

∂γf(x) partial derivative ∂|γ|f
∂γ1x1···∂

γdxd
, where γ = (γ1, . . . , γd)

⊤ ∈ Nd

and |γ| := γ1 + · · · + γd

∇φ gradient defined by ∂f(x)(v) = ∇φ · v for all v ∈ Rd

∇Γφ tangential gradient ∇φ |Γ − ∂nφ |Γ n

8



2.1. Notation 9

∂Γf |Γ tangential gradient ∂f |Γ − (∂nf) ⊗ n

ε(f) symmetrised gradient 1
2(∂f + ∂f⊤)

J rotation matrix

(
0 1

−1 0

)

A⊤, A−1 transpose and inverse of a matrix

• Function spaces:

L(E,F) space of linear and continuous mappings from E into F

Lis(E,F) space of mappings A ∈ L(E,F) with inverse A−1 ∈ L(F,E)

Ck(Ω) space of k-times continuously differentiable mappings from Ω into R

Ckc (Ω) space of function f ∈ Ck(Ω) such that suppf ⊂ Ω

C0,α(Ω) Hölder space with exponent 0 < α < 1 (also denoted Cα(Ω))

Ck,α(Ω) subspace of function f ∈ Ck(Ω) such that the k-th order derivatives

belong to Cα(Ω), 0 < α < 1, k ≥ 0

C(Ω) space of continuous functions that are bounded on Ω

Lp(Ω) standard space of measurable function that are p-integrable

(1 ≤ p <∞)

L∞(Ω) space of essentially bounded functions on Ω

W k
p (Ω) standard Sobolev space of k-times weakly differentiable functions

with weak derivative in Lp(Ω) (1 ≤ p ≤ ∞, 0 ≤ k <∞)

W s
p (Ω) standard fractional Sobolev space with s ≥ 0 a real number

(see the appendix for a definition)

Hom(E) space of continuous functions f : E → E with continuous

inverse f−1

Diffk(E,F) space of k-times Fréchet differentiable functions f : E → F

with inverse f−1 ∈ Ck(F,E)

X(D) characteristics function χΩ, with Lebesgue measurable Ω ⊂ D

BV (D) function space of bounded variations

B(D) subspace of X(D) such that χ ∈ BV (D)

Lip0(D,R
d) Lipschitz continuous functions θ : D → Rd such that

±θ(x) ∈ CD(x) for all x ∈ D

C0,1(D,E) space of Banach space valued functions f : D → E that are

Lipschitz continuous

Ckb (Rd,Rd) space of k-times differentiable functions, whose derivatives

are bounded

Ckb,0(R
d,Rd) space of k-times differentiable functions, whose derivatives

vanish at infinity

C0,1
b (Rd,Rd) space of bounded and Lipschitz continuous functions

The vector valued versions of Ck(Ω), Ckc (Ω), Ck,α(Ω), C0,α(Ω), . . . , etc. are denoted by
Ck(Ω,Rd), Ckc (Ω,Rd), Ck,α(Ω,Rd), C0,α(Ω,Rd), . . . ,.
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‖f‖Lp(Ω) :=
(∫

Ω |f |pdx
)1/p

‖f‖L∞(Ω) := ess supx∈Ω |f(x)|
|f |C0,α(Ω) := sup x 6=y

x,y∈Ω

|f(x)−f(y)|
|x−y|α

‖f‖C(Ω) := supx∈Ω |f(x)|
‖f‖Ck,α(Ω) :=

∑
|γ|≤k ‖∂γf‖C(Ω) +

∑
|γ|=k |∂γf |C0,α(Ω) (γ = (γ1, . . . , γd)

⊤ ∈ Nd)

|f |W s
p (Ω) :=

∫
Ω

∫
Ω

|f(x)−f(y)|p

|x−y|sp+d dxdy p ≥ 1, 0 < s < 1

‖f‖Wk
p (Ω) :=

(∑
|γ|≤k ‖∂γf‖

p
Lp(Ω)

)1/p
1 < p <∞

‖f‖Wk
∞(Ω) :=

∑
|γ|≤k ‖∂γf‖L∞(Ω)

‖f‖W s
p (Ω) := ‖f‖

W
⌊s⌋
p (Ω)

+ sup|γ|=⌊s⌋ |∂γf |W p
η (Ω)

‖f‖Lp(Ω) :=
(∫

Ω |f |pdx
)1/p

‖f‖L∞(Ω) := ess supx∈Ω |f(x)|
|f |C0,α(Ω) := sup x 6=y

x,y∈Ω

|f(x)−f(y)|
|x−y|α

‖f‖C(Ω) := supx∈Ω |f(x)|
‖f‖Ck,α(Ω) :=

∑
|γ|≤k ‖∂γf‖C(Ω) +

∑
|γ|=k |∂γf |C0,α(Ω) (γ = (γ1, . . . , γd)

⊤ ∈ Nd)

|f |W s
p (Ω) :=

(∫
Ω

∫
Ω

|f(x)−f(y)|p

|x−y|sp+d dxdy
)1/p

p ≥ 1, 0 < s < 1

‖f‖Wk
p (Ω) :=

(∑
|γ|≤k ‖∂γf‖p

)1/p
1 < p <∞

‖f‖Wk
∞(Ω) :=

∑
|γ|≤k ‖∂γf‖L∞(Ω)

‖f‖W s
p (Ω) := ‖f‖

W
⌊s⌋
p (Ω)

+ sup|γ|=⌊s⌋ |∂γf |W p
η (Ω)

Next we list some useful operations from tensor algebra. The coordinate free definitions
from [12, pp. 399-404] are used.

• Tensor algebra:

(u⊗ v)w := (v ·w)u (u,v ∈ Rd, ∀w ∈ Rd)

(a⊗ b) : (c⊗ d) := (a · c) (b · d) (a,b, c,d ∈ Rd)

|A| :=
√

(A : A) (A ∈ Rd,d)

tr(A) := A : I

• Tensor algebra calculus rules:

Let a,b, c,d ∈ Rd and A,B ∈ Rd,d then

(a⊗ b) · (c⊗ d) = (b · c) a⊗ d

A : (c⊗ d) = c ·Ad

(a⊗ b) : (c⊗ d) = (c⊗ d) : (a⊗ b)

A : B = B : A = A⊤ : B⊤

tr(AA⊤) = A : A = |A|2
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2.2 General shape optimization problems

The main focus of shape optimization is to examine shape functions. Their domain of
definition is no subset of a topological vector space and thus a direct application of standard
tools known from topological vector spaces is not possible. These functions require therefore
the development of special notions of continuity and differentiability, which will be recalled
subsequently.

Definition 2.1. Let D ⊂ Rd be a set and Ξ ⊂ 2D := {Ω : Ω ⊂ D}1 be a set of subsets.
Then a function

J : Ξ → R : Ω → J(Ω)

is called shape function.

A typical shape optimization problem is of the form

min J(Ω) over Ω ∈ Ξ, (2.1)

where Ξ ⊂ 2R
d

is called admissible set. As already indicated in (1.1), the shape function J
might implicitly depend on a partial differential equation (PDE) or other constraints. For
examples we refer the reader to Chapter 5. When J depends on the solution of a PDE, we
call the shape optimization problem PDE constrained or state constrained .

Example 2.2. A possible choice of an admissible set Ξ could be the set of all open subsets
Ω ⊂ D of an open and bounded subset D ⊂ Rd. Examples of unconstrained shape functions
are

J1(Ω) =

∫

Ω
f dx and J2(Ω) =

∫

∂Ω
κ ds.

Here, for J1 we may assume f ∈ L1(R
d) and for J2 the boundary ∂Ω has to be sufficiently

smooth, say C2, in order to make sense of the curvature κ of ∂Ω. An example of a PDE
constrained shape function is

J3(Ω) =

∫

Ω
|u(Ω) − ur| dx, where − ∆u(Ω) = f in Ω

u = 0 on ∂Ω,

where ur ∈ L1(D) is a given target function.

Throughout this thesis we choose to work with special sets D ⊂ Rd.

Definition 2.3. We call a subset D ⊂ Rd a regular domain if it is a simply connected and
bounded domain with Lipschitz boundary Σ := ∂D. Moreover, we say that D is a k-regular
domain, k ≥ 1, if D is a regular domain and its boundary Σ is of class Ck in the sense of
[37, p. 68, Definition 3.1].

Regular sets according to our definition are not the most general sets we could consider,
but they serve our purpose and are sufficient for the applications. If not stated otherwise,
we assume the subset D ⊂ Rd is regular.

1This notation motivates from the fact, that we can associate to each Ω ⊂ D a characteristic function
χΩ : D → {0, 1} =: 2. Then {χΩ : D → {0, 1} : Ω ⊂ D} → {Ω : Ω ⊂ D} : χΩ 7→ Ω is a bijection. Moreover,
for finite sets D ⊂ R

d, we have #{Ω : Ω ⊂ D} = 2#D. Here, # denotes the cardinality of a set.
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There are three typical questions related to the problem (2.1): Does an optimal solution
exist?, What regularity does an optimal shape have? and Are there criteria to detect an
optimum? The first question is quite delicate. There are examples where the optimal
solution is no longer a set, but a measure; cf. [19]. The reason for those obscure scenarios
is the lack of compactness of the underlying space of admissible sets. One may avoid these
cases by penalizing the cost function with the perimeter or the Gagliardo perimeter. Also
it is possible to consider other special classes of domains in order to obtain existence of
solutions; cf. [37, Chap. 8]. We discuss this topic in more detail in the present chapter,
Chapter 6 and study some examples in Chapter 5. The question of regularity of optimal
solutions is important for the applications since highly irregular sets that model optimal
shape designs may be not manufacturable in a factory. However, this will not be further
explained in the following chapters and we refer the reader to [51, Sect. 6]. The following
chapters are mostly devoted to the third question.

2.3 Flows, homeomorphism and a version of Nagumo’s the-

orem

In this section we recall important properties of flows (also called transformations), gener-
ated by vector fields. If a sufficiently smooth vector field has compact support in a bounded
subset of Rd, then Nagumo’s classical theorem yields that the associated flows are diffeo-
morphisms, mapping this subset bijectively into itself. Function compositions of these flows
with Sobolev functions enjoy special properties which will be reviewed in the subsequent
sections.

2.3.1 The flow of a vector field

Let D ⊂ Rd be a regular domain according to Definition 2.3, τ > 0 and s ∈ [0, τ ]. Then to
each vector field θ : [0, τ ] ×D → Rd, we associate (if it exists) a flow.

Definition 2.4. For fixed τ > 0, s ∈ [0, τ) and given x0 ∈ D, we consider the solution
x : [0, τ ] → Rd of the initial value problem

ẋ(t) = θ(t, x(t)), x(s) = x0. (2.2)

The flow at (t, x0) ∈ [0, τ ] ×D associated with the vector field θ is defined by Φ(t, s, x0) :=
x(t). We write Φt,s(x) := Φ(t, s, x) and define Φ−1

t,s (z) := Φ−1(t, s, z) for each t ∈ (0, τ) for
which x 7→ Φ(t, s, x) is invertible. If s = 0 we use the abbreviation Φt := Φt,0.

A flow Φt,s generated by a time-dependent vector field θ fulfills the following well-known
equations for all 0 ≤ s′ ≤ s ≤ t

Φt,s ◦ Φs,s′ = Φt,s′

Φs,t ◦ Φt,s = id.

This identity is sometimes called Chapman-Kolmogorov law. Moreover, if θ is autonomous
the previous equation reduces to: for all s, t ≥ 0 with s+ t ∈ [0, τ ]

Φs ◦ Φt = Φs+t.

Of course the vector fields θ has to have a certain regularity in space and time to guarantee
the existence and uniqueness of a flow Φt. Moreover, in order to generate a homeomorphism
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Φt fromD to itself, the vector field must be tangential to the boundary ∂D. This is discussed
in more detail in the subsection below.

The topology of an optimal set of problem (2.1) can be determined with the help of the
topological derivative; cf. [89]. Once the topology of an optimal set is known then it is only
necessary to investigate diffeomorphic transformations which preserve the topology. There-
fore, we are particularly interested in vector fields θ generating flows with the properties:
for all t ∈ [0, τ ]

Φt ∈ Hom(D), Φt(int(D)) = int(D), Φt(∂D) = ∂D. (2.3)

To derive a general class of vector fields whose associated flows satisfy (2.3), we need the
definition of the tangent cone at a point x ∈ D. We write xn →D x if xn ∈ D for all n ∈ N

and xn → x as n → ∞. The tangent cone is a generalisation of the tangent space for sets
with non-smooth boundaries.

Definition 2.5. The tangent cone of a set D ⊂ Rd at x ∈ D is defined as

TD(x) := {h ∈ Rd| (xν − x)/τν → h for some xν →D x, tν → 0}.

Let D ⊂ Rd be an open and bounded set with C1-boundary Σ := ∂D. Denote by
n := n(x) the unit normal vector at x ∈ Σ. Then TD(x) is the closed half space H+

n = {x ∈
Rd| x · n ≥ 0} and thus h,−h ∈ H+

n if and only if h · n = 0 which means that h belongs
to the tangent space of Σ at x, i.e. h ∈ TxΣ. In other words ±h ∈ TD(x) if and only if
h ∈ TxΣ for x ∈ Σ.

Now let x ∈ D be in the interior of D. Since we assumed D to be open, we have
γ(t) := x + ty ∈ D for y ∈ Rd and t > 0 small enough. Let (tn)n∈N be a sequence with
tn ց 0 as n→ ∞ and put xn := γ(tn). Then we get xn →D x and (xn − x)/tn → y. Since
y was arbitrary, we conclude that if x ∈ D then TD(x) = Rd. We summarise:

Lemma 2.6. Let D ⊂ Rd be an open, bounded set with C1-boundary Σ := ∂D. Denote the
normal along Σ by n. Let a continuous function θ : D → Rd be given. Then we have the
following equivalence

∀x ∈ Σ : ±θ(x) ∈ TD(x) ⇐⇒ θ(x) · n(x) = 0 ⇐⇒ θ(x) ∈ TxΣ.

Remark 2.7. The commonly used equivalent definition of TD(x) is

TD(x) :=

{
h ∈ Rd : lim inf

tց0

dD(x+ th)

t
= 0

}
,

where dD(x) := infy∈D |x − y| is called distance function associated with D. Notice also
that dD = dD and hence TD(x) = TD(x).

Remark 2.8. Let D ⊂ Rd be a regular domain. It is essential to realise that if a bounded
domain Ω ⊂ D has a Ck-boundary Γ, then the boundary Γt := Φθ

t (Γ) of Ωt := Φθ
t (Ω) will

be of class Ck too, provided θ is such that Φt( · ) belongs to Ck(D). But, one has to be
cautious with the notion of a Lipschitz domain, since there are several notions. We usually
mean by “the boundary of Ω is Lipschitzian” that it can be locally represented by a graph
of a Lipschitz function. So if Ω has a Lipschitz boundary in the above sense then it is in
general not true that Γt is Lipschitzian if Φt( · ) is only bi-Lipschitzian, that is, Φt : D → D
and its inverse are both Lipschitzian.
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For a continuous function θ : D → Rd the condition that ±θ(x) ∈ TD(x) for all x ∈ D
is non-linear and equivalent to θ(x) ∈ {−TD(x)} ∩ TD(x) for all x ∈ D. By non-linear
we understand that {−TD(x)} ∩ TD(x) is no linear subspace of Rd unless D is convex. It
can be shown ([37, Thm. 5.2, p. 200]) that the condition can be reduced to the Clarke
cone CD(x) ⊂ TD(x), i.e. for all x ∈ D : θ(x) ∈ {−CD(x)} ∩ CD(x) if and only if for
all x ∈ D : θ(x) ∈ {−TD(x)} ∩ TD(x). Moreover, {−CD(x)} ∩ CD(x) is a closed linear
subspace of Rd and hence the constraint with the Clarke cone is now linear. Finally, the
Clarke cone, which is always convex, is defined by

CD(x) :=

{
h ∈ Rd : lim inf

tց0
y→Dx

dD(x+ th)

t
= 0

}
.

2.3.2 A version of Nagumo’s Theorem

Necessary and sufficient conditions to obtain viability solutions of (2.2), i.e., solutions that
cannot leave the domain D and have no self intersections, were first given by [77]; cf. [13,
Chap. 4].

Definition 2.9. We call a set D ⊂ Rd, (strictly) θ-flow invariant if Φθ
t (D)(=) ⊂ D.

The function Φθ
t is also called a (strict) viability solution of (2.2). It is known that the

following conditions are sufficient to obtain strict viability solutions

(V) θ ∈ C0,1(D,Rd) and ∀x ∈ D : ±θ(x) ∈ TD(x).

The first condition is the Lipschitz continuity of θ while the second ensures that the flow
cannot leave the domain D. To be more precise points in the interior are mapped to the
interior and points of the boundary are mapped to the boundary. The following conditions
are the analog to (V) for time-dependent vector fields

(V̂ )

∀x ∈ D : θ(·, x) ∈ C([0, τ ],Rd)

∀x, y ∈ D : ‖θ(·, x) − θ(·, y)‖C([0,τ ],Rd) ≤ c|x− y|
∀x ∈ D : ∀t ∈ [0, τ ] ± θ(t, x) ∈ TD(x).

Notice that according to Lemma 2.6 for a smooth set D the last condition in (V ) and
(V̂ ) means that θ(x) · n(x) = 0 on the boundary Σ of D. Moreover, any autonomous
(time-independent) vector field θ which satisfies (V ) also satisfies (V̂ ).

The following result shows that the properties (V ) or (V̂ ) are indeed sufficient to con-
clude (2.3) for the associated flow.

Theorem 2.10. Let D ⊂ Rd be a regular domain and τ > 0. Then the following statements
are true.

(i) Let the flow Φt be generated by the vector field θ : D× [0, τ ] → Rd satisfying condition
(V̂ ). Then D is strictly θ-flow invariant. Moreover, it follows that for some constants
C, c > 0

∀x, y ∈ D : ‖Φ(x) − Φ(y)‖C1([0,τ ],Rd) ≤ C|x− y|,
‖Φ−1(x) − Φ−1(y)‖C([0,τ ],Rd) ≤ c|x− y|, (2.4)

∀x ∈ D : t 7→ Φt(x) ∈ C1([0, τ ],Rd),

t 7→ Φ−1
t (x) ∈ C([0, τ ],Rd)

and
∀t ∈ [0, τ ] : x 7→ Φt(x) ∈ Hom(D), (2.5)
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(ii) Assume that the family of functions φt : [0, τ ] × D → Rd satisfies (2.4)-(2.5) and
φ0 = id. Then φt is the flow of the time-dependent vector field

θ(t, x) := ∂tφ(t, φ−1(t, x)),

that is φt = Φθ
t , which satisfies (V̂ ).

Proof. A proof can be found in [37, Thm. 5.1, p. 194]. ✷

Subsequently, we use the notation ∂f to indicate the (Fréchet) derivative of f with
respect to the space variable x (that should not be mixed up with the sub-differential). If
we want to consider only the directional derivative of f at x ∈ Ω in direction v, we write

df(x; v) := lim
tց0

f(x+ tv) − f(x)

t
(directional derivative)

and for the Hadamard semi-derivative, we write

dHf(x; v) := lim
tց0
ṽ→v

f(x+ tṽ) − f(x)

t
(Hadamard semi-derivative).

Notice that the Hadamard semi-derivative is strictly weaker than the Fréchet derivative and
stronger than the Gateaux derivative. The main difference between the Gateaux deriva-
tive and the Hadamard semi-derivative is that the latter guarantees that the chain rule is
satisfied; see [38].2

Henceforth, it will be useful to introduce for k ≥ 0 the following sets

Ckc (D,Rd) := {θ : D → Rd| θ ∈ Ck(D,Rd) and supp(θ) ⊂ D}.

In the case k = 0, we set Cc(D,R
d) := {f ∈ C(D,Rd)| suppf ⊂ D} and for k = ∞, we

define C∞
c (D,Rd) :=

⋂
k∈NCkc (D,Rd). The space C∞

c (D,Rd) is a locally convex vector
space, which is not metrisable. It is clear that every vector field θ ∈ Ckc (D,Rd), k ≥ 1,
satisfies (V ). Define also the linear space

Lip0(D,R
d) := {θ ∈ C0,1(D,Rd) : ±θ(x) ∈ CD(x) for all x ∈ D}.

The following result concerning the sensitivity of the flow with respect to x is well-
known; cf. [1, Lem. 4, p. 64].

Lemma 2.11. Let θ ∈ Ckc (D,Rd) be a vector field, where 1 ≤ k ≤ ∞. Then x 7→ Φt(x)
belongs to Ck(D,Rd).

2To be more precise, let f : U ⊂ E → F and g : g(U) → R be two functions defined on open subsets
U ⊂ E and g(U) ⊂ F of Banach spaces E,F . Suppose that the Gateaux derivative dg(x; v) of g exists at
x ∈ g(U) in direction v ∈ F and that dHf(g(x); dg(x; v)) exists. Then

d(f ◦ g)(x; v) = dHf(g(x); dg(x; v)).
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D

Ω

D

T (Ω)

T

Figure 2.1: Admissible transformation T : D → D

2.3.3 Compositions of Sobolev functions with flows

In the following let θ ∈ C1
c (D,Rd) be a given vector field and Φt = Φθ

t its associated
flow. Notice that by the chain rule ∂Φ−1(t,Φ(t, x)) = (∂Φ(t, x))−1 (briefly (∂(Φ−1

t )) ◦Φt =
(∂Φt)

−1 =: ∂Φ−1
t ), which implies3 (∇f) ◦ Φt = ∂Φ−⊤

t ∇(f ◦ Φt). Throughout this thesis the
following abbreviations are used

ξ(t) := det(∂Φt), A(t) := ξ(t)∂Φ−1
t ∂Φ−⊤

t , B(t) := ∂Φ−⊤
t , (2.6)

where det : Rd,d → R denotes the determinant. Step-by-step, we will derive properties of
the functions ξ, B and A.

Proposition 2.12. Let the mappings A ∈ C([0, τ ];C(D,Rd,d)) and ξ ∈ C([0, τ ];C(D)) be
given and assume that A(0) = I and ξ(0) = 1. Then there are constants γ1, γ2, δ1, δ2 > 0
and τ̃ > 0 such that

∀ζ ∈ Rd, ∀t ∈ [0, τ̃ ] : γ1|ζ|2 ≤ ζ·A(t)ζ ≤ γ2|ζ|2, (a)

δ1 ≤ ξ(t) ≤ δ2. (b)

Proof. (a) For any t ∈ [0, τ ], we may estimate

|η|2 = (I −A(t))η · η +A(t)η · η
≤ ‖I −A(t)‖C(D,Rd,d)η · η +A(t)η · η.

By continuity of t 7→ A(t) there exists for all ε > 0, a δ̃ > 0 such that for all t ∈ [0, δ̃] we
have ‖I −A(t)‖C(D,Rd,d) ≤ ε. Thus choosing ε = 1

2 , we obtain the desired inequality. Since
t 7→ A(t) is bounded, we also have

A(t)η · η ≤ ‖A‖C(D×[0,τ ],Rd,d)|η|2 for all t ∈ [0, τ̃ ], for all η ∈ Rd.

(b) It is clear that ξ is bounded in space and time. The inequalities in item (b) follow then
from

1 = (1 − ξ(t)) + ξ(t) ≤ ‖ξ(t) − 1‖C(D) + ξ(t).

✷

3For any scalar function f ∈ H1(Rd), we have for all v ∈ R
d and all x ∈ D

∂(f(Φt(x))v = ∂f(Φt(x))∂Φt(x)v = ∇f(Φt(x)) · ∂Φt(x)v = (∂Φt(x))
⊤∇(f(Φt(x))) · v.
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Proposition 2.13. Let B : [0, τ ] → Rd,d be a bounded mapping and C > 0 a constant such
that ‖B−1(t)‖L∞(D,Rd,d) ≤ C for all t ∈ [0, τ ]. Then for any p ≥ 1 there exist constants
C1, C2 > 0 such that

∀t ∈ [0, τ ], ∀f ∈W 1
p (D) : ‖∇f‖Lp(D,Rd) ≤ C1‖B(t)∇f‖Lp(D,Rd)

∀t ∈ [0, τ ], ∀f ∈W 1
p (D,Rd) : ‖∂ϕ‖Lp(D,Rd,d) ≤ C2‖B(t)∂ϕ‖Lp(D,Rd,d). (2.7)

Proof. Estimating

‖∇f‖Lp(D,Rd) = ‖(B(t))−1B(t)∇f‖Lp(D,Rd) ≤ C ‖B(t)∇f‖Lp(D,Rd)

gives the first inequality. The proof of (2.7) is similar and omitted. ✷

Lemma 2.14. Let θ ∈ C1([0, τ ];C1
c (D,Rd)) be a vector field and Φ its flow. The functions

t 7→ A(t), t 7→ ξ(t) and t 7→ B(t) given by (2.6) are differentiable4 on [0, τ ] and satisfy the
following ordinary differential equations

B′(t) = −B(t)(∂θt)⊤B(t)

ξ′(t) = tr(∂θtB⊤(t))ξ(t)

A′(t) = tr(∂θtB⊤(t))A(t) −B⊤(t)∂θtA(t) − (B⊤(t)∂θtA(t))⊤,

where θt(x) := θ(t,Φt(x)) and ′ := d
dt .

Proof. (i) Let E,F be two Banach spaces. In [8, Satz 7.2, p. 222] it is proved that

inv : Lis(E,F ) → L(F,E), A 7→ A−1

is infinitely times continuously differentiable with derivative ∂inv(A)(B) = −A−1BA−1.
Now by the fundamental theorem of calculus, we have

Φt(x) = x+

∫ t

0
θ(s,Φs(x)) ds ⇒ ∂Φt(x) = I +

∫ t

0
∂θ(s,Φs(x))) ds,

where I ∈ Rd,d denotes the identity matrix. Therefore t 7→ ∂Φt(x) is differentiable for each
x ∈ D with derivative

d

dt
(∂Φt(x)) = ∂θt(x) = ∂θ(t,Φt(x))∂Φt(x).

Thus if we let E = F = Rd,d and take into account the previous equation, we get by the
chain rule

d

dt
(inv(∂Φt(x))) = −(∂Φt(x))−1∂θt(x)(∂Φt(x))−1.

(ii) A proof may be found in [97, Prop. 10.6, p. 215].
(iii) Follows from the product rule together with (i) and (ii). ✷

4A function f : [a, b] → R (a, b ∈ R) is called differentiable if it is differentiable on (a, b) and the right
sided, respectively left sided derivative of f exists in a, respectively in b, i.e. (f ′)−(a) := limhց0(f(a+ h)−
f(a))/h and (f ′)+(b) := limhր0(f(b+ h)− f(a))/h exist.
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Remark 2.15. Note that the first formula can also be derived by differentiating the identity
∂Φt∂Φ−1

t = I, where I is the identity matrix in Rd. That the inverse t 7→ ∂Φ−1
t is dif-

ferentiable can also be seen by the well known formula ∂Φ−1
t = (det(∂Φt))

−1(cofac(∂Φt))
⊤,

where cofac denotes the cofactor matrix.

Lemma 2.16. Let D ⊂ Rd be a regular domain and p > 1 a real number. Denote by Φt the
flow of θ ∈ C1

c (D,Rd).

(i) For any f ∈ Lp(D), we have

lim
tց0

‖f ◦ Φt − f‖Lp(D) = 0 and lim
tց0

‖f ◦ Φ−1
t − f‖Lp(D) = 0.

(ii) For any f ∈W 1
p (D), we have

lim
tց0

‖f ◦ Φt − f‖W 1
p (D) = 0. (2.10)

(iii) For k ∈ {1, 2} and any f ∈W k
p (D), we have

lim
tց0

∥∥∥∥
f ◦ Φt − f

t
−∇f · θ

∥∥∥∥
Wk−1

p (D)

= 0.

(iv) Fix p ≥ 1 and let t→ ut : [0, τ ] →W 1
p (D) be a continuous function in 0. Set u := u0.

Then t 7→ ut ◦ Φt : [0, τ ] →W 1
p (D) is continuous in 0 and

lim
tց0

‖ut ◦ Φt − u‖W 1
p (D) = 0.

Proof. (i) It is proved for instance in [37, p. 529].
(ii) In order to prove (2.16) it is sufficient to show

lim
tց0

‖∇(f ◦ Φt − f)‖Lp(D) = lim
tց0

‖∂Φ⊤
t ((∇f) ◦ Φt −∇f)‖Lp(D) = 0.

By the triangle inequality, we have

‖∂Φ⊤
t ((∇f) ◦ Φt −∇f)‖Lp(D) ≤ ‖(∇f) ◦ Φt −∇f)‖Lp(D) + ‖(∂Φ⊤

t − I)∇f)‖Lp(D).

For the first term on the right hand side we can use (i) and the second term tends to zero
since ∂Φ⊤

t → I in C(D;Rd,d).
(iii) A proof can be found in [60, Lem. 3.6, p. 6].
(iv) By the triangle inequality, we get for all t ∈ [0, τ ]

‖ut ◦ Φt − u‖W 1
p (D) ≤ ‖ut ◦ Φt − u ◦ Φt‖W 1

p (D) + ‖u ◦ Φt − u‖W 1
p (D).

The last term on the right hand side converges to zero as tց 0 due to (ii). For the second
inequality note that

‖ut ◦ Φt − u ◦ Φt‖W 1
p (D) =

(∫

D
ξ−1(t)(|ut − u|p + |B(t)∇(ut − u)|p)

)1/p

≤ C

(∫

D
|ut − u|p + |∇(ut − u)|p

)1/p

and the right hand side converges to zero as tց 0. ✷

Remark 2.17. Item (i) remains true if θ only satisfies (V ) and D ⊂ Rd is measurable.
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2.4 Shape continuity

In this section, we collect existence results of shape optimization problems for special types
of shape functions. In Chapter 5 these will be applied to obtain existence of optimal shapes
for several PDE constrained optimization problems defined on subsets of regular domains
D ⊂ Rd.

2.4.1 Topologies via Lp-metrics

The sets Ξ ⊂ 2R
d

respectively Ξ ⊂ 2D (D ⊂ Rd regular domain) are in general no subsets
of a locally convex vector spaces. Therefore there is no ’canonical’ choice of a topology
as it is for functions f : U → R defined on open subsets U of topological vector spaces
X. However, for special classes of shape functions there are natural choices of topologies.
One such class consists of shape functions depending on the shape only via a characteristic
function, i.e.

J(Ω) = Ĵ(χΩ),

for some function Ĵ : Xµ(D) → R, where

Xµ(D) = {χΩ : Ω is µ− measurable subset of D}

denotes the set of characteristic functions defined by µ-measurable subsets of D. Here, µ is
Radon measure, that is, a measure on the σ-algebra of Borel sets of Rd that is locally finite
and inner regular.5 For simplicity, we can think of the Lebesgue measure m in which case
we set X(D) := Xm(D). We may equip Xµ(D) with the metric induced by the Lp(D,µ)
norm, p ∈ [1,∞):

δp,µ(χ1, χ2) := ‖χ1 − χ2‖Lp(D,µ).

When µ is the Lebesgue measure m we put δp := δp,µ. Convergence Ωn →Lp,µ Ω, where
Ωn,Ω ∈ D means then limn→∞ δp,µ(χΩn , χΩ) = 0.

Remark 2.18. Note that we view µ-measurable subsets Ω ⊂ D as characteristic functions
χΩ and the latter ones are seen as elements of Lp(D,µ). Therefore we loose information,
because two characteristic functions are equal if they are equal µ-almost everywhere on D.
That means two sets are equal if they are equal µ-almost everywhere. This is important to
keep in mind when one is interested in cracks.

Proposition 2.19. Then Xµ(D) ∩ L1(D,µ) is closed in Lp(D,µ) and the metric space
(Xµ(D)∩L1(D,µ), δp,µ) is complete. The topologies generated by δp,µ are equivalent for all
p ∈ [1,∞).

Thus we get a natural topology on Xµ(D) ∩ L1(D,µ) induced by the norm ‖ · ‖Lp(D,µ)

and can speak of the continuity of χ 7→ Ĵ(χ).

Unlike normal Lp-spaces for p ∈ (1,∞) the spaces Xµ(D) ∩ L1(D,µ) are not weakly
closed. This is problematic concerning the existence of optimal solutions of optimization
problems, since we would like to extract a converging subsequence of minimizing sequence
that converges in the same space. In order to obtain a certain compactness an additional
stronger term can be added.

5Compare Definition A.4.
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2.4.2 Topologies via BV -metric

Characteristic functions are not weakly differentiable since they are discontinuous along
hypersurfaces of dimension one below the space dimension. That means a characteristic
function defined by a subset of the plane has discontinuities along lines and in the three
space it has discontinuities along surfaces. Nevertheless an appropriate notion of weak
derivative allows us to talk of derivatives of characteristic functions.

We begin with the definition of this notion of weak derivative.

Definition 2.20. Let D ⊂ Rd be open. We say that u ∈ L1(D) is of bounded variation if
there exists a vector valued Radon measure µ such that

∫

D
u div (ϕ) dx = −

∫

D
ϕ · dµ,

for all ϕ ∈ C1
c (D,Rd). Then one writes du = µ, that indicates the ’weak derivative’ of u is

a vector valued Radon measure. The space of all functions u ∈ L1(D) that have a derivative
that is a vector valued Radon measure is denoted by BV (D). It becomes a Banach space
when equipped with the norm

‖f‖BV (D) := ‖f‖L1(D) + Var(f,D), (2.11)

where

Var(f,D) := sup

{∫

D
div (ϕ)χdx | ϕ ∈ C1

c (D,Rd), ‖ϕ‖L∞(D) ≤ 1

}

denotes the total variation of f with respect to D.

The set of all characteristic functions with finite total variation is denoted by

B(D) := {χ ∈ X(D) : χ ∈ BV (D)}. (2.12)

We put P̂D(χ) := Var(χ,D) for χ ∈ X(D). Now we can say what a set of finite perimeter
is.

Definition 2.21. A subset Ω ⊂ Rd is said to have finite perimeter relative to D ⊂ Rd

if PD(Ω) := P̂D(χΩ) < ∞. If D = Rd then we define P̂ (χ) := Var(χ,Rd) and P (Ω) :=
P̂ (χΩ). In other words, a subset Ω ⊂ D has finite perimeter if the characteristic function
χ = χΩ ∈ X(D) belongs to the space BV (D).

If Ω ⊂ D, then PD(Ω) = P (Ω). One should keep in mind that a finite perimeter set
Ω ⊂ Rd, that is PD(Ω) < ∞, can have non zero d-dimensional Lebesgue measure, i.e.
m(∂Ω) > 0. This is even true for the relative boundary ∂Ω∩D; see [48, p. 7]. We have the
following compactness result:

Theorem 2.22. Let D ⊂ Rd be a Lipschitz domain. We endow BV (D) with the norm
(2.11). Then the space BV (D) is compactly and continuously embedded into Lq(D), q ∈
[1, d

d−1), written

BV (D)
c→֒ Lq(D),

that is, the identity operator id : BV (D) → Lq(D) is continuous and compact for each
q ∈ [1, d

d−1).

Proof. See [10, Corol. 3.49, p. 152]. ✷
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Corollary 2.23. Let D ⊂ Rd be a Lipschitz domain and q ∈ [1, d
d−1).

(i) The set B(D) is closed in BV (D). For any bounded sequence (χn)n∈N, χn ∈ B(D),
there exists a subsequence (χnk

)k∈N converging in Lq(D) to some characteristic func-
tion χ ∈ X(D) such that

Var(D,χ) ≤ lim inf
k→∞

Var(D,χnk
) <∞.

(ii) The space B(D) equipped with the metric δBV(χ1, χ2) := ‖χ1 − χ2‖BV (D) (χ1, χ2 ∈
BV (D)) is a complete metric space.

Proof. (i) Fix q ∈ [1, d
d−1). Let (χn)n∈N, χn ∈ B(D) = X(D) ∩ BV (D) be any

converging sequence with limit χ ∈ B(D) ⊂ X(D) (closure and convergence with respect
to δBV ). Note that the sequence (χn)n∈N is bounded in B(D). Therefore, according
to Theorem 2.22, we may extract a subsequence (χnk

)k∈N converging in Lq(D) to χ ∈
X(D). We show that Var(·, D) : BV (D) → R is lower semi-continuous with respect
to the δ1-topology. Let (un)n∈N be a sequence in BV (D) converging in L1(D) to u ∈
BV (D). Set j := lim infn→∞ Var(un, D), then by definition of the lim inf, we may extract
a subsequence of (un)n∈N such that j = limk→∞ Var(unk

, D). Then for any φ ∈ C1
c (D,Rd)

with ‖φ‖L∞(D) ≤ 1, we have

lim inf
n→∞

Var(un, D) = lim
k→∞

Var(unk
, D) ≥ lim

k→∞

∫

D
unk

div (φ) dx

=

∫

D
lim
k→∞

unk
div (φ) dx

=

∫

D
u div (φ) dx,

where we applied Lebesgue’s dominated convergence theorem Theorem A.7. Since this
inequality is true for all φ ∈ C1

c (D,Rd) with ‖φ‖L∞(D) ≤ 1, we obtain

lim inf
n→∞

Var(un, D) ≥ Var(u,D).

This shows that χ ∈ B(D).
(ii) Since a closed subset of a complete metric space is complete, the result directly follows
from (i). ✷

Minimizing in B(D)-spaces is theoretically nice, but for applications may be not the
optimal choice. One reason is that B(D) yield a too big class of domains which includes
highly irregular domains. The continuity of shape function with respect to this metric is
defined as the following.

Definition 2.24. Let D ⊂ Rd be Lebesgue measurable and bounded. We say that Ĵ :
B(D) → R is continuous in χ ∈ B(D) with respect to the δBV metric if for any sequence
χn ∈ B(D) converging with respect to this metric to χ, we have

lim
n→∞

Ĵ(χn) = Ĵ(χ).

The following theorem states the existence of shape optimization problems defined on
finite perimeter sets.



22 CHAPTER 2. INTRODUCTION TO SHAPE OPTIMIZATION

Theorem 2.25. Let Ĵ : X(D) → R be a shape function that is continuous with respect to
the δp-metric for some p > 1. Assume that infχ∈X(D) Ĵ(χ) > −∞. Define for any α > 0 the

cost function Ĵ : B(D) → R by Ĵ (χ) := Ĵ(χ) + αP̂D(χ). Then the minimisation problem

inf
χ∈X(D)

Ĵ (χ)

has at least one solution χ ∈ B(D).

Proof. Set j := infχ∈X(D) Ĵ (χ). By definition we have j ≥ infχ∈X(D) Ĵ(χ) > −∞.

Let (χn)n∈N be a minimizing sequence in X(D), such that limn→∞ Ĵ (χn) = j. Since
infχ∈X(D) Ĵ(χ) > −∞, there must be a constant c > 0 such that

∀n ∈ N : P̂D(χn) ≤ c.

Finally, taking into account Corollary 2.23, noting that P̂D(·) = Var(D, ·) : BV (X) → R is
lower semi-continuous and that Ĵ continuous with respect to the δp-metric, we get

Ĵ (χ) ≤ lim
n→∞

Ĵ (χn) = j

✷

2.4.3 Topologies via W s
p -metrics

Although characteristic functions are not weakly differentiable in general, they can have a
finite Gagliardo semi-norm. This leads to the notion of the Gagliardo6 perimeter.

For every p ∈ (1,∞) and 0 < s <∞, the Gagliardo semi-norm is defined by

|u|pW s
p (D) :=

∫

D

∫

D

|u(x) − u(y)|p
|x− y|d+sp dx dy.

The fractional Sobolev space W s
p (D) is defined as the completion of C∞

c (D) with respect
to the norm

u 7→ ‖u‖W s
p (D) := |u|W s

p (D) + ‖u‖Lp(D).

It is a reflexive Banach space.
Note that the norms on W s

p (D) and W s′

p′ (D) are equivalent if sp = s′p′. Moreover,
notice that for a characteristic function χΩ, Ω ⊂ D the norm |χΩ|W s

p (D) depends only on

the value of the space dimension d ≥ 1 and the product sp ∈ (0,∞), since

|χΩ|pW s
p (D) =

∫

D

∫

D

|χΩ(x) − χΩ(y)|
|x− y|d+sp dx dy.

In other words |χΩ|pW s
p (D) = |χΩ|p

′

W s′

p′
(D)

if sp = s′p′. This leads to the following definition.

Definition 2.26. Let Ω ⊂ D be Lebesgue measurable and s ∈ (0,∞). We say that Ω has
finite s-perimeter relatively to D if

Ps(Ω) :=

∫

D

∫

D

|χΩ(x) − χΩ(y)|
|x− y|d+s dx dy <∞

We call P sD(Ω) the s-perimeter of Ω relative to D and put P̂ sD(χ) :=
∫
D

∫
D

|χΩ(x)−χΩ(y)|
|x−y|d+s dx dy.

6E. Gagliardo introduced the fractional Sobolev norm to characterise traces. Usually, this norm is referred
to as fractional Sobolev norm, but since it was Gagliardo who introduce it we use his name.
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For every s̄ ∈ (0,∞), we define the space of characteristic functions having finite s̄-
perimeter by

Ws̄(D) := {χΩ : R → R| χΩ ∈ X(D) and P̂ s̄D(χΩ) <∞}.

Note that for 0 ≤ s < 1/p ≤ 1, we have BV (D) ∩ L∞(D) ⊂ W s
p (D), see [37, Thm. 6.9.,

p. 253]. That means for s̄ ∈ (0, 1), we obtain B(D) ⊂ Ws̄(D) and Ws̄(D) = X(D)∩W s
p (D),

when s̄ := sp.
Compared with the perimeter PD(Ω) the s-perimeter P sD(Ω) provides a weaker regulari-

sation. In particular, the regularisation term and its shape derivative are domain integrals,
but they are non-local. Also note that an open and bounded set Ω ⊂ Rd of class C2

has finite perimeter and thus χΩ ∈ BV (D) ∩ L∞(D), which implies χΩ ∈ Ws̄(D) for all
s̄ ∈ (0, 1).

Let 0 ≤ s < 1/p ≤ 1 and s̄ = sp. Then we introduce the metrics δs,p on Ws̄(D) by

δs,p(χΩ1 , χΩ2) := |χΩ1 − χΩ2 |W s
p (Ω) + ‖χΩ1 − χΩ2‖Lp(D).

These metrics are all generating the same topology on Ws̄(D).

Theorem 2.27 ([41]). Let D ⊂ Rd be a Lipschitz domain and s ∈ (0, 1), p ∈ [1,∞), q ∈
[1, p]. Assume that T is a bounded subset of W s

p (D) such that

sup
u∈T

|u|W s
p (D) <∞.

Then T is relatively compact in Lq(D).7

Corollary 2.28. Let D ⊂ Rd be a regular domain with boundary Σ = ∂D. Let s̄ ∈
(0,∞), s ∈ (0, s̄] and p := s̄/s ≥ 1.

(i) The set Ws̄(D) is closed in W s
p (D). For any bounded sequence (χn)n∈N, χn ∈ Ws̄(D),

i.e. P s̄D(χn) = |χn|W s
p (D) ≤ C for all n ∈ N, where C > 0, there exist a subsequence

(χnk
)k∈N converging in Lq(D) to some characteristic function χ ∈ X(D) such that

P̂ s̄D(χ) ≤ lim inf
k→∞

P̂ s̄D(D,χnk
) <∞.

(ii) The space (Ws̄(D), δs,p) is a complete metric space.

Proof. (i) First note that any sequence converging in Ws(D) also converges in X(D)
with respect to δ1. Now let (χn)n∈N, χn ∈ Ws(D) be any converging sequence with limit
χ ∈ Ws(D) ⊂ X(D) (closure and convergence with respect to δBV ). We may extract
based on Theorem 2.27 a subsequence (χnk

)k∈N converging in Lq(D) to χ ∈ X(D). To
finish the prove it is sufficient to show that P s̄D( · ) = | · |W s

p (D) : W s
p (D) → R is lower

semi-continuous with respect to the δ1-metric. To prove this let (un)n∈N be any sequence
in W s

p (D) converging in L1(D) to u ∈ W s
p (D). Set j := lim infn→∞ |un|pW s

p (D). Note that

by definition of the lim inf, we may extract a subsequence denoted (unk
)k∈N such that

j = limk→∞ |un|W s
p (D) and a further subsequence still denoted (un)n∈N such that unk

→ u
as k → ∞ almost everywhere in D. Therefore setting

fn(x, y) :=
|unk

(x) − unk
(y)|

|x− y|d+sp , f(x, y) :=
|u(x) − u(y)|
|x− y|d+sp ,

7In a topological vector space X a subset A is called pre-compact or relatively compact if the closure A
in X is compact.
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we get limn→∞ fn = f a.e. in D ×D. Therefore applying Fatou’s Lemma A.6 yields

lim inf
n→∞

|un|pW s
p (D) = lim inf

k→∞

∫

D×D

|unk
(x) − unk

(y)|
|x− y|d+sp d(x, y)

≥
∫

D×D

|u(x) − u(y)|
|x− y|d+sp d(x, y)

= |u|pW s
p (D),

where d(x, y) = dx dy is the product measure. This concludes the prove.
(ii) Since a closed subset of a complete metric space is complete, we only need to show that
Ws̄(D) is closed, but this follows directly from (i). ✷

The following theorem is the key for shape optimization problems defined on finite
Gagliardo perimeter sets.

Theorem 2.29. Let Ĵ : X(D) → R be a shape function that is continuous with respect to
the δp-metric for some p > 1. Assume that infχ∈X(D) Ĵ(χ) > −∞. Define for any α > 0

and s ∈ (0, 1) the cost function Ĵ : Ws(D) → R

Ĵ (χ) := Ĵ(χ) + αP̂ sD(χ).

Then the minimisation problem
inf

χ∈Ws(D)
Ĵ (χ)

has at least one solution.

Proof. Put j := infχ∈Ws(D) Ĵ (χ). By definition j ≥ infχ∈X(D) J(χ) > −∞. Let

(χn)n∈N be a minimizing sequence inX(D) such that j = limn→∞ Ĵ (χn). By Corollary 2.28
we may extract a subsequence (χnk

)k∈N converging Lp(D). Finally, taking into account
Corollary 2.28 part (i) and that Ĵ (·) is continuous in X(D) with respect to the δp metric,
we obtain

Ĵ (χ) ≤ lim
k→∞

Ĵ (χnk
) = inf

χ∈Ws(D)
Ĵ (χ).

✷

2.4.4 Shape continuity via flows

In the next section, we are going to introduce the shape derivative. A feature of a derivative
should be that if a function is differentiable then it is continuous with respect to some
topology. It is not clear if a shape function is continuous with respect to the previously
introduced topologies even if the shape function is shape differentiable. Nevertheless, the
following concept of continuity is well-suited.

Definition 2.30. Let X ⊂ (Rd)
R

d

be a given non-empty set.

(i) We say that a subset Ξ ⊂ 2R
d
is X-stable at ω0 ∈ Ξ if F (ω0) ∈ Ξ for all F ∈ X. This

definition is equivalent to ZX,ω0 := {F (ω0)|F ∈ X} ⊂ Ξ.

(ii) We say that Ξ is weakly flow stable if for every ω0 ∈ Ξ there exists a τ > 0 and
an open, bounded set D ⊃ ω0 such that Φθ

t (ω0) ∈ Ξ for all t ∈ [0, τ ] and all θ ∈
C([0, 1],Lip0(D,R

d)).
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Note that if Ξ is X-stable at all ω0 ⊂ Ξ and id ∈ X, then necessarily ∪ω0∈ΞZX,ω0 = Ξ.
It is clear that if Ξ is X-stable at ω0 then it is also Y -stable at ω0 for any Y ⊂ X. Flow
stable subsets of 2R

d
are important for the shape continuity along flows.

Example 2.31. Let D ⊂ Rd be open and bounded. The following sets are flow stable

Ξ1 := {Ω ⊂ D : Ω is open }
Ξ2 := {Ω ⊂ D : Ω is closed }
Ξ3 := {Ω ⊂ D : Ω is open and Lipschitzian}.

Definition 2.32. Let D ⊂ Rd be a regular domain. Let J : Ξ → R be a shape function
defined on a weakly flow stable subset Ξ ⊂ 2D and Θ be a topological vector subspace of
Lip0(D,R

d). We say that a shape function J is shape continuous8 at Ω ∈ Ξ on C([0, 1],Θ)
if

lim
tց0

J(Φθ
t (Ω)) = J(Ω) for all θ ∈ C([0, 1],Θ).

We say that J is shape continuous on C([0, 1],Θ) if it is shape continuous at all Ω ∈ Ξ on
C([0, 1]; Θ). If Θ = C∞

c (D,Rd) then we denote the set of all real valued shape continuous
shape functions J : Ξ ⊂ 2D → R by C0

D(Ξ,R) = C0
D(Ξ).

Later in Chapter 6, we introduce metrics on spaces of diffeomorphisms in Rd. Defi-
nition 2.32 will give a criterion when a shape function is continuous with respect to this
metric.

The existence of minimisers of minimisation problems over flows is redirected to Sub-
section 6.2.1. It involves more definitions and some basic tools from differential geometry,
which will be introduced in Chapter 6.

2.5 Sensitivity analysis

The Eulerian semi-derivative of a shape functions Ω 7→ J(Ω) is similar to the Lie derivative
on manifolds. It can be interpreted as a derivative of J with respect to the domain Ω.
The shape derivative is then defined as the Eulerian semi-derivative with the additional
property that it is continuous and linear with respect to the direction. The vanishing of
the shape derivative can be interpreted as a necessary optimality condition, which does not
necessarily guarantees that a local minimum is attained.

2.5.1 Eulerian semi-derivative and shape derivative

The Eulerian semi-derivative may be defined in two ways. We first describe what is known
in the literature as perturbation of identify . For a fixed set Ω ⊂ D define the family of
perturbed domains Ωt := (id + t θ)(Ω), where θ ∈ C0,1(D,Rd) with θ = 0 on ∂D and id
denotes the identity mapping on Rd. For τ > 0 sufficiently small the mapping x 7→ Φt(x) :=
x+ tθ(x) is invertible9 for each t ∈ [0, τ ]. Then one defines the Eulerian semi-derivative as

dIdJ(Ω)[θ] := lim
tց0

J((id + t θ)(Ω)) − J(Ω)

t
. (2.13)

8In [17, Def. 1, p. 50] this is called directional continuous.
9 Let D ⊂ R

d be a regular domain. Pick an element θ ∈ C0,1(D) and assume that ∂θ(x) < 1 at x ∈ D.
Now since for any matrix A ∈ R

d,d the perturbation A + I is invertible if the series
∑∞

n=1 A
n converges

absolutely, in particular if ‖A‖ < 1, we get that (I + ∂θ(x))−1 exists. Thus by the inverse function theorem
we get that (id + θ)−1 exists in (id + θ)(Br(x)) for some r > 0. Therefore assuming ‖∂θ‖C(D,Rd,d) < 1, we

conclude (id + θ)−1 exists everywhere in D.
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Ω

Ωt

Figure 2.2: Perturbed Ωt and unperturbed domain Ω

The second way to define the Eulerian semi-derivative is referred to as velocity method
or speed method. Instead of considering id + t θ, we replace this function by the flow
Φθ
t generated by a vector field θ belonging to Lip0(D,R

d) and define the Eulerian semi-
derivative at Ω in direction θ as

dflJ(Ω)[θ] := lim
tց0

J(Φθ
t (Ω)) − J(Ω)

t
.

Note that the function Φθ
t := (id + t θ) is the flow of the time-dependent vector field

θ(t) := θ ◦ (id + t θ)−1 with supp(θ(t)) ⊂ D for each t ∈ [0, τ ]. Thus if (2.13) exists then

dIdJ(Ω)[θ] = dflJ(Ω)[θ].

Let Θ ⊂ Lip0(D,R
d) be a Banach subspace. Then if C([0, τ ]; Θ) → R : θ̃ 7→ dflJ(Ω)[θ̃] is

linear and continuous, we conclude by [37, Thm. 3.1, p. 474] that

dflJ(Ω)[θ] = dflJ(Ω)[θ(0)] = dflJ(Ω)[θ]

and thus both derivatives coincide. The following definition is given for autonomous vector
fields, but can be immediately extended to the time-dependent case.

Definition 2.33. Let D ⊂ Rd be a regular domain. Let J : Ξ → R be a shape function
defined on a flow stable set Ξ ⊂ 2D and Θ be a topological vector subspace of C∞

c (D,Rd).
The Eulerian semi-derivative or Lie semi-derivative of J at Ω in direction θ ∈ Θ is defined
by

dJ(Ω)[θ] := lim
tց0

(
Φ∗
tJ − J

t

)
(Ω), (2.14)

where Φ∗
t (f) := f ◦ Φt denotes the pull-back. The semi-derivative is also denoted by

Lθ(J)|Ω := dJ(Ω)[θ].

(i) We call J shape differentiable at Ω with respect to Θ if it has a Eulerian semi-
derivative at Ω for all θ ∈ Θ and the mapping

θ 7→ dJ(Ω)[θ] =: G(θ) : Θ → R

is linear and continuous, in which case G(θ) is called the shape derivative at Ω.

(ii) We call J continuously shape differentiable at Ω in Θ if it is shape differentiable at

Ω in Θ and limtց0 dJ(Φζ
t (Ω))[θ] = dJ(Ω)[θ] for all ζ, θ ∈ C([0, τ ],Θ).
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(iii) The smallest integer k ≥ 0 for which G is continuous with respect to the Ckc (D,Rd)-
topology is called the order of G.

Let Θ = C∞
c (D,Rd). Given a regular domain D ⊂ Rd and a stable subset Ξ ⊂ 2D, we

denote by

C1
D(Ξ) := {J : Ξ ⊂ 2D → R, J is continuously shape differentiable in each Ω ∈ Ξ}

the set of continuously differentiable shape functions.

Remark 2.34.

(i) Note that the distribution G in (i) is frequently called shape gradient. This terminol-
ogy is not used in this thesis, since a gradient is defined in Hilbert spaces and always
depends on the chosen metric in the space where the derivative is taken. In Chapter 6,
we show how to obtain the gradient of G with respect to different metrics.

(ii) Note that the semi-derivative given by (2.14) is equivalent to

dJ(Ω)[θ] = lim
tց0

J(Φt(Ω)) − J(Ω)

t
.

By (very) formally applying the ’chain rule’, we get d
dtJ(Φt(Ω))|t=0 = ∂ΩJ(Ω) · θ.

As usually done in differential geometry, we may view θ as an operator, also called
derivation, acting on J by setting (θJ)(Ω) := dJ(Ω)[θ] : C1

D(Ξ) → C0
D(Ξ). This

operator satisfies (p := Ω)

(i) ∀a, b ∈ R, ∀f, g ∈ C1
D(Ξ) : θ(af + bg)|p = aθf |p + bθg|p

(ii) ∀f, g ∈ C1
D(Ξ) : θ(fg)|p = evp(f)θg|p + θf |pevp(g),

where evpJ := J(p) = J(Ω) denotes the evaluation map ev : C1
D(Ξ) → R.

Therefore J is shape differentiable at Ω if and only if for each direction θ ∈ C∞
c (D,Rd),

there exists an operator X = Xθ : C1
D(Ξ) → C0

D(Ξ) that is linear with respect to θ and
satisfies (i)-(ii) with (XJ)(Ω) = dJ(Ω)[θ].

We continue with the definition of the second order Eulerian derivative.

Definition 2.35. Let J : Ξ ⊂ 2R
d → R be a shape function and Θ be a topological vector

subspace of C∞
c (D,Rd). Assume that the Eulerian semi-derivative dJ(Φζ

t (Ω))[θ] exists for
ζ ∈ Θ, for all θ ∈ Θ and 0 ≤ t ≤ τ . Set dJ(Ω)[θ] := (θdJ)(Ω). Then the second order
Eulerian semi-derivative or second order Lie semi-derivative is defined as

dJ2(Ω)[θ][ζ] = lim
tց0

(
Φ∗
t (θdJ) − (θdJ)

t

)
(Ω). (2.15)

The second order semi-derivative is also denoted by Lθ,ζ(J)|Ω := dJ(Ω)[θ][ζ].

(i) We say J is twice shape differentiable if for all θ̂, ζ̂ ∈ Θ the mappings

θ 7→ dJ(Ω)[θ][ζ̂], ζ 7→ dJ(Ω)[θ̂][ζ]

are linear and continuous from Θ into R.
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Remark 2.36.

(i) Note that the second order semi-derivative (2.15) is equivalent to

dJ2(Ω)[θ][ζ] = lim
tց0

dJ(Φζ
t (Ω))[θ] − dJ(Ω)[θ]

t

=
d2

dt ds
J(Φθ

t (Φ
ζ
s(Ω)))|t=s=0

(ii) Higher order derivatives can be defined in a similar fashion. Let n vector fields
θ1, . . . , θn ∈ C∞

c (D,Rd) be given. Then the nth order Eulerian or Lie semi-derivative
is defined by

dJn(Ω)[θ1][θ2] · · · [θn−1][θn] :=
dn

dt1 · · · dtn
J((Φθ1

t1
◦ · · · ◦ Φθn

tn )(Ω))|t1=···=tn=0.

The nth order semi-derivative is also denoted by Lθ1,...,θn(J)|Ω := dJ(Ω)[θ1] · · · [θn].

For a regular domain D ⊂ Rd and a flow stable subset Ξ ⊂ 2D, we denote by

CkD(Ξ) := {J : Ξ → R, k-times continuously shape differentiable in each Ω ⊂ Ξ}

the set of k-times shape differentiable function.

We close this section with the following example of a very simple shape function and
its derivatives.

Example 2.37. Let an open, bounded set Ω ⊂ Rd and a function f ∈ C1(Rd) be given.
The first order shape derivative (or simply shape derivative) of the shape function

J(Ω) :=

∫

Ω
f dx

reads

dJ(Ω)[θ] =

∫

Ω
div (θ)f + ∇f · θ dx.

When f ∈ C2(Rd), we can compute the second order shape derivative

d2J(Ω)[θ][ζ] =dJ(Ω)[∂θζ] +

∫

Ω
−f∂θ : ∂ζ⊤ + f div (θ) div (ζ) dx

+

∫

Ω
∇2fζ · θ + ∇f · ζ div (θ) + ∇f · θ div (ζ) dx

One immediately sees that in a stationary or critical point Ω∗ ⊂ Rd of J , that is,

dJ(Ω∗)[θ] = 0 for all θ ∈ C2
c (D,Rd)

the asymmetrical term dJ(Ω∗)[∂θζ] vanishes and thus the second order shape derivative is
symmetric in a critical point. Now we show that the second order shape derivative is positive
definite in a critical point. Pick Ω∗ = (a, b) ⊂ R and f as depicted in Figure 2.3. Then Ω∗

is a global optimum and, we get (note that 1
2
d
dxθ

2 = θθ′)

d2J(Ω∗)[θ][θ] =

∫

Ω∗

f ′′θ2 + 2f ′θθ′ dx

=
∣∣b
a
f ′θ2 −

∫

Ω∗

f ′′θ2 dx+

∫

Ω∗

f ′′θ2 dx

= f ′(b)θ(b)2 − f ′(a)θ(a)2

≥ min{f ′(b),−f ′(a)}(θ(b)2 + θ(a)2)
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a b

Ω∗

Figure 2.3: Function f and optimal set Ω∗ (dashed)

since f ′(a) < 0 and f ′(b) > 0.

In the next chapter, we will see an example for the first order shape derivative, where the
function f depends itself on the set Ω via a partial differential equation. For more details
on second order shape derivatives and their connection to the perturbation of identity, we
refer the reader to [37, Sec. 6, Chap. 9] and [51, Chap. 5].

2.5.2 Structure theorem

In Hadamard’s research on elastic plates [49] used normal deformation along the boundary
to compute the shape derivative of the associated first eigenvalue and discovered that it is an
integral over ∂Ω acting on the normal component of the shape perturbations for a smooth
set Ω. This fundamental result of shape optimization was made rigorous later by J.-P.
Zolésio in the “structure theorem”, where the integral representation is in general replaced
by an distribution. When dJ(Ω) is of finite order and the domain Ω is smooth enough, one
can often write the shape derivative as an integral over ∂Ω, which is the canonical form in
the shape optimization literature.

Theorem 2.38 (structure theorem). Assume Γ := ∂Ω is compact and J is shape differen-
tiable. Denote the associated distribution to the shape derivative by

C∞
c (D,Rd) → R : θ 7→ G(θ) := dJ(Ω)[θ].

If G is of order k ≥ 0 and Γ of class Ck+1, then there exists a continuous functional
g : Ck(Γ) → R such that

dJ(Ω)(θ) = g(θ|Γ · n). (2.16)

Proof. See [37, Thm. 3.6 and Corol. 1, pp. 479–481]. ✷

Remark 2.39. In particular if g ∈ L1(Γ) in Theorem 2.38 then we have the typical boundary
expression

dJ(Ω)(θ) =

∫

Γ
g θ · nds. (2.17)
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Remark 2.40 (Non-smooth domains). When the domain Ω is not Ck, k ≥ 1, then the
struture theorem is not valid anymore as can be seen at the simple example

J(Ω) =

∫

∂Ω
dx

as demonstrated in [90]. In this case the shape derivative dJ(Ω) still exists when ∂Ω is only
piecewise smooth, but it will depend not only on θ · n but also on tangential parts of θ.

Remark 2.41 (Geometric property of g). The function g appearing in (2.17) is in general
neither an intrinsic quantity of the surface Γ (such as the Gauss curvature) nor can it be
determined by the surface Γ alone. Usually, when J depends implicitly on some PDE (see
e.g. Chapter 5 for several examples), then g involves gradients of functions that depend on
functions defined in a neighborhood of Γ. Therefore, the main conclusion from the previous
theorem is not that the shape derivative depends on the normal component on the boundary,
but that dJ(Ω)[θ] is supported in the boundary Γ.

Remark 2.42 (Historical comment). The credit of the previous theorem goes to J.-P.Zolésio.
Although this result is usually referred to as Hadamard’s structure theorem, it was J.-
P.Zolésio who proved it in his 1979 thesis for Ck+1-domains (k ≥ 0) and general shape
functions. This result was extended to arbitrary domains in the paper [40] and the bound-
ary representation was further refined in the recent paper [65]. In [49] J. Hadamard studied
the shape sensitivity of the first eigenvalues of clamped elastic plates by using normal per-
turbations along a C∞-boundary and found that the shape derivative has the form (2.17);
cf. [37, Rem. 3.2, p. 481], [49] and the introduction.

A theorem similar to the structure theorem mentioned previously can be established for
the second order shape derivative and again we refer the reader to [37, Sec. 6, Chap. 9] for
further details in this direction. Finally, we quote a version of Reynolds’ transport theorem
[37, Thm. 4.2, pp. 483–484], that will be used to compute the boundary expression of the
shape derivative.

Theorem 2.43. Let θ ∈ Ckc (D,Rd), k ≥ 1, and fix τ > 0. Moreover, suppose that ϕ ∈
C([0, τ ],W 1,1

loc (Rd)) ∩ C1([0, τ ], L1
loc(R

d)) and an open bounded domain Ω with Lipschitz
boundary Γ be given. The right sided derivative of the function f(t) :=

∫
Ωt
ϕ(t) dx at t = 0

denoted f ′(0+) := limtց0(f(t) − f(0))/t) is given by

f ′(0+) =

∫

Ω
ϕ′(0) dx+

∫

Γ
ϕ(0) θn ds.



Chapter 3

Shape differentiability under PDE

constraints

In this chapter, the following methods are used to prove the shape differentiability of a track-
ing type shape function constrained by semi-linear PDE: the material derivative method,
the min-max formulation (theorem of Correa-Seeger), the rearrangement method and the
min method. We present a modification of Céa’s Lagrange method that allows a rigorous
derivation of the shape derivative in the case of existence of material derivatives. Finally,
we show how to derive the boundary expression (BE) of the shape derivative in two different
ways.

3.1 The semi-linear model problem

Throughout this chapter, we consider the semi-linear state equation

−∆u+ ̺(u) = f in Ω, u = 0 on Γ (3.1)

on a bounded domain Ω ⊂ Rd with boundary Γ := ∂Ω. The function u : Ω → R is
called state and f : D → R is a given function defined on a regular domain D ⊂ Rd

containing Ω. Without loss of generality, we may assume ̺(0) = 0 since otherwise consider
˜̺(x) := ̺(x) − ̺(0) with right hand side f̃(x) := f(x) − ̺(0). To simplify the exposition,
we choose as objective function

J(Ω) :=

∫

Ω
|u− ur|2 dx, (3.2)

where u solves the above semi-linear equation on Ω and | · | denotes the absolute value.
Let us start with some general assumptions:

Assumption (Data).

(i) Let D ⊂ Rd be a regular domain with boundary Σ := ∂D. Moreover, assume that
Ω ⊂ D is open and has a Lipschitz boundary Γ := ∂Ω.

(ii) The functions ur, f : D → R are continuously differentiable with bounded first deriva-
tive.1

(iii) Let θ belong to C2
c (D,Rd) and denote by Φt its flow.

Unless stated otherwise, we assume that the previous assumption is satisfied.

1Therefore ur and f are Lipschitz continuous on D and consequently belong to W 1
∞(D,Rd).

31



32 CHAPTER 3. SHAPE DIFFERENTIABILITY UNDER PDE CONSTRAINTS

3.2 Material derivative method

In order to derive the shape differentiability of J via material derivative method ̺ has to
satisfy certain properties. Hence, additionally to Assumption (Data), we require:

Assumption (M). The function ̺ : R → R is continuously differentiable, bounded and
nondecreasing.

We call u ∈ H1
0 (Ω) a weak solution of (3.1) if

∫

Ω
∇u · ∇ψ dx+

∫

Ω
̺(u)ψ dx =

∫

Ω
fψ dx for all ψ ∈ H1

0 (Ω). (3.3)

The weak solution of the previous equation characterises the unique minimum of the energy
E(Ω, ·) : H1

0 (Ω) → R defined by

E(Ω, ϕ) :=
1

2

∫

Ω
|∇ϕ|2 + ˆ̺(ϕ) dx−

∫

Ω
fϕ dx,

where ˆ̺(s) :=
∫ s
0 2 ̺(s′) ds′. In the following, we denote by

dϕE(Ω, ϕ;ψ) := lim
tց0

E(Ω, ϕ+ t ψ) − E(Ω, ϕ)

t

d2ϕE(Ω, ϕ;ψ, ψ̃) := lim
tց0

dϕE(Ω, ϕ+ t ψ̃;ψ) − dE(Ω, ϕ;ψ)

t

the first and second order directional derivatives of E at ϕ in the direction ψ and (ψ, ψ̃),
respectively. Then we may write (3.3) as dϕE(Ω, u;ψ) = 0, for all ψ ∈ H1

0 (Ω).

Lemma 3.1. Assume that ̺ is continuously differentiable. Then the mapping

s 7→
∫

Ω
̺(ϕ+ sϕ̃)ψ dx

is continuously differentiable on R for all ϕ, ϕ̃ ∈ L∞(Ω) and ψ ∈ H1
0 (Ω).

Proof: Let ϕ, ϕ̃ ∈ H1
0 (Ω) ∩ L∞(Ω) and ψ ∈ H1

0 (Ω). We have to show that

s 7→
∫

Ω
̺(ϕ+ sϕ̃)ψ dx

is continuously differentiable. Put zs(x) := ̺(ϕ(x) + sϕ̃(x))ψ(x). We have for almost all
x ∈ Ω

zs+h(x) − zs(x)

h
→ = ̺′(ϕ(x) + sϕ̃(x))ϕ̃(x)ψ(x) as h→ 0,

∣∣∣∣
d

ds
zs(x)

∣∣∣∣ ≤ C|ψ(x)||ϕ̃(x)|.

Then it holds
∣∣∣∣
zs+h(x) − zs(x)

h

∣∣∣∣ =

∣∣∣∣
1

h

∫ s+h

s

d

ds′
zs

′
(x)ds′

∣∣∣∣

≤ C|ψ(x)||ϕ̃(x)|1
h

∫ s′+h

s′
ds′

= C|ψ(x)||ϕ̃(x)|.
Therefore applying Lebesgue’s dominated convergence theorem we conclude

d

ds

∫

Ω
zs(x) dx =

∫

Ω
̺′(ϕ(x) + sϕ̃(x))ϕ̃(x)ψ(x) dx.
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As a consequence of the previous lemma, we get the differentiability of s 7→ dϕE(Ω, ϕ+
sϕ̃, ψ). Moreover, we conclude by the monotonicity of ̺

d2ϕE(Ω, ϕ;ψ, ψ) =

∫

Ω
|∇ψ|2 + ̺′(ϕ)ψ2 dx ≥ C‖ψ‖2H1

0 (Ω)

for all ϕ ∈ H1
0 (Ω)∩L∞(Ω) and ψ ∈ H1

0 (Ω). We now want to calculate the shape derivative
of (3.2). For this purpose, we consider the perturbed cost function J(Ωt) =

∫
Ωt

|ut−ur|2 dx,

where ut denotes the weak solution of (3.3) on the domain Ωt := Φt(Ω), that is, ut ∈ H1
0 (Ωt)

solves ∫

Ωt

∇ut · ∇ψ̂ dx+

∫

Ωt

̺(ut)ψ̂ dx =

∫

Ωt

fψ̂ dx for all ψ̂ ∈ H1
0 (Ωt). (3.4)

It would be possible to compute the derivative of ut : Ωt → R pointwise by

du(x) := lim
tց0

ut(x) − u(x)

t
for all x ∈



⋂

t∈[0,τ ]

Ωt


 ∩ Ω.

In the literature this derivative is referred to as local shape derivative of u in direction θ; cf.
[50]. Nevertheless, we go another way and use the change of variables Φt(x) = y to rewrite
J(Ωt) as

J(Ωt) =

∫

Ω
ξ(t)|ut − ur ◦ Φt|2 dx, (3.5)

where ut := Ψt(ut) : Ω → R is a function on the fixed domain Ω. We introduce the mapping
Ψt(ϕ) := ϕ ◦ Φt with inverse Ψt(ϕ̂) := Ψ−1

t (ϕ̂) = ϕ̂ ◦ Ψ−1
t . To study the differentiability of

(3.5), we can study the function t 7→ ut. Notice that u0 = u0 = u is nothing but the weak
solution of (3.3).

The limit u̇ := limtց0(u
t − u)/t is called strong material derivative if we consider

this limit in the norm convergence in H1
0 (Ω) and weak material derivative if we consider

the weak convergence in H1
0 (Ω).

The crucial observation of [99, Theorem 2.2.2, p. 52] is that Ψt constitutes an isomor-
phism from H1(Ωt) into H1(Ω). Hence using a change of variables in (3.4) shows that ut

satisfies

∫

Ω
A(t)∇ut · ∇ψ dx+

∫

Ω
ξ(t) ̺(ut)ψ dx =

∫

Ω
ξ(t)f tψ dx for all ψ ∈ H1

0 (Ω), (3.6)

where we used the notation from (2.6). The previous equation characterises the unique
minimum of the convex energy Ẽ : [0, τ ] ×H1

0 (Ω) → R2

Ẽ(t, ϕ) :=
1

2

∫

Ω
ξ(t)|B(t)∇ϕ|2 + ξ(t)ˆ̺(ϕ) dx−

∫

Ω
ξ(t)f tϕdx. (3.7)

By standard regularity theory (see e.g. [61]) it follows that ut ∈ C(Ω) for all t ∈ [0, τ ].
Moreover, the proof of [22, Theorem 3.1] shows that there is a constant C > 0 such that

‖ut‖C(Ω) + ‖ut‖H1(Ω) ≤ C for all t ∈ [0, τ ].

2Here we mean convex with respect to ϕ for each t ∈ [0, τ ].
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As before using Lebesque’s dominated convergence theorem it is easy to verify that for
fixed t ∈ [0, τ ] the second order directional derivative d2ϕẼ(t, ϕ;ψ, η) exists for all ϕ ∈
L∞(Ω) ∩H1

0 (Ω) and ψ, η ∈ H1
0 (Ω). Taking into account Proposition 2.12, we see that

C‖ψ‖2H1(Ω;Rd) ≤ d2ϕẼ(t, ϕ;ψ, ψ) for all ϕ ∈ L∞(Ω)∩H1
0 (Ω), ψ ∈ H1

0 (Ω) and all t ∈ [0, τ ].

(3.8)
Note that dϕẼ(t, ϕ;ψ) is also differentiable with respect to t and Lemma 2.14 shows:

∂tdϕẼ(t, ϕ;ψ) =

∫

Ω
A′(t)∇ϕ · ∇ψ + ξ′(t)̺(ϕ)ψ dx−

∫

Ω
(ξ′(t)f t + ξ(t)B(t)∇f t)ϕdx

≤ C(1 + ‖ϕ‖H1(Ω))‖ψ‖H1(Ω),

(3.9)

for all t ∈ [0, τ ], where C > 0 is a constant. By the coercivity property (3.8) of the second
order derivative of Ẽ

C‖∇(ut − u)‖2L2(Ω;Rd) ≤
∫ 1

0
d2ϕẼ(t, sut + (1 − s)u;ut − u, ut − u) (3.10)

= dϕẼ(t, ut;ut − u) − dϕẼ(t, u;ut − u) (3.11)

= −(dϕẼ(t, u;ut − u) − dϕẼ(0, u;ut − u)) (3.12)

= −t∂tdϕẼ(ηt t, u;ut − u) (3.13)

≤ C t ‖∇(ut − u)‖L2(Ω;Rd). (3.14)

In step (3.10) to (3.11), we applied the mean value theorem in integral form, in step (3.11)
to (3.12), we used that dϕẼ(t, ut;ut−u) = dϕẼ(0, u;ut−u) = 0, and in step from (3.12) to
(3.13), we applied the mean value theorem which yields ηt ∈ (0, 1). In the last step (3.14),
we employed the estimate (3.9). Finally, by the Poincaré inequality, we conclude that there
is c > 0 such that ‖ut−u‖H1(Ω) ≤ tc for all t ∈ [0, τ ]. From this estimate we deduce that for
any real sequence (tn)n∈N with tn ց 0 as n→ ∞, the quotient wn := (utn−u)/tn converges
weakly in H1

0 (Ω) to some element u̇ and by compactness there is a subsequence (tnk
)k∈N

such that (wnk)k∈N converges strongly in Lq(Ω) to some v, where 0 < q < 2d
d−2 ; (cf. [46,

p.270, Theorem 6]).3 Extracting a further subsequence we may assume that wtk(x) → u̇(x)
as k → ∞ for almost every x ∈ Ω. Notice that the limit u̇ depends on the sequence (tnk

)k∈N.
However, we will see that this limit is the same for any sequence (tn)n∈N converging to zero.

Subtracting (3.6) at t > 0 and t = 0 yields

∫

Ω
A(t)∇(ut − u)·∇ψ dx+

∫

Ω
ξ(t)(̺(ut) − ̺(u))ψ dx = −

∫

Ω
(A(t) − I)∇u · ∇ψ dx

+

∫

Ω
(ξ(t) − 1) ̺(u)ψ dx+

∫

Ω
(ξ(t) − 1)f tψ dx+

∫

Ω
(f t − f)ψ dx.

(3.15)

We choose t = tnk
in the previous equation and want to pass to the limit k → ∞. The only

difficult term in (3.15) is

∫

Ω
ξ(t)

̺(ut) − ̺(u)

t
ψ dx =

∫

Ω
ξ(t)

[∫ 1

0
̺′(uts) ds

] (
ut − u

t

)
ψ dx.

3When d = 2 this means H1(Ω) is compactly embedded into Lp(Ω) for arbitrary p > 1. When d = 3 we
get that H1(Ω) compactly embeds into L6−ε(Ω) for any small ε > 0.
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From the strong convergence of (utnk −u)/tnk
to u̇ in L2(Ω) and the pointwise convergence

ξ(tnk
) → 1 and ̺′(u

tnk
s ) → ̺′(u), we infer that

∫

Ω
ξ(tnk

)
̺(utnk ) − ̺(u)

tnk

ψ dx −→
∫

Ω
̺′(u) u̇ ψ dx as k → ∞.

Therefore, choosing t = tnk
in (3.15) and dividing by tnk

, we may pass to the limit:

∫

Ω
∇u̇ · ∇ψ + ̺′(u) u̇ ψ dx+

∫

Ω
A′(0)∇u · ∇ψ dx+

∫

Ω
div θ̺(u)ψ dx

=

∫

Ω
div (θ)fψ dx+

∫

Ω
∇f · θ ψ dx for all ψ ∈ H1

0 (Ω).
(3.16)

The function u̇ is the unique solution of (3.16). Hence for every sequence (tn)n∈N converging
to zero there exists a subsequence (tnk

)k∈N such that wtk → u̇ as k → ∞. Moreover,∫
Ω ξ(t)(̺(ut)− ̺(u)/t ψ dx −→

∫
Ω ̺

′(u) u̇ ψ dx and
∫
ΩA(t)∇(ut− u)/t · ∇ψ dx −→

∫
Ω∇u̇ ·

∇ψ dx as tց 0.

We now show that the strong material derivative exists. For this subtract (3.16) from
(3.15) to obtain

∫

Ω
A(t)∇

(
ut − u

t
− u̇

)
· ∇ψ dx+

∫

Ω
ξ(t)

[∫ 1

0
̺′(uts) ds

] (
ut − u

t
− u̇

)
ψ dx

=

∫

Ω
(A(t) − I)∇u̇ · ∇ψ dx+

∫

Ω
(ξ(t) − 1)

[∫ 1

0
̺′(uts) ds

]
u̇ ψ dx

+

∫

Ω

[∫ 1

0
̺′(uts) − ̺′(u) ds

]
u̇ ψ dx−

∫

Ω

(
A(t) − I

t
−A′(0)

)
∇u · ∇ψ dx

+

∫

Ω

(
ξ(t) − 1

t
− div (θ)

)
̺(u)ψ dx+

∫

Ω

(
ξ(t) − 1

t
− div (θ)

)
f tψ dx

+

∫

Ω

(
f t − f

t
−∇f · θ

)
ψ dx.

Now we insert ψ = wt − u̇ as test function into the previous equation. Using Proposition
2.12 and the fact that ξ(t) > 0, ̺′ ≥ 0 we get

γ1‖∇(wt − u̇)‖2L2(Ω) ≤
∫

Ω
(A(t) − I)∇u̇ · ∇(wt − u̇) dx+

∫

Ω
(ξ(t) − 1)

∫ 1

0
̺′(uts) ds u̇ (wt − u̇) dx

+

∫

Ω

∫ 1

0
(̺′(uts) − ̺′(u) ds) u̇ (wt − u̇) dx

−
∫

Ω

(
A(t) − I

t
−A′(0)

)
∇u · ∇(wt − u̇) dx

+

∫

Ω

(
ξ(t) − 1

t
− div (θ)

)
(̺(u) (wt − u̇) + f t(wt − u̇)) dx

+

∫

Ω

(
f t − f

t
−∇f · θ

)
(wt − u̇) dx.

Using the convergences A(t) → I, (A(t) − I)/t − A′(0) → 0, (f t − f)/t − ∇f · θ → 0 ,
ξ(t) → 1 and (ξ(t)− 1)/t− div (θ) in C(Ω), and the uniform boundedness of ‖wt− u̇‖H1(Ω)

and ‖u̇‖H1(Ω) yields

‖wt − u̇‖H1(Ω) → 0 as tց 0.
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We are now in the position to calculate the volume expression of the shape derivative. First,
we differentiate (3.5) with respect to t

dJ(Ω)[θ] =

∫

Ω
div (θ)|u− ur|2 dx−

∫

Ω
2(u− ur)∇ur · θ dx+

∫

Ω
2(u− ur)u̇ dx.

Note that for the previous calculation it was enough to have ‖ut − u‖H1(Ω) ≤ ct for all
t ∈ [0, τ ]. This is sufficient to differentiate the L2 cost function. Nevertheless, for a cost
function involves gradients of u such as

J̃(Ω) :=

∫

Ω
‖∇u−∇ur‖2 dx,

this is not true anymore. Now in order to eliminate the material derivative in the last
equation, the so-called adjoint equation is introduced

Find p ∈ H1
0 (Ω) : dϕE(Ω, u; p, ψ) = −2

∫

Ω
(u− ur)ψ dx for all ψ ∈ H1

0 (Ω). (3.17)

The function p is called adjoint state. Finally, testing the adjoint equation with u̇ and the
material derivative equation (3.16) with p, we arrive at the volume expression

dJ(Ω)[θ]
(3.17)

=

∫

Ω
div (θ)|u− ur|2 dx−

∫

Ω
2(u− ur)∇ur · θ dx− dϕE(Ω, u; p, u̇)

(3.16)
=

∫

Ω
div (θ)|u− ur|2 dx−

∫

Ω
2(u− ur)∇ur · θ dx

+

∫

Ω
A′(0)∇u · ∇p+ div (θ)̺(u)p dx−

∫

Ω
div (θf)p dx.

(3.18)

Note that the volume expression already makes sense when u, p ∈ H1
0 (Ω). Assuming higher

regularity of the state and adjoint (e.g. u, p ∈ H2(Ω) ∩H1
0 (Ω)) would allow us to rewrite

the previous volume expression into a boundary expression, that is, an integral over the
boundary ∂Ω.

3.3 Shape derivative method

Assuming that the solutions u, p and the boundary Γ are smooth, say C2, we may trans-
form the volume expression (3.18) into an integral over Γ. This can be accomplished by
integration by parts or in the following described way. Instead of transporting the cost
function back to Ω, one may directly differentiate J(Ωt) =

∫
Ωt

|Ψt(ut)−ur|2 dx by invoking
the transport Theorem 2.43, to obtain

dJ(Ω)[θ] =

∫

∂Ω
|u− ur|2θ · nds+

∫

Ω
2 (u− ur)(u̇−∇u · θ) dx. (3.19)

The function u′ := u̇−∇u · θ is called shape derivative of u at Ω in direction θ associated
with the parametrisation Ψt. It depends linearly on θ. Note that since Ψ0 = idH1

0 (Ω), we

have Ψt ◦ Ψ−t = Ψ0 = idH1
0 (Ω) and Ψ−t ◦ Ψt = Ψ0 = idH1

0 (Ωt). Setting ut := Ψt(ut), we can
write

u′ =
d

dt
Ψt(ut)|t=0 =

d

dt
(ut ◦ Φ−1

t )|t=0.

Therefore the shape derivative decomposes into two parts, namely

u′ = ∂tΨ
t(ut)|t=0︸ ︷︷ ︸
∈L2(Ω)

+ Ψ0(u̇)︸ ︷︷ ︸
∈H1

0 (Ω)

,
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where ∂tΨ
t(ut)|t=0 := limtց0(Ψ

t(ut) − Ψ0(ut))/t = −∇u · θ. Assuming that the solution u
belongs to u ∈ H1

0 (Ω) ∩H2(Ω), we get

u′ = ∂tΨ
t(ut)|t=0︸ ︷︷ ︸

∈H1(Ω)

+ Ψ0(u̇)︸ ︷︷ ︸
∈H1

0 (Ω)∩H2(Ω)

One may write the perturbed state equation (3.4) in the equivalent form
∫

Ωt

∇(Ψt(ut)) · ∇(Ψt(ϕ)) + ̺(Ψt(ut)) (Ψt(ϕ)) dx =

∫

Ωt

fΨt(ϕ) dx for all ϕ ∈ H1
0 (Ω).

Then by the previous discussion, we know that ut : [0, τ ] → H1(Ω) is differentiable in 0.
Hence by formally differentiating the last equation using the transport Theorem 2.43:

∫

Ω
∇u′·∇ϕ+ ̺′(u)u′ ϕdx−

∫

Ω
∇u · ∂θϕ+ ̺(u) ∂θϕdx

+

∫

∂Ω
(∇u · ∇ϕ+ ̺(u) p) θnds =

∫

∂Ω
fϕ θnds−

∫

Ω
f∂θϕdx

(3.20)

for all ϕ ∈ H2(Ω) ∩ H1
0 (Ω), where θn := θ · n and ∂θ := θ · ∇. Note that adjoint state

p vanishes on Γ. Notice that this equation can also be derived from (3.16) by partial
integration.

Remark 3.2. Note that u′ does not belong to H1
0 (Ω), but only to H1(Ω). As the shape

derivative does not belong to the solution space of the state equation, it may lead to false or
incomplete formulas for the boundary expression of the shape derivative.

Remark 3.3. Let γ : [0, 1] → Γ be a smooth curve in the boundary with γ(0) = x ∈ Γ and
γ′(0) = v. Assume u : Ω → R admits an extension in a neighborhood of Γ, denoted also by
u, then we compute 0 = d

dt(u(γ(t))|t=0 = ∇u · γ′(0) = ∇Γu · v + (∂nu)n · v. Note that v lies
in the tangential plane at x, thus v · n = 0. Since v was arbitrary, we conclude u = 0 on Γ
implies that ∇Γu = 0 on Γ.

The remark shows that ∇u = (∂nu)n. Then integrating by parts in (3.20) and using
that u is a strong solution yields

∫

Ω
∇u̇ · ∇ϕ + ̺′(u)u̇ ϕ dx =

∫

Γ
(∂nu ∂nϕ− 2 ∂nu ∂nϕ) θn ds

+

∫

Ω
∂θu (−∆ϕ+ ̺′(u)ϕ) dx.

(3.21)

Now, using the previous equation and the adjoint state equation one can eliminate u̇ in
(3.19)

dJ(Ω)[θ]
(3.17)

=

∫

Γ
|u− ur|2 θn ds+

∫

Ω
∇u̇ · ∇p+ ̺′(u) u̇ p dx+

∫

Ω
∇u · θ 2(u− ur) dx

(3.21)
=

∫

Γ
|u− ur|2 θn ds−

∫

Γ
2∂nu ∂np θnds

+

∫

Ω
(−∆p+ ̺′(u) p+ 2(u− ur))∇u · θ dx.

Finally, assuming that p solves the adjoint equation in the strong sense, we get

dJ(Ω)[θ] =

∫

Γ
(|u− ur|2 − ∂nu ∂np) θn ds. (3.22)

What we observe in the calculations above is that there is no material derivative u̇ or
shape derivative u′ in the final expression (3.18) or (3.22). This suggests that there might
be a way to obtain this formula without the computation of u̇. In the next section, we get
to know one possible way to avoid the material derivatives.
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3.4 The min-max formulation of Correa and Seeger

In this section we want to discuss the minimax formulation of shape optimization problems
and a theorem of Correa and Seeger ([30]). This theorem provides a powerful tool to
differentiate a minimax function with respect to a parameter. The cost function for many
optimal control problems can be rewritten as the min-max of a Lagrangian function L, that
is, a utility function plus the equality constraints, i.e.,

J(u) = inf
ϕ∈A

sup
ψ∈B

L(u, ϕ, ψ).

Therefore, the directional differentiation of the cost function is equivalent to the differen-
tiation of the inf-sup with respect to u. This method is in particular applicable to linear
partial differential equations and convex cost functions.

3.4.1 Saddle points and their characterisation

For the convenience of the reader we recall here the definition of saddle points and their
characterisation.

Definition 3.4. Let A,B be sets and G : A×B → R a map. Then a pair (u, p) ∈ A×B
is said to be a saddle point on A×B if

G(u, ψ) ≤ G(u, p) ≤ G(ϕ, p) for all ϕ ∈ A, for all ψ ∈ B.

The result [44, Prop. 1.2, p. 167] provides a condition for (u, p) to be a saddle point.

Lemma 3.5. A pair (u, p) ∈ A×B is a saddle point of G(, ) if and only if 4

min
û∈A

sup
p̂∈B

G(û, p̂) = max
p̂∈B

inf
û∈A

G(û, p̂),

and it is equal to G(u, p), where u is the attained minimum and p the attained maximum,
respectively.

For a convex-concave function G that is additionally Gaeuaux differentiable, one may
check that (u, p) ∈ A×B is a saddle point by [44, Prop. 1.6, p. 169–170]:

Proposition 3.6. Let E,F be two Banach spaces. Let us suppose that A ⊂ E and B ⊂ F ,
A,B are closed, convex and non-empty. Moreover, let G : E × F → R be such that
for all p ∈ B, the function u 7→ G(u, p) is lower semi-continuous, convex and Gaeuaux
differentiable, and for all u ∈ A the function p 7→ G(u, p) is upper semi-continuous, concave
and Gaeuaux differentiable. Then (ū, p̄) ∈ A×B is a saddle point if and only if

〈
∂G

∂u
(ū, p̄), u− ū

〉
≥ 0 for all u ∈ A,

〈
∂G

∂p
(ū, p̄), p− p̄

〉
≤ 0 for all p ∈ B.

4Here the min and max indicate that the infimum and supremum is attained, respectively.
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3.4.2 Min-max formulation for the semi-linear equation

The point of departure for the min-max formulation is the observation that

J(Ω) = min
ϕ∈H1

0 (Ω)

sup
ψ∈H1

0 (Ω)

L(Ω, ϕ, ψ),

where the Lagrangian L is defined by

L(Ω, ϕ, ψ) :=

∫

Ω
|ϕ− ur|2 dx+

∫

Ω
∇ϕ · ∇ψ dx−

∫

Ω
fψ dx (ϕ, ψ ∈ H1

0 (Ω)).

This is true since for any ϕ ∈ H1
0 (Ω)

sup
ψ∈H1

0 (Ω)

L(Ω, ϕ, ψ) =

{
J(Ω) if ϕ = u solves (3.3)

+∞ else .

In order to apply the theorem of Correa-Seeger to the Lagrangian L , we have to show that
it admits saddle points. Reasonable conditions to ensure the existence of saddle points for
our specific example is to assume that L is convex and differentiable with respect to ϕ.

Assumption (C). The function ̺ is linear, i.e., ̺(x) = ax, where a ∈ R.

Since for any open set Ω ⊂ Rd the Lagrangian L is convex and differentiable with respect
to ϕ, and concave and differentiable with respect to ψ, we know from [44, Prop. 1.6, p. 169–
170] that the saddle points (u, p) ∈ H1

0 (Ω)×H1
0 (Ω) can be characterised by ∂ψL(Ω, u, p)(ψ̂) =

0 for all ψ̂ ∈ H1
0 (Ω) and ∂ϕL(Ω, u, p)(ϕ̂) = 0 for all ϕ̂ ∈ H1

0 (Ω). These last equations coin-
cide with the state equation (3.3) and the adjoint equation (3.17). To compute the shape
derivative of J , we consider for t > 0

J(Ωt) = min
ϕ̂∈H1

0 (Ωt)

sup
ψ̂∈H1

0 (Ωt)

L(Ωt, ϕ̂, ψ̂) = min
ϕ∈H1

0 (Ω)

sup
ψ∈H1

0 (Ω)

L(Ωt,Ψ
t(ϕ),Ψt(ψ)), (3.23)

where the saddle points of L(Ωt, ·, ·) are again given by the solutions of (3.3) and (3.17),
but the domain Ω has to be replaced by Ωt. By definition of a saddle point

L(Ωt, ut, ψ̂) ≤ L(Ωt, ut, pt) ≤ L(Ωt, ϕ̂, pt) for all ψ̂, ϕ̂ ∈ H1
0 (Ωt). (3.24)

Now, since Ψt : H1
0 (Ωt) → H1

0 (Ω) is a bijection it is easily seen that the saddle points of
G(t, ϕ, ψ) := L(Ωt,Ψ

t(ϕ),Ψt(ψ)) are given by ut = Ψt(ut) and pt = Ψt(pt). It can also be
verified that the function ut solves (3.6) and applying the change of variables Φt(x) = y to
(3.17) shows that pt solves
∫

Ω
A(t)∇ψ ·∇pt+ξ(t) ̺′(ut) pt ψ dx = −2

∫

Ω
ξ(t)(ut−utr)ψ dx for all ψ ∈ H1

0 (Ω). (3.25)

Moreover, the functions ut, pt satisfy G(t, ut, ψ) ≤ G(t, ut, pt) ≤ G(t, ϕ, pt) for all ψ, ϕ ∈
H1

0 (Ω). Applying the change of variables Φt(x) = y we can write the function G as

G(t, ϕ, ψ) =

∫

Ω
ξ(t)|ϕ− utr|2 dx+

∫

Ω
A(t)∇ϕ · ∇ψ + ξ(t)̺(ϕ)ψ dx−

∫

Ω
ξ(t)f tψ dx. (3.26)

From Lemma 3.5 and the definition of a saddle point (ut, pt) of G(t, , ), we conclude that

g(t) := min
ϕ∈H1

0 (Ω)

sup
ψ∈H1

0 (Ω)

G(t, ϕ, ψ) = G(t, ut, pt).
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Moreover, we have the relation g(t) = G(t, ut, ψ) for all ψ ∈ H1
0 (Ω), since ut solves (3.6).

In view of (3.23), the shape derivative dJ(Ω)[θ] exists if the derivative of g(t) at t = 0
from the right hand side exists. But since G is a Lagrangian, that is, the sum of a cost
function plus a state equation, the differentiability of g is equivalent to the differentiability
of t 7→ G(t, ut, ψ) for any (and thus for all) ψ ∈ H1

0 (Ω). Notice that when the state equation
has no unique solution the cost function is not well-defined in general, but the the function
g is.

Theorem 3.9 below gives conditions, which allows to conclude the equality

dJ(Ω)[θ] = ∂tG(0, u, p)

without employing the material derivative u̇. Let us sketch the proof of this fundamental
result when G is given by (3.26).

Proposition 3.7. The function t 7→ G(t, ut, ψ) is differentiable from the right side at 0.
Moreover, we have

d

dt
G(t, ut, ψ)|t=0 = ∂tG(0, u, p) (3.27)

for arbitrary ψ ∈ H1
0 (Ω). Here, p ∈ H1

0 (Ω) solves the adjoint equation (3.17).

Proof. Assume that (ut, pt) ∈ H1
0 (Ω) ×H1

0 (Ω) is a saddle point. Then, by definition of
a saddle point, we get the inequalities G(t, ut, pt) ≤ G(t, u, pt) and G(0, u, p) ≤ G(0, ut, p).
Therefore setting ∆(t) := G(t, ut, pt) −G(0, u, p) gives

G(t, ut, p) −G(0, ut, p) ≤ ∆(t) ≤ G(t, u, pt) −G(0, u, pt).

Using the mean value theorem, we find for each t ∈ [0, τ ] constants ζt, ηt ∈ (0, 1) such that

t∂tG(tζt, u
t, p) ≤ ∆(t) ≤ t∂tG(tηt, u, p

t), (3.28)

where the derivative of G with respect to t is given by

∂tG(t, ϕ, ψ) =

∫

Ω
ξ′(t)|ϕ− utr|2 − 2ξ(t)(ϕ− utr)B(t)∇utr · θt dx

+

∫

Ω
A′(t)∇ϕ · ∇ψ + ξ′(t)̺(ϕ)ψ − ξ′(t) f tψ −B(t)∇f t · θtψ dx

(3.29)

and the derivatives ξ′ and A′ are given by Lemma 2.14. It can be verified from this formula
that (t, ϕ) 7→ ∂tG(t, ϕ, p) is strongly continuous and (t, ψ) 7→ ∂tG(t, u, ψ) is even weakly
continuous. Moreover, from (3.6) and (3.25) it can be inferred that t 7→ ut and t 7→ pt

are bounded in H1
0 (Ω). Therefore, for any sequence of non-negative numbers (tn)n∈N we

get utn ⇀ w, ptn ⇀ v as n → ∞ for two elements w, v ∈ H1
0 (Ω). Passing to the limit

in (3.6) and (3.25) and taking Lemma 2.16 into account, we see that w solves the state
equation and v the adjoint equation. By uniqueness of the state and adjoint equation
we get w = u and v = p. Selecting a further subsequence (tnk

)k∈N yields that utnk con-
verges strongly in L2(Ω). Thus we conclude from (3.28) lim inftց0 ∆(t)/t ≥ ∂tG(0, u, p) and
lim suptց0 ∆(t)/t ≤ ∂tG(0, u, p). Combining these estimates leads to lim suptց0 ∆(t)/t =
lim inftց0 ∆(t)/t, which proves (3.27) and thus the shape differentiability of J . ✷
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Evaluating the derivative ∂tG(t, u, p)|t=0 leads to the formula (3.18). Note that we may
extend u, p to global H2 functions ũ, p̃ ∈ H2(Rd). Then the boundary expression may be
obtained by applying Theorem 2.43 to d/dtL(Ωt,Ψ

t(ũ),Ψt(p̃))|t=0 to get

dJ(Ω)[θ] =

∫

Γ
(|u− ur|2 + ∇u · ∇p+ ̺(u) p)θn ds+

∫

Ω
∇ů · ∇p+ ̺′(u) ů p dx

+

∫

Ω
(u− ur )̊u dx+

∫

Ω
∇u · ∇p̊+ ̺(u) p̊ dx−

∫

Ω
fp̊ dx,

where ů = ∂t(Ψ
t(ũ))|t=0 = −∇u · θ, p̊ = ∂t(Ψ

t(p̃))|t=0 = −∇p · θ. To rewrite the previous
expression into an integral over Γ, we integrate by parts in the integrals over Ω to obtain

dJ(Ω)[θ] =

∫

Γ
(|u− ur|2 + ∇u · ∇p+ ̺(u) p) θn ds+

∫

∂Ω
ů ∂np ds+

∫

∂Ω
∂nu p̊ ds

−
∫

Ω
ů
(
−∆p+ ̺′(u) p+ 2(u− ur)

)
dx−

∫

Ω
p̊ (−∆u+ ̺(u) − f) dx.

Finally, using the strong solvability of u and p, and taking Remark 3.3 into account, we
arrive at (3.22).

Remark 3.8. We point out that the first inequality in (3.24) is the key to avoid the material
derivative. Nevertheless, without the assumption of convexity of G with respect to ϕ it is
difficult to prove this inequality.

3.4.3 A theorem of Correa-Seeger

Finally, we quote the improved version [37, Theorem 5.1, pp. 556–559] of the theorem of
Correa-Seeger. This theorem also applies, roughly speaking, to situations when the state
equation admits no unique solution and the Lagrangian admits saddle points. The proof is
similar to the one of Proposition 3.7. Let a real number τ > 0 and vector spaces E and F
be given. We consider the mapping

G : [0, τ ] × E × F → R.

For each t ∈ [0, τ ], we define

g(t) := inf
x∈E

sup
y∈F

G(t, x, y), h(t) := sup
y∈F

inf
x∈E

G(t, x, y)

and the associated sets

X(t) =

{
x̂ ∈ E : sup

y∈F
G(t, x̂, y) = g(t)

}
(3.30)

Y (t) =

{
ŷ ∈ F : inf

x∈E
G(t, x, ŷ) = h(t)

}
. (3.31)

For fixed t they comprise all those points in E (F ) where the infimum respectively the
supremum is attained with value g(t) (h(t)). According to Lemma 3.6, we know that if
g(t) = h(t) then the set of saddle points is given by S(t) := X(t) × Y (t).

Theorem 3.9 (R. Correa and A. Seeger, [36]). Let the function G and the vector spaces
E,F be as before. Suppose the conditions:

(HH1) For all t ∈ [0, τ ] assume S(t) 6= ∅.
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(HH2) The partial derivative ∂tG(t, x, y) exists for all (t, x, y) ∈ [0, τ ] × E × F .

(HH3) For any sequence (tn)n∈N with tn ց 0 there exists a subsequence (tnk
)k∈N and an

element x0 ∈ X(0), xtnk
∈ X(tnk

) such that for all y ∈ Y (0)

lim
k→∞
tց0

∂tG(t, xnk
, y) = ∂tG(0, x0, y).

(HH4) For any sequence (tn)n∈N with tn ց 0 there exists a subsequence (tnk
)k∈N and an

element y0 ∈ Y (0), ytnk
∈ Y (tnk

) such that for all x ∈ X(0)

lim
k→∞
tց0

∂tG(t, x, ytnk
) = ∂tG(0, x, y0).

Then there exists (x0, y0) ∈ X(0) × Y (0) such that

d

dt
g(t)|t=0 = ∂tG(0, x0, y0).

3.5 Céa’s classical Lagrange method and a modification

Let the function G be defined by (3.26). Assume that G is sufficiently differentiable with
respect to t, ϕ and ψ. Additionally, assume that the strong material derivative u̇ exists in
H1

0 (Ω). Then we may calculate as follows

dJ(Ω)[θ] =
d

dt
(G(t, ut, p))|t=0 = ∂tG(t, u, p)|t=0︸ ︷︷ ︸

shape derivative

+ ∂ϕG(0, u, p)(u̇)︸ ︷︷ ︸
adjoint equation

,

and due to u̇ ∈ H1
0 (Ω) it implies dJ(Ω)[θ] = ∂tG(t, u, p)|t=0. Therefore, we can follow the

lines of the calculation of the previous section to obtain the boundary and volume expression
of the shape derivative.

In the original work [23], it was calculated as follows

dJ(Ω)[θ] = ∂ΩL(Ω, u, p) + ∂ϕL(Ω, u, p)(u′) + ∂ψL(Ω, u, p)(p′), (3.32)

where ∂ΩL(Ω, u, p) := limtց0(L(Ωt, u, p) − L(Ω, u, p))/t. Then it was assumed that u′ and
p′ belong to H1

0 (Ω), which has as consequence that ∂ϕL(Ω, u, p)(u′) = ∂ψL(Ω, u, p)(p′) = 0.
Thus (3.32) leads to the wrong formula

dJ(Ω)[θ] =

∫

Γ
(|u− ur|2 + ∂nu ∂np) θn ds.

This can be fixed by noting that u′ = u̇−∇u · θ and p′ = ṗ−∇p · θ with u̇, ṗ ∈ H1
0 (Ω):

dJ(Ω)[θ] = ∂ΩL(Ω, u, p) − ∂ϕL(Ω, u, p)(∇u · θ) − ∂ψL(Ω, u, p)(∇p · θ),
which gives the correct formula. Note that for Maxwell’s equations a different parametri-
sation than v 7→ v ◦ Φt of the function space is necessary since the differential operator is
modified differently. This leads then to a different definition of the shape derivative (of the
state) and also the formulas will be different. This is well known from the finite element
analysis of Maxwell’s equations; cf. [5, 20, 53, 74].

We would like to stress that we do not claim that the Lagrange method to calculate
the volume or boundary expression is always applicable, but it is applicable under the
described assumptions also for non-linear problems. For a particular problem one has to
carefully check the assumptions. One example where the described method does not work
for the p-Laplacian, where it is known that the material derivative only belongs to some
weighted Sobolev space and not to the solution space of the PDE.
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3.6 Rearrangement of the cost function

The rearrangement method introduced in [60] avoids the material derivative and is applica-
ble to a wide class of elliptic problems. We describe the method at hand of our semi-linear
example and write subsequently the perturbed cost function (3.5) as

J(Ωt) =

∫

Ω
j(t, ut) dx, j(t, v) := ξ(t)|v − utr|2. (3.33)

In order to derive the shape differentiability, we make the assumptions:

Assumption (R). Assume that ̺ ∈ C2(R) ∩ L∞(R), ̺′′ ∈ L∞(R) and ̺′(x) ≥ 0 for all
x ∈ R.

Instead of requiring the Lipschitz continuity of t 7→ ut, we claim that holds: there exist
c, τ, ε > 0 such that ‖ut − u‖H1

0 (Ω) ≤ ct1/2+ε for all t ∈ [0, τ ].

Theorem 3.10. Let Assumption (R) be satisfied and let θ ∈ C2
c (D,Rd). Then J(Ωt) given

by (3.33) is differentiable with derivative:

dJ(Ω)[θ] = ∂tG(0, u, p),

where u, p are solutions of the state and adjoint state equation.

Proof. The main idea is to rewrite the difference J(Ωt) − J(Ω) and use a first order
expansions of the PDE and the cost function with respect to the unknown together with
Hölder continuity of t 7→ ut. To be more precise, one writes

J(Ωt) − J(Ω)

t
=

1

t

∫

Ω
(j(t, ut) − j(t, u) − j′(t, u)(ut − u)) dx

︸ ︷︷ ︸
B1(t)

+
1

t

∫

Ω
(j(t, u) − j(0, u)) dx

︸ ︷︷ ︸
B2(t)

+
1

t

∫

Ω
(j′(t, u) − j′(0, u))(ut − u) dx

︸ ︷︷ ︸
B3(t)

+
1

t

∫

Ω
j′(0, u)(ut − u) dx

︸ ︷︷ ︸
B4(t)

,

(3.34)

where j′ := ∂uj and uts := sut + (1 − s)u. Using the mean value theorem in integral form
entails for some constant C > 0

∫

Ω
(j(t, ut) − j(t, u) − j′(t, u)(ut − u)) dx =

∫ 1

0
(1 − s)j′′(t, uts)(u

t − u)2 dx

≤ C‖ut − u‖2L2(Ω) for all t ∈ [0, τ ].

Using that limtց0 ‖ut−u‖H1
0 (Ω)/

√
t = 0, we see that B1 tends to zero as tց 0. Let Ẽ(t, ϕ)

be defined by (3.7). Then the fourth term in (3.34) can be written by using the adjoint
equation (3.17) as follows

∫

Ω
j′(0, u)(ut − u) dx = dϕẼ(0, ut; p) − dϕẼ(0, u; p) − d2Ẽ(0, u;ut − u, p)

+ dĒ(t, ut; p) − dĒ(t, u; p) − (dϕẼ(0, ut; p) − dϕẼ(0, u; p))

+ dϕẼ(t, u; p) − dϕẼ(0, u; p).

(3.35)
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By standard elliptic regularity theory (cf. [61]), we obtain p ∈ H1
0 (Ω) ∩ L∞(Ω). Therefore

by virtue of Taylor’s formula in Banach spaces (cf. [8, Thm. 5.8, p. 193]) the first line in
(3.35) on the right hand side can be written as

dϕẼ(0, ut; p)− dϕẼ(0, u; p)− d2Ẽ(0, u;ut− u, p) =

∫ 1

0
(1− s)d3ϕẼ(0, uts;u

t− u, ut− u, p) ds,

where the remainder can be estimated as follows
∫ 1

0
(1 − s)d3Ẽ(0, uts;u

t − u, ut − u, p) ds =

∫ 1

0
(1 − s)̺′′(uts)(u

t − u)2p ds

≤ 1

2
‖p‖L∞(Ω)‖̺′′‖L∞(R)‖ut − u‖L2(Ω) for all t ∈ [0, τ ].

Using dϕẼ(t, ut; p) − dϕẼ(0, u; p) = 0, and the differentiability of t 7→ Ẽ(t, u) yields

lim
tց0

1

t
(dϕẼ(t, ut; p) − dϕẼ(t, u; p)) = lim

tց0

1

t
(dϕẼ(0, ut; p) − dϕẼ(0, u; p)),

lim
tց0

1

t
(dϕẼ(t, u; p) − dϕẼ(0, u; p)) =

∫

Ω
A′(0)∇u · ∇p− div (θ)fp−∇f · θ p dx.

Thus from (3.35), we infer

lim
tց0

1

t

∫

Ω
j′(0, u)(ut − u) dx =

∫

Ω
A′(0)∇u · ∇p+ div (θ)̺(u)p dx

−
∫

Ω
div (θf)p dx.

Therefore we may pass to the limit in (3.34) and obtain

lim
tց0

J(Ωt) − J(Ω)

t
=

∫

Ω
∂tj(0, u) dx+ ∂tdϕẼ(0, u; p).

Altogether we have proved that dJ(Ω)[θ] = d
dtG(t, ut, ψ) = ∂tG(0, u, p) for all ψ ∈ H1

0 (Ω). ✷

3.7 Differentiability of energy functionals

If it happens that the cost function J is the energy of the PDE (3.1), that is,

J(Ω) := min
ϕ∈H1

0 (Ω)
E(Ω, ϕ),

then it is easy to show the shape differentiability of J by using the result [37, Thm. 2.1,
p. 524], see also [38, pp. 139]. First note that J(Ωt) = minϕ∈H1

0 (Ω) Ẽ(t, ϕ). By definition of

the minimum ut of Ẽ(t, ·) and u of Ẽ(0, ·), respectively, we have

Ẽ(0, ut) − Ẽ(0, u) ≥ 0, Ẽ(t, u) − Ẽ(0, u) ≤ 0 for all t ∈ [0, τ ]

and thus

J(Ωt) − J(Ω) = Ẽ(t, ut) − Ẽ(0, ut) + Ẽ(0, ut) − Ẽ(0, u)

≥ Ẽ(t, ut) − Ẽ(0, ut)

J(Ωt) − J(Ω) = Ẽ(t, ut) − Ẽ(t, u) + Ẽ(t, u) − Ẽ(0, u)

≤ Ẽ(t, u) − Ẽ(0, u).
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Using the mean value theorem, we conclude the existence of constants ηt, ζt ∈ (0, 1) such
that

t∂tẼ(ηt t, u
t) ≤ J(Ωt) − J(Ω) ≤ t∂tẼ(ζt t, u).

Thus if
Ẽ(0, u) ≥ lim inf

tց0
t>0

∂tẼ(ηt t, u
t), Ẽ(0, u) ≤ lim sup

tց0
t>0

∂tẼ(ζt t, u), (3.36)

then we may conclude that J is shape differentiable by the squeezing lemma. We obtain

lim
tց0

J(Ωt) − J(Ω)

t
= ∂tẼ(0, u).

This result can be seen as a special case of Theorem 3.9. Note that in our example

∂tẼ(t, ϕ) =

∫

Ω
A′(t)∇ϕ · ∇ϕ+ ξ′(t)̺(ϕ) dx

−
∫

Ω
ξ′(t)f tϕdx+

∫

Ω
ξ(t)B(t)∇f t · ϕdx.

From this identity, the convergence of ut → u in H1
0 (Ω) and the smoothness of A(t), ξ(t)

and B(t), we infer that (3.36) are satisfied.



Chapter 4

Shape derivative via Lagrange

method

This chapter represents the core of this thesis and presents a novel approach to the differ-
entiability of a minimax of a Lagrangian that is a utility function plus a linear penalisation
of the state equation. Its originality is to replace the usual adjoint state equation by an
averaged adjoint state equation. When compared to the former theorems [36, Thm. 3, p.
842], [33, Thm. 3, p. 93] and [30], all the hypotheses are now verified for a Lagrangian
functional without going to the dual problem and without any saddle point assumption. It
relaxes the classical continuity assumptions on the derivative of the Lagrangian involving
both the state and adjoint state to continuity assumptions that only involve the averaged
adjoint state. Besides this new theorem, we propose different other theorems with stronger
assumptions to prove the shape differentiability. Finally, we discuss in a quite general
setting how the assumptions of the presented theorems can be satisfied.

4.1 An extension of the Theorem of Correa-Seeger

4.1.1 Preliminaries

Let E,F be linear vector spaces and fix τ > 0. We consider a Lagrangian function

G : [0, τ ] × E × F → R, (t, x, y) 7→ G(t, x, y), (4.1)

such that y 7→ G(t, x, y) is affine for all (t, x) ∈ [0, τ ] × F . As a result there are functions
f : [0, τ ] × E → R and e : [0, τ ] × E × F → R, where the latter is linear in y, such that

G(t, x, y) = f(t, x) + e(t, x, y).

Associated with this Lagrangian, we consider the real valued function

g(t) := inf
x∈E

sup
y∈F

G(t, x, y).

Subsequently, we discuss the differentiability of g under weak assumptions on the function
G. Let

E(t) := {x ∈ E| dyG(t, x, 0; ŷ) = 0 for all ŷ ∈ F} .
Moreover, we introduce the sets

X(t) =

{
x̄ ∈ E| inf

x∈E
sup
y∈F

G(t, x, y) = sup
y∈F

G(t, x̄, y)

}
. (4.2)

The two sets E(t) and X(t) are related to each other.

46
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Lemma 4.1. Assume that E 6= ∅ and F 6= ∅ and t ∈ [0, τ ].

(i) In general, we have for all ȳ ∈ F

inf
x∈E

sup
y∈F

G(t, x, y) = sup
y∈F

inf
x∈E(t)

G(t, x, y) = inf
x∈E(t)

G(t, x, ȳ)

(ii) We have g(t) = ∞ if and only if E(t) = ∅.

(iii) Assume g(t) <∞ for all t ∈ [0, τ ]. Then xt ∈ E(t) with

inf
x∈E(t)

G(t, x, y) = G(t, xt, y) for all y ∈ F

if and only if xt ∈ X(t). In particular, we always have X(t) ⊂ E(t) and E(t) =
X(t) = {xt} if E(t) is single-valued.

Proof. (i) Since y 7→ G(t, x, y) is affine for all (t, x) ∈ [0, τ ] × E, we get

G(t, x, y) −G(t, x, 0) = ∂yG(t, x, 0)(y),

and thus

sup
y∈F

G(t, xt, y) = sup
y∈F

(
G(t, xt, 0) + ∂yG(t, xt, 0)(y)

)
=

{
G(t, xt, 0), if xt ∈ E(t)

∞, else
.

Taking the infimum the first assertion follows.
(ii) That E(t) = ∅ implies g(t) = ∞ follows by the definition of the infimum. To prove the
other direction suppose that E(t) 6= ∅. Then by (i)

g(t) = inf
x∈E(t)

G(t, x, 0) ≤ G(t, x∗, 0) <∞,

for any x∗ ∈ E(t), hence g(t) = ∞ implies E(t) = ∅.
(iii) “⇐”: Assume E(t) 6= ∅ then it follows from (ii) that g(t) <∞. Then for xt ∈ X(t)

sup
y∈F

G(t, xt, y) −G(t, xt, 0) = sup
y∈F

∂yG(t, xt, 0)(y)

and thus it follows from Definition 4.2 and the definition of g(t)

g(t) −G(t, xt, 0) = sup
y∈F

∂yG(t, xt, 0)(y).

By contradiction, we assume that xt ∈ E \ E(t). There exists a 0 6= ŷ ∈ F with

g(t) −G(t, x, 0) = sup
y∈F

∂yG(t, x, 0)(y) ≥ sup
λ∈R

∂yG(t, x, 0)(λŷ)

= sup
λ∈R

(λ ∂yG(t, x, 0)(ŷ)) = ∞,

which is a contradiction since g(t) <∞. Finally, since xt ∈ E(t)

−∞ < G(t, xt, y) ≤ sup
y∈F

G(t, xt, y) = g(t) = inf
x∈E(t)

G(t, x, y) ≤ G(t, xt, y).

“⇒”: Conversely, assume that xt ∈ E(t) such that for all ȳ ∈ F

inf
x∈E(t)

G(t, x, ȳ) = G(t, xt, ȳ)
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then from part (i) it follows that for all ȳ ∈ F

inf
x∈E

sup
y∈F

G(t, x, y) = inf
x∈E(t)

G(t, x, ȳ) = G(t, xt, ȳ) = sup
y∈F

G(t, xt, y)

✷

We introduce the following hypothesis.

Assumption (H0). For all t ∈ [0, τ ], xt ∈ X(t), x0 ∈ X(0) it holds:

(i) For all y ∈ F the mapping [0, 1] → R : s 7→ G(t, sxt + (1 − s)x0, y) is absolutely
continuous. This implies that the derivative dxG(t, sxt + (1 − s)x0, y;xt − x0) exists
for almost all s ∈ [0, 1] and in particular

G(t, xt, y) −G(t, x0, y) =

∫ 1

0
dxG(t, sxt + (1 − s)x0, y;xt − x0) ds.

(ii) For all ϕ ∈ E the map s 7→ dxG(t, sxt + (1 − s)x0, y;ϕ) belongs to L1(0, 1).

(iii) For every (x, t) ∈ E × [0, τ ] the mapping F → R : y 7→ G(t, x, y) is affine-linear.

Introduce for t ∈ [0, τ ], xt ∈ X(t) and x0 ∈ X(0) the following subset of F

Y (t, xt, x0) :=

{
q ∈ F |

∫ 1

0
dxG(t, sxt + (1 − s)x0, q; ϕ̂) ds = 0 for all ϕ̂ ∈ E

}
. (4.3)

For t = 0, we set Y (0, x0) := Y (0, x0, x0), which coincides with the usual adjoint equation

Y (0, x0) =
{
q ∈ F | dxG(0, x0, q; ϕ̂) = 0 for all ϕ̂ ∈ E

}
. (4.4)

In the most general situation, we define for t ∈ [0, τ ], xt ∈ X(t), x0 ∈ X(0) the set

Y (t, xt, x0) :=
{
q ∈ F | G(t, xt, q) −G(t, x0, q) = 0

}
.

Note that under the Assumption (H0), we have Y (t, xt, x0) ⊂ Y (t, xt, x0) for all t ∈ [0, τ ],
xt ∈ E(t), x0 ∈ E(0). In particular, we have Y (0, x0, x0) = F .

4.1.2 Lagrange method for non-linear problems

The following result extends a theorem of Correa-Seeger [37] in the case when the sets X(t)
and Y (t, xt, x0), xt ∈ X(t), are single-valued and the function is a Lagrangian. The result
is due to [91].

Theorem 4.2. Let the linear vector spaces E and F , the real number τ > 0, and the
function

G : [0, τ ] × E × F → R, (t, ϕ, ψ) 7→ G(t, ϕ, ψ),

be given. Let Assumption (H0) and the following conditions be satisfied.

(H1) For all t ∈ [0, τ ] and all (u, p) ∈ X(0) × F the derivative ∂tG(t, u, p) exists.

(H2) For all t ∈ [0, τ ], X(t) is nonempty and single-valued. For all t ∈ [0, τ ], xt ∈ X(t)
and x0 ∈ X(0), the set Y (t, xt, x0) is nonempty and single-valued.
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(H3) Let x0 ∈ X(0) and y0 ∈ Y (0, x0). For any sequence of non-negative real numbers
(tn)n∈N converging to zero, there exist a subsequence (tnk

)k∈N, elements xtnk ∈ E(tnk
)

and ytnk ∈ Y (tnk
, xtnk , x0) such that

lim
k→∞
tց0

∂tG(t, x0, ytnk ) = ∂tG(0, x0, y0).

We pick any ψ ∈ F . Then letting t ∈ [0, τ ], xt ∈ X(t), x0 ∈ X(0) and y0 ∈ Y (0, x0), we
conclude

d

dt
(G(t, xt, ψ))|t=0 = ∂tG(0, x0, y0).

Proof. Step 1: Let t ∈ [0, τ ], xt ∈ X(t), x0 ∈ X(0) and yt ∈ Y (t, xt, x0), y0 ∈ Y (0, x0)
be given. We will show that there exist an ηt ∈ (0, 1) such that

G(t, xt, ψ) −G(0, x0, ψ) = t∂tG(ηtt, x
0, yt), (4.5)

for all ψ ∈ F . Write

G(t, xt, ψ) −G(0, x0, ψ) = G(t, xt, yt) −G(0, x0, y0)

= G(t, xt, yt) −G(t, x0, yt) +G(t, x0, yt) −G(0, x0, yt)
(4.6)

for all ψ ∈ F , where we used G(0, x0, yt) − G(0, x0, y0) = 0, since ψ 7→ G(t, u, ψ) is affine-
linear. By Hypothesis (H1), we find for each t ∈ [0, τ ] a number ηt ∈ (0, 1) such that

G(t, x0, yt) −G(0, x0, yt) = t∂tG(ηtt, x
0, yt). (4.7)

Now using part (i) and (ii) of Hypothesis (H0), we see that yt ∈ Y (t, xt, x0) and thus
plugging (4.7) into (4.6), we recover (4.5).
Step 2: For arbitrary ψ ∈ F , we show that limtց0 δ(t)/t exists, where δ(t) := G(t, xt, ψ) −
G(0, x0, ψ). To do so it is sufficient to show that lim inftց0 δ(t)/t = lim suptց0 δ(t)/t. By
definition of the lim inf, there is a sequence (tn)n∈N such that

lim
n→∞

δ(tn)/tn = lim inf
tց0

δ(t)/t =: dδ(0).

Now let x0 ∈ X(0) and y0 ∈ Y (0, x0). Recall that δ(t)/t = ∂tG(ηtt, x
0, yt). Owing to

(H3), for any sequence of non-negative real numbers (tn)n∈N converging to zero, i.e., tn →
0 as n → ∞, there exists a subsequence (tnk

)k∈N, elements xtnk ∈ E(tnk
) and ytnk ∈

Y (tnk
, xtnk , x0) such that

lim
k→∞
tց0

∂tG(t, x0, ytnk ) = ∂tG(0, x0, y0).

Thus we conclude

dδ(0) = lim
n→∞

∂tG(ηtntn, x
0, ytn) = lim

k→∞
∂tG(ηtnk

tnk
, x0, ytnk )

= ∂tG(0, x0, y0).
(4.8)

Completely analogous, we may show for dδ(0) := lim suptց0 δ(t)/t that

dδ(0) = ∂tG(0, x0, y0) (4.9)
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Combining (4.8) and (4.9), we obtain dδ(0) = ∂tG(0, x0, y0) = dδ(0), which shows that

lim
tց0

δ(t)

t
= ∂tG(0, x0, y0).

Since ψ ∈ F was arbitrary, we finish the proof. ✷

Remark 4.3. In concrete applications the conditions (H0)-(H3) have the following mean-
ing.

(i) Condition (H0) ensures that we can apply the fundamental theorem of calculus to G
with respect to the primal variable. Condition (H1) allows an application of the mean
value theorem with respect to t. Note that the assumption (H0) is much milder than
Fréchet differentiability of ϕ 7→ G(t, ϕ, ψ).

(ii) Condition (H2) ensures that the state equation and the perturbed state equation has
a unique solution. The set Y (t, xt, x0) can be understood as the solution of some
averaged adjoint state equation.

(iii) Condition (H3) can be verified by showing that yt converges weakly to y0 and that
(t, ψ) 7→ G(t, x0, ψ) is weakly continuous. Note that there is no assumption on the
convergence of xt ∈ X(t) to x0 ∈ X(0), but in applications we need the convergence
xt → x0 to prove yt → y0 in some topologies.

(iv) The set X(t) corresponds to the solution of the state equation on the perturbed domain
Ωt pulled back to the fixed domain Ω.

Remark 4.4. By definition of yt ∈ Y (t, xt, x0), we have for all y ∈ F

G(t, xt, y) = G(t, x0, yt) ⇔ f(t, xt) − f(t, x0) = e(t, x0, yt).

From the last equality, we get by the mean value theorem the existence of ηt ∈ (0, 1) such
that

f(t, xt) − f(t, x0)

t
= ∂te(ηt t, x

0, yt).

This means that the continuity of (s, t) 7→ ∂te(s, x
0, yt) is directly related to the differen-

tiability of t 7→ f(t, xt). For applications this means that the differentiability of the cost
function is connected with the continuity of linearised state equation.

4.1.3 Possible generalisations

We can consider a weaker averaged equation and thus weaken the condition (i),(ii) of
Assumption (H0). We may write G as

G(t, x, y) = f(t, x) + e(t, x, y),

for two functions f : [0, τ ] × E → R and e : [0, τ ] × E × F → 0, where the function e is
linear in y. Now it is sufficient to require that e satisfies assumption (H0) (G replaced by
e) and for f we need: for all t ∈ [0, τ ], xt ∈ X(t), x0 ∈ X(0) the function

[0, τ ] → R : s 7→ f(t, sxt + (1 − s)x0)
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is differentiable. Under these assumptions, we conclude by the mean value theorem that
there exists s′ ∈ [0, τ ] depending on t such that

f(t, xt) − f(t, x0) = dxf(t, s′xt + (1 − s′)x0;xt − x0) (4.10)

and in particular

G(t, xt, p) −G(t, x0, p) =

∫ 1

0
dxe(t, sx

t + (1 − s)x0, p;xt − x0) ds

+ dxf(t, s′xt + (1 − s′)x0;xt − x0).

Now assume that for all t ∈ [0, τ ], xt ∈ X(t), x0 ∈ X(0), s′ ∈ (0, 1) and for all û ∈ E

dxf(t, s′xt + (1 − s′)x0; û) exists.

Then instead of considering the averaged equation, we could consider the modified averaged
equation: Find yt ∈ F such that

∫ 1

0
dxe(t, sx

t + (1 − s)x0, yt; û) ds+ dxf(t, s′xt + (1 − s′)x0; û) = 0 (4.11)

for all û ∈ E. Since s′ (defined by (4.10)) depends on t, the set Y (t, xt, x0) has to be
replaced by

Ỹ (t, xt, x0) := {q ∈ F : q solves (4.11) with s′ such that (4.10)}.

Then we can follow the lines of the proof of Theorem 4.2 with the mentioned changes. Since
in applications f will be the cost function, this remark means that we only need the cost
function to be directional differentiable without continuity. Nevertheless, to identify the
limit y0 we need some continuity to pass to the limit tց 0 in (4.11). Using the Henstock–
Kurzweil integral in (4.11) (see e.g. [15]), we may even weaken the absolute continuity of
s 7→ e(t, sxt+(1−s)x0, y) (y ∈ F ) to differentiability, since for this integral the fundamental
theorem is satisfied for merely differentiable functions.

4.1.4 A modification of the single-valued case

Let E1, E2 and F1, F2 be Banach spaces. Consider a function

G : [0, τ ] × E1 × E2 × F1 × F2 → R, (t, v, w, y, z) 7→ G(t, v, w, y, z).

We make the following assumption for the function G.

Assumption (D0). (i) For all t ∈ [0, τ ], v, ṽ ∈ E1, w, w̃ ∈ E2, y ∈ F1, z ∈ F2

[0, 1] → R : s 7→ G(t, v + sṽ, w, y, z)

[0, 1] → R : s 7→ G(t, v, w + sw̃, y, z)

are absolutely continuous, which implies that

G(t, v + ṽ, w, y, z) −G(t, v, w, y, z) =

∫ 1

0
dvG(t, vts, w, y, z; v − ṽ) ds

G(t, v, w + w̃, y, z) −G(t, v, w, y, z) =

∫ 1

0
dwG(t, v, wts, y, z;w − w̃) ds,

where vts := sṽ + (1 − s)v and wts := sw̃ + (1 − s)w.
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(ii) For all v, ṽ, v̂ ∈ E1, w, w̃, ŵ ∈ E2, y ∈ F1, z ∈ F2

s 7→ dG(t, v + sv̂, w, y, z; w̃) and s 7→ dG(t, v, w + sŵ, y, z; w̃)

exist and belong to L1(0, 1).

(iii) For all v, ṽ, v̂ ∈ E1, w, w̃, ŵ ∈ E2, y ∈ F1, z ∈ F2 the mappings ỹ 7→ G(t, v, w, ỹ, z)
and z̃ 7→ G(t, v, w, y, z̃) are affine-linear.

For any t ∈ [0, τ ], we consider the system of state equations

dyG(t, v, w, y, z; ỹ) = 0 for all ỹ ∈ F1 (4.12)

dzG(t, v, w, y, z; z̃) = 0 for all z̃ ∈ F2. (4.13)

The set of all (v, w) ∈ E1×E2 satisfying (4.12),(4.13) is denoted by E(t). For any t ∈ [0, τ ],
qt := (vt, wt) ∈ E(t) and qt := (v0, w0) ∈ E(0), we consider the system

∫ 1

0
dvG(t, vts, w

t, yt, zt; ỹ) ds = 0 for all ỹ ∈ F1 (4.14)

∫ 1

0
dwG(t, v0, wts, y

t, zt; z̃) ds = 0 for all z̃ ∈ F2, (4.15)

where vts := svt+(1−s)v0 and wts := swt+(1−s)w0. We introduce for qt := (vt, wt) ∈ E(t)
the set

Y(t, qt, q0) :=
{

(yt, zt) ∈ F1 × F2| (yt, zt) solves (4.14), (4.15)
}
.

For t = 0 we set Y(0, q0) := Y(t, qt, q0) which is the usual adjoint system. Note that under
Assumption (D0), (yt, zt) ∈ Y(t, qt, q0) implies

G(t, vt, wt, yt, zt) −G(t, v0, wt, yt, zt) = 0 (4.16)

G(t, v0, wt, yt, zt) −G(t, v0, w0, yt, zt) = 0. (4.17)

Therefore, we may introduce a generalisation of the set Y(t, qt, q0) by

Y(t, qt, q0) := {(yt, zt) ∈ F1 × F2| (yt, zt) satisfies (4.16), (4.17) }.

If (D0) is satisfied, we have Y(t, qt, q0) ⊂ Y(t, qt, q0) and Y(0, q0, q0) = F1 × F2. Now we
may prove the following theorem.

Theorem 4.5. Let the Banach spaces E1, E2 and F1, F2, the real number τ > 0, and the
function

G : [0, τ ] × E1 × E2 × F1 × F2 → R, (t, v, w, y, z) 7→ G(t, v, w, y, z),

be given. Additionally to the Hypothesis (D0), let the following hypotheses be satisfied.

(D1) For all v ∈ E1, w ∈ E2, y ∈ F1 and z ∈ F2

[0, τ ] → R : t 7→ G(t, v, w, y, z)

is differentiable.

(D2) For all t ∈ [0, τ ], we have E(t) 6= ∅. For for all t ∈ [0, τ ], qt := (vt, wt) ∈ E(t) and
q0 := (v0, w0) ∈ E(0), the Y(t, qt, q0) 6= ∅ be non-empty. Moreover, E(t) is single-
valued for all t ∈ [0, τ ] and also Y(t, qt, q0) is single-valued for all t ∈ [0, τ ], qt ∈ E(t)
and q0 ∈ E(0).
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(D3) Let q0 ∈ E(0) and p0 ∈ Y (0, q0). For any sequence of non-negative real numbers
(tn)n∈N converging to zero, there exists a subsequence (tnk

)k∈N, elements qtnk ∈
E(tnk

) and ptnk = (ztnk , ytnk ) ∈ Y (tnk
, qtnk , q0) such that

lim
k→∞
tց0

∂tG(t, q0,ptnk ) = ∂tG(0, q0,p0).

Then for all ψ̃ := (ψ1, ψ2) ∈ F1 × F2

d

dt
(G(t, qt, ψ̃)|t=0 = ∂tG(0, qt,p0).

Proof. Let t ∈ [0, τ ], qt = (vt, wt) ∈ E(t), q0 := (v0, w0) ∈ E(0) and pt = (yt, zt) ∈
Y(t, qt, q0), p0 = (y0, z0) ∈ Y(t, qt, q0) be given.
Step 1: We first show that there exists ηt ∈ (0, 1) such that

G(t, qt,ψ) −G(0, q0,ψ) = t ∂tG(ηtt, q
0,pt). (4.18)

Write

G(t, vt, wt,ψ) −G(0, x1, x2,ψ) = G(t, vt, wt, yt, zt) −G(0, x1, x2, y, z)

= G(t, vt, wt, yt, zt) −G(t, v, wt, yt, zt)

+G(t, v0, wt, yt, zt) −G(t, v0, w0, yt, zt)

+G(t, v0, w0, yt, zt) −G(0, v0, w0, yt, zt)

(4.19)

for all ψ = (ψt, ψ2) ∈ F1 × F2. By Hypotheses (D1), we find for each t ∈ [0, τ ] a number
ηt ∈ (0, 1) such that

G(t, x1, x2, y
t, zt) −G(0, x1, x2, y

t, zt) = t ∂tG(ηtt, x1, x2, y
t, zt).

Therefore, plugging the previous equation into (4.19) and using pt ∈ Y(t, qt, q0), we end
up with (4.18).
Step 2: Let ψ ∈ F1 × F2 be arbitrary and set δ(t) := G(t, xt, ψ) − G(0, x, ψ). Proceeding
now as in the proof of Theorem 4.2, we conclude

dg(0) = dg(0) = lim
tց0

∂tG(ηtt, x, y
t) = ∂tG(0, x, y).

Since ψ ∈ F1 × F2 was arbitrary we finish the proof. ✷

4.2 More theorems on the differentiability of Lagrangians

Now we present alternative theorems to prove the shape differentiability, which complement
Theorem 4.2. We introduce several perturbed adjoint equations and exploit a first order
expansion of the Lagrangian with respect to the unknown. The remainder of the expansion
is assumed to vanish with order two. Still the result from the previous section turns out to
have the lowest requirements. In the following let E and F be two Banach spaces.
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4.2.1 A theorem using weak differentiability of the state

For t ∈ [0, τ ], τ > 0 let the sets X(t) and Y (0, x0), x0 ∈ X(0) be defined as in (4.2), (4.4),
respectively. The following theorem uses the weak differentiability of t 7→ xt.

Theorem 4.6. Let E and F be Banach spaces and assume that E is reflexive. Let As-
sumption (H0) and the following hypotheses be satisfied.

(E2) There are constants c > 0 and τ > 0 such that ‖xt − x0‖E ≤ ct for all t ∈ [0, τ ].

(E3) For all t ∈ [0, τ ], the sets X(t) and Y (t, x0) are non-empty and single-valued.

(E4) Assume that for all t ∈ [0, τ ] the set X(t) is single-valued. Introduce for t ∈ [0, τ ] and
xt ∈ X(t), x0 ∈ X(0) the operator

x̂ 7→ B(t, x̂, y) :=

∫ 1

0
dxG(t, sxt + (1 − s)x0, y; x̂) ds.

Let (xn)n∈N be an arbitrary weakly converging sequence in X with limit x̃. Then

lim
n→∞
tց0

B(t, xn, y) = B(0, x̂, y).

Then letting t ∈ [0, τ ], xt ∈ X(t), x0 ∈ X(0), y0 ∈ Y (0, x0) and y ∈ F , it follows

d

dt
G(t, xt, y)|t=0 = ∂tG(0, x0, y0).

Proof. Step 1:
For y ∈ Y , xt ∈ X(t) and x0 ∈ X(0), we write

G(t, xt, y) −G(0, x0, y) = G(t, xt, y) −G(t, x0, y) +G(t, x0, y) −G(0, x0, y). (4.20)

Step 2:
We will show that

lim
tց0

G(t, xt, y) −G(t, x0, y)

t
= 0. (4.21)

Due to Assumption (H0), we have the following relation

G(t, xt, y) −G(t, x0, y) =

∫ 1

0
dxG(t, sxt + (1 − s)x0, y;xt − x0) ds.

By Assumption (E4), we get that the operator

ϕ 7→ B(t, ϕ, y) :=

∫ 1

0
dxG(t, sxt + (1 − s)x0, y;ϕ) ds

satisfies for any y ∈ F and any weakly converging sequence xn ⇀ x̃ that

lim
n→∞
tց0

B(t, xn, y) = B(0, x̃, y).

We will show that lim inftց0 δ̃(t)/t = lim suptց0 δ̃(t)/t, where δ̃(t) := G(t, xt, y)−G(t, x0, y).

By definition of lim inftց0, there exists a sequence tn ց 0 such that limn→∞ δ̃(tn)/tn =
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lim inftց0 δ̃(t)/t. Now, by condition (E2) the sequence (xt − x0)/t is bounded and we may
pick a subsequence (tnk

)k∈N that is also converging to zero such that

(xtnk − x0)/tnk
⇀ x̃

for some element x̃ ∈ E. Thus, we get

lim
n→∞

B(tnk
, (xtnk − x0)/tnk

, y) = lim
n→∞
tց0

B(t, (xtnk − x0)/tnk
, y) = B(0, x̃, y).

Due to Hypothesis (E4) the right hand side tends to zero as k → ∞, therefore we get
lim inftց0 δ̃(t)/t = 0. In the same way, we may prove lim suptց0 δ̃(t)/t = 0 and consequently
we recover (4.21). Finally, dividing (4.20) by t > 0 and using the previous equation, we
finish the prove. ✷

4.2.2 Partially perturbed adjoint equation

In [33] a theorem is proved (Theorem 4 in the cited paper) that gives some criteria when a
minimax function may be differentiated without saddle point assumption. Unfortunately,
it is not directly applicable to Lagrange functions. We will present a version of this theorem
that is well-suited for Lagrangians.

Let E and F be two Banach spaces and let the function G be defined as in (4.1).
Introduce for x0 ∈ X(0) and t ∈ [0, τ ] the set

Y (t, x0) := {yt ∈ F : dxG(t, x0, yt; x̂) = 0, for all x̂ ∈ E}.

Note that Y (0, x0) coincides with the set introduced in (4.4) of Subsection 4.1.1.

Theorem 4.7. Additionally to Assumption (H0) let the following hypotheses be satisfied.

(G0) There exist τ > 0 and C > 0 such that for all t ∈ [0, τ ], for all xt ∈ X(t) and for all
yt ∈ Y (t, x0)

|G(t, xt, yt) −G(t, x0, yt)| ≤ C‖xt − x0‖2E .

(G1) For all t ∈ [0, τ ], the sets X(t) and Y (t, x0) are non-empty and single-valued.

(G2) There exist constants c > 0, ε > 0 and τ > 0 such that ‖xt − x0‖X ≤ ct1/2+ε for all
t ∈ [0, τ ].

(G3) Let x0 ∈ X(0) and y0 ∈ Y (0, x0). For any non-negative real sequence (tn)n∈N con-
verging to zero, there exists a subsequence (tnk

)k∈N, and there exists ytnk ∈ Y (tnk
, x0)

such that

lim
k→∞
tց0

∂tG(t, x0, ytnk ) = ∂tG(0, x0, y0).

Then it follows for any y ∈ F

d

dt
G(t, xt, y)|t=0 = ∂tG(0, x0, y0),

where xt ∈ X(t) (t ∈ [0, τ ]), x0 ∈ X(0) and y0 ∈ Y (0, x0).
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Proof. Let t ∈ [0, τ ], xt ∈ X(t), x0 ∈ X(0) and yt ∈ Y (t, x0) be given. Then, we write

G(t, xt, yt) −G(t, xt, yt) = G(t, xt, yt) −G(t, x0, yt) +G(t, x0, yt) −G(0, x0, yt). (4.22)

Due to Assumption (G0) and yt ∈ Y (t, x0), we have the following expansion

|G(t, xt, yt) −G(t, x0, yt)| ≤ C ‖xt − x0‖2E .

Taking into account (G2), we get that

lim
tց0

G(t, xt, y) −G(t, x0, y)

t
= 0.

Applying the mean value theorem to s 7→ G(st, x0, yt) on (0, 1), we get a number ηt ∈ (0, 1)
such that

(G(t, x0, yt) −G(0, x0, yt))/t = ∂tG(ηtt, x
0, yt).

Put dg(0) := lim inf tց0
t>0

∂tG(ηtt, x
0, yt) and dg(0) := lim inf tց0

t>0
∂G(ηtt, x

0, yt). Then taking

a sequence tn ց 0 such that g(0) = limn→∞ ∂tG(ηtntn, x
0, ytn) and using (G3) it is easily

seen that dg(0) = ∂tG(0, x0, y0). In the same way we may prove dg(0) = ∂tG(0, x0, y0) and
thus g(0) = g(0), which implies that limtց0(G(t, x0, yt) − G(0, x0, yt))/t = ∂tG(0, x0, y0).
Therefore, we may divide (4.22) by t > 0 and pass to the limit tց 0 to obtain the desired
result. ✷

4.3 Continuity and Lipschitz continuity of t 7→ xt

To study the behavior of t 7→ xt, xt ∈ X(t), we investigate the operators associated with
the averaged adjoint and the usual adjoint equation. In general they will be bilinear forms
on Banach spaces as can be easily seen by considering the p-Laplacian with p 6= 2.

Consider a family of continuous bilinear forms

(t, v, w) 7→ a(t, v, w) : [0, τ ] ×H1 ×H2 → R

on two Hilbert spaces H1 and H2.

Assumption (L).

(i) There exists L > 0 such that

a(t, v, w) ≤ L‖v‖H1‖v‖H2 for all v ∈ H1, w ∈ H2, t ∈ [0, τ ].

(ii) For all v̂ ∈ H1 and ŵ ∈ H2 the functions

v 7→ a(t, v, ŵ) and w 7→ a(t, v̂, w)

are linear functions.

(iii) Assume that there is a constant α > 0 independent of t ∈ [0, τ ] such that

∀x ∈ H1 : α ‖x‖H1 ≤ sup
w∈H2
w 6=0

a(t, x, w)

‖w‖H2

. (4.23)
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For given f(t, ·) ∈ H ′
2 and t ∈ [0, τ ], we are then interested in the question under which

conditions there exists u ∈ H1 such that

a(t, u, v) = f(t, v) for all v ∈ H2? (4.24)

One answer is given by a theorem of Nečas. The following result is an equivalent version
of [78, Thm. 3.3].

Theorem 4.8 (Nečas). Let a : H1 ×H2 → R be a continuous bilinear form and f ∈ H ′
2 a

continuous linear functional. Then the variational problem

u ∈ H1 : a(u, v) = f(v) for all v ∈ H2

admits a unique solution u ∈ H1 and depends continuously on f if and only if

(C1) There exists α > 0 such that

(SU)
∀ v ∈ H1 : sup

w∈H2
w 6=0

a(v, w)

‖w‖H2

≥ α ‖v‖H1 .

(C2) For every 0 6= w ∈ H2 there exists v ∈ H1 such that a(v, w) 6= 0.

As a result, we conclude that the problem (4.24) admits for each t ∈ [0, τ ] a unique
solution xt ∈ H2 when Assumption (L) is satisfied. Moreover, it follows immediately

α ‖xt‖H1 ≤ sup
w∈H2
w 6=0

a(t, xt, w)

‖w‖H2

= sup
w∈H2
w 6=0

f(t, w) = ‖f(t)‖H′
2
.

Introducing the operator C(t) : H1 → H ′
2 by 〈C(t)u, v〉 := a(t, u, v), u ∈ H1, v ∈ H2, we can

rewrite the previous inequality as

α ‖xt‖H1 ≤ ‖C(t)xt‖H′
2

= ‖f(t)‖H′
2
.

4.3.1 Estimates of ‖xt − x0‖ under saddle point assumption

Let H1, H2 be Hilbert spaces and τ > 0 a real number. Throughout this paragraph we
consider the Lagrangian L : [0, τ ] ×H1 ×H2 → R given by

L(t, x, y) := e(t, x, y) +
1

2
‖x− x0‖2H1

. (4.25)

The function e can be imagined as a perturbed PDE as described in the previous chapter.
Let g(t) and h(t) be defined as Subsection 3.4.3, where E,F and G are replaced by H1, H2

and L. Then we define the sets (cf. (3.30),(3.31))

H1(t) =

{
x̂ ∈ H1 : sup

y∈H1

L(t, x̂, y) = g(t)

}
, H2(t) =

{
ŷ ∈ H2 : inf

x∈H1

L(t, x, ŷ) = h(t)

}
.

According to Lemma 3.6, if g(t) = h(t) then the set of saddle points of L is given by

S̃(t) := H1(t) ×H2(t).

We start with the simpler case, where the state equation is convex-concave.
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(S1) The Lagrangian L(t, ·, ·) admits a unique saddle points for each t ∈ [0, τ ].

(S2) Let L satisfy Assumption (H0) (on page 49) and suppose that for all elements y ∈ H2

the mapping H1 → R : x 7→ e(t, x, y) is Gateaux differentiable.

(S3) There exist C > 0 and α ∈ (0, 1] such that for x0 ∈ H1(0) and yt ∈ H2(t)

|e(t, x0, yt) − e(0, x0, yt)| ≤ C tα ‖yt‖H2 .

(S4) For all t ∈ [0, τ ] and xt ∈ H1(t) the operator a(t, x, y) := dxe(t, x
t, x; y) satisfies

Assumption (L) and Hypotheses (C1) and (C2).

Before we proceed, we make the following observation which follows from Lemma 3.6.
A saddle point (xt, yt) ∈ S̃(t) satisfies for arbitrary (x̂, ŷ) ∈ H1 ×H2 and s ∈ [0, 1]

L(t, xt + s(xt − x), yt, x̂) − L(t, xt, yt) ≥ 0

L(t, xt, yt + s(yt − ŷ)) − L(t, xt, yt)) ≤ 0.

Thus dividing both equations by s > 0 and passing to the limit s→ 0 yield

dxe(t, x
t, yt, x̂) = −(xt − x0, x̂)H1 for all x̂ ∈ Ẽ,

e(t, xt, ŷ) = 0 for all ŷ ∈ H2
(4.26)

and hence xt ∈ X(t). Conversely, a solution of the system (4.26) is a saddle point if e(t, x, y)
is a convex-concave function. The following is a consequence of the previous considerations.

Proposition 4.9. Let the Hilbert spaces H1, H2 and the Lagrangian L as in (4.25) be given.
Assume that the conditions (S1)-(S3) are satisfied. Then there are constants C > 0, τ > 0
and α ∈ (0, 1] such that

‖xt − x0‖H1 ≤ Ctα for all t ∈ [0, τ ].

Proof. By definition of a saddle point (xt, yt) ∈ H1 ×H2 and the definition of L

L(t, xt, yt) ≤ L(t, x0, yt), ⇐⇒ ‖xt − x0‖2H1
≤ e(t, x0, yt) − e(t, xt, yt).

Now from Hypothesis (S3) and the last inequality, we infer that there exist C > 0, τ > 0
and α ∈ (0, 1] such that ‖xt−x0‖2H1

≤ Ctα ‖yt‖H2 , for all t ∈ [0, τ ]. Further from (4.23) and
sup‖v‖H1

≤1,v 6=0(x
t−x0, v)H2 = ‖xt−x0‖H2 , we infer ‖xt−x0‖H1 ≤ C tα for all t ∈ [0, τ ]. ✷

4.3.2 Estimates of ‖xt − x0‖ using the averaged adjoint equation

Let H be a Hilbert space and F a Banach space. For t ∈ [0, τ ], xt ∈ X(t) and x0 ∈ X(0)
(cf. (4.2) for the definition of X(t)), we consider the Lagrangian L : [0, τ ] × H × F → R

given by

L(t, x, y) :=
1

2
‖x− x0‖2H + e(t, x, y).

Suppose that L satisfies Assumption (H0) on page 49. Notice that yt ∈ Y (t, xt, x0) if and
only if:

∫ 1

0
dxe(t, sx

t + (1 − s)x0, yt, x̂) ds = −(xt − x0, x̂)H for all x̂ ∈ H. (4.27)
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It will be useful to introduce the operator D(t, xt, x0) : F → H ′ by

〈D(t, xt, x0)y, z〉 :=

∫ 1

0
dxe(t, sx

t + (1 − s)x0, y; z) ds, y ∈ F, z ∈ H.

Then we may write (4.27) as

D(t, xt, x0)yt = −(xt − x0) in H ′.

(T1) Let L satisfy Assumption (H0) and suppose that for all y ∈ F the mapping H → R :
x 7→ e(t, x, y) is Gateaux differentiable.

(T2) There exist constants τ > 0, C > 0 and α ∈ (0, 1] such that for t ∈ [0, τ ], x0 ∈ X(0)
and yt ∈ Y (t, xt, x0)

|e(t, x0, yt) − e(0, x0, yt)| ≤ C tα ‖y0‖F .

(T3) The bilinear form a(t, y, z) := 〈D(t, xt, x0)y, z〉 satisfies Hypotheses (L), (C1) and
(C2).

Theorem 4.10. Let the Hypotheses (T1)-(T3) be satisfied. Then there exist constants
C > 0, τ > 0 and α ∈ (0, 1] such that

‖xt − x0‖H ≤ Ctα for all t ∈ [0, τ ].

Proof. We get from the mean value theorem in integral form

〈D(t, xt, x0)yt, xt − x0〉 = e(t, x0, yt) − e(t, xt, yt) for all t ∈ [0, τ ].

Therefore using (T2) and e(t, xt, y) = 0 for all t ∈ [0, τ ], y ∈ F , we get for some constants
C > 0, τ > 0 and α ∈ [0, 1) the estimate

‖xt − x0‖2H = e(t, x0, yt) − e(t, xt, yt)

= e(t, x0, yt) − e(0, x0, yt)

≤ Ctα ‖yt‖F for all t ∈ [0, τ ].

Since the operator D(t, xt, x0) is uniformly invertible, we obtain ‖yt‖F ≤ c‖xt − x0‖H for
all t ∈ [0, τ ], which together with the previous equation yields the desired estimate. ✷

4.3.3 Weak differentiability of t 7→ xt via Theorem 4.2

The following is a generalisation of an idea introduced by M.C. Delfour 1. We introduce
the auxillary Lagrangian L : [0, τ ] × E × F → R by

L(t, x, y) := e(t, x, y) + G(x− x0),

where E and F are reflexive Banach spaces and G : E → R is a continuous functional on E.
We assume again that e satisfies Assumption (H0) on page 49. Note that yt ∈ Y (t, xt, x0)
if and only if

〈D(t, xt, x0)yt, x̂〉 = −G(x̂) for all x̂ ∈ E. (4.28)

The convergence of xt ∈ X(t) to x := x0 does not depend on G. Thus if the hypotheses
(H0)-(H3) of Theorem 4.2 are satisfied for any cost function then they will certainly be
satisfied for J(x̂) := G(x̂− x0).

1 M.C. Delfour is professor at the Université de Montréal in the Département de mathématiques et de
statistique.
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Assumption. Assume that for any G ∈ L(E;R) the Lagrangian

L(t, x, y) := e(t, x, y) + G(x− x0)

satisfies the Assumptions (H0)-(H3).

We have that
g(t) = inf

E
sup
F

L(t, x, y) = G(xt − x0)

and conclude from Theorem 4.2 that

lim
tց0

(g(t) − g(0))/t = lim
tց0

G

(
xt − x0

t

)

exists for all G ∈ L(E;R) and is equal to ∂tL(0, x0, y0) = ∂te(0, x
0, y0). Note that y0

depends on G via (4.28). We introduce the canonical linear mapping from E′ into R

namely L(E;R) → R : f 7→ δx(f) = f(x). Put x̂t := (xt − x0)/t, then we see that
δx̂t : L(E;R) → R defines a family of continuous linear mappings such that

sup
t∈[0,τ ]

|δx̂t(f)| = sup
t∈[0,τ ]

∣∣∣∣f
(
xt − x0

t

)∣∣∣∣ <∞, for all f ∈ E′.

From the Theorem of Banach-Steinhaus [96, Thm IV.2.1, p.141], we infer supt∈[0,τ ] ‖δx̂t‖E′′ <
∞, where E′′ := L(E′,R) denotes the bi-dual of E. Now, by reflexivity of E, we obtain
‖x‖E = ‖δx‖E′′ and thus

C := sup
t∈[0,τ ]

∥∥∥∥
xt − x0

t

∥∥∥∥
E

<∞.

In particular (xt − x0)/t stays bounded and

‖xt − x0‖E ≤ C t for all t ∈ [0, τ ].

Finally, note that for any sequence (tn)n∈N with tn ց 0 as n → ∞, we may extract a
subsequence (tnk

)k∈N such that (xtnk )k∈N converges weakly to some v ∈ E. But this v
satisfies

∂te(0, x
0, y0) = G(v).

In fact, the weak limit v is characterised by x0 and y0 and the derivative of e with respect
to t.

Remark 4.11. This result is quite remarkable and makes a statement about the Lagrangian
approach in general. Leaving aside the Assumptions (H0)-(H3) of Theorem 4.2, we see that
if the Lagrangian approach works for simple cost functions, then, roughly spoken, it implies
that the weak material derivative exists. For problems like the p-Laplacian it has to be
checked if it is applicable, because if yes then we get a posteriori the weak differentiability
of t 7→ xt, which cannot be established by the implicit function theorem.

4.3.4 A comparison of the adjoint equation

Let the function G(t, x, y) be such that Assumption (H0) of page 49 is satisfied. So far we
introduced three types of adjoint equations to prove the shape differentiability

dxG(t, xt, ȳt;ϕ) = 0 for all ϕ ∈ E  Correa-Seeger

dxG(t, x0, ỹt;ϕ) = 0 for all ϕ ∈ E  partial perturbed adjoint
∫ 1

0
dxG(t, sxt + (1 − s)x0, yt;ϕ) = 0 for all ϕ ∈ E  averaged adjoint.
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We pick any xt ∈ X(t), x0 ∈ X(0) and yt ∈ Y (t, xt, x0). Then, assuming that Hypothe-
sis (G0) is valid, we get

G(t, xt, yt) −G(t, x0, yt) − dxG(t, x0, yt, xt − x0) = |dxG(t, x0, yt, xt − x0)|
= O(‖xt − x0‖2E).

Assume that ‖xt−x0‖E ≤ Ct for all [0, τ ], where C > 0 is a constant. Then ỹt ∈ Y (t, xt, x0)
solves

dxG(t, x0, yt;xt − x0) = O(t2).

If (xt, ȳt) is a saddle point of G(t, x, y) then G(t, xt, ȳt) ≤ G(t, x0, ȳt) for all t ∈ [0, τ ]. Thus

−dxG(t, x0, ȳt, xt − x0) ≤ G(t, xt, ȳt) −G(t, x0, ȳt) − dxG(t, x0, ȳt, xt − x0)

= O(‖xt − x0‖2E).

Since dxG(t, x0, ȳt, xt − x0) ≤ 0 it follows

dxG(t, x0, ȳt;xt − x0) = O(t2).

Finally, by definition of ŷt ∈ Y (t, x0), we have

dxG(t, x0, ŷt;xt − x0) = 0.



Chapter 5

Applications to transmission

problems

Transmission problems naturally arise in many applications such as the electrical impedance
tomography, magneto induction tomography or the classical Stefan problem. For the regu-
larity analysis of linear transmission problems in smooth domains, we refer the reader to
[31]. The main difficulty in the analysis of shape optimization problems is the discontinuity
of the derivative of the PDE over the interface on which usually interface conditions are
imposed.

In the present chapter, we apply Theorem 4.2 to a semi-linear problem (Section 5.1),
a linear transmission problem in elasticity (Section 5.2), an electrical impedance problem
(Section 5.3) and a quasi-linear scalar transmission problem (Section 5.4). For the latter
three problems we discuss the existence of optimal shapes using the techniques introduced
in Section 2.4.

5.1 The semi-linear model problem

5.1.1 The problem from Chapter 3

In this section we revisit the example (3.1),(3.2) from Chapter 3. To demonstrate the
efficiency of Theorem 4.2, we apply it to this simple model problem. For convenience, we
recall the cost function

J(Ω) :=

∫

Ω
|u− ur|2 dx, (5.1)

and the weak formulation of (3.1)

∫

Ω
∇u · ∇ψ dx+

∫

Ω
̺(u)ψ dx =

∫

Ω
fψ dx for all ψ ∈ H1

0 (Ω). (5.2)

Suppose in the following that the assumptions on the data f, ur and Ω introduced in the
beginning of Subsection 3.2 is satisfied. We want to prove the shape differentiability of
(5.1) under the following conditions:

Assumption (S). The function ̺ : R → R is continuously differentiable and satisfies:

∀x, y ∈ R : (̺(x) − ̺(y))(x− y) ≥ 0.

For t ∈ [0, τ ], (τ > 0) let X(t), Y (0, u0) and Y (t, ut, u0) (ut ∈ X(t), u0 ∈ X(0)) be the
sets defined in (4.2), (4.4) and (4.3), respectively. Recall from Chapter 3 that the equation

62
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(5.2) on the domain Φt(Ω) transported back to Ω by y = Φt(x) reads

∫

Ω
A(t)∇ut · ∇ψ dx+

∫

Ω
ξ(t)̺(ut)ψ dx =

∫

Ω
ξ(t)f tψ dx for all ψ ∈ H1

0 (Ω). (5.3)

This equation characterises the unique minimum of the convex energy (3.7). For details,
we refer the reader to Chapter 3. Recall the definition of the Lagrangian associated to the
problem

G(t, ϕ, ψ) =

∫

Ω
ξ(t)|ϕ− utr|2 dx+

∫

Ω
A(t)∇ϕ · ∇ψ + ξ(t)̺(ϕ)ψ dx−

∫

Ω
ξ(t)f tψ dx. (5.4)

Theorem 5.1. Let Assumption (S) be satisfied. The shape derivative of J defined in (5.1)
exists and is given by

dJ(Ω)[θ] = ∂tG(0, u0, p0),

where p0 ∈ Y (0, u0).

Proof. Let us verify the conditions (H0)-(H3) for the function G given by (5.4).
(H0) This has already been proven in Section 3.2.
(H1) This is an easy consequence of θ ∈ C2

c (D,Rd) and Lemma 2.16. The derivative is
given by (3.29).
(H2) Note that for all t ∈ [0, τ ], we have X(t) = {ut}, where ut solves (5.3). Moreover,
pt ∈ Y (t, ut, u0) if and only if

∫

Ω
A(t)∇ψ ·∇pt+ξ(t)k(u, ut)ψ dx = −

∫

Ω
ξ(t)(ut+u−2utr)ψ dx for all ψ ∈ H1

0 (Ω), (5.5)

where k(u, ut) :=
∫ 1
0 ̺

′(uts) ds and uts := sut + (1− s)u. Due to the Lemma of Lax-Milgram
the previous equation has a unique solution yt ∈ H1

0 (Ω). Note that the strong formulation
of the averaged adjoint on the moved domain, namely, pt := pt ◦ Φ−1

t on Ωt satisfies

−∆pt + k(u ◦ Φ−1
t , ut)pt = −(ut − u ◦ Φ−1

t − 2ur) in Ωt

pt = 0 on ∂Ωt,

where k(u ◦ Φ−1
t , ut ◦ Φ−1

t ) :=
∫ 1
0 ̺

′(uts ◦ Φ−1
t ) ds =

∫ 1
0 ̺

′(sut + (1 − s)u ◦ Φ−1
t ) ds.

(H3) We already know that Assumption (S) implies that t 7→ ut is continuous as a map from
[0, τ ] into H1

0 (Ω). But this is actually not necessary as we will show now. Suppose that we
do not know that t 7→ ut is continuous. Then by inserting ψ = ut in the state equation (5.3),
we obtain ‖ut‖H1(Ω) ≤ C for all t ∈ [0, τ ], where C > 0 is a constant after an application of
Hölder’s inequality. For any sequence of non-negative real numbers (tn)n∈N converging to
zero there exists a subsequence (tnk

)k∈N such that utnk ⇀ z as k → ∞. Setting t = tnk
in

the state equation and passing to the limit k → ∞ shows z = u. Moreover, inserting ψ = yt

into (5.5) as test function and using Hölder’s inequality yields for some constant C > 0

‖yt‖H1
0 (Ω) ≤ C‖ut + u− 2utr‖L2(Ω) for all t ∈ [0, τ ].

Therefore again for any sequence (tn)n∈N there exists a subsequence (tnk
)n∈N such that

ytnk ⇀ q as k → ∞ for some q ∈ H1
0 (Ω). Selecting t = tnk

in (5.5), we would like to pass to
the limit k → ∞ by using Lebesgue’s dominated convergence theorem. It suffices to show

that wk(x) :=
∫ 1
0 ̺

′(u
tnk
s (x)) ds is bounded in L∞(Rd) independently of k and that this

sequence convergences pointwise almost everywhere in Ω to ̺′(u). The boundedness of wk

follows from the continuity of ut on Ω and the continuity of ̺′. The pointwise convergence
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wk(x) → ̺′(u(x)) as k → ∞ (possibly a subsequence) follows from the fact that ̺ is con-
tinuous and utnk converges pointwise to u as k → ∞. Therefore there is a sequence tn ց 0
such that we may pass to the limit n → ∞ in (5.5), after inserting t = tn. By uniqueness
we conclude q = y ∈ Y (0, u0). Finally note that (t, ψ) 7→ ∂tG(t, u, ψ) is weakly continuous.
All conditions (H0)-(H3) are satisfied and we finish the proof. ✷

5.1.2 A semi-linear optimal control problem

We consider the cost function

J(y) :=

∫

Ω
|u(y) − ur|2 dx+ α

∫

Ω
y2 dx, (α > 0)

where u = u(y) satisfies

−∆u+ ̺(u) = y in Ω

u = 0 on ∂Ω.

The weak formulation of the previous equation reads

∫

Ω
∇u · ∇ψ dx+

∫

Ω
̺(u)ψ dx =

∫

Ω
yψ dx for all ψ ∈ H1

0 (Ω).

We want to calculate the directional derivative of J at y0 in direction ŷ, where ŷ, y0 ∈ L2(Ω).
For this we consider the weak formulation of the semi-linear equation with right-hand side
y0 + tŷ

∫

Ω
∇ut · ∇ψ dx+

∫

Ω
̺(ut)ψ dx =

∫

Ω
(y0 + tŷ)ψ dx for all ψ ∈ H1

0 (Ω). (5.6)

Note that ut = u(y0 + tŷ). We define the Lagrangian

G(t, ϕ, ψ) :=

∫

Ω
|ϕ− ur|2 dx+

∫

Ω
α(y0 + tŷ)2 dx

+

∫

Ω
∇ϕ · ∇ψ dx+

∫

Ω
̺(ϕ)ψ dx−

∫

Ω
(y0 + tŷ)ψ dx.

We will apply again Theorem 4.2 to prove the following theorem.

Theorem 5.2. Let Assumption (S) from the previous subsection be satisfied. The cost
function J has a directional derivative at all y0 in all directions ŷ, where ŷ, y0 ∈ L2(Ω).
Moreover, the derivative is given by

dJ(y0; ŷ) =

∫

Ω
(2αy0 − p) ŷ dx, (5.7)

where p ∈ H1
0 (Ω) solves:

∫

Ω
∇ϕ · ∇p dx+

∫

Ω
̺′(u) pϕ dx = −

∫

Ω
2(u− ur)ψ dx

Proof. We check conditions (H0)-(H3) of Theorem 4.2.
(H0) As in the previous example it is easily verified that for all ϕ, ϕ̃, ψ ∈ H1

0 (Ω)

s 7→ G(t, ϕ+ sϕ̃, ψ)



5.2. A transmission problem in elasticity 65

is continuously differentiable on R.
(H1) The differentiability of G(t, ϕ, ψ) with respect to t is obvious.
(H2) Note that X(t) = {ut}, where ut ∈ H1

0 (Ω) solves (5.6). Moreover, pt ∈ Y (t, ut, u0) if
and only if

∫

Ω
∇ϕ · ∇pt dx+

∫

Ω

(∫ 1

0
̺′(uts) ds

)
pt ϕdx = −

∫

Ω
(ut + u− 2ur)ψ dx (5.8)

for all ϕ ∈ H1
0 (Ω), where uts := sut + (1 − s)u. The function pt solves in the strong sense

−∆pt + k(u, ut)pt = −(ut + u− 2ur) in Ωt

pt = 0 on ∂Ωt.

where k(u, ut) :=
∫ 1
0 ̺

′(uts) ds. Due to Assumption (S), we have ̺′(x) ≥ 0 for all x ∈ R, i.e.
k(u, ut) ≥ 0 and thus by the Lemma of Lax-Milgram the previous equation has a unique
solution pt ∈ H1

0 (Ω).
(H3) Testing (5.8) with pt and using Hölder’s inequality, we get for some C > 0 the estimate
‖pt‖H1

0 (Ω) ≤ C for all t ∈ [0, τ ]. Therefore, we obtain ptn ⇀ p̃ for some sequence tn ց 0

and some element p̃ ∈ H1
0 (Ω). Passing to the limit tn ց 0 in (5.8) (compare the proof of

Theorem 5.1 for a justification), entails that p̃ = p, where p solves
∫

Ω
∇ϕ · ∇p dx+

∫

Ω
̺′(u) pϕ dx = −

∫

Ω
2(u− ur)ϕdx,

for all ϕ ∈ H1
0 (Ω). This finishes the proof of condition (H3) and we may apply Theorem 4.2

to obtain (5.7). ✷

5.2 A transmission problem in elasticity

Distortion refers to undesired alterations in the size and shape of a workpiece. Such un-
wanted deformations occur as side effects at some stage in the manufacturing chain, and they
are often connected to a thermal treatment of a workpiece. Usually, in order to eliminate
distortions, the manufacturing chain is augmented by an additional mechanical finishing
step. The inferred cost, however, leads to severe economic losses within the machine, auto-
motive, or transmission industry [94]. In order to overcome this adverse situation, recently
a new strategy has been developed, which allows the elimination of distortions already
during the heat treatment [87], thus rendering the additional finishing step unnecessary.

Alterations in form of geometry changes in a process involving thermal treatment of the
workpiece can often be attributed to the occurrence of a solid-solid phase transition, which
leads to a microstructure consisting of phases with different densities. As a result, internal
stresses along phase boundaries build up. In addition, macroscopic geometry changes are
relevant as well. Distortion compensation then seeks to find a desired phase mixture such
that the resulting internal stresses and accompanying changes in geometry compensate the
distortion and hence lead to the desired size and shape of the workpiece, respectively.

Assuming that no rate effects occur during cooling, i.e., neglecting transformation-
induced plasticity [25], one can tackle this problem mathematically by a two-step hybrid
approach. In the first step the optimal microstructure for distortion compensation is com-
puted by solving a shape design problem subject to a stationary mechanical equilibrium
problem. In the second step an optimal cooling strategy is computed to realise this mi-
crostructure. While the latter has been studied extensively, see, e.g., [58, 59], the goal
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of this paper is to develop a novel approach for the first step by computing an optimal
microstructure or phase mixture in order to compensate for distortion.

Mathematically, here we assume that the domain occupied by the workpiece is denoted
by D ⊂ Rd and consists of a microstructure with two phases in the domains Ω ⊂ D and
D \Ω, which are separated by a sharp interface. This is in contrast to [26], where a phase-
field approach to distortion compensation is taken. In our situation, one might think of
these two phases as if they emerged from one parent phase during a heat treatment. In
order to distinguish between the associated sub-domains we introduce the characteristic
function χ = χΩ of the set Ω, which equals 1 for x ∈ Ω and 0 otherwise.

When the workpiece is in equilibrium, then the stress tensor σ satisfies

− div σ = 0 in D

σn = 0 in ΣN

u = 0 in Σ0,

(5.9)

with Γ̄N ∪ Γ̄0 = ∂D. According to Hooke’s law only elastic strains contribute to the stress.
Hence, in the case of small deformations we have σ = A(ε(u) − ε̃), where A represents the
stiffness tensor, ε̃ the internal strain, and ε(u) = 1

2(∂u+(∂u)∗) the linearised overall strain.
In general, the stiffness may be different in both sub-domains. This leads to the ansatz

A = Aχ(x) := χ(x)A1 + (1 − χ(x))A2, (5.10)

with A1 denoting the stiffness in the material domain Ω+ ⊂ D, and A2 the stiffness in
Ω− := D \Ω+. These different densities Ai are the main reason for the presence of internal
stresses. Thus we invoke an analogous mixture ansatz for the internal strain, i.e., we assume
ε̃ = ε̃χ(x) := χ(x)ε̃1 + (1 − χ(x))ε̃2. In an isotropic situation, which we assume from now
on, we have Aiε̃i = βi(x)I, where I is the identity matrix. Consequently, the constitutive
relation reads

σχ(x) = Aχε(u) − βχI,

with

βχ(x) := χ(x)β1 + (1 − χ(x))β2. (5.11)

As a motivation of our modeling assumptions, one might view (5.9) as describing the
steady state of an isotropic homogeneous linear thermoelastic body after cooling from a
reference temperature θref to an asymptotic temperature θ∞. In that case the internal
stress corresponds to the asymptotic linear thermoelastic stress, which can be described as
εth = δ(θ∞ − θref )I, where δ denotes the thermal expansion.

Figure 5.1: Deformation of a rectangular reference domain caused by sub-domains with
different densities (black and wight).
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Figure 5.1 demonstrates the effect of sub-domains with different densities for the me-
chanical equilibrium shape. The goal of this paper is to utilise this effect by finding an
optimal mixture of sub-domains Ω := Ω+ and its complement in D (denoted by Ω−), such
that the workpiece attains a desired equilibrium shape. This distortion compensation is
achieved by minimizing the objective (or cost) function

J(χ,u) =

∫

Σ̃
‖u− ud‖2ds+ αP̂D(χ),

where Σ̃ ⊂ ΣN and ud ∈ H1(Rd,Rd) are fixed. The first term of the cost functional
aims at locating the workpiece near a desired equilibrium shape encoded in ud. It is well-
known that minimizing solely this geometric part would lead to homogenised or laminated
microstructures [6]. Thus, in order to avoid this scenario, the perimeter of Ω is penalised
through the presence of P̂D(χ) in J with a positive weight α. Note that if the boundary
is C2, then the perimeter corresponds to the total surface area of the boundary in three-
dimensional problems, and to the total arc length of the boundary in two-dimensions.

The optimal shape design problem to be studied in this section reads

minimise J(χ,u) over (χ,u)

subject to u = u(Ω) = u(χ) solves (5.9).

Subsequently, we will study the shape differentiability of the previous shape function and
obtain results for scalar transmission problems derived in [4, 82].

5.2.1 Notation

Let the following assumption be satisfied.

Assumption 5.3. Suppose that D ⊂ Rd is a regular domain in the sense of Definition 2.3
with boundary Σ = ∂D. Let Ω ⊂ D be a measurable subset and denote its associated
characteristic function by χ := χΩ. We put Ω+ := Ω, Ω− := D \ Ω and defined the
interface by Γ = ∂Ω−∩∂Ω+. We assume that ΣN and Σ0 are disjoint parts of the boundary
Σ, where the set Σ0 has positive surface measure, i.e. Hd−1(Σ0) > 0 (Hd−1 denotes the
d− 1 dimensional Hausdorff measure). We assume that both Σ0 and ΣN consist of finitely
many connected components.

An example of a regular domain D with subset Ω+ ⊂ D is depicted in Figure 5.2. Recall
that the set of characteristic functions χΩ with Lebesgue measurable Ω ⊂ D is denoted by
X(D).

5.2.2 The problem setting

The equations (5.9) and (5.10)–(5.11) lead to the following interface model constituting the
state system:

− div (A1ε(u
+)) = 0 in Ω+

− div (A2ε(u
−)) = 0 in Ω−

−A2ε(u
−)nD = 0 on ΣN

u− = 0 on Σ0

(5.13)

including the transmission boundary condition

(A1ε(u
+) −A2ε(u

−))n = (β1 − β2)n on Γ. (5.14)
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Ω+

Γ

D

Ω−

Figure 5.2: Domain D which contains Ω+ and Ω−, where Γ is the boundary of Ω+.

Here, the displacement field u : D → Rd is the unknown function, and n and nD are the
outward unit normal fields along ∂Ω and ∂D, respectively. Given a function ϕ : D → Rd,
we define its restriction to Ωi by ϕi := ϕ|Ωi : Ωi → Rd, where i ∈ {+,−}. The bracket

[ϕ]Γ := ϕ+
|Γ − ϕ−

|Γ

denotes the jump of a function ϕ across Γ, where |Γ indicates the trace operator. The
material is assumed to be isotropic and homogeneous in each phase. Hence, the stiffness
tensor takes the form

Ai(Θ) := 2µiΘ + λitr(Θ)I, Θ ∈ Rd,d, µi, λi > 0, i = 1, 2.

Mathematically, the distribution of the material contained in Ω is denoted by χ, which
serves as the control variable in our minimisation problem for optimally compensating
unwanted distortions. For this purpose and as motivated in the introduction, we consider
the cost functional

Ĵ(χ) :=

∫

Σ̃
‖u(χ) − ud‖2ds+ αP̂D(χ), for fixed α > 0, (5.15)

where Σ̃ ⊂ Σ\Σ0. The function u(χ) is the solution of (5.13)–(5.14), and ud ∈ H1
Σ0

(D,R3)
describes the desired shape of the body.

We seek for optimal solutions in the set B(D) defined in (2.12), which leads us to the
study of the following problem:

minimise Ĵ(χ) over χ ∈ B(D). (5.16)

Below, we prove that this problem admits at least one solution.

5.2.3 Analysis of state system

In this section we analyse the state system and prove existence of a solution to (5.12). For
each χ ∈ X(D) let we associate to the problem (5.13),(5.14) a bilinear form

aχ : H1(D;Rd) ×H1(D;Rd) → R : (ϕ,ψ) 7→
∫

D
Aχε(ϕ) : ε(ψ) dx.
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Note that the tensor Aχ is positive definite with constant k := min{2µ1, 2µ2}

Aχ(x)τ : τ ≥ k|τ |2 for all τ ∈ Rd,d, x ∈ D.

The weak formulation of the interface problem (5.13) reads: Find u(χ) = u ∈ H1
Σ0

(D;Rd)
such that

aχ(u,ψ) =

∫

D
βχ div (ϕ) dx for all ϕ ∈ H1

Σ0
(D;Rd). (5.17)

Considering the previous equation for the characteristic function χΦt(Ω) and applying the
change of variables Φt(x) = y yields

at(ut,ψ) = bt(ψ) for all ψ ∈ H1
Σ0

(D;Rd), (5.18)

where (C(t) := ∂Φ−1
t )

at(ϕ,ψ) :=

∫

D
ξ(t)AχS(∂ϕC(t)) : S(∂ψC(t)) dx

bt(ψ) :=

∫

D
ξ(t)βχ∂Φ⊤

t : ∂ψ dx.

We refer to the previous equation as the perturbed state equation. We have the follow-
ing result concerning existence and uniqueness of the state equation and perturbed state
equation.

Theorem 5.4. Let Assumption 5.3 be satisfied.

(i) For given χ ∈ X(D) and for all t ∈ [0, τ ] the equation (5.18) has exactly one weak
solution ut(χ) and we have the following a priori bound

‖ut(χ)‖H1(D;Rd) ≤ C for all χ ∈ X(D), for all t ∈ [0, τ ].

Additionally, if the interface Γ is C2 and the distance between Ω and the boundary
∂D is at least ǫ > 0, i.e. d∂D(x) := infy∈∂D |x − y| > ǫ for all x ∈ Ω, then we

have ut(χ)|Ω+ ∈ H2(Ω+;Rd), ut(χ)|Ω̂− ∈ H2(Ω̂−;Rd), for each Ω̂− ⊂ Ω− such that

d∂D(x) > 0 for all x ∈ Ω̂−.

(ii) There exists τ > 0 such that

‖ut − u‖H1(D;Rd) ≤ ct for all t ∈ [0, τ ].

Proof. (i) The higher regularity result is a direct consequence of [31, Thm 5.3.8]. For
the existence of a solution consider the family of energies E : [0, τ ] ×H1

Σ0
(D;Rd) → R

E(t,ϕ) :=
1

2
at(ϕ,ϕ) −

∫

D
βχ div (ϕ) dx.

We show that this energy is strictly convex in H1
Σ0

(D;Rd) and

dE2(t,ϕ;ψ,ψ) ≥ k‖ψ‖2H1(D;Rd) for all ψ ∈ H1
Σ0

(D;Rd), for all t ∈ [0, τ ].

It is sufficient to show that the perturbed bilinear form at is uniformly coercive, i.e., there
is a constant C > 0 such that

C‖ϕ‖2H1(D;Rd) ≤ at(ϕ,ϕ) for all ϕ ∈ H1
Σ0

(D;Rd), (5.19)
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since dE2(t,ϕ;ψ,ψ) = at(ψ,ψ). To see this note that Korn’s inequality implies that there
is a constant C > 0 such that C‖ϕ‖2

H1(D;Rd)
≤ aχ(ϕ,ϕ) for all ϕ ∈ H1

Σ0
(D;Rd) and for

all χ ∈ X(D). In particular this constant is independent of χ, but it depends on D. The
change of variables Φt(x) = y yields

C

(∫

D
ξ(t) (|∂xϕ∂xΦ−1

t |2 + |ϕ|2) dx
)

≤ at(ϕ,ϕ) for all ϕ ∈ H1(D;Rd)

and, moreover, we have the following estimate |∂xϕ| = |∂xϕ∂xΦ−1
t ∂xΦt| ≤ |∂xΦt| |∂xϕ∂xΦ−1

t |.
Thus using that ξ(t) ≥ c1 and ‖∂xΦt‖ ≤ c2 for t > 0 small, we obtain the desired inequality
(5.19). Therefore the energy ϕ 7→ E(t, ϕ) has for each t ∈ [0, τ ] a unique minimiser which
is characterised by

dE(t,ϕ;ψ) = 0 for all ψ ∈ H1
Σ0

(D;Rd),

which is the equation (5.17). Finally, let χ ⊂ X(D) and utχ the corresponding solutions to
(5.18). We compute

c‖utχ‖2H1(D;Rd) ≤ at(ut,ut) = bt(ut) ≤ C‖ut‖H1(D;Rd),

where C depends only on β1, β2,m
d(D), d and c, where md is the Lebesgue measure.

(ii) Note that at(ut − u, ϕ̂) = a0(u, ϕ̂) − b0(ϕ̂) − (at(u, ϕ̂) − bt(ϕ̂)), and thus by the mean
value theorem there is a constant η = η(t, ϕ̂) ∈ (0, 1) such that

at(ut − u, ϕ̂) = −∂t(aηtt(u, ϕ̂) − bηtt(ϕ̂)),

where

∂ta
t(u, ϕ̂)|t=0 = −

∫

D
AχS(∂xu ∂̄xθ

t) : ∂xψ̂ ∂Φ−1
t dx

−
∫

D
AχS(∂xu ∂Φ−1

t ) : (∂xψ̂ ∂̄xθ
t) dx,

∂̄xθ
t := ∂Φ−1

t ∂xθ
t∂xΦ−1

t . From this and (5.19) we infer

C‖ut − u‖2H1(D;Rd) ≤ −∂t(aηtt(u,ut − u) − bηtt(ut − u))

≤ c(1 + ‖u‖H1(D;Rd)) ‖ut − u‖H1(D;Rd), for all t ∈ [0, τ ].

✷

5.2.4 Existence of an optimal shape

In order to obtain optimal shapes, we first show the continuity of χ 7→ J(χ) in an appropriate
function space. We begin with the following Lipschitz continuity of the mapping χ 7→ u(χ) ∈
H1

Σ0
(D;Rd), considered as function from L1(D) → H1

Σ0
(D;Rd).

Lemma 5.5. There exists a constant C > 0 such that

∀χ1, χ2 ∈ X(D) : ‖u(χ1) − u(χ2)‖H1(D;Rd) ≤ C‖χ1 − χ2‖L1(D),

where u(χ1),u(χ2) are solutions of (5.17).
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Proof. Let χ1, χ2 ∈ X(D) be two characteristic functions. Put ui := u(χi), i = 1, 2,
and u := u(χ), then we estimate

c‖u1 − u2‖2H1(D;Rd) ≤
∫

D
Aχ1ε(u1 − u2) : ε(u1 − u2) dx

=

∫

D
(βχ1 − βχ2) div (u1 − u2) dx

+

∫

D
(Aχ2 −Aχ1)ε(u2) : ε(u1 − u2) dx

≤‖χ1 − χ2‖L2(D)‖u1 − u2‖H1(D;Rd)

+ ‖|Aχ2 −Aχ1 | |ε(u2)|‖L2(D)‖u1 − u2‖H1(D;Rd).

Now from [52] we know that ε(u) ∈ L2+γ(D;Rd,d) for some γ > 0 and that there is a
constant C > 0 dependent of the domain D such that ‖ε(u)‖L2+γ(D;Rd,d) ≤ C. Therefore
dividing the above inequality by ‖u1−u2‖H1(D;Rd) and estimating the right-hand side with

the Hölder inequality with q = 2+γ
2 and q′ := q

q−1 = 2
γ + 1, we obtain

‖u1 − u2‖H1(D;Rd) ≤ C(‖βχ1 − βχ2‖L2(D) + ‖Aχ2 −Aχ1‖L2q′ (D)‖ε(u2)‖L2q(D)).

Note that |Aχ1 − Aχ2 | ≤ |χ1 − χ2|(|A1| + |A2|) and |βχ1 − βχ2 | ≤ |χ1 − χ2|(|β1| + |β2|).
Moreover, using Hölder’s inequality and the boundedness of D it follows that for any ε > 0
there exists C > 0 depending on m(D) such that ‖χ2 − χ1‖L2q′ (D) ≤ C‖χ2 − χ1‖L1(D) for

all χ1, χ2 ∈ X(D). ✷

Corollary 5.6. Let us denote by Φt the flow generated by θ ∈ C1
c (D,Rd) and set Ωt :=

Φt(Ω). Denote by ut = u(χΩt) the solution of (5.17) with characteristic function χ = χΩt.
Then ut ◦ Φt : [0, τ ] → H1(D;Rd) and ut : [0, τ ] → H1(D;Rd) are continuous in 0 and

lim
tց0

‖ut − u‖H1(D;Rd) = 0, lim
tց0

‖ut ◦ Φt − u‖H1(D;Rd) = 0.

Proof. The continuity of ut : [0, τ ] → H1(D;Rd) follows directly from the previous
lemma by setting χ1 := χΩ and χ2 = χΩt = χΩ ◦ Φ−1

t

‖u(χΩ) − u(χΩt)‖H1(D;Rd) ≤ C‖χΩ − χΩ ◦ Φ−1
t ‖Lq(D),

and the right-hand side tends to zero as t → 0 due to Lemma 2.16 item (i). Now the
continuity of ut ◦ Φt follows from Lemma 2.16 item (iv). ✷

After the preparations of the last section, we are ready to study the optimization prob-
lem (5.16).

Theorem 5.7. For each α > 0 the problem (Pχ) with the cost function (5.15) admits at
least one solution.

Proof. By Lemma 5.5 we know that the mapping χ 7→ u(χ) is continuous from X(D)
equipped with δ1 metric into H1(D,Rd). Therefore the cost function Ĵ(χ) is continuous
from (X(D), δ1+ε) into R and the result follows from Theorem 2.25. ✷

Remark 5.8. If we replace the perimeter by the Gagliardo semi-norm P s̄D(·) = | · |W s
p
, we

obtain with Theorem 2.29 optimal sets in Ws̄(D), where s̄ := ps.
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5.2.5 Shape derivatives

In this section we utilise Theorem 4.2 to prove the shape differentiability of the cost function
J(Ω) := Ĵ(χΩ), where Ĵ is given by (5.15).

Theorem 5.9. Let Ω ⊂ D be an open set. Then the shape derivative of (5.21) exists for
all θ ∈ C2

c (D,Rd) and is given by

dJ(Ω)[θ] =

∫

D
div (θ)Aχε(u) : ε(p) dx−

∫

D
AχS(∂u ∂θ) : ε(p) dx

−
∫

D
Aχε(u) : S(∂p ∂θ) dx+

∫

D
βχ div (θ) div (p) dx

−
∫

D
βχ(∂θ)⊤ : ∂p dx+ α

∫

Γ
div Γ(θ) ds,

where S(A) := 1
2(A + A⊤). If the interface Γ is C2, we obtain the following formula

(θn := θ · n)

dJ(Ω)[θ] =

∫

Γ

[
Aχ(ε(u) − δχI) : ε(p)]Γ θn ds−

∫

Γ

[
Aχε(p)n · ∂nu]Γ θn ds

−
∫

Γ

[
(Aχ(ε(u) − δχI)n) · ∂np

]
Γ
θn ds+ α

∫

Γ
κ θn ds.

(5.20)

Here, u is the solution of the state equation (5.17) and p ∈ H1
Σ0

(D;Rd) solves the following
adjoint state equation

aχ(ϕ,p) + 2

∫

Σ̃
(u+ − ud)ϕ

+ ds = 0, for all ϕ ∈ H1
Σ0

(D;Rd).

Proof. For the further considerations we introduce

J(Ω,ϕ) :=

∫

Σ̃
|ϕ− ud|2 ds+ αPD(Ω). (5.21)

Since the perimeter is shape differentiable, we set α = 0 in the following. Note that
Ĵ(Ω) = J(Ω,u(Ω)) for the solution u = u(Ω) of (5.17). Let

L(Ω,ϕ,ψ) := J(Ω,ϕ) + aχ(ϕ,ψ) −
∫

D
βχ div (ψ) dx

be the associated Lagrangian of the minimisation problem. We are going to apply Theo-
rem 4.2 to the function G(t,ϕ,ψ) := L(Φt(Ω),ϕ◦Φ−1

t ,ψ◦Φ−1
t ) with E = F = H1

Σ0
(D;Rd).

The function G reads explicitly

G(t,ϕ,ψ) =

∫

Σ̃
|ϕ− − ud|2 ds+

∫

D
ξ(t)AχS(∂ϕC(t)) : S(∂ψB∗(t)) dx

+

∫

D
βχB

∗(t) : ∂ψ dx.

(H0) & (H1) The function G is C1 with respect to t and C∞ (in the sense of Fréchet) with
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respect to the other arguments. The derivative of G with respect to t reads

∂tG(t,ϕ,ψ) =

∫

D
ξ(t) div (θt)AχS(∂ϕC(t)) : S(∂ψC(t)) dx

−
∫

D
ξ(t)AχS(∂ϕC(t)∂θtC(t)) : S(∂ψC(t)) dx

−
∫

D
ξ(t)AχS(∂ϕC(t)) : S(∂ψC(t)∂θ(t)C(t)) dx

+

∫

D
ξ(t) div (θt)βχ(∂Φt)

⊤ : ∂ψ dx

+

∫

D
ξ(t)βχ(∂Φt)

−⊤(∂θt)⊤(∂Φt)
⊤ : ∂ψ dx

where we use the notation θt := θ(Φt(x)). By the choice of θ ∈ C2
c (D,Rd) we have that

t 7→ θ(Φt(x)), t 7→ ∂θ(t), t 7→ ∂Φt(x) and t 7→ (∂Φt(x))−1 are continuous on the interval
[0, τ ].
(H2) Note that (ut,pt) ∈ X(t) × Y (t,ut,u) if and only if

dψG(t,ut,pt; ψ̂) = 0 for all ψ̂ ∈ H1
Σ0

(D;Rd)
∫ 1

0
dϕG(t, sut + (1 − s)u,pt; ϕ̂) ds = 0 for all ϕ̂ ∈ H1

Σ0
(D;Rd)

which is nothing but

at(ut, ψ̂) = bt(ψ) for all ψ̂ ∈ H1
Σ0

(D;Rd)

at(ϕ̂,pt) = b̄t(ϕ̂) for all ϕ̂ ∈ H1
Σ0

(D;Rd),
(5.22)

where we introduced

b̄t(ψ) := −
∫

D
ξ(t)(ut + u− 2utd)ψ dx.

Note that since supp(θ) ⊂ D is compactly contained in D we have that Φt equals the
identity near the boundary and therefore the integral

∫
Σ̃(ϕ−ud)ϕ

− ds is independent of t.
It is easily checked that the equations (5.22) admit a unique solution.
(H3) Inserting ψ = pt as test function in (5.22), we obtain by using Hölder’s inequality
‖pt‖H1(D) ≤ c for all t ∈ [0, τ ] and thus for every sequence (tn)n∈N with tn ց 0 as n→ ∞,
we get ptn ⇀ q as n→ ∞. Taking into account Lemma 2.16 and Lemma 5.5 we may pass
to the limit in (5.22) and obtain by uniqueness ptn ⇀ p, where p solves

a(ϕ,p) = −
∫

Σ̃
2(u− ud)ϕ dx for all ϕ ∈ H1

Σ0
(D;Rd). (5.23)

By testing the adjoint equation (5.23) with appropriate functions, we get the strong
formulation

− div (A1ε(p
+)) = 0 in Ω+

− div (A2ε(p
−)) = 0 in Ω−

−A2ε(p
−)nD = −2(u− − ud) on Σ

p− = 0 on Σ0

−A2ε(p
−)nD = 0 on ∂D \ (Σ ∪ Σ0)

complemented by the transmission conditions

A1ε(p
+)n = A2ε(p

−)n and p+ = p− on Γ. (5.24)
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The previous considerations show that limtց0 ∂tG(t,u,pt) = ∂tG(0,u,p), and therefore
(H3) is satisfied. Therefore, we may apply Theorem 4.2 and we obtain the shape differen-
tiability of J . ✷

5.2.6 Boundary integrals

In order to derive the boundary expression of dJ(Ω)[θ], we differentiate the function j(t) =
L(Ωt,ϕ ◦ Φ−1

t ,ψ ◦ Φ−1
t ), where ϕ,ψ ∈ H1

Σ0
(D;Rd). We have

j(t) :=
1

2

∫

Σ̃
‖ϕt,− − ud‖2 ds+

∫

Ωt

A1ε(ϕ
t,+) : ε(ψt,+) dx+

∫

Φt(D\Ω)
A2ε(ϕ

t,−) : ε(ψt,−) dx

− β1

∫

Ωt

div (ψt,+) dx− β2

∫

Φt(D\Ω)
div (ψt,−) dx+ αPD(Ωt).

Due to the mixed boundary conditions we have just u−,p− ∈ H2
loc(D\Ω;Rd) and u+,p+ ∈

H2(Ω;Rd). Thus the only problematic terms could be the integrals over Φt(D\Ω). However,
since supp(θ) ⊂ D, Φt is the identity in the vicinity of ∂D, hence these terms give no
contribution to the derivative. We define Ω̂ = supp(θ) ∩ (D \ Ω) and apply the transport
theorem to obtain j′(0) = dJ(Ω)[θ] with

dJ(Ω)[θ] =
∑

ς∈{+,−}

∫

Ως

Aςε(ů
ς) : ε(pς) +Aςε(u

ς) : ε(̊pς) dx

+

∫

Γ

[
(Aχ(ε(u) − δχI) : ε(p)

]
) θn ds+

∫

Γ
κ θn ds,

(5.25)

where we used the definitions ůi = d
dt(u

i ◦ Φ−1
t )t=0 = −∂ui · θ and p̊i = d

dt(p
i ◦ Φ−1

t )t=0 =
−∂pi · θ (i ∈ {+,−}). We defined δi by βiI = δiAiI for i = 1, 2. The last line in (5.25) has
already the right form but the other terms are still volume integrals. From now on we use
the fact that ui,pi ∈ H2

loc(Ωi;R
d) (i ∈ {+,−}) at least and they satisfy the equations in

the strong sense. We start with the first and second line in (5.25) by applying Gauss and
using that ui,pi are strong solutions in the respective domains (i = 1, 2)

∫

Ωi

Ai(ε(u
i) − δiI) : ε(̊pi) dx = −

∫

Γ
Ai(ε(u

i) − δiI) p̊i · ni ds (5.26)
∫

Ωi

Aiε(ů
i) : ε(pi) dx = −

∫

Γ
(Aiε(p

i)ůi) · ni ds. (5.27)

Therefore using (5.26) and (5.27) in (5.25) we get

dJ(Ω)[θ] =

∫

Γ

[
(Aχ(ε(u) − δχI) : ε(p)

]
Γ
θn ds+

∫

Γ
κ θn ds

+
∑

ς∈{+,−}

∫

Γ
Aς(ε(u

ς) − δςI )̊pς · nς + (Aςε(p
ς)ůς) · nς ds

The last two lines are not following the structure theorem, but we can rewrite this by
decomposing ∂u|Γ = ∂Γu + (∂nu) ⊗ n into normal and tangential part. We have ((∂nu) ⊗
n)n = ∂nu and ((∂nu) ⊗ n)T = 0. Here n is the normal vector along Γ and T such
that n · T = 0. Similarly, we define θΓ := θ − θnn, where θn = θ · n. We have on Γ:
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ůi = −∂Γui θΓ − θn ∂nu
i and p̊i = −∂Γpi θΓ − θn ∂np

i, and thus we conclude (note that
from u+ = u− it follows ∂Γu

+ = ∂Γu
−)

∑

ς∈{+,−}

∫

Γ
Aς(ε(u

ς) − δςI )̊pς · nς ds = −
∑

ς∈{+,−}

∫

Γ
Aς(ε(u

ς) − δςI)nς) · ∂npςθςn ds

−
∫

Γ

[
(Aχ(ε(u) − δχI)n))

]
Γ︸ ︷︷ ︸

=0 cf. ,(5.14)

·(∂ΓpθΓ) ds = −
∫

Γ

[
Aχ(ε(u) − δχI)n) · ∂np

]
Γ
θn ds,

and similarly using (5.24)

∑

ς∈{+,−}

∫

Γ
(Aςε(p

ς)ůς) · nς ds = −
∫

Γ

[
(Aχε(p)n) · ∂nu

]
Γ
θn ds.

Thus we obtain the formula (5.20).

Remark 5.10. Note that (5.20) can be rewritten as

dJ(Ω)[θ] =

∫

Γ
([Aχε(u) : ε(p)]Γ − [(Aχε(u))n · ∂np]Γ − [(Aχε(p))n · ∂nu]Γ) θn ds

+[β]Γ

∫

Γ
div Γ(p) θn ds+

∫

Γ
κ θn ds.

It is interesting to compare this expression with formula (4.1) in [16], where a phase fields
approach is used and the formal sharp limit of the optimality conditions is derived. They
derived for the optimal set Ω+ on the interface Γ := ∂Ω+ the condition

0 = γκσ − [Aε(u) : ε(p)]Γ + [Aε(u)n · ∂np]Γ + [Aε(p)n · ∂nu]Γ + λ1 − λ2

The constants λ1 = |Ω+|, λ2 = |Ω−| arise from a volume constraint and would occur in our
derivative if we had a term of the form

∫
Ω+ λ1 dx +

∫
Ω− λ2 dx in the cost function. Here,

γ, σ are real numbers.

Lemma 5.11. In the case A := A1 = A2 we have p ∈ H2(K;Rd) for each K ⋐ D and the
shape derivative (5.20) reduces to

dJ(Ω)[θ] =(β2 − β1)

∫

Γ
div (p) θn ds.

Proof. Since A := A1 = A2 the adjoint p is more regular across the interface, i.e.
∂p+ = ∂p− on Γ and in particular ∂np

+ = ∂np
−. Using the transmission condition (5.14),

we get [
(Aχ(ε(u) − δχI)n) · ∂np

]
Γ

=
[
(Aχ(ε(u) − δχI)n)

]
Γ
· ∂np = 0

Moreover, for the remaining terms in (5.20)
[
A(ε(u) − δχI) : ε(p)]Γ =

[
A(ε(u)) : ε(p)]Γ −

[
βχ]Γ div p[

Aε(u) : ε(p)
]
Γ

=
[
∂Γu]Γ : Aε(p) +

[
∂nu

]
⊗ n : Aε(p)

(5.28)

since ∂Γu
+ = ∂Γu

− on Γ. Note we have for all v, w ∈ Rd and all B ∈ Rd,d the identity
v ⊗ w : B = Bw · v and thus

[
Aε(u) : ε(p)

]
Γ

= Aε(p)n ·
[
∂nu

]
Γ
. (5.29)

Inserting (5.28) and (5.29) in (5.20) gives the desired formula. ✷
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5.3 Electrical impedance tomography

We consider an application to a typical and important interface problem: the inverse prob-
lem of electrical impedance tomography (EIT) also known as the inverse conductivity or
Calderón’s problem [21] in the mathematical literature. It is an active field of research
with an extensive literature; cf. the survey papers [18, 27] as well as [75] and the refer-
ences therein. We consider the particular case where the goal is to reconstruct a piecewise
constant conductivity σ which amounts to determine an interface Γ between some inclu-
sions and the background. We refer the reader to [28, 54, 55, 63] for more details on this
approach.

5.3.1 The problem setting

Subsequently, we use the same notations and setting as in Assumption 5.3 of Subsec-
tion 5.2.1. Let σ = σ+χΩ+ + σ−χΩ− where σ± are constants and f = f+χΩ+ + f−χΩ−

where f+ ∈ H1(Ω+), f− ∈ H1(Ω−). Consider the variational problems: find uN ∈ H1
Σ0

(D)
and uD ∈ H1

Σ0,ΣN
(D) such that

∫

D
σ∇uN · ∇z dx =

∫

D
fz +

∫

ΣN

gz dx for all z ∈ H1
Σ0

(D) (5.30)

∫

D
σ∇uD · ∇z dx =

∫

D
fz dx for all z ∈ H1

0 (D) (5.31)

where

H1
Σ0

(D) := {v ∈ H1(D) | v = 0 on Σ0},
H1

Σ0,ΣN
(D) := {v ∈ H1(D) | v = 0 on Σ0 and v = h on ΣN},

H1
0 (D) := {v ∈ H1(D) | v = 0 on Σ}

and g ∈ H−1/2(ΣN ) represents the input, in this case the electric current applied on the
boundary and h ∈ H1/2(ΣN ) is the measurement of the potential on ΣN , or the other way
around, i.e. h can be the input and g the measurement. Notice that uN and uD depend on
χΩ+ . Define the space of piecewise Sobolev functions on D

PHk(D) := {u = u+χΩ+ + u−χΩ− | u+ ∈ Hk(Ω+), u− ∈ Hk(Ω−)}.

Consider the following assumption:

Assumption 5.12. The domains D,Ω+,Ω− are of class Ck, f ∈ PHmax(k−2,1)(D), g ∈
Hk− 3

2 (D) and h ∈ Hk− 1
2 (D) for k ≥ 2.

Applying Green’s formula under Assumption 5.12, equations (5.30) and (5.31) are
equivalent to the following transmission problems where uN = u+NχΩ+ + u−NχΩ− and
uD = u+DχΩ+ + u−DχΩ− :

−σ+∆u+N = f in Ω+ − σ−∆u−N = f in Ω−

u−N = 0 on Σ0

σ−∂nu
−
N = g on ΣN+

(5.32)

(5.33)

(5.34)

−σ+∆u+D = f in Ω+ − σ−∆u−D = f in Ω−

u−D = 0 on Σ0

u−D = h on ΣN

(5.35)

(5.36)
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with the transmission conditions

σ+∂nu
+
N = σ−∂nu

−
N σ+∂nu

+
D = σ−∂nu

−
D on Γ

u+N = u−N u+D = u−D on Γ.

On Σ0 we impose homogeneous Dirichlet conditions, meaning that the voltage is fixed and
no measurement is performed. One may take Σ0 = ∅, in which case (5.30) becomes a pure
Neumann problem and additional care must be taken for the uniqueness and existence of
a solution. The situation Σ0 6= ∅ corresponds to partial measurements. Alternatively, it
is also possible to consider functions uN and uD which have both the boundary condi-
tions (5.34) and (5.36) on different parts of the boundary. Several measurements can be
made by choosing a set of functions g or h. The result for several measurements can be
straightforwardly deduced from the case of one measurement by summing the cost functions
corresponding to each measurement, therefore we stick to the case of one measurement g
for simplicity.

The problem of electrical impedance tomography reads:

(EIT): Given {gk}Kk=1 and {hk}Kk=1, find σ such that uD = uN in D.

Note that uN = uN (Ω+) and uD = uD(Ω+) actually depend on Ω+ through σ, however we
often write uN and uD for simplicity.

The notion of well-posedness due to Hadamard requires the existence and uniqueness
of a solution and the continuity of the inverse mapping. The severe ill-posedness of EIT is
well-known: uniqueness and continuity of the inverse mapping depend on the regularity of
σ, the latter being responsible for the instability of the reconstruction process. Additionally,
partial measurements often encountered in practice render the inverse problem even more
ill-posed. We refer to the reviews [18, 27] and the references therein for more details. A
standard cure against the ill-posedness is to regularise the inverse mapping. In this example
the regularisation is achieved by considering smooth perturbations of the domains Ω+.

To solve the EIT problem, we use an optimization approach by considering the shape
functions

J1(Ω
+) =

1

2

∫

D
(uD(Ω+) − uN (Ω+))2 dx (5.37)

J2(Ω
+) =

1

2

∫

ΣN

(uN (Ω+) − h)2 ds.

Since uD, uN ∈ H1(Ω) and h ∈ H1/2(ΣN ), J1 and J2 are well-defined. Note that J1 and J2
are redundant for the purpose of the reconstruction but our aim is to provide an efficient
way of computing the shape derivative of two functions which are often encountered in the
literature. To compute these derivatives we follow the new Lagrangian approach from [91].
It is convenient to introduce

F1(ϕD, ϕN ) :=
1

2

∫

D
(ϕD − ϕN )2 dx and F2(ϕN ) :=

1

2

∫

ΣN

(ϕN − h)2 ds.

Note that J1(Ω
+) = F1(uD(Ω+), uN (Ω+)) and J2(Ω

+) = F2(uN (Ω+)). Next consider Ξ ⊂
2D and the Lagrangian L : Ξ ×H1

Σ0
×H1

Σ0
×H1

Σ0
×H1

Σ0
×H1/2(ΣN ) → R given by

L(Ω+,ϕ,ψ, λ) :=α1F1(ϕD, ϕN ) + α2F2(ϕN )

+

∫

D
σ∇ϕD · ∇ψD − fψD +

∫

ΣN

λ(ϕD − h) dx

+

∫

D
σ∇ϕN · ∇ψN − fψN −

∫

ΣN

gψN dx,
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where ϕ := (ϕD, ϕN ) and ψ := (ψD, ψN ). The adjoint variable λ is used to enforce the
boundary condition (5.36); see (5.41). Introduce the objective function

J(Ω+) := α1J1(Ω
+) + α2J2(Ω

+). (5.38)

Convention. When we want to make the dependence on the characteristic function ex-
plicit, we shall write J(Ω+) as Ĵ(χΩ+).

In order to compute the shape derivative for this linear transmission problem we shall
employ Theorem 4.5, but before this we need some preparations.

5.3.2 State and adjoint equations

Let us denote u := (uD, uN ). The equations ∂ψD
L(Ω+,u, 0, λ)(ψ̂D) = 0 for all ψ̂D ∈

H1
0 (D) and ∂ψN

L(Ω+,u,p, λ)(ψ̂N ) = 0, for all ψ̂N ∈ H1
Σ0

(D) are the variational equa-

tions (5.30),(5.31). Under Assumption 5.12, we get uD ∈ PHk(D), k ≥ 2, and applying
Green’s formula to (5.31) in Ω+ and Ω− separately with ψ̂+

D ∈ C∞
c (Ω+) and ψ̂−

D ∈ C∞
c (Ω−)

as test function, respectively, we get back to the strong formulation (5.35). Similarly, as-
suming uN ∈ PHk(D), k ≥ 2, yields by using Green’s formula that the solution uN of the
previous variational equation is the solution of (5.32) and (5.33).

Now by solving ∂λL(Ω+,u,p, λ)(λ̂) = 0 for all λ̂ ∈ H1/2(ΣN ), we obtain
∫

ΣN

λ̂(uD − h) = 0 for all λ̂ ∈ H1/2(ΣN ),

which gives uD = h and the boundary condition (5.36) is satisfied.
Solving the equation ∂ϕDL(Ω+,u,p, λ)(ϕ̂D) = 0, for all ϕ̂D ∈ H1

Σ0
(D), leads to the

variational formulation for the adjoint state pD, i.e.

α1

∫

D
(uD − uN )ϕ̂D dx+

∫

D
σ∇pD · ∇ϕ̂D dx+

∫

ΣN

λϕ̂D dx = 0 for all ϕ̂D ∈ H1
Σ0

(D)

for all ϕ̂D ∈ H1
Σ0

(D). This yields the following variational formulation when test functions
are restricted to H1

0 (D):

α1

∫

D
(uD − uN )ϕ̃D dx+

∫

D
σ∇pD · ∇ϕ̃D dx = 0 for all ϕ̃D ∈ H1

0 (D). (5.39)

Under Assumption 5.12, we get pD ∈ PHk(D) and applying Green’s formula to the domains
Ω+ and Ω− separately with test functions ϕ̂+

D ∈ C∞
c (Ω+) and ϕ̂−

D ∈ C∞
c (Ω−), respectively,

we obtain

− div (σ∇pD) = −α1(uD − uN ) in Ω+ and Ω−. (5.40)

Now using Green’s formula in Ω+ and Ω− for all ϕ̂D ∈ H1
Σ0

(D) yields
∫

Ω+∪Ω−

α1(uD − uN )ϕ̂D dx− div (σ∇pD)ϕ̂D dx

+

∫

Γ
[σ∂npD]Γϕ̂D ds+

∫

ΣN

(σ∂npD + λ)ϕ̂D ds = 0.

where [σ∂npD]Γ = σ+∂np
+
D − σ−∂np

−
D is the jump of σ∂npD across Γ. Using (5.40), we

obtain

λ = −σ−∂npD on ΣN (5.41)

pD = 0 on Γ

σ+∂np
+
D = σ−∂np

−
D on Γ.
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Having determined λ we consider a new Lagrangian, using the same notation for simplicity:

L(Ω+,ϕ,ψ) := L(Ω+,ϕ,ψ,−σ−∂nψD)

for which we have the relation J(Ω+) = L(Ω+,u,ψ), for all ψ ∈ H1
Σ0

(D)×H1
Σ0

(D), where
u = (uD, uN ). Finally solving ∂ϕNL(Ω+,u,p)(ϕ̂N ) = 0, for all ϕ̂N ∈ H1

Σ0
(D), leads to the

variational formulation
∫

D
−α1(ϕD − ϕN )ϕ̂N + σ∇ψN · ∇ϕ̂N dx+

∫

ΣN

α2(ϕN − h)ϕ̂N ds = 0 (5.42)

for all ϕ̂N ∈ H1
Σ0

(D). Under Assumption 5.12, we get pN ∈ PHk(D), k ≥ 2, and again

applying Green’s formula to Ω+ and Ω− separately with ϕ̂+
N ∈ C∞

c (Ω+) and ϕ̂−
N ∈ C∞

c (Ω−)
as test function, respectively, we obtain

− div (σ∇pN ) = α1(uD − uN ) in Ω+ ∪ Ω−.

Using Green’s formula in Ω+ and Ω− for all ϕ̂N ∈ H1
Σ0

(D) and ϕN = 0 on Σ0 yields

∫

Ω+∪Ω−

−α1(uD − uN )ϕ̂N − div (σ∇pN )ϕ̂N dx

+

∫

Γ
[σ∂npN ]Γ dx+

∫

ΣN

(σ∂npN + α2(uN − h))ϕ̂N ds = 0.

This gives the boundary conditions for the adjoint:

σ∂npN = −α2(uN − h) on ΣN

pN = 0 on Σ0

with the transmission conditions σ+∂np
+
N = σ−∂np

−
N and p+N = p−N on Γ. Summarizing,

under Assumption 5.12, we obtain the system for pN :

−σ+∆p+N = α1(u
+
D − u+N ) in Ω+ − σ−∆p−N = α1(u

−
D − u−N ) in Ω−

σ−∂np
−
N = −α2(u

−
N − h−) on ΣN

p−N = 0 on Σ0

p+N = p−N on Γ σ+∂np
+
N = σ−∂np

−
N on Γ

5.3.3 Existence of optimal shapes

We would like to study the minimisation of J given by (5.38) with the penalisation methods
introduced in Section 2.4. In a similar fashion as Lemma 5.5, we may prove the following.

Lemma 5.13. Denote by uD resp. uN the weak solution of (5.31) resp. (5.30). There exist
constants c1, c2 > 0 such that

∀χ1, χ2 ∈ X(D) : ‖uD(χ1) − uD(χ2)‖H1(D) ≤ c1‖χ1 − χ2‖L2(D),

‖uN (χ1) − uN (χ2)‖H1(D) ≤ c2‖χ1 − χ2‖L2(D).

Proof. The result may be derived in the same manner as Lemma 5.5. Compare also the
proof of Lemma 5.21. ✷
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Corollary 5.14. Let J be given by (5.38) and ω0 ⊂ D and open and smooth subset. Let
p ∈ (1,∞), 0 < s < 1/p, α > 0 and s̄ := sp. Then we define the cost functions

J1(χΩ) := Ĵ(χΩ) + αP̂ s̄D(χΩ)

J2(χΩ) := Ĵ(χΩ) + αP̂D(χΩ)

Then the following minimisation problems have at least one solution

min
χ∈B(D)

J1(χ), min
χ∈Ws̄(D)

J2(χ).

Proof. This is an easy consequence of Theorems 2.25,2.29. ✷

5.3.4 Shape derivatives

Let us consider a transformation Φθ
t defined by θ ∈ C1

c (D,Rd). We use the notation
Ω+
t := Φθ

t (Ω
+). Our aim is to show the shape differentiability of J(Ω+) with the help of

Theorem 4.2. For this purpose, introduce

G(t,ϕ,ψ) := L(Ω+
t ,ϕ ◦ Φ−1

t ,ψ ◦ Φ−1
t ),

which reads after the change of variables Φt(x) = y

G(t,ϕ,ψ) =
α1

2

∫

D
(ϕD − ϕN )2ξ(t) dx+

α2

2

∫

ΣN

(ϕN − h)2 ds

+

∫

D
σA(t)∇ϕD · ∇ψD − f ◦ ΦtψDξ(t) dx−

∫

ΣN

gψN ds (5.43)

+

∫

D
σA(t)∇ϕN · ∇ψN − f ◦ ΦtψNξ(t) dx−

∫

ΣN

σ−1∂nψD(ϕD − h) ds,

where the Jacobian ξ(t) and A(t) are as before. In the previous expression (5.43), one
should note that the integrals on Γ are unchanged since Φ−1

t = I on Γ. Thus we have
Φθ
t (Ω) = Ω, however the terms inside the integrals on Ω are modified by the change of

variable since Φ−1
t 6= I inside Ω. Note that

J(Ω+
t ) = G(t,ut,ψ), for all ψ ∈ H1

Σ0
(D) ×H1

Σ0
(D),

where ut = (utN , u
t
D) := (uN,t ◦Φt, uD,t ◦Φt) and uN,t, uD,t solve (5.30),(5.31), respectively,

with the domain Ω+ replaced by Ω+
t . As one can verify by applying a change of variables

to (5.30) and (5.31) on the domain Ω+
t the functions utN , u

t
D satisfy

∫

D
σA(t)∇utN · ∇ψ̂N dx =

∫

D
fψ̂N dx+

∫

ΣN

gψ̂N dx for all ψ̂N ∈ H1
Σ0

(D) (5.44)

and ∫

D
σA(t)∇utD · ∇ψ̂D dx =

∫

D
fψ̂D dx for all ψ̂D ∈ H1

0 (D) (5.45)

Testing equation (5.44) with ψ̂D = utD and equation (5.45) with ψ̂N = utN , we infer the
existence of constants C1, C2 > 0 and τ > 0 such that for all t ∈ [0, τ ]:

‖utD‖H1(D) ≤ C1 and ‖utN‖H1(D) ≤ C2. (5.46)
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From these estimates, we get utD ⇀ w1 and utN ⇀ w2 in H1(Ω) as t → 0. Passing to the
limit in (5.44) and (5.45) yields w1 = uD and w2 = uN by uniqueness.

Let us now check the conditions (D0)-(D3) of Theorem 4.5 for the function G given by
(5.43) and the Banach spaces E1 = F1 = E2 = F2 = H1

Σ0
(D).

(D0)&(D1) These conditions are automatically satisfied by construction since the function
G is affine linear with respect to ϕD and ϕN , and linear with respect to ψD and ψN .
Moreover, it is clear that this function is differentiable with respect to the variable t.
(D3) Note that E(t) = {ut = (utN , u

t
D)}. We have pt = (ptN , p

t
D) ∈ Y(t,ut,u0) if and only

if they solve
∫

D
σA(t)∇ptD · ∇ϕ̂D dx+ α1

∫

D
ξ(t)(utD + uD − utN )ϕ̂D +

∫

ΣN

∂np
t
Dϕ̂D dx = 0,(5.47)

∫

D
σA(t)∇ptN · ∇ϕ̂N dx− α1

∫

D
ξ(t)(uD − (utN + uN ))ϕ̂N dx (5.48)

+ α2

∫

ΣN

(uN − h)∂nϕ̂N ds = 0

for all ϕ̂D, ϕ̂N in H1
Σ0

(D). Thanks to the Lax-Milgram’s lemma, we check that both
equations (5.47) and (5.48) have a unique solution. Testing (5.47) with ϕ̂D = ptD and (5.48)
with ϕ̂N = ptN , we conclude by an application of Hölder’s inequality together with (5.46)
the existence of constants C1, C2 and τ > 0 such that for all t ∈ [0, τ ] : ‖ptD‖H1(D) ≤ C1

and ‖ptN‖H1(D) ≤ C2. We get ptD ⇀ q1 and ptN ⇀ q2 for two elements q1, q2 ∈ H1(Ω).
Passing to the limit in (5.47) and (5.48) yields q1 = pD and q2 = pN by uniqueness, where
pD and pN are solutions of the adjoint equations. Finally, differentiating G with respect to
t yields

∂tG(t,ϕ,ψ) =
α1

2

∫

D
(ϕD − ϕN )2ξ(t)tr(∂θt∂Φ−1

t ) dx

+

∫

D
σA′(t)∇ϕD · ∇ψD − f ◦ ΦtψDξ(t)tr(∂θ

t∂Φ−1
t ) − ψD∇f ◦ Φt · θtξ(t) dx

+

∫

D
σA′(t)∇ϕN · ∇ψN − f ◦ ΦtψNξ(t)tr(∂θ

t∂Φ−1
t ) − ψN∇f ◦ Φt · θtξ(t) dx.

where θt = θ ◦ Φt. In view of θ ∈ C1
c (D,Rd), the functions t 7→ ∂θt and t 7→ tr(∂θtΦ−1

t )
are continuous on [0, T ]. Moreover ϕD, ϕN , ψD, ψN are in H1(Ω), f ∈ PH1(Ω) so that
∂tG(t,ϕ,ψ) is well-defined for all t ∈ [0, T ]. Further it follows from the above formula that
(t,ψ) 7→ ∂tG(t,u0,ψ) is weakly continuous and therefore

lim
k→∞
tց0

∂tG(t,u0,pnk) = ∂tG(0,u0,p0).

Using Theorem 4.5 one concludes

dJ(Ω+)[θ] =
d

dt
G(t,ut,ψ)|t=0 = ∂tG(0,u0,p0) for all ψ ∈ H1

Σ0
(D) ×H1

Σ0
(D),

and therefore we have proven the following Proposition.

Proposition 5.15 (volume expression). Let Ω ⊂ Rd be a Lipschitz domain, θ ∈ C1
c (D,Rd),

f ∈ PH1(Ω), g ∈ H−1/2(ΣN ), h ∈ H1/2(ΣN ), Ω+ ⊂ Ω is an open set, then the shape
derivative of J(Ω+) is given by

dJ(Ω+)[θ] =

∫

D

(α1

2
(uD − uN )2 − f(pN + pD)

)
div θ dx+

∫

D
−(pD + pN )∇f · θ dx

+

∫

D
σA′(0)(∇uD · ∇pD + ∇uN · ∇pN ) dx,

(5.49)
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where A′(0) = (div θ)I − ∂θ⊤ − ∂θ, uN , uD are solutions of the variational inequalities
(5.30),(5.31) and pN , pD of (5.42),(5.39).

It is remarkable that the volume expression of the shape gradient in Proposition 5.15
corresponding to point (i) of Theorem 2.38 has been obtained without any regularity as-
sumption on Ω+. In order to obtain a boundary expression on the interface Γ as in of
Theorem 2.38 (iii) we need more regularity of the domain Ω+ provided by Assumption
5.12.

Remark 5.16. Note that (5.49) can be rewritten in a canonical form as

dJ(Ω+)[θ] =

∫

D
S : ∂θ + S · θ dx,

where

S = − σ(∇uD ⊗∇pD + ∇pD ⊗∇uD + ∇uN ⊗∇pN + ∇pN ⊗∇uN )

+ σ(∇uD · ∇pD + ∇uN · ∇pN )I +
(α1

2
(uD − uN )2 − f(pN + pD)

)
I,

S = −(pD + pN )∇f.

The tensor S can be seen as a generalisation of the Eshelby energy momentum tensor in
continuum mechanics introduced in [45].

Under Assumption 5.12 we can show similar to the previous section that the following
proposition is true. Since the technique to derive the boundary formula is the same as for
the previous section it will be omitted here. A detailed calculation may be found in [67].

Proposition 5.17 (boundary expression). Under Assumption 5.12 and θ ∈ C1
c (D,Rd) the

shape derivative of J(Ω+) is given by

dJ(Ω+)[θ] =

∫

Γ
[σ(−∂nuD∂npD − ∂nuN∂npN )]Γ θ · nds

+

∫

Γ
[σ]Γ(∇ΓuD · ∇ΓpD + ∇ΓuN · ∇ΓpN ) θ · nds.

Note that our results cover and generalise several results that can be found in the
literature of shape optimization approaches for EIT, including [3, 54]. For instance when
taking α2 = 1, α1 = 0 we get pD ≡ 0 and consequently

dJ(Ω+)[θ] =

∫

Γ
([−σ∂nuN∂npN ]Γ + [σ]Γ∇ΓuN · ∇ΓpN )θ · n. (5.50)

Formula (5.50) is the same as the one obtained in [3, pp. 533] (under the nameDJDLS(ω).V )
by computing the shape derivative of uN and uD. The adjoint is given by

− div (σ∇pN ) = 0,

σ∂npN = −(uN − h).

According to Proposition 5.15 we have obtained the following more general volume expres-
sion which is valid for any open set Ω+:

dJ(Ω+)[θ] =

∫

D
σA′(0)∇uN · ∇pN − fpN div θ − pN∇f · θ dx. (5.51)
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The two formulas (5.50) and (5.51) are equal when Assumption 5.12 is satisfied.
Note also that from a numerical point of view, the boundary expression in Proposition

5.17 is delicate to compute compared to the volume expression in Proposition 5.15 for
which the gradients of the state and adjoint states can be straightforwardly computed at
grid points when using the finite element method for instance. The boundary expression,
on the other hand, needs here the computation of the normal vector and the interpolation
of the gradients on the interface Γ which requires a precise description of the boundary and
introduce an additional error.

5.4 A quasi-linear transmission problem

We investigate a non-linear transmission problem and compute the shape derivative of an
associated cost function. Moreover, we prove the existence of optimal shapes for a min-
imisation problem associated with it. To achieve the well-posedness of the minimisation
problem a Gagliardo regularisation is used. The considered model constitutes a generalisa-
tion of the electrical impedance tomography (EIT) problem, which can be found in [3]; see
also [29] for the usage of the material derivative methods for this problem.

5.4.1 The problem setting

Also for this example, we use the notations from Assumption 5.3 of Subsection 5.2.1. We
consider for s ∈ (0, 1) the cost function

J(Ω) := J1(Ω) + αJ2(Ω) :=

∫

D
|u(Ω) − ur|2 dx+ αP̂ sD(χ) (5.52)

constrained by the equations

− div (β+(|∇u+|2)∇u+) = f+ in Ω+

− div (β−(|∇u−|2)∇u−) = f− in Ω−

u = 0 on ∂D

(5.53)

complemented by transmission conditions on Γ

[u]Γ = 0 and β+(|∇u+|2)∂nu+ = β−(|∇u−|2)∂nu−. (5.54)

Here, n := n+ denotes the outward unit normal vector along the interface Γ = ∂Ω+ ∩ ∂Ω−.
We denote by n− := −n = −n+ the outward unit normal vector of Ω−. Given a function
ϕ : D → R, we define its restriction to Ωi by ϕi := ϕ|Ωi : Ωi → R, where i ∈ {+,−}. The
bracket

[φ]Γ := ϕ+
|Γ − ϕ−

|Γ

denotes the jump of a function ϕ across Γ. Recall the definition of the s-perimeter in (5.52)

P̂ sD(χ) =

∫

D

∫

D

|χΩ(x) − χΩ(y)|
|x− y|d+s dx dy.

For later usage it is convenient to introduce the functions βχ : R×R → R

βχ(y, x) := χ(x)β+(y) + χc(x)β−(y),

where χ is a characteristic function and χc := (1 − χ) its complement. The derivative
β′χ : R ×R → R is defined piecewise by β′χ(y, x) := χ(x)∂yβ+(y) + χc(x)∂yβ−(y). Subse-
quently, the characteristic function χ = χΩ is always defined by the set Ω = Ω+ ⊂ D. To
simplify notation, we write β(|∇u|2, x) instead of βχ(|∇u|2, x) and similarly β′(|∇u|2, x) for
β′χ(|∇u|2, x). We make the following assumptions.
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Assumption 5.18. We require the functions β+, β− : R → R to satisfy the following
conditions.

1. There exist constants β̄+, β+, β̄−, β− > 0 such that

β̄+ ≤ β+(x) ≤ β+, β̄− ≤ β−(x) ≤ β− for all x ∈ Rd.

2. For all x, y ∈ R, we have

(β+(x) − β+(y))(x− y) ≥ 0 and (β−(x) − β−(y))(x− y) ≥ 0.

3. The functions β+, β− are continuously differentiable.

4. There are constants k,K > 0 such that

k|η|2 ≤ β±(|p|2)|η|2 + 2β′±(|p|2)|p · η|2 ≤ K|η|2 for all η, p ∈ Rd.

Moreover, we assume that ur ∈ H1(D) and f ∈ C1(D).

Remark 5.19. Note that from item 4 of the previous assumption it follows by plugging
η = p 6= 0 that

β′±(|η|2) ≤ K

2

1

|η|2 for all 0 6= η ∈ Rd.

Thus the functions β′± are bounded and vanish at plus infinity.

The weak formulation of (5.53),(5.54) reads: find u = u(χ) ∈ H1
0 (D) such that

∫

D
βχ(|∇u|2, x)∇u · ∇ψ dx =

∫

D
fψ dx for all ψ ∈ H1

0 (D). (5.55)

Along with the previous equation, we are going to investigate the perturbed equation: find
ut ∈ H1

0 (D) such that
∫

D
βχ(|B(t)∇ut|2, x)A(t)∇ut · ∇ψ dx =

∫

D
ξ(t)f tψ dx for all ψ ∈ H1

0 (D). (5.56)

Note that for t = 0 both equations coincide and thus u0 = u.

Convention. When we want to make the dependence of J on the characteristic function
explicit, we shall write J(Ω+) as Ĵ(χΩ+).

5.4.2 Existence of optimal shapes

We are interested in the question under which restriction on the characteristic functions a
minimisation of (5.52) admits a solution. Fix p ∈ (1,∞) and 0 < s < 1/p. Put s̄ := ps. We
investigate the problem

min Ĵ(χΩ) over χΩ ∈ Ws̄(D), (5.57)

where Ĵ(χΩ) := J(Ω) and J is given by (5.52). In the following we use the notation X(D)
to indicate the set of all characteristic functions χΩ defined by a Lebesgue measurable set
Ω ⊂ D. For every s̄ ∈ (0,∞), we recall the definition of the space

Ws̄(D) = {χΩ : R → R| χΩ ∈ X(D) and P̂ s̄D(χΩ) = |χΩ|W s
p (D) <∞},

which includes finite perimeter sets.
We begin with the study of the state equation (5.55) and (5.56).
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Theorem 5.20. Let θ ∈ C2
c (D,Rd) be a vector field and Φt its associated flow. Then the

equation (5.56) has for each t ∈ [0, τ ] and χ ∈ X(D) a unique solution in H1
0 (D).

Proof. Let Ω+ ⊂ D be measurable and define the measurable set Ω− := D \ Ω+. Then
by definition D = Ω+ ∪ Ω−. Introduce the family of energy functionals

E(t, ϕ) :=

∫

D

1

2
[χ(x)ξ(t)h+(|B(t)∇ϕ(x)|2) + (1 − χ(x))ξ(t)h−(|B(t)∇ϕ(x)|2)]

− ξ(t)f t(x)ϕ(x) dx,

(5.58)

where h± is the primitive of β± and given by

h±(z) = c± +

∫ z

0
β±(s) ds,

for some constants c± ∈ R. We may choose c± = 0. We are going to show that the
energy E(t, ϕ) is strictly convex with respect to ϕ. The first order directional derivative at
ϕ ∈ H1

0 (D) in direction ψ ∈ H1
0 (D) reads:

dE(t, ϕ;ψ) =

∫

D
β(|B(t)∇ϕ|2, x)A(t)∇ϕ · ∇ψ dx−

∫

D
ξ(t)f tψ dx.

Note that the equation dE(t, ut;ψ) = 0 for all ψ ∈ H1
0 (D), coincides with equation (5.56).

We now prove that the second order directional derivative of E(t, ϕ) exists and is strictly
coercive. Note that in order to prove the existence of the second order directional derivative
of E(t, ϕ), it is sufficient to show that for any u, ϕ, ψ ∈ H1

0 (D)

s 7→
∫

D
β(|B(t)∇(u+ sϕ)|2, x)A(t)∇(u+ sϕ) · ∇ψ dx

is continuously differentiable on R. Moreover for this it is sufficient to show that

s 7→
∫

Ω±

β±(|B(t)∇(u+ sϕ)|2, x)A(t)∇(u+ sϕ) · ∇ψ dx (5.59)

is differentiable on R. Put s 7→ αs(x) := |B(t)∇(u + sϕ)|2, then it is immediate that the
function γ±s (x) := β±(αs(x))A(t)∇(u(x) + sϕ(x)) · ∇ψ(x) is differentiable for almost all
x ∈ Ω±, respectively. The derivative in the respective domain Ω+ and Ω− (briefly Ω±)
reads

d

ds
γ±s (x) =2β′±(|B(t)∇(u+ sϕ)|2)B(t)∇(u+ sϕ) ·B(t)∇ϕA(t)∇(u+ sϕ) · ∇ψ

+ β±(|B(t)∇(u+ sϕ)|2)A(t)∇ϕ · ∇ψ.

Using Assumption 5.18 item 4, we conclude that there exists a constant K > 0 such that

d

ds
γ±s (x) ≤ K|∇ϕ(x)||∇ψ(x)|, for almost every x ∈ Ω± for all s ∈ R. (5.60)

Since s 7→ d
dsγ

±
s (x) is also continuous on R, we get by the fundamental theorem of calculus

γ±s (x) − γ±s+h(x)

h
=

1

h

∫ s+h

s

d

ds
γ±s (x) ds′

(5.60)

≤ K|∇ϕ(x)||∇ψ(x)| for almost all x ∈ Ω±.
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Note, that the constant K is independent of x and s. Thus we may apply Lebesgue’s the-
orem of dominated convergence to show that (5.59) is indeed differentiable with derivative

d

ds

∫

Ω±

β±(αs(x))A(t)∇(u+ sϕ) · ∇ψ dx

=

∫

Ω±

2β′±(αs(x))B(t)∇(u+ sϕ) ·B(t)∇ϕA(t)∇(u+ sϕ) · ∇ψ

+ β±(αs(x))A(t)∇ϕ · ∇ψ dx.

It is immediate from the previous expression that the derivative is continuous. We conclude
that d2E(t, ϕ;ψ,ψ) exists for all ϕ, ψ ∈ H1

0 (D) and t ∈ [0, τ ]. Moreover, using Assump-
tion 5.18 item 4, we get that there is C > 0 such that

d2ϕE(t, ϕ;ψ, ψ) ≥ C‖ψ‖2H1(D) for all ϕ, ψ ∈ H1
0 (D), and for all t ∈ [0, τ ]. (5.61)

Hence for all t ∈ [0, τ ] the energy ϕ 7→ E(t, ϕ) is strictly convex on the Hilbert space
H1

0 (Ω). Moreover, it is obvious that this functional is lower semi-continuous. Noting that

h±(|z|) ≥ β
±|z| for all z ∈ R, we get for each t ∈ [0, τ ]:

E(t, u) −→ +∞ as ‖u‖H1
0 (Ω) −→ +∞.

Therefore, we may conclude from [44, Proposition 1.1, Proposition 2.1, pp. 35–37] that

inf
ϕ∈H1

0 (Ω)
E(t, ϕ)

admits a unique solution, which is a solution of (5.56). Conversely, every solution of (5.56)
solves the above minimisation problem. ✷

In the next lemma, we prove the Lipschitz continuity of the mapping X(D) ∋ χ 7→
u(χ) ∈ H1

0 (D), where u(χ) denotes the weak solution of (5.55) and X(D) is endowed with
the L1(D)-norm.

Lemma 5.21. Assume that there exist C > 0 and ε > 0 such that for every χ ∈ X(D) we
have ‖u(χ)‖W 1,2+ε(Ω) ≤ C, where u = u(χ) solves (5.55). Then there is a constant C > 0
such that for all characteristic functions χ1, χ2 ∈ X(D):

‖u(χ1) − u(χ2)‖H1(D) ≤ C‖χ1 − χ2‖L1(D),

where u(χ1) and u(χ2) are solutions of the state equation (5.55).

Proof. Let p ∈ (1,∞) and 0 < s < 1/p. Let u(χ1) = u1 and u(χ2) = u2 be solutions
in H1

0 (D) of (5.55) associated with the functions χ1, χ2 ∈ X(D). Then by boundedness of
βχ1 and βχ2 , we obtain

C1‖u1 − u2‖2H1(D) ≤
∫

D
βχ1(|∇u1|2, x)∇(u1 − u2) · ∇(u1 − u2) dx

=

∫

D
(βχ2(|∇u2|2, x) − βχ1(|∇u1|2, x))∇(u1 − u2) · ∇u2 dx

and also

C2‖u1 − u2‖2H1(D) ≤
∫

D
βχ2(|∇u2|2, x)∇(u1 − u2) · ∇(u1 − u2) dx

=

∫

D
(βχ2(|∇u2|2, x) − βχ1(|∇u1|2, x))∇(u1 − u2) · ∇u1 dx.
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Adding both inequalities yields with C := C1 + C2

C‖u1 − u2‖2H1(D) ≤
∫

D
(βχ2(|∇u2|2, x) − βχ1(|∇u1|2, x))∇(u1 − u2) · ∇(u1 + u2) dx

=

∫

D
(χ2β+(|∇u2|2) − χ1β+(|∇u1|2))∇(u1 − u2) · ∇(u1 + u2) dx

+

∫

D
(χc2β−(|∇u2|2) − χc1β−(|∇u1|2))∇(u1 − u2) · ∇(u1 + u2) dx

and therefore

C‖u1 − u2‖2H1(D) ≤
∫

D
(χ2 − χ1)β+(|∇u2|2))∇(u1 − u2) · ∇(u1 + u2) dx

+

∫

D
χ1(β+(|∇u2|2) − β+(|∇u1|2))∇(u1 − u2) · ∇(u1 + u2) dx

+

∫

D
(χ1 − χ2)β−(|∇u2|2)∇(u1 − u2) · ∇(u1 + u2) dx

+

∫

D
χc1(β−(|∇u2|2) − β−(|∇u1|2))∇(u1 − u2) · ∇(u1 + u2) dx.

(5.62)

Now we use the monotonicity of β+ and β− to conclude
∫

D
χc1(β−(|∇u2|2) − β−(|∇u1|2))(∇u1 −∇u2) · (∇u1 + ∇u2) dx

= −
∫

D
(1 − χ1)(β−(|∇u2|2) − β−(|∇u1|2))(|∇u2|2 − |∇u1|2) dx ≤ 0

and similarly
∫

D
χ1(β+(|∇u2|2) − β+(|∇u1|2))(∇u1 −∇u2) · (∇u1 + ∇u2)

= −
∫

D
χ1(β+(|∇u2|2) − β+(|∇u1|2))(|∇u2|2 − |∇u1|2) ≤ 0.

By assumption there exist ε > 0 and C > 0 such that ‖u(χ)‖W 1,2+ε(D) ≤ C for all χ ∈ X(D).
Therefore using Hölder’s inequality, we deduce from (5.62)

C‖u1 − u2‖2H1(D) ≤ (β+ + β−)‖χ2 − χ1‖L2q′ (D)‖∇(u1 − u2)‖L2(D)‖∇(u1 + u2)‖L2q(D),

where q = 2+ε
2 and q′ := q

q−1 = 2
ε + 1. Finally, using Hölder’s inequality and the bounded-

ness of D it follows that there exists C > 0 depending on m(D) such that ‖χ2−χ1‖L2q′ (D) ≤
C‖χ2 − χ1‖L1(D) for all χ1, χ2 ∈ X(D). ✷

Corollary 5.22. Denote by Φt the flow associated with θ ∈ C1
c (D,Rd) and put Ωt :=

Φt(Ω). Let u(χΩ) = u and u(χΩt) = ut be the solutions of (5.55). Then ut : [0, τ ] → H1
0 (D)

and ut := ut ◦ Φt : [0, τ ] → H1
0 (D) are right sided uniformly continuous, i.e. for any ε > 0

there exists a δ > 0 such that for all t ≤ s, s− t ∈ [0, τ ] with |s− t| ≤ δ

‖us − ut‖H1
0 (D) ≤ ε, ‖us − ut‖H1

0 (D) ≤ ε.

In particular,

lim
tց0

‖us+t − us‖H1
0 (D) = 0, lim

tց0
‖us+t − us‖H1

0 (D) = 0 for all s ∈ [0, τ ] \ τ.
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Proof. From the previous Lemma and the change of variables Φt(x) = y, we infer

‖us − ut‖H1
0 (D) ≤ C‖χΩs − χΩt‖Lq(D)

= C‖χΩ ◦ Φ−1
s − χΩ ◦ Φ−1

t ‖Lq(D)

= C‖ξ1/q(t)(χΩ − χΩ ◦ Φ−1
t ◦ Φs)‖Lq(D)

≤ C‖χΩ − χΩ ◦ Φs−t‖Lq(D).

Therefore we reduced the uniform continuity of t 7→ ut to the continuity of [0, τ ] → Lq(D) :
t 7→ χΩ ◦Φt in zero, which follows from Lemma 2.16 item (i). The continuity of t 7→ ut now
follows from item (iv) of Lemma 2.16. ✷

It is important to realise that the previous result was established under minimal assumptions
on the regularity of the solutions u, ut. We only need conditions 2,3 of Assumption 5.18.

Before we turn our attention to existence of optimal shapes, we prove the Lipschitz
continuity of t 7→ ut.

Proposition 5.23. Let us pick any measurable set Ω ⊂ D. Let Φt be the flow of the vector
field θ ∈ C2

c (D,Rd) and set Ωt := Φt(Ω).1 Then there exists δ > 0 such that

‖ut − u‖H1
0 (D) ≤ ct for all t ∈ [0, δ].

Proof. Let E(t, ϕ) be the energy defined in (5.58) and recall from the proof of Theo-
rem 5.20 that there is C > 0:

d2ϕE(t, ϕ;ψ, ψ) ≥ C

∫

D
|∇ψ|2dx for all ψ ∈ H1(D), for all t ∈ [0, τ ].

Denote by ut the unique minimum of E(t, ·), which is characterised by

dE(t, ut, ψ) = 0 for all ψ ∈ H1
0 (D).

Let us first show that for all ϕ, ψ ∈ H1(D) the function [0, τ ] 7→ R : t 7→ dE(t, ϕ, ψ) is
continuously differentiable. The only difficult part is the nonlinearity

t 7→
∫

D
β(|B(t)∇ϕ(x)|2, x)A(t)∇ϕ · ∇ψ dx (5.63)

where ϕ, ψ ∈ H1
0 (D) are arbitrary functions. The other terms in G(t, ϕ, ψ) are differentiable

due to Lemma 2.16. Again it will be sufficient to show that

t 7→
∫

Ω±

β±(|B(t)∇ϕ(x)|2)A(t)∇ϕ · ∇ψ dx

are differentiable. We have that t 7→ α̃±
t (x) := β±(|B(t)∇ϕ(x)|2)A(t)∇ϕ(x) · ∇ψ(x) are

differentiable for almost every x ∈ Ω± with derivative

d

dt
α̃±
t (x) = 2β′±(|B(t)∇ϕ(x)|2)B(t)∇ϕ(x) ·B′(t)∇ϕA(t)∇ϕ(x) · ∇ψ(x)

+ β±(|B(t)∇ϕ(x)|2)A′(t)∇ϕ(x) · ∇ψ(x).

Since θ ∈ C2
c (D,Rd), we have α̃t(x) ∈ C1([0, τ ]) for almost every x ∈ Ω±. Using item 4 of

Assumption 5.18 and taking into account Remark 5.19, we can show that d
dt α̃

±
t is pointwise

1Note that Φt(Ω) is Lebesgue measurable; cf. [47, Thm. 263D].
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bounded by a L1(D) function. The calculation is similar to the one leading to (5.60) and
omitted. Thus we may apply the Lebesgue’s dominated convergence theorem to show that
(5.63) is indeed differentiable and

∂tdϕE(s, ϕ, ψ) =

∫

D
β′(|B(s)∇ϕ|2, x)2(B′(s)∇ϕ ·B(s)∇ϕ)A(s)∇ϕ · ∇ψ dx

−
∫

D
ξ(s) div (θs) ◦ Φs f

sψ dx−
∫

D
ξ(s)B(s)∇f s · θsψ dx

−
∫

D
β(|B(s)∇ϕ|2, x)A′(s)∇ϕ · ∇ψ dx.

We proceed by the observation that

∫ 1

0
d2ϕE(t, utν ;ut − u, ut − u) dν = dϕE(t, ut;ut − u) − dϕE(t, u;ut − u) (5.64)

= −(dϕE(t, u;ut − u) − dϕE(0, u;ut − u)) (5.65)

= −t∂tdϕE(ηtt, u;ut − u), (5.66)

where utν := ν ut + (1 − ν)u. In the step from (5.65) to (5.66) we applied the mean value
theorem yielding the ηt ∈ (0, 1). Using Hölder’s inequality and item 4 of Assumption 5.18,
we conclude that there is a constant C > 0 such that

∂tdϕE(s, ϕ;ψ) ≤ C(1 + ‖ϕ‖H1(D))‖ψ‖H1(D) for all ϕ, ψ ∈ H1(D), for all s ∈ [0, τ ].

Using the previous inequality and estimating (5.64) by (5.61), we get the desired inequality

‖ut − u‖H1(D) ≤ ct.

✷

The considerations from the above paragraph condense in the following result.

Theorem 5.24. Let the assumptions of Lemma 5.21 be satisfied. Let p ∈ (1,∞), 0 <
s < 1/p and put s̄ := ps. Then the optimization problem (5.57) has at least one solution
χ = χΩ ∈ Ws̄(D).

Proof. We employ Theorem 2.29 to prove the statement. Let (χn)n∈N be a sequence in
X(D) converging in L2(D) to χ ∈ X(D). Due to Lemma 5.21, we obtain u(χn) → u(χ) in
H1

0 (D) as n→ ∞. Therefore limn→∞ Ĵ(χn) = Ĵ(χ) and Ĵ : X(D) → R is continuous with
respect to L2(D). The result follows now from Theorem 2.29. ✷

Remark 5.25. The previous result remains true when we replace the penalty term in Ĵ by
the perimeter P̂D(χ).

5.4.3 Shape derivative of J2

We show that the penalty term J2(Ω) = |χΩ|pW s
p (D) is shape differentiable.

Lemma 5.26. Let θ ∈ C2
D(Rd). Fix p ∈ (1,∞) and 0 < s < 1/p. Then the mapping

Ω 7→ J2(Ω) := |χΩ|pW s
p (D)
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is shape differentiable in all open sets Ω∗ ⊂ D satisfying |χΩ∗ |W s
p (D) < ∞. The derivative

is given by

dJ2(Ω
∗)[θ] = 2

∫

Ω

∫

D\Ω

div (θ)(x) + div (θ)(y)

|x− y|d+sp dx dy

+ c

∫

Ω

∫

D\Ω

(x− y)

|x− y|d+sp+2
· (θ(x) − θ(y)) dx dy

where c := −2(d+ ps). This can be written in terms of χΩ as

dJ2(Ω
∗)[θ] =

∫

D

∫

D
( div (θ)(x) + div (θ)(y))

|χΩ(x) − χΩ(y)|p
|x− y|d+sp dx dy

+
c

2

∫

D

∫

D

|χΩ(x) − χΩ(y)|p
|x− y|d+ps+2

(x− y) · (θ(x) − θ(y)) dx dy.

(5.67)

Proof: Using the change of variables y = Φt(x) gives

J(Φt(Ω
∗)) = 2

∫

Ω

∫

D\Ω

ξ(t)(x)ξ(t)(y)

|Φt(x) − Φt(y)|d+ps dx dy

and consequently using that Φt is injective, we obtain the desired formula by differentiating
the above equation at t = 0.

Remark 5.27. Note that due to the Lipschitz continuity of θ and supp(θ) ⊂ D the shape
derivative (5.67) is well-defined.

5.4.4 Shape derivative of J1

We are going to prove that the cost function J1 given by (5.52) is shape differentiable
by employing the Theorem 4.2. Moreover, we derive the domain expression of the shape
derivative. The main result of this subsection reads:

Theorem 5.28. Let D ⊂ Rd be a bounded domain with Lipschitz boundary. Fix any
measurable set Ω ⊂ D. Then the shape function J1 given by (5.52) is shape differentiable
for every θ ∈ C2

c (D,Rd). 2 The domain expression reads

dJ1(Ω)[θ] =

∫

D
div (θ)|u− ur|2 dx−

∫

D
2(u− ur)∇ur · θ dx−

∫

D
div (θ)fp dx

−
∫

D
∇f · θp dx+

∫

D
β(|∇u|2, x)A′(0)∇u · ∇p dx

−
∫

D
2β′(|∇u|2, x)(∂θ⊤∇u · ∇u)(∇u · ∇p) dx,

(5.68)

where u ∈ H1
0 (D) satisfies (5.55) and p ∈ H1

0 (D) solves

∫

D
2β′(|∇u|2, x)(∇u · ∇p)(∇u · ∇ψ) dx+

∫

Ω
β(|∇u|2, x)∇ψ · ∇p dx

= −
∫

D
2(u− ur)ψ dx for all ψ ∈ H1

0 (D).
(5.69)

2We use the notation A ⋐ B to indicate that A ⊂ B and A ⊂ B is compact.
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For the first part of the theorem we let Ω+ ⊂ D be any measurable set and define
Ω− := D \ Ω−. We apply Theorem 4.2 to the function

G(t, ϕ, ψ) =
∑

ς∈{+,−}

(∫

Ως

ξ(t)|ϕς − utr|2 dx+

∫

Ως

βς(|B(t)∇ϕς |2)A(t)∇ϕς · ∇ψς dx
)

−
∑

ς∈{+,−}

∫

Ως

ξ(t)(f ς ◦ Φt)ψ
ς dx,

with E = H1
0 (D) and F = H1

0 (D) to show the previous theorem. Notice that J1(Ωt) =
G(t, ut, ψ), where ut ∈ H1

0 (D) solves

∫

D
β(|B(t)∇ut|2, x)A(t)∇ut · ∇ψ dx =

∫

D
ξ(t)f tψ dx for all ψ ∈ H1

0 (D). (5.70)

Roughly speaking the function G constitutes the sum of the perturbed cost function J(Ωt)
and the weak formulation (5.70).

Let us now verify the four conditions (H0)-(H3).
(H0) Condition (iii) is satisfied by construction. As a byproduct of Theorem 5.20, we get
that conditions (i) and (ii) of hypothesis (H0) are satisfied, since the Lagrangian G can be
written as

G(t, ϕ, ψ) =
∑

ς∈{+,−}

∫

Ως

ξ(t)|ϕ− utr|2 dx+ dE(t, ϕ;ψ).

(H1) In Proposition 5.23, we proved that for all ϕ, ψ ∈ H1(D) the mapping [0, τ ] → R :
t 7→ dE(t, ϕ;ψ) is differentiable. Therefore, the function t 7→ G(t, ϕ, ψ) is differentiable for
all ϕ, ψ ∈ H1

0 (D) with derivative

∂tG(t, ϕ, ψ) = −
∫

D
2 ξ(t) (ϕ− utr)B(t)∇utr · θt dx+

∫

D
ξ(t) div (θt) ◦ Φt |ϕ− utr|2 dx

+

∫

D
β′(|B(t)∇ϕ|2, x)2(B′(t)∇ϕ ·B(t)∇ϕ)A(t)∇ϕ · ∇ψ dx

−
∫

D
ξ(t) div (θt) ◦ Φt f

tψ dx−
∫

D
ξ(t)B(t)∇f t · θtψ dx

−
∫

D
β(|B(t)∇ϕ|2, x)A′(t)∇ϕ · ∇ψ dx.

(H2) Note that E(t) = {ut} and Y (t, ut, u0) = {pt}, where ut ∈ H1
0 (D) is the solution of

the state equation (5.70) and pt ∈ H1
0 (D) is the unique solution of

∫ 1

0

∫

D
2ξ(t)β′(|B(t)∇ust |2, x)(B(t)∇ust ·B(t)∇pt)(B(t)∇ust ·B(t)∇ψ) dx ds

+

∫ 1

0

∫

D
β(|B(t)∇ust |2, x)A(t)∇ψ · ∇pt dx ds

= −
∫ 1

0

∫

D
ξ(t)2(ust − ur)ψ dx ds for all ψ ∈ H1

0 (D),

(5.71)

where ust := sut+(1−s)u. Due to condition (H0) this equation is well-defined. The existence
of a solution pt follows from the theorem of Lax-Milgram. Moreover, by Assumption 5.18,
we conclude β′ ≥ 0 and β ≥ c > 0. Note that p0 = p ∈ Y (0, u0) is the unique solution of
the adjoint equation (5.69).
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(H3) We show that for any real sequence (tn)n∈N such that tn ց 0 as n → ∞, there is
a subsequence (tnk

)k∈N such that (ptk)k∈N, where ptk ∈ Y (tk, u
tk , u0) converges weakly in

H1
0 (D) to the solution of the adjoint equation and that (t, ψ) 7→ ∂tG(t, u0, ψ) is weakly

continuous.

With the help of Proposition 5.23, we are able to show the following.

Lemma 5.29. For any sequence (tn)n∈N of non-negative real numbers converging to zero,
there is a subsequence (tnk

)k∈N such that (ptnk )k∈N, where ptnk solves (5.71) with t = tnk
,

converges weakly in H1
0 (D) to the solution p of the adjoint equation (5.69).

Proof: The existence of a solution of (5.71) follows from the Theorem of Lax-Milgram.
Inserting ψ = pt as test function in (5.71), we see that the estimate ‖ut‖H1(D) ≤ C im-

plies ‖pt‖H1(D) ≤ C̃ for all sufficiently small t, where C, C̃ > are some constants. Now let
(tn)n∈N be a sequence of non-negative numbers converging to zero. Then using the bound-
edness of (ptn)n∈N, we may extract a weakly converging subsequence (ptnk )k∈N converging
to some w ∈ H1

0 (D). In Proposition 5.23 we proved ut → u in H1(D) which can be used to
pass to the limit in (5.71) and obtain ptnk ⇀ p in H1(D), for tnk

→ 0, as k → ∞, where
p ∈ H1

0 (D) solves the adjoint equation (5.69). By uniqueness of a solution of the adjoint
equation, we conclude w = p.

Finally note that for fixed ϕ ∈ H1
0 (D) the mapping (t, ψ) 7→ ∂tG(t, ϕ, ψ) is weakly

continuous. This finishes the proof that condition (H3) is satisfied. Consequently, we may
apply Theorem 4.2 and obtain dJ1(Ω)[θ] = ∂tG(0, u, p), where u ∈ H1

0 (D) solves the state
equation (5.55) and p ∈ H1

0 (D) is a solution of the adjoint equation (5.69). This completes
the proof of Theorem 5.28.

5.4.5 Boundary integrals

It can be seen from the domain expression (5.68), that the mapping dJ1(Ω) : C∞
c (D) → R is

linear and continuous for the C1
c (D,Rd)–topology. Thus if Ω is open and ∂Ω is of class C2,

then we conclude by the structure theorem that dJ1(Ω)[θ] = g(θ|Γ ·n+) for some distribution
g ∈ Ck(Γ)′. It turns out that under suitable smoothness assumptions the distribution g
can be indeed identified as an integral over Γ:

Theorem 5.30. Let Ω := Ω+
⋐ D be a compactly contained subset of D with unitary unit

normal n := n+ and define Ω− := D \ Ω+. Suppose that Γ := ∂Ω+ ∩ ∂Ω− is of class C2.
The solution u of (5.55) and the solution p of (5.73) are classical solutions by which we

mean that u+, p+ ∈ C2(Ω
+

) and u−, p− ∈ C2(Ω
−

). Then the boundary expression is given
by

dJ1(Ω)[θ] = −
∫

Γ

[
2β′(|∇u|2, x)(∇Γu · ∇Γp+ ∂nu ∂np)∂nu ∂nu

]
Γ
θnds

+

∫

Γ

[
β(|∇u|2, x)∇Γu · ∇Γp− β(|∇u|2, x)∂nu ∂np

]
Γ
θn ds.

(5.72)

Proof: By taking appropriate test functions in the weak formulation of the adjoint
equation (5.69) shows that p solves

− div (β+(|∇u+|2)∇p+ + 2β′+(|∇u+|2)(∇u+ · ∇p+)∇u+) = −2(u+ − ur) in Ω+,

− div (β−(|∇u−|2)∇p− + 2β′−(|∇u−|2)(∇u− · ∇p−)∇u−) = −2(u− − ur) in Ω−,

p = 0 on ∂D,

(5.73)
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complemented by transmission conditions

[p]Γ = 0 on Γ,[
β(|∇u|2, x) ∂np+ 2β′(|∇u|2, x)∇u · ∇p ∂nu

]
Γ

= 0 on Γ.

Recall the definitions Ψt(f) = f ◦ Φt and Ψt(f) = f ◦ Φ−1
t . Using the change of variables

Φt(x) = y, we can rewrite the function G as

G(t, ϕ, ψ) =
∑

ς∈{+,−}

(∫

Φt(Ως)
|Ψt(ϕς) − ur|2 dx−

∫

Φt(Ως)
f ςΨt(ψς) dx

)

+
∑

ς∈{+,−}

∫

Φt(Ως)
βς(|∇(Ψt(ϕς))|2)∇(Ψt(ϕς)) · ∇(Ψt(ψς)) dx

(5.74)

for all ϕ, ψ ∈ H1
0 (D) with ϕκ, ψκ ∈ C2(Ω

κ
), (κ ∈ {+,−}). It is easy to verify that

G(t, ϕ, ψ) in the form of (5.74) is differentiable with respect to t, i.e. ∂tG(t, ϕ, ψ) exists for
all t ∈ [0, τ ] and ϕ, ψ ∈ H1

0 (D) with ϕκ, ψκ ∈ C2(Ω
κ
), κ ∈ {+,−}. To see this we extend

ϕκ, ψκ to functions ϕ̃κ, ψ̃κ in C2(Rd). This is possible by a higher order reflection technique
under the assumption that ∂Ω+ and ∂Ω− are both of class C2, see e.g. [46, p.254, Theorem
1]. It is evident that the value G(t, ϕ, ψ) does not change when we replace ϕκ, ψκ by ϕ̃κ, ψ̃κ

in (5.74). Notice that Ψt(ϕ) = ϕ ◦Φ−1
t will be independent of t near the boundary ∂D since

θ has compact support in D. Therefore the regularity of ∂D ∩ ∂Ω− = ∂D does not enter in
the above considerations, only the C2 regularity for ∂Ω+∩∂Ω− is needed. The assumptions
of Theorem 5.30 allow us to apply the previously described extension technique to ϕ = u and
ψ = p. Thanks to Theorem 2.43 we already know that d

dtG(t, ut, ψ) = ∂tG(0, u, p) and thus
we can compute the shape derivative of J1 by computing ∂tG(0, u, p) using formula (5.74)
and Theorem 2.43:

dJ1(Ω)[θ] =
∑

ς∈{+,−}

∫

Ως

2(u− ur )̊u
ς dx+

∫

Ως

2β′ς(|∇uς |2)(∇uς · ∇ůς)∇uς · ∇pς dx

+
∑

ς∈{+,−}

∫

Ως

βς(|∇uς |2)∇ůς · ∇pς + βς(|∇uς |2)∇uς · ∇p̊ς − f ς p̊ς dx

+

∫

∂Ως

(βς(|∇uς |2)∇uς · ∇pς − f ςpς) θnς ds,

(5.75)

where we use the notation ůς = −∇uς · θ and p̊ς = −∇pς · θ. Integrating by parts in (5.75)
gives

dJ1(Ω)[θ] = −
∑

ς∈{+,−}

{∫

Ως

div
(
βς(|∇uς |2)∇pς + 2β′ς(|∇uς |2)(∇uς · ∇pς)∇uς

)
ůς dx

+

∫

Ως

2(u− ur )̊u
ς dx

}
−

∑

ς∈{+,−}

∫

Ως

(
div

(
βς(|∇uς |2)∇uς

)
+ f ς

)
p̊ς dx

+
∑

ς∈{+,−}

∫

∂Ως

βς(|∇uς |2)̊uς∂nςpς + βς(|∇uς |2)p̊ς∂nςuς dx

+
∑

ς∈{+,−}

∫

∂Ως

βς(|∇uς |2)∇uς · ∇pς θnς + 2β′ς(|∇uς |2)(∇uς · ∇pς)∂nςuς ůςds,



94 CHAPTER 5. APPLICATIONS TO TRANSMISSION PROBLEMS

and taking into account Assumption 5.30, we see that the first two lines vanish and thus

dJ1(Ω)[θ] =
∑

ς∈{+,−}

∫

Γ
βς(|∇uς |2)(−∂θuς)∂nςpς − βς(|∇uς |2)∂θpς∂nςuς dx

+
∑

ς∈{+,−}

∫

Γ
βς(|∇uς |2)∇uς · ∇pς θnς ds−

∫

Γ
2β′ς(|∇uς |2)(∇uς · ∇pς)∂nςuς∂θu

ςds,
(5.76)

where ∂θu
ς := ∇uς · θ. According to the structure theorem the right-hand side of (5.76)

depends linearly on θn = θ · n. To see this split θ into normal and tangential part on Γ:
θΓ := θ|Γ − θnn, where θn := θ · n. The continuity of θ on D yields θ+Γ = θ−Γ and the
equation ∇Γp

+ = ∇Γp
− on Γ implies ∂θΓp

+ = ∇Γp
+ · θΓ = ∇Γp

− · θΓ = ∂θΓp
−. Therefore

the tangential terms in (5.76) vanish:

∑

ς∈{+,−}

∫

Γ
βς(|∇uς |2)∂θpς∂nςuς dx =

∑

ς∈{+,−}

∫

Γ
βς(|∇uς |2)(∂nςpς∂nςuς)θnς dx

+
∑

ς∈{+,−}

∫

Γ
βς(|∇uς |2)∂nςuς(∇Γp

ς · θςΓ) dx

︸ ︷︷ ︸
=0,(5.54)

.

Similarly one may check

∑

ς∈{+,−}

∫

Γ
βς(|∇uς |2)∂θuς∂nςpς ds+

∫

Γ
β̂′ς,uς (∇uς · ∇pς)∂nςuς∂θu

ς ds

=
∑

ς∈{+,−}

∫

Γ
βς(|∇uς |2)∂nςuς∂nςpςθn ds+

∫

Γ
2β′ς(|∇uς |2)(∇uς · ∇pς)∂nςuς∂nςuςθn ds.

Thus we finally obtain from (5.76) the boundary expression

dJ1(Ω)[θ] = −
∑

ς∈{+,−}

∫

Γ
2β′ς(|∇uς |2)(∇uς · ∇pς)(∂nςuς)2 θnςds

+
∑

ς∈{+,−}

∫

Γ
βς(|∇uς |2)∇Γu

ς · ∇Γp
ς θnς − βς(|∇uς |2)∂nςuς∂nςpς θnς ds,

which is equivalent to (5.72).

Remark 5.31. Note that the functions

p̊(x) :=

{
p̊+(x), x ∈ Ω+

p̊−(x), x ∈ Ω−
ů(x) :=

{
ů+(x), x ∈ Ω+

ů−(x), x ∈ Ω−

introduced in (5.75) are piecewise H1-functions, but do not belong to H1
0 (D). Therefore it

is not allowed to insert them as test functions in the adjoint or state equation.

Remark 5.32. If the transmission coefficients are constant in each domain, that is β′(|∇u|2, x) =
0, then the formula coincides with the one in [3]. To the author’s knowledge this formula
also corrects the one in [29]. Using Cea’s original method would lead to the wrong formula

dJ1(Ω)[θ] =

∫

Γ

[
β(|∇u|2, x)∇u · ∇p

]
Γ
θn ds.



Chapter 6

Minimization using the volume

expression

In this chapter we build the foundation for the numerical simulations presented in Chapter 7
using the volume expression of the shape derivative. As we shall see the most commonly used
gradient algorithm in shape optimization can be interpreted as a discretization of gradient
flows, where the flow depends on the choice of metric. For each time step the flow will
belong to a certain group of diffeomorphisms. Therefore, we first review the construction of
Michelletti to construct special metric groups of diffeomorphisms. In the subsequent section,
this construction will be specialised to the case, where the diffeomorphisms are generated
by velocity fields. This setting is appropriate for the volume expression. We use the volume
expression to define gradient algorithms from two perspectives: (i) the (classical) Eulerian
point of view in which the domain is moved in each iteration step and (ii) the Lagrangian
point of view, where the initial domain is fixed, but the equations transform during the
iterations. This latter approach allows calculations on a fixed grid and makes the method
very attractive. Finally, we review representations of the shape derivative in the space of
splines and recall the level set method.

6.1 A glimpse at the Michelletti construction

In the introduction of this thesis, we discussed two different ways to describe subsets of 2R
2
,

on the one hand by means of curves and on the other by homeomorphisms in the plane. The
first approach yields Riemannian manifolds and thus once a Riemannian metric is defined,
we can speak of geodesics in these manifolds. The second approach yields complete metric
spaces, which are not necessarily smooth manifolds. While the construction of the shape
spaces as spaces of curves is naturally related to the boundary expression of the shape
derivative1, the volume expression is related to groups of homeomorphisms/diffeomorphisms
constructed by Michelletti [70].

6.1.1 Michelletti space

The Michelletti space is a special case of a diffeomorphism (sub-)group from Rd into itself,
which consist of perturbations of the identity. As in the introduction, we work with the

1Strictly speaking it is possible also to use the volume expression with the shape spaces, but it is not the
natural choice.
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space Θ := C0,1
b (Rd,Rd), that is, the space of bounded Lipschitz continuous functions in

Rd.2 We refer to Chapter 3 in [37] for other choices of Θ. Let us introduce the set

End(Θ) := {f + id : f ∈ Θ}.
It is shown in [37, Thm. 2.1, p. 125] and [37, Ex. 2.1–2.3., pp. 125–133] that the set

F(Θ) := {id + f : f ∈ Θ, f + id is bijective and (f + id)−1 ∈ End(Θ)}
is a group of composition with unit element id(x) := x. It may be turned into a metric
space by equipping it with the metric

dC(F, F̃ ) :=  L(F ◦ F̃−1, id), F, F̃ ∈ F(Θ),

where the function  L is defined for all F ∈ F(Θ) by

 L(F, id) := inf
F=F1◦···◦Fn

Fk∈F(Θ)

n∑

k=1

‖Fk − id‖Θ + ‖F−1
k − id‖Θ.

The function F 7→  L(F, id) may be interpreted as the length from F to id. The following
result is a special case of [37, Thm. 2.6, p.134].

Theorem 6.1. The space (F(Θ), dC) is a complete metric space.

Notice that the continuity of Θ → R : x 7→ f(x) is essential to prove the completeness
stated in the previous theorem. If Θ is a Hilbert space this condition ensures the existence of
a reproducing kernel, compare Section 6.2. For any closed or open crack free3 set ω0 ∈ Rd,
we have that Sω0 := {F ∈ F(Θ) : F (ω0) = ω0} is a closed subgroup of F(Θ). Therefore we
can build the quotient F(Θ)/Sω0 . Since by definition dC is right invariant, that is, for all
F, F̃ ,H ∈ F(Θ)

dC(F ◦H, F̃ ◦H) = dC(F, F̃ ),

it induces a right invariant metric on the quotient space F(Θ)/Sω0

d′C([F ], [F̃ ]) := inf
H∈Sω0

dC(F, F̃ ◦H),

where [F ], [F̃ ] ∈ F(Θ)/Sω0 . From [37, Thm. 2.8, p.141] we know that (d′C ,F(Θ)/Sω0) is
a complete metric space. This result remains true if we choose Θ to be C(Rd,Rd) or
Ckb (Rd,Rd). The first space denotes the set of all continuous bounded functions and the
latter one the set of k-times differentiable functions with bounded derivatives.

Each factorization F = F1 ◦ · · · ◦ Fn = (I + θ0) ◦ · · · ◦ (I + θn) ∈ F(Θ) can be viewed
as a piecewise continuous path Φ : [0, 1] → F(Θ) by assigning for any subdivision 0 = t0 <
t1 < · · · < tn = 1 the mapping

Φ(t) :=





id if t ∈ [0, t1)

(id + θ0) if t ∈ [t1, t2)

(id + θ0) ◦ (I + θ1) if t ∈ [t2, t3)
...

(I + θ0) ◦ (I + θ1) ◦ · · · ◦ (I + θn) if t ∈ [tn−1, 1]

.

2The original construction of Michelletti was performed for the space Θ = Ck
b,0(R

d,Rd) of all k-times

differentiable functions from R
d to R

d with partial derivatives vanishing at infinity. Here, k ≥ 0 is arbitrary,
but finite.

3An open set Ω ⊂ R
d is crack free if int(Ω) = Ω.
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The construction of the metric dC can be extended to the Fréchet spaces4 C∞
b (Rd,Rd) :=

∩k∈NCkb (Rd,Rd) and C∞
b,0(R

d,Rd) := ∩k∈NCkb,0(Rd,Rd), where Ckb,0(R
d,Rd) is the space

of k-times differentiable functions from Rd to Rd with vanishing partial derivatives at
infinity; cf. [37].

Let a shape function J : Ξ ⊂ 2R
d → R be given and assume that there is an open

crack free set ω0 ∈ Ξ such that F (ω0) ∈ Ξ for all F ∈ F(Θ). Then we may study the
minimization problem

min Jα(ϕ) := J(ϕ(ω0)) + αdC(ϕ, id) over F(Θ),

where α > 0 is a positive number. Notice that dC(ϕ, id) =  L(ϕ, id). When J satisfies the
condition ∀H, H̃, F ∈ F(Θ) with F (H(ω0)) = H(ω0), we have J(F (H(ω0))) = J(F (ω0)).
Then we may formulate the problem on the quotient F(Θ)/Sω0

min J̄α([ϕ]) := J(ϕ(ω0)) + αd′C([ϕ], [id]) over F(Θ)/Sω0 ,

The crucial observation is that the continuity of a shape function Jα with respect to the
Courant metric may be checked by the continuity of J along flows Φt generated by suitable
vector fields θ as observed in [37, Thm. 6.1–6.3, pp. 202–207].

6.2 Groups of diffeomorphisms via velocity fields

Now we turn our attention to a special subset of F(Θ) which comprises transformations
generated by velocity fields. Further, we consider the constrained case, where we replace
Rd in the definition of F(Θ) by a regular domain D ⊂ Rd (cf. Definition 2.3). We denote
throughout this section by Θ := C0,1(D,Rd) the space of Lipschitz continuous functions in
D equipped with norm

‖f‖Θ := sup
x∈D

|f(x)| + sup
x 6=y

x,y∈D

|f(x) − f(y)|
|x− y| .

Definition 6.2. A Banach space H ⊂ Θ is called admissible if there exists a constant
C > 0 with

∀θ ∈ H : ‖θ‖Θ ≤ C‖θ‖H. (6.1)

Note that this last definition ensures that for any x ∈ H and a ∈ Rd the linear mapping

H → Rd : v 7→ v(x) · a

is continuous. An admissible Hilbert space H is called reproducing kernel Hilbert space
(RKHS). In each RKHS we may define a (reproducing) kernel as follows. For any a ∈ Rd

and x ∈ D the mapping v 7→ δax(v) := a · v(x) is continuous, thus by Riesz representation
theorem there exists Ka

x ∈ H such that δax(v) = (Ka
x , v)H for all v ∈ H. For any x, y ∈ D the

mapping a 7→ Ka
x(y) from belongs to L(Rd,Rd) and thus may be represented by a matrix

K(y, x) ∈ Rd,d depending on y, x such that Ka
x(y) = K(y, x)a. The term ’reproducing’

originates from the property

(K(·, x)a, f)H = a · f(x) (6.2)

4A Fréchet spaces is a locally convex vector space which is metrizable and its topology can be induced
by a translation invariant metric; [96, Def. VII.1.3].
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for all a ∈ Rd. So the inner product of the kernel with a function is the point evaluation.
Using the reproducing property (6.2) one easily shows K(x, y) = K⊤(y, x). An example of
a kernel is the Gauss kernel, i.e.

K(x, y) = exp

(
−|x− y|2

σ2

)
I,

where σ > 0 and I denotes the identity matrix in Rd. These kernels can be used to
obtain explicit expressions for gradients of Fréchet derivatives in image processing and
diffeomorphic matching. We refer the reader to Chapter 9 of [97] for further details on
reproducing kernels and how to use them for the approximation of smooth functions in the
context of diffeomorphic matching.

Definition 6.3. Let D ⊂ Rd be a k-regular domain, k ≥ 1, with boundary Σ := ∂D.
Assume that H ⊂ C0,1(D,Rd) is admissible. Then we define Lm,0([0, 1],H), m ∈ {1, 2},
to be the Bochner space5 of all time-dependent vector fields θ : [0, 1] → H satisfying the
following three conditions:

(i) For all x ∈ D, the function [0, 1] 7→ H : t 7→ θ(t) is strongly Lebesgue measurable.

(ii) For almost all t ∈ [0, 1], we have θ(t) ∈ H and

‖θ‖Lm([0,1],H) :=

(∫ 1

0
‖θ(s)‖mH ds

) 1
m

<∞.

(iii) Set θ(t, x) := θ(t)(x). For all x ∈ Σ and almost all t ∈ [0, 1] : θ(t, x) ·n(x) = 0, where
n denotes the continuous unit normal vector field along Σ.

We denote by Lm([0, 1],H) the space of time-dependent vector fields satisfying (i)-(ii).

Remark 6.4. Notice that by Pettis measurability theorem, a function f : [0, 1] → H is
strongly Lebesgue measurable if and only if

(a) For every continuous linear function l ∈ H′ the function t 7→ l ◦ f(t) : [0, 1] → R is
Lebesgue measurable.

(b) There exists a set N ⊂ [0, 1] of Lebesgue measure zero, such that f([0, 1]/N) ⊂ H is
separable with respect to the topology induced by the norm of ‖ · ‖H on H.

If H is a separable Banach space, then the condition (b) is automatically satisfied. We refer
the reader to [7] for further details.

Recall that if H ⊂ Θ = C0,1(D,Rd) is admissible, then for x ∈ D the mapping δx(v) :=
v(x) belongs to H′ and thus by the previous remark t 7→ δx ◦ θ(t) = θ(t, x) is Lebesgue
measurable for every x ∈ D and θ ∈ Lm([0, 1],H).

Lemma 6.5. For m ∈ {1, 2} the space Lm,0([0, 1],H) is a Banach space.

5See Definition A.5 for more details on Bochner spaces. Moreover, note that the space Lm,0 has to be
understood as equivalence classes of functions as usual for Lp spaces.
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Proof. Let m ∈ {1, 2}. That Lm([0, 1],H) defined by the conditions (i), (ii) is Banach
space follows from the theory of Bochner spaces; cf. [7, 46]. Moreover, L2([0, 1],H) is a
Hilbert space if H is one. Now let Lm,0([0, 1],H) be defined by the conditions (i)-(iii). To
check that it is Banach space let (θn)n∈N be any Cauchy sequence in Lm,0([0, 1],H) and
θ∞ ∈ Lm([0, 1],H) its limit. By definition we have for all n ∈ N, and for all x ∈ Σ that
θn(t, x) · n(x) = 0. Therefore for all x ∈ Σ and almost all t ∈ [0, 1]:

|θ∞(t, x) · n(x)| = |θ∞(t, x) · n(x) − θn(t, x) · n(x)|
≤ ‖n‖L∞(Σ)‖θn(t) − θ∞(t)‖L∞(D,Rd)

≤ C‖n‖L∞(Σ)‖θn(t) − θ∞(t)‖H,

where we used that H is continuously embedded into C0,1(D,Rd). An integration over
(0, 1) yields ∫ 1

0
|θ∞(s, x) · n(x)|m ds ≤ C‖θn − θ∞‖mLm([0,1],H).

By definition the right hand side converges to zero as n → ∞ and consequently it must
hold that θ∞(t, x) · n(x) = 0 on Σ for almost all t. ✷

Now, we introduce for any admissible set H ⊂ Θ the important sets

G(H) := {Φθ
1 : θ ∈ L1([0, 1];H)}

G0(H) := {Φθ
1 : θ ∈ L1,0([0, 1];H)}

of all flows defined by vector fields belonging to L1([0, 1],H) respectively L1,0([0, 1],H) and
evaluated at t = 1.

Lemma 6.6. Let H ⊂ Θ := C0,1(D,Rd) be a Banach space with the property (6.1) and
L1(0, 1,H) be defined according to Definition 6.3. The set G0(H) is a group, when the
composition of two elements ψ,ψ′ ∈ G0(H) is defined by (ψ ◦ ψ′)(x) := ψ(ψ′(x)).

Proof. Neutral element: Since θ = 0 ∈ L1,0([0, 1],H) it follows Φθ
t = id for all t ∈ [0, 1].

Composition: Let Φθ1
t ,Φ

θ2
t be given, where θ1, θ2 ∈ L1,0([0, 1],H). We have to show that

there is θ ∈ L1,0([0, 1],H) with Φθ1
1 ◦ Φθ2

1 = Φθ
1. Define the vector field

θ(t) :=

{
θ2(2t) if t ∈ [0, 1/2)

2 θ1(2t− 1) if t ∈ [1/2, 1]
.

Clearly we have θ ∈ L1,0([0, 1],H), since θ = χ[0,1/2)(t)θ2(2t) + χ[1/2,1](t)θ1(2t− 1). Denote

by Φθ
t the associated flow, then by uniqueness of the flow we get Φθ

t = Φθ2
t for all t ∈ [0, 1/2).

Moreover, t 7→ Φθ1
2t−1 ◦ Φθ2

1 solves

Φ̇θ
t = 2 θ1(2t− 1,Φθ

t ), Φθ
1/2 = Φθ2

1 .

Therefore again by uniqueness of the flow

Φθ
t =

{
Φθ2
t if t ∈ [0, 1/2)

Φθ1
2t−1 ◦ Φθ2

1 if t ∈ [1/2, 1]

and consequently Φθ
1 = Φθ1

1 ◦ Φθ2
1 .

Inverse: Let θ ∈ L1,0([0, 1],H) with Φθ
t ∈ G0(H). We have to find θ̂ ∈ L1,0([0, 1],H) with
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Φθ̂
1 ◦ Φθ

1 = Φθ̂
1 ◦ Φθ

1 = id. We show that θ̂(t) := −θ(1 − t) is an appropriate vector field. For
this note that Φt := Φθ

1−t◦(Φθ
1)

−1 satisfies Φ̇t = −θ(1−t,Φt) on [0, 1] with Φ0 = id and thus

Φt = Φθ̂
t , which entails Φθ̂

1◦Φθ
1 = Φθ

0◦(Φθ
1)

−1◦Φθ
1 = id and Φθ

1◦Φθ̂
1 = Φθ

1◦Φθ
0◦(Φθ

1)
−1 = id. ✷

The previous result is important since in numerical simulations we usually deal with
H1-conformal spaces which do not allow a higher regularity. Functions from this space are
usually continuous functions and satisfy (i) and (ii).

It is possible to define a distance between two elements ψ,ψ′ ∈ G0(H) by setting

d2,H(ψ, ψ′) := inf





√∫ 1

0
‖θ(t)‖2H dt : θ ∈ L2,0([0, 1],H) s.t. ψ′ = ψ ◦ Φθ

1



 ,

and

d1,H(ψ, ψ′) := inf

{∫ 1

0
‖θ(s)‖H ds : θ ∈ L1,0([0, 1],H) s.t. ψ′ = ψ ◦ Φθ

1

}
.

It is shown in [97, Thm. 8.18, p. 175] that d2,H(ψ, ψ′) = d1,H(ψ,ψ′) for all ψ′, ψ ∈ G0(H),
when H ⊂ C1

c (D,Rd) is admissible. Similar metrics to the above ones may be introduced
on G(H). The natural energies associated with the path t 7→ φt in the space G0(H) are
given by

E1(φt) :=

∫ t

0
‖∂tφ(s, φ−1(s, ·))‖H ds, E2(φt) :=

∫ t

0
‖∂tφ(s, φ−1(s, ·))‖2H ds.

Note that s 7→ φts is a flow defined by the vector field θ(x, t) := t∂stφst ◦ φ−1
st and thus by

definition

(d2,H(id, φt))
2 ≤t

∫ 1

0
‖∂stφst ◦ φ−1

st ‖2H ds

=

∫ t

0
‖∂sφs ◦ φ−1

s ‖2H ds

= E2(φt)

and similarly d1,H(id, φt) ≤ E1(φt). We have the following important theorem; cf. [97,
Thm. 8.2, p.172].

Theorem 6.7. For any admissible subset H ⊂ C0,1(D,Rd) the group (G0(H), d2,H) is also
a complete metric space.

The previous result is of fundamental importance for the existence of optimal shapes.
In contrast to the shape spaces, the group of transformations are closed, but with Lipschitz
transformations it allows still irregular shapes.

Similarly to the Michelletti construction it is natural for shape optimization problems
to consider a subgroup of G0(H) for any open subset ω0 ∈ D

S̃ω0 := {Φ ∈ G0(H) : Φ(ω0) = ω0}.
In complete analogy to F(Θ)/Sω0 , we can define the quotient G0(H)/S̃ω0 and equip it with
the quotient metric

dCGH([ψ], [ψ′]) := inf
Φ∈S̃ω0

d2,H(ψ,ψ′ ◦ Φ).

Theorem 6.8. The group (G0(H)/S̃ω0 , dCHH) is a complete metric space.

It is easily seen that the image set Z̃(ω0) := {Φ(ω0) : Φ ∈ G0(H)} is isomorphic to
G0(H)/S̃ω0 .
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F(Θ)
J0

> R

R <
J< Z(ω0)

∨
> F(Θ)/Sω0

J̄0

∧
π

>

G0(H)
J0

> R

R <
J< Z̃(ω0)

∨
> G0(H)/S̃ω0

J̄0

∧
π

>

Figure 6.1: Relation between the shape functions J, J0 and J̄0. The function π is the
canonical subjection from the base space into the quotient space.

6.2.1 Minimisation over flows

Fix a set ω0 ∈ Rd. Let J : Ξ → R be a shape function defined on a G0(H)-stable set

Ξ ⊂ 2R
d
, for example Ξ := {F (ω0)| : F ∈ G0(H)}. Then we consider the following cost

functions defined on G0(H) and G0(H)/S̃ω0 , respectively

Jα(φ) := J(φ(ω0)) + α(d2,H(id, φ))2 (6.3)

J̄α([φ]) := J(φ(ω0)) + α(dCG([id], [φ]))2. (6.4)

For α = 0 the minimisation over (6.4) is equivalent to

min
Ω∈Z̃(ω0)

J(Ω).

By restricting the minimisation of J0(φ) to the sets belonging to G0(H) we restrict the
minimisation of J(Ω) to the sets Ω ∈ Z̃(ω0). If for instance ω0 is a smooth set and
H ⊂ C1

c (D,Rd) then the set Z̃(ω0) will be considerably smaller than the set of finite
perimeter sets contained in D. Let γ : [0, 1] → ∂ω0 be a closed curve describing the
boundary of ω0. Pick any θ ∈ L2,0([0, 1],H). Then γ̃(s) := Φθ

1(γ(s)) describes the boundary
of the new domain Ω = Φθ

1(ω0). Moreover, γ̃ is as smooth as Φθ
1.

The penalisation term α(d2,H(id, φ))2 forces the optimal set to be of the form Ω = Φθ
1(ω0)

for some θ ∈ L2,0([0, 1],H).

The set ω0 ⊂ Rd is the model domain which is transformed by appropriate transforma-
tions in a desired set. By an optimal φ̄ ∈ G0(H) we mean

Jα(φ̄) ≤ Jα(φ) for all φ ∈ G0(H).

This approach does not allow topological changes of ω0 and yields an optimal set ϕ̄(ω0)
which is by definition diffeomorphic to ω0.

6.2.2 Minimisation over vector fields

It can be shown [97, Thm. 11.2, p.254] that the minimisation of Jα(φ) (defined by (6.3))
over G0(H) is equivalent to (α > 0)

min J̃α(θ) := J(Φθ
1(Ω)) + α

∫ 1

0
‖θ(s)‖2H ds over L2,0([0, 1];H). (6.5)

This reformulation has the advantage that one minimises over a Banach space L2,0([0, 1];H)
and therefore standard tool from analysis, for instance, the Gateaux and Fréchet derivative
are available to investigate (6.5). But the downside of this formulation is that in a minimi-
sation algorithm we have to discretise the flow over the whole interval [0, 1] which is not
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necessary for an iterative algorithm minimizing only over J ; compare Chapter 7. For α = 0
it follows by definition

min
θ∈L2,0([0,τ ],H)

J̃0(θ) ⇔ min
φ∈G2

0(H)
J0(φ) ⇔ min

Ω∈Z̃(ω0)
J(Ω).

Note that the previous three minimisation problems are not well-posed in general due to
a lack of compactness. In this context let us mention the interesting work [43], where the
sensitivity of the state with respect to the velocity is discussed where the state solves the
Navier-Stokes equation.

We continue here the discussion of the existence of optimal shapes from Subsection 2.4.4.

Definition 6.9. Let k ≥ 0 and D ⊂ Rd be be regular domain. Then we say a sequence
(fn)n∈N in Ck(D,Rd) converges uniformly to f ∈ Ck(D,Rd) if limn→∞ ‖fn−f‖Ck(D,Rd) =
0. It converges uniformly on compact subsets of D if for all compact K ⊂ D

lim
n→∞

‖fn − f‖Ck(K,Rd) = 0.

The Ck-norm is given by

‖u‖Ck(Ω,Rd) :=
d∑

i=1

∑

γ∈Nd

|γ|≤k

‖∂γui‖L∞(Ω),

where for any γ = (γ1, . . . , γd) ∈ Nd, we set ∂γ := ∂γ1x1 · · · ∂γdxd .
Let us introduce

G2
0(H) := {Φθ

1| θ ∈ L2,0([0, 1],H)}.
Theorem 6.10. Let H ⊂ Ck+1

c (D,Rd), (k ≥ 0) be an admissible space and ω0 ⊂ D con-
tained in a ∞-regular domain D ⊂ Rd with boundary Σ := ∂D. Let J : Ξ ⊂ 2D → R

be a shape function such that G2
0(H) → R : ϕ 7→ J(ϕ(ω0)) is bounded from below and

lower semi-continuous for the uniform convergence on compact subsets of D. Put Ĵ(θ) :=
J(Φθ

1(ω0)) +
∫ 1
0 ‖θ(s)‖2H ds. Then the minimisation problem

inf
θ∈L2,0([0,1],H)

Ĵ(θ),

has at least one solution.

Proof. Put j := infθ∈L2,0([0,1],H) Ĵ(θ). Now let (θn)n∈N be a minimizing sequence in

the Hilbert space L2,0([0, 1],H) such that j := limn→∞ Ĵ(θn). We may subtract a weakly
converging subsequence (θnk

)k∈N with limit θ∞. But the weak convergence of (θnk
)k∈N to

some θ ∈ L2,0([0, 1],H) implies that Φθn
1 and its derivatives converge against Φθ∞

1 . Thus by

the lower semi-continuity of J and θ 7→
∫ 1
0 ‖θ(s)‖2H ds, we get

Ĵ(θ∞) ≤ lim
k→∞

J(Φ
θnk
1 (ω0)) = inf

θ∈L2,0([0,1],H)
Ĵ(θ).

Example 6.11. Let us consider for regular domain D ⊂ Rd the simple cost function
J(Ω) :=

∫
Ω f dx for some function f ∈ C(Rd) which is assumed to be negative on a set of

positive measure, i.e. f(x) < 0 on some set Ω ⊂ Rd with m(Ω) > 0. Then

Ĵ(θ) =

∫

Φθ
1(ω0)

f dx+

∫ 1

0
‖θ(s)‖2H ds

=

∫

ω0

det(∂Φθ
1)f ◦ Φθ

1 dx+

∫ 1

0
‖θ(s)‖2H ds.
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Clearly if H ⊂ C3
c (D,Rd) then ϕ 7→ J(ϕ(ω0)) is continuous with respect to the uniform

convergence on compact subsets of D (in C3
c (D,Rd)). Therefore the minimisation problem

inf
θ∈L2,0([0,1],H)

Ĵ(θ),

admits a solution. This solution is in general different from the global solution given by the
open non-empty set Ω∗ := f−1((−∞, 0)).

6.3 Gradient flow and H-gradient

Let H ⊂ C0,1(D,Rd) be an admissible space, where D ⊂ Rd is a regular domain with
boundary Σ := ∂D. An obvious choice for an admissible space6 is H := Hk(D,Rd) ∩
H1

0 (D,Rd) with k ≥ 1 big enough, but also any H1-conformal finite element space like
linear or higher order Lagrange finite elements H := Vh ⊂ W 1

∞(D,Rd) ⊂ H1(D,Rd).
Consider a shape function J : Ξ ⊂ 2D → R defined on a stable set Ξ ⊂ 2D and assume
that it is shape differentiable at Ω ⊂ D in all directions θ ∈ C∞

c (D,Rd). Moreover, assume
that the shape derivative θ 7→ dJ(Ω)[θ] can be extended to an element of H′. Under these
assumptions we make the following definitions.

Definition 6.12. Let J : Ξ → R be as described before and ω0 ∈ Ξ.

(i) The H-gradient of J at Ω ∈ Ξ, denoted ∇HJ(Ω) ∈ H, is defined by

dJ(Ω)[ζ] = (∇HJ(Ω), ζ)H for all ζ ∈ H. (6.6)

(ii) A function φt : [0,∞) → G0(H) satisfying

−∂tφt = ∇HJ(φt(ω0)) ◦ φt in D × (0, T ] (6.7)

is called gradient flow of J in G0(H) with respect to the metric (·, ·)H.

Remark 6.13. One has to be careful with the definition of the derivative ∂tφ. Here, we
define the partial derivative ∂tφ(t)(x) pointwise in Rd. When we only abstractly consider
R → G0(H) : t 7→ φ(t) and view G0(H) as manifold then one would expect the derivative
∂tφ(t) to belong to the tangent space H = Tφ(t)G0(H) and thus also the H-gradient will
be an element of the tangent space and thus t 7→ ∂tφ(t) is a vector field on G0(H) along
t 7→ φ(t). Basically in infinite dimensions we have two different types of tangential vectors:
the operational and the kinematic; cf. [64, Chap. VI]. The first one is defined as a first order
differential operator on equivalence classes of smooth functions (germs) and the second one
by equivalence classes of curves. For an example of a first order operator in the context of
shape functions see Remarks 2.34. For the development of Ck-manifolds the view of tangent
vectors as equivalence classes of curves is essential.

6 Note that Lipschitz functions f ∈ C0,1(D,Rd) and W 1
∞(D,Rd) functions may be identified with

each other by Rademacher’s theorem. But in general those spaces are not equal for non-smooth boundary
Σ = ∂D. Moreover, any Lipschitz function f : D → R

d on an arbitrary domain D may be extended to a
Lipschitz function on whole R

d with the same Lipschitz constant. This result is known as the Kirszbraun
theorem [62].
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Let t 7→ φt be a gradient flow in G0(H), ω0 ∈ Ξ and suppose that J ∈ C1
D(Ξ). Then we

infer directly from Theorem 2.10 (ii) that θ(z, t) := ∂tφ(t, φ−1(t, z)) generates the transfor-
mation φt and thus we can compute

d

dt
J(φt(ω0)) = dJ(φt(ω0))[∂tφt(φ

−1
t )]

= (∇HJ(φt(ω0)), ∂tφt(φ
−1
t ))H

= −‖∂tφt(φ−1
t )‖2H ≤ 0.

Therefore the cost function J decreases along the trajectory t 7→ φt and φt ∈ G0(H) as long
as
∫ t
0 ‖∂tφ(φ−1)‖2H dt < ∞ for t > 0, that is φt ∈ G2

0(H). Moreover, we also have a bound
for how much J decreases at least since

J(φt(ω0)) − J(ω0) = −
∫ t

0
‖∇HJ(φs(ω0))‖2H ds for all t ∈ [0,∞].

Observe that in order to evaluate ∇HJ(φt(ω0)), we have to move the domain ω0 to ω0t :=
φt(ω0). As shown in [24] given a linear positive definite operator L : H → H allows us to
define a modified flow by

∂tφt = −L∇HJ(φt(ω0))(φt). (6.8)

Similar to the above calculations, we obtain

d

dt
J(φt(ω0)) = dJ(φt(ω0))[∂tφt(φ

−1
t )]

= −(∇HJ(φt(ω0)), L∇HJ(φt(ω0)))H ≤ 0.

Depending on the problem one may choose L in such a way that J decreases faster along
φt defined by (6.8) rather than (6.7).

Remark 6.14.

(i) For certain problems the space H will depend on Ω and thus the metric (·, ·)H(Ω) would

be variable in Ω. For instance let H := H1(Ω,Rd) and J(Ω) =
∫
Ω f dx with derivative

dJ(Ω)[θ] =
∫
Ω div (θ)f + ∇f · θ dx. Then ∇HJ(Ω) is defined by

∫

Ω
div (ζ)f + ∇f · ζ dx = (∇HJ(Ω), ζ)H1(Ω) for all ζ ∈ H1(Ω).

In this case the metric changes with the evolution of φt; see also Section 6.4 for more
examples.

(ii) It is worth noting that the definition of the H-gradient in (6.6) makes sense if the shape
derivative dJ(Ω) belongs to the dual of space H′. As a result we are able to produce
H-gradients which do not generate a flow Φt satisfying (2.3). Nevertheless, choosing
an appropriate metric and Hilbert space H will ensure a smooth enough H-gradient.

(iii) Later we will choose Hilbert spaces H which do not belong to Lip0(D,R
d), but to

spaces containing it. When the boundaries Σ = ∂D and Γ = ∂Ω are sufficiently
smooth, then the numerical results show that the solutions are smooth and the flow
(6.7) is well-defined, depending on the nature of the PDE constraint.
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6.4 Descent directions and the H-gradient

Let D ⊂ Rd be an open and bounded set with smooth boundary Σ := ∂D. Let Ξ ⊂ 2D be a
weakly flow stable. We consider a shape differentiable function J ∈ C1

D(Ξ) with derivative
GΩ := dJ(Ω) ∈ H′ for all Ω ∈ Ξ.

Definition 6.15. We call a vector θ ∈ H descent direction for J at Ω ∈ Ξ if there exists
t > 0 such that J(Φt(Ω)) ≤ J(Ω), where Φt denotes the flow generated by θ. In particular,
any θ ∈ H such that dJ(Ω)[θ] < 0 is a descent direction.

We infer directly from (6.12) that θ := −∇HJ is a descent direction for J since
dJ(Ω)[−∇HJ(Ω)] < 0. In this section, we give some examples of possible metrics to define
the H-gradient. According to Theorem 2.38 we know that if a shape function is of finite
order, then it belongs to some Hilbert space H−s with s ≥ 0 big enough. The order also
depends on the regularity of the domain, therefore s can vary during the change of the
shape. Alternatively, to represent the shape derivative in a space H with the respective
metrics it is possible to directly obtain descent directions as subsequently explained. In
this section H will always be a Hilbert space of functions from Ω or D into Rd, where the
set D is assumed to be at least a regular domain.

6.4.1 Derivative with respect to the nodes

Before giving different examples of metrics generating H-gradient flows, we show how to
obtain descent directions on a discrete level without solving an additional partial differential
equation. Essentially this idea goes back to [39], where it is used to obtain an optimal
triangulation for a fixed number of nodes.

Let D ⊂ R2 be admissible and Ξ ⊂ 2D be weakly flow stable. We consider a shape
differentiable function J ∈ C1

D(Ξ) with derivative GΩ := dJ(Ω) ∈ H′ for all Ω ∈ Ξ. Suppose
Vh ⊂ H is a finite element space of dimension 2N ∈ N and {φ1, . . . , φ2N} is a basis of Vh.
Let Ωh be a triangulation τh(x1, . . . , xn) with nodes {x1, . . . , xn}. Assume that the shape
derivative dJ(Ωh)[θ] exists for all vector fields θ ∈ H. We make the ansatz

θh(x) =

2N∑

i=1

ai φi(x), (ai ∈ R)

then dJ(Ωh)[θh] =
∑2N

i=1 ai dJ(Ω)[φi], and thus setting ai := −dJ(Ωh)[φi] implies that
dJ(Ω)[θh] ≤ 0. Note that the corresponding H-gradient is the solution of: find x ∈ R2N

such that Ix = a, (a := (a⊤1 , . . . , a
⊤
N )⊤). Here, I is the identity matrix in R2N,2N and it can

be interpreted as a metric on the discrete finite element space. Other choices for I to favor
certain movements of the vectors ai are possible.

Let now D ⊂ R2, H := H1
0 (D) and assume that {ψ1, . . . , ψN} ⊂ H1

0 (D) are Lagrange
finite elements which satsify ψi(xj) = δij . Note that in this particular case n = N . We
construct a basis of Vh by

φi := e1 ψi and φn+i = e2 ψi for i = 1, . . . N,

where e1 and e2 denote the canonical unit normal vectors in R2. Then the shape derivative
in the direction φi coincides with the derivative of the function J(Ωh) with respect to the
x1 or x2 component of the i-th node xi = (x1i x

2
i )

⊤; cf. [39]. To be more precise denote by

(R2)N → 2R
2

(x1, . . . , xN ) 7→ Ωh(x1, . . . , xN ) assigning to any N points x1, · · · , xN ∈ R2
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the corresponding discrete set Ωh. Now, if we put Ĵ(x1, . . . , xN ) := J(Ωh(x1, . . . , xN )) then

dJ(Ωh)[φi] = ∂x1i
Ĵ(x1, . . . , xN ) for i = 1, . . . , N

dJ(Ωh)[φi] = ∂x2i
Ĵ(x1, . . . , xN ) for i = N + 1, . . . , 2N.

That dJ(Ωh)[φi] 6= 0 in general, even if θ(x) · n(x) = 0 on ∂Ωh, is due to the fact that
Φt(Ωh(x1, . . . , xN )) 6= Ωh(x1, . . . , xN ) for all t ∈ (0, τ ], which is only true in the discrete
case. Note that this relation is not true for the boundary expression of the shape derivative
in general since the required regularity for second order PDEs is H2 and the regularity of
linear finite elements cannot be improved. Nevertheless using H2 conformal elements this
representation remains true.

6.4.2 Flows generated by metrics of H1( div ) and Hk

Subsequently let D ⊂ Rd, d = 2, 3, be a regular domain with boundary Σ := ∂D. Moreover,
denote by Ω ⊂ D any open subset with boundary Γ := ∂Ω such that for some ε > 0 we
have dΩ(x) > ε for all x ∈ Σ. We will denote by n the unit normal vector along Γ.

Example 6.16 (H1 flow - boundary shape gradient). Let Γ and Σ be of class Ck, where
k ≥ 3. Assume J(Ω) admits a shape derivative in a boundary form as in (2.17):

dJ(Ω)[θ] =

∫

∂Ω
g θ · nds (6.9)

where g ∈ Hk−3/2(∂Ω). Take H = H1(Ω,Rd) with inner product (v, w)H = (v, w)H1(Ω,Rd).

The H-gradient θ := ∇HJ(Ω) is solution of the variational problem
∫

Ω
∂θ : ∂ζ + θ · ζ dx =

∫

Γ
g ζ · nds for all ζ ∈ H1(Ω,Rd).

The strong form of this problem reads:

−∆θ + θ = 0 in Ω

−∂nθ = g on Γ.

Example 6.17 (Transmission problem - boundary expression). Assume that Γ is of class
Ck, where k ≥ 3. Set Ω+ := Ω and Ω− := D \ Ω such that D = Ω+ ∪ Ω− ∪ Γ. Assume that
the shape derivative of J(Ω+) has the form (2.17), i.e.

dJ(Ω+)[θ] =

∫

Γ
g θ · nds

where g ∈ Hk−3/2(Γ). Take H = H1
0 (D,Rd) with inner product (v, w)H := (v, w)H1(D,Rd).

The H-gradient θ := ∇HJ(Ω+) ∈ H solves the transmission problem
∫

D
∂θ : ∂ζ + θ · ζ dx =

∫

Γ
g ζ · nds for all ξ ∈ H,

which has the following strong form

−∆θ+ + θ+ = 0 in Ω+

−∆θ− + θ− = 0 in Ω−

θ = 0, on Σ,

[θ] = 0, [∂nθ] = −g n on Γ

where θ = θ+χΩ+ + θ−χΩ− and [∂nθ] := ∂nθ
+ − ∂nθ

−.
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Example 6.18 (H1 flow - volume expression). Let Γ and Σ be both of class C3 and assume
that J has a shape derivative of the form

dJ(Ω)[θ] =

∫

Ω
FΩ[θ] dx, (6.10)

where FΩ : Ckc (D,Rd) → H1(Ω,R), k ≥ 1 is linear in θ. Let H = H1(Ω,Rd) and (v, w)H :=
(v, w)H. Assume that FΩ can be extended to a function FΩ : H1(D,Rd) → H1(Ω,R). The
H-gradient ∇HJ(Ω) := θ ∈ H1(Ω,Rd) satisfies by definition

∫

Ω
∂θ : ∂ζ + θ · ζ dx =

∫

Ω
FΩ[ζ] dx for all ζ ∈ H1(Ω,Rd).

Choosing H = H1
0 (D,Rd) instead of H1(Ω,Rd) yields the transmission problem: find

θ ∈ H1
0 (D,Rd) such that

∫

D
∂θ : ∂ζ + θ · ζ dx =

∫

Ω
FΩ[ζ] dx for all ζ ∈ H1

0 (D,Rd).

With such a choice we build an extension of θ to D.

Example 6.19 (Hk flow - volume expression). Assume that Σ is C1. Consider the space
Hk = Hk(D,Rd) ∩ H1

0 (D,Rd) for k ≥ 1 and the inner product (θ, ζ)H := (θ, ζ)Hk(D,Rd).

Assume J has a shape derivative dJ(Ω)[θ] which belongs to the dual of Hk. By the Riesz
representation theorem the following equation admits a unique solution θ ∈ Hk:

(θ, ζ)Hk = dJ(Ω)[ζ] for all ζ ∈ Hk.

By Sobolev embeddings, the vector field θ can be made arbitrary smooth choosing k ≥ 1 large
enough.

Example 6.20 (H1
0 ( div ) flow). Let Γ be smooth. In this example, we consider vector fields

in

H := H1
0 ( div )(D) := {v ∈ L2(D,R

d) : div (v) ∈ L2(D,R
d), v · n = 0 on Σ}.

This space becomes a Hilbert space when equipped with the metric

(θ, ζ)H1
0 ( div )(D) :=

∫

D
div (θ) div (ζ) + θ · ζ dx.

The associated H-gradient θ =: ∇HJ is defined as the solution of

dJ(Ω)[ζ] = (θ, ζ)H1
0 ( div )(D) for all ζ ∈ H1

0 ( div )(D). (6.11)

Assume that the shape derivative of J has a boundary expression with regular g ∈ C1(Ω):

dJ(Ω)[θ] =

∫

Ω
div (g θ) dx =

∫

Ω
∇g · θ + g div (θ) dx.

Then we see that dJ(Ω) ∈ (H1
0 ( div )(D))′ and thus (6.11) is well defined. Note that a

solution θ is actually not regular enough to define a differentiable flow Φθ
t . Nevertheless,

the solution will be more regularity if we assume higher regularity for the boundary Σ.
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Example 6.21 (H1
0 ( div ) ∩H1(rot ) flow). Assume D ⊂ Rd, (d = 2, 3), is a C1,1-domain

or convex. Let H := H1
0 (D,Rd) be endowed with the scalar product

(v, w)H := ( div (v), div (w))L2(D) + (rot v, rotw)L2(D,Rd) + (v, w)L2(D,Rd).

Let Ω ⊂ D ⊂ Rd be a smooth set. The associated H-gradient is defined as the solution of

dJ(Ω)[ζ] = (θ, ζ)H for all ζ ∈ H1
0 (D,Rd).

This equation admits a unique solution; cf. [11].

Example 6.22 (boundary versus domain representation). Consider the simple example
J(Ω) =

∫
Rd χΩ dx of the volume of a domain Ω. When Γ is of class C1, the normal

vector n is C(∂Ω) and

dJ(Ω)[θ] =

∫

∂Ω
θ · nds. (6.12)

In this case, we are in the framework of Example 6.17 and we can use H := H1
0 (D,Rd) to

get enough regularity for θ.
When Ω is only bounded and measurable, the integral representation (6.12) does not

exist, but we can still compute the domain representation

dJ(Ω)[θ] =

∫

Ω
div(θ) dx.

In this case, the required regularity θ ∈ W 1,∞(D,Rd) can be obtained by using H :=
Hk(D,Rd) ∩H1

0 (D,Rd) with k large enough as in Example 6.19. Using H := H1
0 (D,Rd)

in this case would not provide enough regularity for θ, but the finite element approximation
would.

Using a bilinear form in Ω or D we obtain a vector field θ which is defined on the
domain Ω or D and not only on the interface Γ. This is often a desired property for
numerical applications. For instance in the level set method, the common practice is to
obtain a vector field on the interface Γ and to extend it on the entire domain D by solving
a parabolic equation. Moreover, this allows to use the volume expression (6.10) as in
Example 6.18 instead of the boundary shape gradient (6.9) as in Examples 6.16 and 6.17.
The volume expression (6.10) is easier to handle compared to the boundary expression (6.9)
from a numerical point of view as it does not require to determine quantities on the interface
such as the normal vector or the curvature which require interpolation and therefore lead
to additional approximation errors.

Remark 6.23. Note that the discrete finite element solution of the previous equations will
be in W 1,∞ and therefore after discretisation the flow will be well-defined.

6.5 Lagrangian vs. Eulerian point of view

We begin with a definition which formalises the transformation behavior of the shape deriva-
tive under a change of variables.

Definition 6.24. Let (φt)t≥0 : Rd → Rd be a family of transformation and D ⊂ Rd be
open and bounded. Assume that the shape function J : Ξ ⊂ 2D → R is shape differentiable
in φt(Ω) ⊂ Rd for all t ≥ 0. We say that the shape derivative dJ(φt(Ω)) admits a fixed
domain representation if there is linear function dJ φt(Ω)[ · ] depending on φt such that

dJ(φt(Ω))[θ] = dJ φt(Ω)[θ ◦ φt] for all t ∈ [0, τ ], for all θ ∈ H.
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Example 6.25. Let us again consider the shape function J(Ω) =
∫
Ω f dx with shape deriva-

tive dJ(Ω)[θ] =
∫
Ω f div (θ) + ∇f · θ dx. Then

dJ φt(Ω)[θt] =

∫

Ω
ξ(t) f t tr(∂θtB⊤(t)) + ξ(t)B(t)∇f t · θt dx,

where ξ(t) = det(∂φt), f
t = f ◦ φt and B(t) = ∂φ−⊤

t .

Assume now that we have chosen a Hilbert space H of functions f : D ⊂ Rd → Rd with
inner product (·, ·)H. Given an isomorphism K(φt) : H → H : f 7→ K(φt)(f) such that for
some C, c > 0

c‖v‖H ≤ ‖K(φt)(v)‖H ≤ C‖v‖H for all v ∈ H, for all t ∈ [0,∞)

we may introduce a new inner product on H by setting

(v, w)φtH := (K(φt)(v),K(φt)(w))H.

For the special (family of) isomorphisms K(φt)(v) := v ◦ φ−1
t it follows that solving

(θt, ζ)H = dJ(φt(Ω))[ζ] for all ζ ∈ H (6.13)

where θt =: ∇HJ(φt(Ω)) is equivalent to

(θt, ζ̃)φtH = dJ φt(Ω)[ζ̃] for all ζ̃ ∈ H (6.14)

where θt(x) = ∇HJ(φt(Ω))◦φt(x) and in particular θt = θt◦φt. Now, the crucial observation
is that we do not need to move the domain Ω in order to calculate θt, which makes it not
necessary to move the domain to compute φt.

Example 6.26 (H1
0 (D,Rd)). Let J be as in Example 6.25. Equip H := H1

0 (D,Rd) with
inner product

(v, w)H1
0 (D,R

d) :=

∫

D
∂v : ∂w + v · w dx

and define the family of isomorphisms by

K(φt) : H1
0 (D,Rd) → H1

0 (D,Rd) : v 7→ v ◦ φ−1
t .

Then after the change of variables φt(x) = y the new product (v, w)φt
H1

0 (D,R
d)

on H1
0 (D,Rd)

takes the form

(v, w)φt
H1

0 (D,R
d)

=

∫

D
A(t)∂v : ∂w + ξ(t)v · w dx.

Finally (6.14) reads

∫

D
A(t)∂θt : ∂v + ξ(t)θt · v dx =

∫

Ω
ξ(t) f t tr(∂vB⊤(t)) + ξ(t)B(t)∇f t · v dx

for all v ∈ H1
0 (D,Rd).

Example 6.27 (H1
0 ( div , D)). Let J be as in Example 6.25. Equip H := H1

0 ( div , D) with
the inner product

(v, w)H1
0 ( div ,D) :=

∫

D
div (v) div (w) + v · w dx
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and define the isomorphism called Piola-Kirchoff transformation (cf. [17, 43]) K(φt) :
H1

0 ( div , D) → H1
0 ( div , D) : v 7→ ((det(∂φt))

−1∂φt v) ◦ φ−1
t . Recalling the identity

div (v) ◦ φt = ξ−1(t) div (ξ(t) ∂φ−1
t (v ◦ φt))

the change of variables φt(x) = y shows that the new product (v, w)φt
H1

0 ( div ,D)
on H1

0 ( div , D)

takes the form

(v, w)φt
H1

0 ( div ,D)
=

∫

D
ξ−1(t) ( div (v) div (w) + ∂φt v · ∂φtw) dx.

Finally (6.14) reads
∫

D
ξ−1(t) ( div (v) div (w) + ∂φt v · ∂φtw) dx

=

∫

Ω
f t div (v) +B(t)∇f t · ∂φt v dx

for all v ∈ H1
0 ( div , D). Notice that also (v, w)φt

H1
0 ( div ,D)

is an inner product on H1
0 ( div , D)

and that the induced norm ‖v‖H1
0 ( div ,D),φt =

√
(v, v)φt

H1
0 ( div ,D)

is equivalent to the norm

‖ · ‖H1
0 ( div ,D).

Definition 6.28. When the gradient flow or H-gradient is expressed on the fixed domain
Ω such as in (6.14) we speak of the Lagrangian point of view. When the gradient flow
or H-gradient is expressed on the moved domain φt(Ω) such as in (6.13) we speak of the
Eulerian point of view.

6.5.1 A simple transmission problem

Let us apply the Lagrangian point to a simple transmission problem with a domain cost
function. We refer the reader to Subsection 7.2 for numerical results for the subsequent
equations and to Section 5.4 for a non-linear variant of this model. We use the same
notations as in Assumption 5.3 of Subsection 5.2.1. The governing equations describing the
transmission problem read

− div (β+∇u+) = f in Ω+

− div (β−∇u−) = f in Ω−

u = 0 on Σ

(6.15)

supplemented by the transmission conditions

β+∂nu
+ = β−∂nu

− and u+ = u− on Γ. (6.16)

Here, we suppose that f : D → R is of class C1 and β+, β− > 0 are positive numbers. We
seek weak solutions of the equations (6.15)-(6.16) in H1

0 (D), which takes into account the
transmission conditions (6.16): Find u ∈ H1

0 (D) such that
∫

D
βχ∇u · ∇ψ dx =

∫

D
fψ dx for all ψ ∈ H1

0 (D), (6.17)

where βχ := β+χ + β−(1 − χ). Given the target function ur ∈ C1
b (D) the optimal design

problem can be stated as:

min J(Ω) =

∫

D
|u(χΩ) − ur|2 dx over χΩ ∈ X(D), (6.18)



6.5. Lagrangian vs. Eulerian point of view 111

where u = u(χΩ) ∈ H1
0 (D) solves the state equation. Recall that X(D) denotes the set

of characteristic functions χ defined by measurable sets Ω ⊂ D. Note that in general the
minimisation problem (6.18) will be ill-posed and may lead in the limit to functions χ with
values between 0 and 1; cf. [76]. The reason for this phenomenon is that X(D) is not closed
for the weak convergence in Lp(D). This can be avoided by adding a perimeter term in J
or by a Gagliardo penalisation as outlined in Section 2.4; cf. Sections 5.2-5.4. As discussed
above, another way which is more adapted to the shape derivative, is the minimisation
problem

min J̃(φ1(ω0)) := J(φ1(ω0)) + (d2,H(id, φ1))
2 over G0(H), (6.19)

where ω0 ⊂ D is some given set. By [97, Lem. 11.3, p. 254] the minimisation problem
(6.19) is equivalent to

min Ĵ(θ) := J(Φθ
1(ω0)) +

∫ 1

0
‖θ(s)‖2H ds over L2,0([0, 1],H).

The penalisation term (d2,H(id, φ1))
2 measures the energy it takes to deform the set ω0

into the set φt(ω0) by means of the L1 norm of the minimal vector field generating the
flow connecting id and φ1; cf. Section 6.2. Compared with the perimeter and Gagliardo
penalisation the optimal set will be smoother. The existence can be easily established by an
adaption of Theorem 6.10. A drawback of this minimisation problem is that we introduce
a penalisation term.

The Lagrangian point of view of the transmission problem

The cost function J defined in (6.18) is known to be shape differentiable; cf. [82] and [3].
A non-linear generalisation of this model will be treated in Section 5.4. Let ω0 ⊂ D. Note
that the cost function J defined above transforms under the change of variables φt as

J(φt(ω0)) =

∫

D
ξ(t)|ut ◦ φt − ur ◦ φt|2 dx, (6.20)

where ξ(t) := det(∂φt). Setting A(t) := ξ(t)∂Φ−1
t ∂Φ−⊤

t it can be seen by a change of
variables that ut := ut ◦ φt solves

∫

D
βχA(t)∇ut · ∇ϕdx =

∫

D
ξ(t)f t ϕdx for all ϕ ∈ H1

0 (D). (6.21)

Here, ut solves the transmission problem (6.17) with the characteristic function χ = χφt(ω0).
Let us introduce the associated Lagrangian of (6.20),(6.21):

G(t, ϕ, ψ) :=

∫

D
ξ(t)|ϕ− ur ◦ φt|2 dx+

∫

D
βχA(t)∇ϕ · ∇ψ dx−

∫

D
ξ(t)f tψ dx

From Lemma 2.14, we infer that t 7→ G(t, ϕ, ψ) is differentiable for all ϕ, ψ ∈ H1
0 (D). Thus

using the material from Chapter 4 it is readily seen that

d

dt
J(φt(ω0)) = ∂tG(t, ut, pt),

where the perturbed adjoint state pt solves

∫

D
βχA(t)∇ψ · ∇pt dx = −

∫

D
2ξ(t)(ut − utr)ψ dx for all ψ ∈ H1

0 (D).
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Therefore the shape derivative at the point φt(ω0) in direction w ◦ φ−1
t is given by

dJ(φt(ω0))[w ◦ φ−1
t ] =

∫

D
ξ(t)(tr(∂wB⊤(t))|ut − utr|2 dx− 2(ut − utr)B(t)∇utr · w) dx

−
∫

D
ξ(t)(tr(∂wB⊤(t))f tpt +B(t)∇f t · w pt) dx

+

∫

D
βχA(t, w)∇ut · ∇pt dx,

where we introduced A(t, w) := tr(∂wB⊤(t))A(t) − sym(B⊤(t)∂wA(t)) and B(t) := ∂φ−⊤
t .

Therefore according to Definition 6.24, we have dJ φt(ω0)[θ] = dJ(φt(ω0))[θ ◦ φ−1
t ]. More-

over, we have for all v, w ∈ H1(D,Rd)

(v, w)φt
H1(D,Rd)

=

∫

D
A(t)∂v : ∂w + ξ(t)v · w dx.

Note that this is a scalar product since A is coercive and ξ bounded away from zero and

from above. Moreover, the induced norm ‖v‖H1(D),φt :=
√

(v, v)φt
H1(D,Rd)

constitutes an

equivalent norm to ‖ · ‖H1(D,Rd) on H1(D,Rd); cf. Example 6.26. Now we assemble all
equations to list the complete system determining the gradient flow φt:

∂tφt(x) = −∇HJ(φt(ω0)) ◦ φt(x)

where the H-gradient θt := ∇HJ(φt(ω0)) ◦ φt(x) solves

(θt, w)φt
H1(D,Rd)

= dJ φt(ω0)[w] for all w ∈ H1
0 (D,Rd).

The mapping t 7→ φt is a priori no path in G0(H). But the discretisation will lead to a path
in F(W 1

∞(D)), since it is a mapping t 7→ φt : [0,∞) → Vh ⊂ W 1
∞(D,Rd), where Vh is a

finite element space.

The Eulerian point of view of the transmission problem

In the Eulerian approach of shape optimization all computations are performed on the
moving domain. Instead of solving the equation (6.7), we consider the equivalent version

∂tφt(φ
−1
t (z)) = −∇HJ(φt(ω0))(z) for z ∈ φt(D) = D. (6.22)

For our transmission problem we want to solve (6.22) and compute ∇HJ(φt(ω0))(z) := θt
by

(θt, w)H1(D,Rd) = dJ(φt(ω0))[w] for all w ∈ H1
0 (D,Rd)

where

dJ(φt(ω0))[w] =

∫

D
βχφt(ω0)

A(0, w)∇ut · ∇pt dx−
∫

D
div (w)fpt + ∇f · θt pt dx

+

∫

D
div (w)|ut − ur|2 dx−

∫

D
2(ut − ur)∇ur · w dx,

and the state ut and adjoint state pt solve
∫

D
βχφt(ω0)

∇ut · ∇ϕdx =

∫

D
f ϕ dx for all ϕ ∈ H1

0 (D)
∫

D
βχφt(ω0)

∇ψ · ∇pt dx = −
∫

D
2(u− ur)ψ dx for all ψ ∈ H1

0 (D).
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Using once more that θ(t, z) := ∂tφt(φ
−1
t (z)) = ∂tφ(t, φ−1(t, z)) generates the flow φt, we

get for small h > 0

φt+h(φ−1
t (z)) − φt(φ

−1
t (z)) ≈ h θ(t, z) = −h∇HJ(φt(ω0))(z),

which gives an approximation of the function φt+h since φt+h(φ−1
t (z)) ≈ z−h∇HJ(φt(ω0))(z).

Note that the function φt+h is not explicitly given on the domain ω0 but only through φ−1
t

on φt(ω0), which makes it difficult to determine φt+h, numerically. But we may easily ob-
tain an approximation of the moved domain Ωt+h := φt+h(ω0) by Ωt+h = φt+h(φ−1

t (ω0)) =
(I − h∇HJ(φt(ω0)))(ω0). Of course due to the structure Theorem 2.38, we can consider
(6.22) only on the boundary ∂φt(ω0) = φt(∂ω0) in order to obtain the new domain Ωt+h.
Indeed letting H = L2(∂ω0) and dJ(ω0)[θ] =

∫
Γ gθ · nds we get ∇HJ(φt(ω0))(z) = gθ · n

and thus
∂Ωt+h = φt+h(φ−1

t (∂ω0)) = (id − gn)(∂φt(ω0)).

Remark 6.29. We see that with this approach a movement of the domain ω0 is necessary
in order to evaluate the gradient ∇HJ(φt(ω0))). Therefore in a numerical algorithm only a
few remeshings of the domain are needed.

6.5.2 Discretisation of the gradient flow

In the recent works [57, 81] it has been shown numerically and theoretically that using a
fixed discretisation for the shape derivative the volume expression is always approximated
more accurately, at least using finite elements.

Let a shape function J : Ξ ⊂ 2D → R be given. Assume that Gω0 := dJ(ω0) ∈
H′ for all ω0 ∈ Ξ and that J admits a fixed domain representation dJ φt(ω0)[∂tφt] =
dJ(φt(ω0))[∂tφt(φ

−1
t )]. We aim to discretise the following equations

(θt, ζ)φt
H1(D,Rd)

= dJ φt(ω0)[ζ] for all ζ ∈ H (6.23)

θt =: ∇HJ(φt(ω0)) ◦ φt
∂tφt(x) = −∇HJ(φt(ω0)) ◦ φt(x) in [0, T ] ×D, (6.24)

or equivalently

(θt, ζ̂)H1(D,Rd) = dJ(φt(ω0))[ζ̂] for all ζ̂ ∈ H
θt =: ∇HJ(φt(ω0))

∂tφt(φ
−1
t (z)) = −∇HJ(φt(ω0))(z) in [0, T ] ×D,

where by definition θt = θt ◦ φt. Suppose Vh ⊂ H1
0 (D,Rd) is a finite element space of

dimension N ∈ N and {φ1, . . . , φN} is a basis of Vh. For simplicity assume that D and ω0

have a polygonal boundary Σ, ∂ω0, respectively. Usually, Vh will consist of continuous and
piecewise polynomial functions f : D → Rd. We discretise (6.24)-(6.23) with an explicit
Euler method in time and with the described FE approximation Vh of H and obtain the
fully discrete system

φt+h(x) − φt(x) = −h∇VhJ(φt(ω0)) ◦ φt in D

(∇VhJ(φt(ω0)) ◦ φt, ζ)H = dJ φt(φt(ω0))[ζ] for all ζ ∈ Vh (6.25)

or equivalently

φt+h(φ−1
t (z)) − z = −h∇VhJ(φt(ω0)) in D

(∇VhJ(φt(ω0)), ζ)H = dJ(φt(ω0))[ζ] for all ζ ∈ Vh. (6.26)
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Let us sketch a basic gradient algorithm.

Algorithm 1: Gradient flow algorithm in Lagrangian coordinates

Data: Let n = 0, γ > 0 and N ∈ N be given. Initialise domain ω0 ⊂ D, time tn = 0
and niter = 0. Initialise φtn = id.

initialisation;
while n ≤ N do

1.) solve (6.25) with t = tn to obtain θtn = ∇VhJ(φtn(ω0))(φtn(x)) ∈ Vh ⊂ H;
2.) choose ∆tn > 0 such that J((φtn − ∆tnθ

tn)(ω0)) ≤ J(φtn(ω0)) ;
3.) set tn+1 = tn + ∆tn and φtn+1(x) := φtn(x) − ∆tnθ

tn(x) ;
if J(φtn(ω0)) − J(φtn+1(ω0)) ≥ γ(J(ω0) − J(φt1(ω0))) then

step accepted, continue program
else

exit program, no sufficient decrease ;

increase n→ n+ 1;

Remark 6.30. The previous algorithm has some nice features. Observe that we only choose
once the initial domain Ω0 on which all calculations are performed.

Alternatively, we propose the following algorithm to determine a sequence of domains
Ωtn such that J(Ωtn+1) ≤ J(Ωtn) instead of the transformation φt.

Algorithm 2: Gradient algorithm in Eulerian coordinates

Data: Let n = 0, γ > 0 and N ∈ N be given. Initialise domain Ω0 ⊂ D, time tn = 0
and niter = 0.

initialisation;
while n ≤ N do

1.) solve (6.26) with t = tn to obtain θtn = ∇VhJ(Ωn)(x) ∈ Vh ⊂ H;
2.) choose ∆tn > 0 such that J((I − ∆tnθtn)(Ωtn)) − J(Ωtn) ≤ 0 ;
3.) set tn+1 = tn + ∆tn and Ωtn+1 := (I − ∆tnθtn)(Ωtn);
if J(Ωn) − J(Ωn+1) ≥ γ(J(Ω0) − J(Ω1)) then

step accepted, continue program
else

exit program, no sufficient decrease ;

increase n→ n+ 1;

Remark 6.31. Saving the solutions φ̃tn(x) := (x−∆tnθtn(x)) from the previous algorithm

in each iterations step, we may build a diffeomorphism φ̃finalt : D → Rd:

φ̃final(x) := φ̃tN ◦ φ̃tN−1 · · · ◦ φ̃t0(x).

This transformation maps the initial domain Ω0 onto the optimal Ω̃ := φ̃final(Ω0). It is the
very same diffeomorphism we obtain from Algorithm 1:

φfinal(x) := φt0(x) + φt1(x) + · · · + φtN (x).

Observe the different decomposition of the functions φ̃final and φfinal: in the Lagrangian
algorithm it is addition and in the Eulerian the function composition, which is the group
operation on G0(H). We have

φ̃final(Ω0) ≈ φfinal(ω0).

After discretisation, the two sets are not exactly equal anymore, but close to each other.
This is due to the numerical error of the H-gradient.
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6.6 Translations and rotations

In some problems the shape of an object may be known but the location and orientation
may be unknown. It is then meaningful to use translations and rotations to move the
shape, which considerably reduces the amount of unknowns. As mentioned earlier in this
section, until now descent directions have been mostly determined directly by using the
boundary form of the shape derivative (2.17) by taking θ · n = −g and θΓ ≡ 0. This
approach produces a vector field θ which is normal to the boundary. Such a choice of θ
cannot produce a translation, although this would be the natural transformation in some
applications where the shape is known but not the location.

In order to produce a transformation which is locally a translation, one needs to take
a non-zero tangential component θΓ and an appropriate normal component θ · n. In Rd

a transformation combining translation and rotation is a mapping Φ : Rd → Rd which is
locally of the form

Φ(x) := Ax+ b,

where b ∈ Rd and A ∈ Rd,d is an orthogonal matrix, i.e. AA⊤ = A⊤A = I. Therefore we
can define a translation by the formula ∂Φ(∂Φ)⊤ = I. For small t the flow Φt of the vector
field θ ∈ C∞

c (Rd,Rd) has the form

Φt(x) = x+ tθ(x).

To obtain a translation one may assume ∂θ(∂θ)⊤ = I. For a combination of translations
and rotations in R2 we choose a vector field θ which satisfies locally

θ(x) = Ax+ b, A =

(
cos(α) − sin(α)

sin(α) cos(α)

)
, β = (β1 β2)

⊤ ∈ R2, α ∈ R.

The shape derivative is then determined by three parameters α and β1, β2. Note that in
this case the vector field θ is not normal to the boundary of Ω. Assume the shape derivative
has the form (2.17)

dJ(Ω)[θ] =

∫

∂Ω
g θ · n ds.

Then plugging in θ(x) = Ax+ β with x = (x1x2)
⊤ one obtains

dJ(Ω)[θ] = cos(α)

∫

∂Ω
g(n1x1 + n2x2) ds+ sin(α)

∫

∂Ω
g(−n1x2 + n2x1) ds

+ β1

∫

∂Ω
n1g ds+ β2

∫

∂Ω
n2g ds.

In view of this formula, one may choose the parameters

α = − arctan

∫
∂Ω g(n1x1 + n2x2)∫
∂Ω g(−n1x2 + n2x1)

ds, β1 = −
∫

∂Ω
n1g ds, β2 = −

∫

∂Ω
n2g ds

to get a descent direction θ which is a translation and a rotation. Note that using the
boundary form (2.17) one may consider a transformation θ which is only locally a trans-
formation and a rotation. This is often more meaningful for applications since we consider
shapes contained in D which is fixed, which implies that θ must vanish on the boundary of
D, in which case we cannot take θ as a translation everywhere.

Using the volume expression (2.16), the determination of the parameters α and β is not
as straightforward for this reason. One may choose θ as a piecewise linear function so that



116 CHAPTER 6. MINIMIZATION USING THE VOLUME EXPRESSION

θ is a translation on the interface Γ and vanishes on Σ. Assume the shape derivative has
the form

dJ(Ω)[θ] =

∫

Ω
F1[θ1] + F2[θ2] dx,

where F1[θ1] and F2[θ2] are linear with respect to θ1 and θ2 with θ = (θ1, θ2). In order to
obtain a transformation which is locally a translation, one may choose the following class
of vector fields

θ = η

(
β1

β2

)
,

where η is a smooth function equal to one in a neighborhood Ω∗ of Ω, equal to zero on Σ.
The choice of η depends on Ω and D and we have

dJ(Ω)[θ] = β1

∫

Ω
F1[η] dx+ β2

∫

Ω
F2[η] dx.

Therefore a descent direction is easily found as

β1 = −
∫

Ω
F1[η] dx, β2 = −

∫

Ω
F2[η] dx.

6.7 Splines and the H-gradient

In the previous sections, we have seen how it is possible to use the volume expression
of the shape derivative to obtain descent directions. This requires, at least theoretically,
no discretisation of the domain. Nevertheless, as it is traditionally done, it is possible
to discretise first the boundary of the domain by splines and then determine in a similar
fashion as for the volume expression a descent direction using the boundary expression of
the shape derivative.

6.7.1 Definition of B-Splines and basic properties

Let k,N ∈ N be fixed integers, define p := k − 1 and m := p+N + 1 = N + k. We define
recursively the basis functions N i

k : [t0, tm] → R by

N0
i (t) :=

{
1 if ti < ti+1 and ti ≤ t ≤ ti+1

0 else
,

and

N r
i (t) =

t− ti
ti+r−1 − ti

N r−1
i (t) +

ti+r − t

ti+r − ti+1
N r−1
i+1 (t),

where i = 0, 1, . . . , N and r ∈ N. Here the numbers t0, . . . , lm+1 ∈ R are called knots and as-
sembled in the knot vector (t0, t1, . . . , tN+k−1, tN+k) ∈ Rm+1. The functions
{N r

0 (t), N r
1 (t), . . . , N r

N−1(t), N
r
N (t)} are called basis function of order r. They constitute

polynomials of degree r.

Definition 6.32. Let N + 1 vectors U0, . . . , UN ∈ R2, called control points, be given. A
basis spline curve (short B-Spline) γ : [t0, tm] → R2 of order k is defined by

γ(t) =
N∑

i=0

Nk
i (t)Ui. (6.27)

Note that since Nk
i (t) = 0 for t ∈ R \ [ti, ti+k] the curve is local in the sense that if we

move the point Ui it affects maximal k curve segments, which makes those curves attractive
for shape optimization problems.
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U0

γ(t)

U1

U2
U5

U4

U3

θ̂(γ(t))

Figure 6.2: B-Spline γ defined by points U0, . . . , U5.

6.7.2 Clamped and closed B-Splines

Let Ω ⊂ R2 be a bounded domain with smooth boundary. Let Γ ⊂ ∂Ω be a simply
connected part of the boundary . When Γ is not the whole boundary we describe it by a
clamped B-Spline curve and in the other case by a closed B-Spline curve.

Definition 6.33. A B-Spline curve γ : [0, 1] → R2 defined by (6.27) is called

(i) clamped at a, b if γ(0) = U0, γ(1) = UN

(ii) closed if γ(0) = γ(1).

(iii) open if γ(0) 6= U0, γ(1) 6= UN

For a given set of control points {U0, . . . , UN}, we define a clamped B-Spline by

γ(t) =

N∑

i=0

Nk
i (c t)Ui,

with the choice c := n− k + 2 and

tj =





0 if j < k,

j − k + 1 if k ≤ j ≤ N,

N − k + 2 if j > N,

.

A closed B-Spline curve on [0, 1] is given by the formula

γ(t) =

N−k∑

i=k−1

Nk
i (ct)Ui +

N∑

i=N−k

(Nk
i−(N−k)(ct) +Nk

i (ct))Ui,

where c := tm−k. Here we define the basis Nk
i by uniform knot vectors satisfying tj+1−tj =

1/m by tj := j/m for j = 0, 1, . . . ,m. Additionally, we have to overlap k control points as
follows Ui = UN−(k−1)+i for i = 0, 1, . . . , k − 1. For a clamped respectively closed B-Spline,
we introduce the vector field θ : Γ → R2

θcla(x) := c
N∑

i=0

ciN
k
i (γ−1(x))Ũi, (6.28)



118 CHAPTER 6. MINIMIZATION USING THE VOLUME EXPRESSION

respectively

θclo(x) :=

N−k∑

i=k−1

Nk
i (γ−1(x))Ûi +

N∑

i=N−k

(Nk
i−(N−k)(γ

−1(x)) +Nk
i (γ−1(x)))Ûi, (6.29)

where 1/ci =
∫
ΓN

k
i (γ−1(x)) dx =

∫
Γ |γ′(s)|Nk

i (s) ds > 0 and c =
∑N

i=1 ci and the control

points Ũi respectively Ûi are to be determined. The scaling in (6.28) is necessary to achieve
that the perimeter minimisation is exact in the sense that if we start with a quarter circle
the quarter circle is shrinking to a point. Without the scaling this would lead to strange
effects of the behavior of control points near U0 and UN as was observed in [92]. We denote
by θ̂(t) := θ(γ(t)) : [0, 1] → R2 the reduced vector field. Suppose we are given a shape
function J which is shape differentiable in Ω ⊂ R2. According to Theorem 2.38 if g ∈ L1(Γ)
it has the following form

dJ(Ω)[θ] =

∫

Γ
g θ · n ds. (6.30)

Inserting (6.28) respectively (6.29) into (6.30) leads to

dJ(Ω)[θcla] =
N∑

i=0

dĴi · Ûi, dJ(Ω)[θclo] =
N−k∑

i=k−1

dJ̃i · Ũi +
N∑

i=N−k

dJ̃i · Ũi

where Γ := ∂Ω. The planar vectors dĴi and dJ̃i are defined by

dĴi := c

∫ 1

0
ci g(γ(s))Nk

i (s) Jγ̇(s) ds (i = 0, . . . , N − k)

dJ̃i :=

∫ 1

0
g(γ(s))Nk

i (s) Jγ̇(s) ds (i = k − 1, . . . , N − k)

dJ̃i :=

∫ 1

0
g(γ(s))(Nk

i (s) +Nk
i−(N−k)(s))Jγ̇(s)) ds (i = N − k + 1, . . . , N).

Here, we have defined the normal vector along γ by n(s) := Jγ̇(s)/|Jγ̇(s)| = Jγ̇(s)/|γ̇(s)|.
Obvious descent directions may be defined by

Ûi = −c
∫ 1

0
ci g(γ(s))Nk

i (s) Jγ̇(s) ds, (i = 0, . . . , N) (6.31)

Ũi = −
∫

Γ
g(γ(s))Nk

i (s)Jγ̇(s) ds, (i = k − 1, . . . , N − k)

Ũi = −
∫

Γ
g(γ(s))(Nk

i (s) +Nk
i−(N−k)(s))Jγ̇(s)) ds, (i = N − k + 1, . . . , N).

The H-gradient in the space of basis splines of order k and N control points B(N, k)
equipped with the metric I is given by ∇B(N,k)J(Ω) = −θcla and ∇B(N,k)J(Ω) = −θclo.
Note that we have the following relation between the moved curve and the moved control
points, here exemplary for the clamped B-Spline,

Γt = (γ + α θ ◦ γ)([0, 1]), γ(t) + α θ(γ(t)) =
N∑

i=0

Nk
i (t)(Ui + α c ciŨi), (α > 0).

For an application of the clamped basis splines we refer the reader to Section 7.4 and
also [66], where Bézier splines (special basis splines) are used.
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6.8 The level set method

The level set method, introduced in [80] is a general framework for tracking evolving surfaces.
The key idea of the method is to describe a domain implicitly by the level set of a scalar
function φ : Rd → R. With the level set function it is then possible to recover the boundary
of the domain. We point out that in general level sets of smooth functions can be arbitrarily
irregular as can be seen by the Whitney theorem or by simply considering the Lipschitz
continuous distance function φ(x) := dΩ(x) associated with an arbitrary set Ω. Still in
numerical practice the level sets define smooth domains.

Assume that for each t ∈ [0, τ ] the domain Ωt = Φt(Ω) and its boundary ∂Ωt can be
described by a C1-function φ : D × [0, τ ] → R, that is

Ωt = {x ∈ D : φ(x, t) < 0}, ∂Ωt = {x ∈ D : φ(x, t) = 0}.

We call the function φ level set function. Differentiating the equation φ(Φt(x), t) = 0 with
respect to t leads to the Hamilton-Jacobi equation

∂tφ(t, x) + θ(x) · ∇φ(t, x) = 0 in ∂Ωt × [0, τ ]. (6.32)

Note that the level set equation (6.32) is only defined on the unknown boundary ∂Ωt. To
get rid of this we can extend the equation onto a domain D containing all Ωt, (t ≥ 0).
Initially, the level set method was designed to track smooth interfaces moving along the
normal direction to the boundary. Theoretically, if the domain Ωt and L2(Γ) representation
of dJ(Ω)[θ] are smooth enough then we have dJ(Ωt)[θ] =

∫
Γt
gt θ · nt ds. Therefore we may

take as normal perturbation field θ := −gt nt, where nt := ∇φ/|∇φ| is the unit normal
vector field expressed by the level set function φ. One obtains from (6.32) the level set
equation

∂tφ+ θn|∇φ| = 0 in D × [0, τ ]. (6.33)

Observe that in order to make sense of the previous equation, we need to extend θ to D or
at least to a neighborhood of Γ, which requires an extension of gt to D. In the case were
the shape derivative is only available in the form of Theorem 2.38 (ii), as a domain integral,
then φ is not governed by (6.33) but rather by the Hamilton-Jacobi equation (6.32). It
turns out that (6.32) is actually easier to handle numerically. Therefore it is more natural
to use (6.32) with a θ which is already defined in the domain as is the case with the
volume expression of the shape derivative used in this paper, providing a natural extension
to the entire domain. In addition θn is computed on the boundary ∂Ωt which usually
does not match the grid nodes where φ and the solutions of the possible partial differential
equations are defined in the numerical application. Therefore the computation of θn requires
to determine the boundary ∂Ωt explicitly and to interpolate on ∂Ωt quantities defined on
the grid, which makes the numerical implementation more complicated and introduces an
additional interpolation error. This is an issue in particular for interface problems where θn
is usually the jump of a function across the interfaces which requires multiple interpolations
and is error-prone. In our framework we never need to resolve the interface ∂Ωt explicitly
during the optimization, and θ only needs to be defined at the grid nodes.

Initial data and boundary conditions have to be imposed together with the Hamilton-
Jacobi equation (6.32). The initial data φ(0, x) = φ0(x) is chosen as the signed distance
function bΩ0 to the initial boundary ∂Ω0 = ∂Ω. Dirichlet boundary conditions also have to
be imposed on the part of the boundary Σ = ∂D of D which is fixed.
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6.8.1 Discretisation and reinitialisation of the level set equation

In the usual level set method, the level set equation (6.33) is discretised using an explicit
upwind scheme proposed by Osher and Sethian; [79],[80],[88]. The level set equation (6.32)
is solved in a special way described later.

Let D be the unit square D = (0, 1) × (0, 1) to fix ideas. For the discretisation of
the Hamilton-Jacobi equation (6.32), we first define the mesh grid of U . We introduce
the nodes Pij whose coordinates are given by (i∆x, j∆y) where ∆x and ∆y are the steps
discretisation in the x and y directions respectively. Let us also note tk = k∆t the discrete
time for k ∈ N, where ∆t is the time step. We then seek an approximation φkij ≃ φ(Pij , t

k).
For numerical accuracy, the solution of the level set equation (6.32) should not be too

flat or too steep. This is fulfilled for instance if φ is the distance function i.e. |∇φ| = 1.
Unfortunately, even if we start with a (signed) distance function for the initial data φ0,
the solution φ of the level set equation (6.32) does not generally remain close to a distance
function. We can perform a reinitialisation of φ at time t by solving the solution ϕ = ϕ(τ, x)
of the following equation, up to the stationary state (see [83])

ϕτ + S(φ)(|∇ϕ| − 1) = 0 in R
+ × U,

ϕ(0, x) = φ(t, x), x ∈ U.

Here, S is an approximation of the sign function, for instance, S(d) = d/
√
d2 + |∇d|2ε2

with ε = min(∆x,∆y) where ∆x and ∆y stand for the space steps discretisation in the x
and y direction (see below). Other choices are possible for the approximate sign function.
We refer to [83] for details.

Remark 6.34. This technique allows to compute and update the level set only on a narrow
band around the interface. In this way the complexity of the problem is only N log(N)
instead of N2.



Chapter 7

Numerical simulations

This last chapter is devoted to the numerical treatment of some shape optimization prob-
lems employing the material from Chapter 6. We provide a numerical validation that the
volume expression allows very accurate approximations and can even reconstruct domains
with corners. We begin with numerical results for simple unconstrained domain integrals.
Subsequently, we present numerics for the transmission problems from Section 5.2, Subsec-
tion 6.5.1 and the EIT problem of Section 5.3. Except for the example from Section 5.2,
where we use the boundary expression and basis splines, all computations use the domain
expression. We discretise the arising partial differential equations by means of the finite el-
ement method. All implementations in this chapter have been done either using the WIAS
toolbox PDELib or the FENICS finite element toolbox. The author acknowledges here the
implementation of the example from Section 7.2 by Martin Eigel and the level set method
of Section 7.3 by Antoine Laurain.

7.1 Unconstrained volume integrals: gradient methods

Let f ∈W 1,1
loc (R2) be a given function. Denote by Ξ ⊂ 2R

2
the set of all open and bounded

domains Ω ⊂ R2. We consider the problem

min J(Ω) :=

∫

Ω
f(x) dx over Ω ∈ Ξ (7.1)

and solve it by finding zeros of Ω 7→ dJ(Ω). As we have seen before, the volume expression
of J exists in all directions θ ∈ C1

c (D,Rd) and for all measurable domains Ω ⊂ D

dJ(Ω)[θ] =

∫

Ω
div (θ)f + ∇f · θ dx.

By density, we may extend dJ(Ω) to H1(Ω,Rd). In order to solve (7.1), we make use of
the general framework of Chapter 6 and use Algorithm 2. We compute a descent direction
θ as the negative gradient of the cost J with respect to the space H := H1(Ω;Rd):

(θ, ζ)H1(Ω;R2) = −dJ(Ω)[ζ] for all ζ ∈ H1(Ω;R2), (7.2)

This equation is discretised using the finite element method as outlined in Section 6.5.2.
We run the Algorithm 2 and take two different choices for f :

(i) f(x, y) = x2

a2
+ y2

b2
− 1 ∈ C∞(R2),

(ii) f(x, y) = |x| + |y| − 1 ∈W 1,∞
loc (R2).

121
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The optimal shape is an ellipse in case (i) and a square in case (ii). In Figure 7.1 an
example for case (i) with the choices a = 1.5 and b = 3 is given. The initial shape (heart-
shaped) is not convex, whereas the final shape (an ellipse) is convex and smooth. Case (ii)
is illustrated in Figure 7.2. One observes that the method is able to create the corners of
the square starting from a smooth boundary. For these two examples, we solved (7.2) using
a grid consisting of 8121 elements and first order elements.

Figure 7.1: From left to right and top to bottom: iterations 0, 2, 3, 6, 10, 100

7.2 A transmission problem: gradient method and volume

expression

We consider the problem from Subsection 6.5.1. Put H := H1
0 (D;R2) and choose a P2

finite element space Vh ⊂ H. Then the discreted optimization problems reads

min J(Ω) =

∫

D
|uh − ur|2 dx subject to uh solves (7.3)

∫

D
βχ∇uh · ∇ψ dx =

∫

D
fψ dx for all ψ ∈ Vh. (7.4)

The function ur is the target function, which is defined as the solution of (7.4) with right
hand side f := 1 and χ chosen according to the orange rightmost domain in Figure 7.3.
The problem (7.3) is solved by finding zeros of the shape derivative: Find Ω ⊂ D such that

dJ(Ω)[θ] = 0 for all θ ∈ C1
c (D,Rd).

To produce Figure 7.3, we used the Euler algorithm (Algorithm 2). In this picture the
initial, optimal and desired domains are depicted. One observes that the irregular, non-
convex optimal shape is quite accurate reconstructed. In Figure 7.4, we used the Lagrange
algorithm (Algorithm 1). We remeshed four times.
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Figure 7.2: From left to right and top to bottom: iterations 0, 2, 4, 7, 12, 100

Figure 7.3: From left to right: initial domain, optimal domain, reference domain

7.3 The EIT problem: level set method and volume expres-

sion

In this section we give numerical results for the problem of electrical impedance tomography
presented in Section 5.3.1. Using the notations of Section 5.3.1 we take Ω = (0, 1) ×
(0, 1) and ΓD = ∅, i.e. we have measurements on the entire boundary Γ. For for sake
of implementation, we consider a slightly different problem than the one in Section 5.3.1.
Denote Γt, Γb, Γl and Γr the four sides of the square, where the indices t, b, l, r stands
for top, bottom, left and right, respectively. We consider the following problems: find
uN ∈ H1

tb(Ω) and uD ∈ H1
lr(Ω) such that

∫

D
σ∇uN · ∇ϕ =

∫

D
fϕ+

∫

Γl∪Γr

gϕ for all ϕ ∈ H1
0,tb(Ω) (7.5)

∫

D
σ∇uD · ∇ϕ =

∫

D
fϕ+

∫

Γt∪Γb

gϕ for all ϕ ∈ H1
0,lr(Ω) (7.6)
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Figure 7.4: From left to right: initial domain, optimal domain, reference domain

where

H1
tb(D) := {v ∈ H1(D) | v = h on Γt ∪ Γb},

H1
lr(D) := {v ∈ H1(D) | v = h on Γl ∪ Γr},

H1
0,tb(D) := {v ∈ H1(D) | v = 0 on Γt ∪ Γb},

H1
0,lr(D) := {v ∈ H1(D) | v = 0 on Γl ∪ Γr}.

The results of Section 5.3.1 can be straightforwardly extended to equations (7.5), (7.6) and
using shape function (5.37) leads to the same optimization problem.

We use the software package FEniCS for the implementation; see [68]. The domain
Ω is meshed using a uniform grid of 128 × 128 elements. The conductivity values are set
to σ0 = 1 and σ1 = 10. We compute the H := H1

0 (D;Rd) gradient with respect to the
metric (v, w)H =

∫
D ∂v : ∂w dx. We obtain measurements hk corresponding to fluxes gk,

k = 1, ..,K, by taking the trace on Γ of the solution of a Neumann problem where the fluxes
are equal to gk. To simulate real noisy EIT data, the measurements hk are corrupted by
adding a normal Gaussian noise with mean zero and standard deviation δ ∗ |hk|∞, where δ
is a parameter. The noise level is computed as

noise =

∑K
k=1 ‖hk − h̃k‖L2(Γ)∑K

k=1 ‖hk‖L2(Γ)

,

where h̃k is the noisy measurement and hk the synthetic measurement without noise on Γ.
We use the shape function (5.37), that is, J(Ω+) = 1

2

∫
D

∑K
k=1 |uD,k(Ω+)−uN,k(Ω+)|2 dx,

where uD,k and uN,k correspond to the different fluxes gk.
Since we use a gradient-based method we implement an Armijo line search to adjust the

time-stepping. The algorithm is stopped when the decrease of the shape function becomes
insignificant, practically when the following stopping criterion is repeatedly satisfied:

J(Ω+
n ) − J(Ω+

n+1) < γ(J(Ω+
0 ) − J(Ω+

1 ))

where Ω+
n denotes the n-th iterate of Ω+. We take γ = 5.10−5 in our tests.

In Figure 7.5 we compare the reconstruction for different noise levels computed using
7.3. We take in this example K = 3, i.e. we use three fluxes gk, k = 1, 2, 3, defined as
follows:

g1 = 1 on Γl ∪ Γr and g1 = −1 on Γt ∪ Γb,

g2 = 1 on Γl ∪ Γt and g2 = −1 on Γr ∪ Γb,

g3 = 1 on Γl ∪ Γb and g3 = −1 on Γr ∪ Γt.
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Figure 7.5: Reconstruction (continuous contours) of two ellipses (dashed contours) with
different noise levels and using three measurements. From left to right and top to bot-
tom: initialisation (continuous contours - top left), 0% noise (367 iterations), 0.43% noise
(338 iterations), 1.44% noise (334 iterations), 2.83% noise (310 iterations), 7% noise (356
iterations).

Without noise, the reconstruction is very close to the true object and degrades as the
measurements become increasingly noisy, as is it usually the case in EIT. However, the
reconstruction is quite robust with respect to noise considering that the problem is severely
ill-posed. We reconstruct two ellipses and initialise with two balls placed at the wrong
location. The average number of iterations until convergence is around 340 iterations.

In Figure 7.6 we reconstruct three inclusions this time using K = 7 different measure-
ments, with 1.55% noise. The reconstruction is close to the true inclusion and is a bit
degraded due to the noise.

7.4 Distortion compensation via optimal shape design using

basis splines

In this section we show numerical results for the transmission problem from Section 5.2.
Let D ⊂ R2 be open and bounded with smooth boundary ∂D. We consider the problem

min J(Ω) =

∫

Σ
‖u(χΩ) − ur‖2 ds over all smooth subsets Ω ⊂ D,

where u(χΩ) is a solution of (5.17) and ur is a smooth target which is specified below. Al-
though the previous minimisation problem has in general no solution without the perime-
ter penalisation, in practice it turns out that it is not needed. An explanation for this
phenomenon is that we approximate the boundary ∂Ω by a basis spline, which yields a
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Figure 7.6: Initialisation (continuous contours - left) and reconstruction (continuous con-
tours - right) of two ellipses and a ball (dashed contours) with 1.55% noise (371 iterations)
and using seven measurements.

regularisation of the problem itself. More precisely, we described the boundary ∂Ω by a
closed B-Spline curve of degree k = 3 as described in Section 6.7. Recall the formula (6.28)
for a basis spline:

γ(t) =

n∑

i=1

N3
i (t)Ui. (7.7)

We proceed by calculating the control points Ũi using the Formula 6.31. As a result the
vector field θ defined in by (6.29) constitutes a descent direction. Finally, we move the old
control points Ui by adding the control points Ũi, i.e. we put Unewi := Ui + αŨi, where
α > 0 is scalar such that we have a sufficient decrease. The boundary of the new domain
is then ∂Ωnew := γ([0, 1]), where γ is defined by (7.7) but Ui replaced by Unewi .

7.4.1 Numerical results

In this section, we provide the numerical results obtained by our algorithm for two different
test examples. In our numerics we use cubic B-Spline curves to model the interface, i.e. we
choose k = 4. Moreover we have A2 = A1 = A, β2 = 0 and β1 = (1 + ν)α1

2 , where ν is the
shear contraction number and α = ̺1

̺2
− 1, i.e. σχ = λ div (u)I + 2µε(u) − (1 + ν)α1

2χI.
By this choice no stresses occur whenever there is only one phase present, i.e. if Ω = ∅.
Then χ = 0 a.e. on D and thus σχ = 0. The state and adjoint state are discretised by
the finite element method with linear (and globally continuous) elements as implemented
in the FE/FV toolbox PDELib. The material data correspond to plain carbon steel; see
Table 7.1.

Spherification of an ellipse

In the first example we consider a work piece, whose reference configuration is a quarter
ellipsoid with periodic boundary conditions, i.e. we set uy := 0 on the x-axes and ux := 0
on the y-axes. The x-axis is 15.3 and y-axis is 15.0 units long. On the curved part of the
boundary we impose homogeneous Neumann boundary conditions. Our goal is to modify
the ellipse to a quarter circle. For this purpose we take the following cost function into
consideration: J(Ω) :=

∫
Σ̃(|u(x) + x| − R)2 dx, where R = 15.4 denotes the desired radius

of the circle, u(x) + x is the actual deformation of the material point x ∈ D and Σ̃ denotes
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Algorithm 3: Gradient flow algorithm

Data: Set k = 0. Choose initial domain Ωk ⊂ R2 with initial control points
Uk1 , . . . , U

k
n such that γ([0, 1]) ≈ ∂Ωk.

initialisation;
while n ≤ N do

1.) Calculate Ũ1, . . . , Ũn using equation (6.31). ;
2.) Associate with α > 0 a new B-Spline curve

γα(t) =
n∑

i=1

N3
i (t)(Uni + αŨni ),

and a domain Ωα
k with boundary γα([0, 1]) =: ∂Ωα. Choose α > 0 such that

J(Ωα) ≤ J(Ωn) ;

3.) set tn+1 = tn + ∆tn and Ωn+1 := Ωα and Un+1
i := Uni + αŨni ;

if J(Ωn) − J(Ωn+1) ≥ γ(J(Ω0) − J(Ω1)) then
step accepted, continue program

else

exit program, no sufficient decrease ;

increase n→ n+ 1,;

̺1 ̺2 λ µ

7850 kg 7770 kg 1.5 · 1011 Pa 7.5 · 1011 Pa

Table 7.1: Material data for a plain carbon steel.

the curved part of the boundary. Unfortunately, since the densities in different steel phases
only differ by less than 1%, the ellipticity is hardly visible. The major axis is in the x− and
the minor axis in the y− direction. Figure 7.7 shows the y− component of the adjoint p for
several iterations of the optimization algorithm. Since the derivative of the cost function
acts as a force in the adjoint equation and the y− component of the ellipse has to be pushed
upwards to obtain a circle, this quantity is especially relevant. We discretised the state and
adjoint state on a triangular grid with 96607 nodes using Lagrange linear finite elements.

Figure 7.7: Several iterations for px with p = (px, py).
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Figure 7.8: Initial and optimal shape.

Figure 7.9: Triangulation of the wavy block.

Straightening of a wavy block

As the second example we consider a rectangular domain D with a wavy upper surface. We
assume Dirichlet boundary conditions on the bottom and Neumann conditions on the top
and on the sides and use the cost shape function J(Ω) =

∫
Σ̃ |uy −R|2ds with R = 1.0195.

Figure 7.10: Initial (left) and optimal shape (right). Shading: ‖u‖ over D.

Figure 7.12: Distortion compensation: norm ‖p‖ of the adjoint over D

The goal is to straighten the upper surface. The initial and final block shape are depicted
in Figure 7.10. Unfortunately, since the densities in different steel phases only differ by less
than 1%, the waviness of the upper surface is hardly visible. Figure 7.11 shows the magnified
shape of the upper boundary for several iterations of the optimization algorithm. One can
indeed observe how the surface gradually straightens over the iterations. As discretisation
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Figure 7.11: Surface shape of the wavy block for different iteration steps.

of the state and adjoint state, we chose 82724 nodes on a triangular grid and Lagrange
linear finite elements.

Finally, Figure 7.13 shows several iterations of the y-component of the adjoint variable,
where the gradient acts as a force term on the upper boundary.

Figure 7.13: Several iterations of py with p = (px, py).
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Figure 7.14: Convergence history for the wavy block and ellipse, respectively.



Conclusion

What have we done in this thesis?

This thesis contributed in several ways to the mathematical understanding of shape opti-
mization problems as detailed here.

In Chapter 3, we have reviewed available methods to prove the shape differentiability
of shape functions which depend implicitly on the solution of a semi-linear partial differ-
ential equation. Among these methods two are of particular interest, namely the material
derivative method and the minimax method. In some situations the differentiability of the
minimax can be justified by the theorem of Correa-Seeger. It was an open question whether
Theorem 3.9 may be extended to situations, where the associated Lagrangian has no saddle
points. In this situation, only the material derivative method or the rearrangement method
can be applied.

In Chapter 4, Theorem 3.9 has been extended and a novel approach to the differentiabil-
ity of a minimax function has been presented. The novelity is the introduction of a special
averaged adjoint equation. This approach is designed for the special class of Lagrangian
functions, that is, a cost function plus a equality penalisation namely the state equation. In
concrete examples the required regularity of the cost function and the state equation with
respect to the unknown is lower than previous results and only a certain continuity of the
averaged adjoint equation is required. Moreover, we discussed how the assumptions of the
new theorem can be applied under various assumptions.

In Chapter 5 it was shown that the new approach (Theorem 4.2) is also applicable
when the classical material derivative method cannot be applied. This can be seen in
the quasi-linear example from Section 5.4. The new result is particularly easy to apply
to linear problems as shown in the elasticity example from Section 5.2. Furthermore,
with Theorem 4.5 a version of Theorem 4.2 was presented that allows to compute shape
derivative for coupled systems and also for second order shape derivatives. We applied this
latter result to an EIT problem with coupling in the cost function.

In Chapter 6, constructions to build groups of diffeomorphisms from spaces H ⊂
C0,1(D,Rd) have recalled and it has been shown how the groups are linked with shape
functions and the volume expression. Moreover, it has shown that the volume expression
of the shape derivative is the natural form of the shape derivative in this context. By
choosing appropriate scalar products on H, we could demonstrate that a gradient flow in
the space of diffeomorphisms is nothing but a usual gradient algorithms frequently used in
applications. With the gradient flow interpretation it is now possible to define algorithms
which do not change the underlying grid of the discretised domain, instead the state and
adjoint equation are transformed in each step. This approach, also called Lagrangian view,
has for small variations of the shape advantages over the usual Eulerian view. Nevertheless,
the Eulerian approach in combination with the domain expression yields also very smooth
deformations of the grid. Therefore, even when the grid is moved in each step a remesh has
to be done only after several steps.

131



132 CHAPTER 7. NUMERICAL SIMULATIONS

In Chapter 7, we have shown that the developed tools from Chapter 6 have an impact
on the numerical treatment of shape optimization problems as well. We could successfully
use the domain expression to reconstruct optimal shapes for simple unconstrained shape
functions. We were also able to treat an ill-posed EIT problem and a simple transmission
problem. Compared to the L2(Γ) gradient which is frequently used in applications, we have
shown that better results can be obtained with less implementation effort.

Which questions remain open for further research?

The investigations of the previous chapters leave space for further investigations towards
several directions.

Theorem 4.2 was applied to a quasi-linear problem, where an application of the im-
plicit function theorem is not possible without further investigations of the solution of the
PDE. Now the next step is to apply the new theorem or possibly an extension of it to
more complicated problems. For instance it should be possible to apply Theorem 4.2 to
the p-Laplacian or more complicated quasi-linear problems. The difficulty arises when the
averaged equation for this problem has only solutions in a weighted Sobolev space. There-
fore, the general version of the theorem we gave has to be adapted to these situations. To
be more precise the space

Y (t, xt, x0) :=

{
q ∈ F |

∫ 1

0
dxG(t, sxt + (1 − s)x0, q; ϕ̂) ds = 0 for all ϕ̂ ∈ E

}
.

should be replaced by something like

Y(t, xt, x0) :=

{
q ∈ F̃ t|

∫ 1

0
dxG(t, sxt + (1 − s)x0, q; ϕ̂) ds = 0 for all ϕ̂ ∈ F̃ t

}
,

where F̃ t will be weighted space depending on xt and x0. In general we will satisfy neither
F̃ (xt, x0) ⊂ F nor F ⊂ F̃ (xt, x0). One can already suspect that to check the conditions of
Theorem 4.2 for Y(t, xt, x0) will be more difficult than for Y (t, xt, x0).

Another point is that we did not present an example where the set X(t) and/or
Y (t, xt, x0) (xt ∈ X(t), x0 ∈ X(0)) are truly multi-valued. So we have to reformulate
Theorem 4.2 for this particular case. The conditions should be similar to the ones used in
Theorem 3.9, where the sets X(t) and Y (t) were introduced. These have to be replaced by
X(t) and Y (t, xt, x0). This is a challenging task which needs to be done in further studies.

In [97] (see also references therein) the author used reproducing kernel Hilbert spaces
H ⊂ C1

c (D,Rd) to approximate Gradients of functionals f ∈ H′. This is connected to our
setting by f = dJ(Ω) and for instance H = Hk(D,Rd), (k ≥ 1). The idea of reproduc-
ing kernel Hilbert spaces goes back to developments of Nachman Aronszajn1 and Stefan
Bergman2 in 1950. By definition each reproducing kernel Hilbert space has a reproduc-
ing kernel K(x, y) with which it is possible to obtain concrete expressions for gradients
of Fréchet derivatives. In this case it would be interesting to study the feasibility of the
Eulerian approach for image processing problems with for instance the H1-metrics; cf. Sec-
tion 6.5.1 and Algorithm 2. Also we did not consider other metrics than H1 numerically.
For instance in order to approximate the H2 metric it is thinkable to use discontinuous
Galerkin methods.

1Nachman Aronszajn (26 July 1907 – 5 February 1980) was a Polish American mathematician.
2Stefan Bergman (5 May 1895 – 6 June 1977) was a Polish-born American mathematician.



Chapter 8

Appendix

In the appendix, we collect the basic definitions. Most of them are standard but we gather
them here for the convenience of the reader.

A Measure spaces

Definition A.1. Let X be a set. A σ-algebra is collection of subsets A ∈ 2X such that

(i) Ω ∈ A.

(ii) For all Ω ∈ A =⇒ Ωc := X/Ω ∈ A.

(iii) For all Ω0,Ω1, . . . ∈ A =⇒ ∪n∈NΩn ∈ A

The Borel algebra on a topological space X is the smallest σ-algebra containing all open sets

Definition A.2. Let X be a set. An outer measure on X is a function µ : 2X → [0,∞]
such that

(i) µ(∅) = 0

(ii) For any two subsets Ω, ω ∈ 2X

ω ⊂ Ω =⇒ µ(ω) ≤ µ(Ω).

(iii) For all Ω0,Ω1, . . . ∈ A :

µ

(
⋃

n∈N

Ωn

)
≤

∞∑

n=0

µ(Ωn).

Definition A.3. Let X be a set and A an σ-algebra over X. A measure on X is a function
µ : A → [0,∞] such that

(i) µ(∅) = 0

(ii) For all countable pairwise disjoint collections of sets Ω0,Ω1, . . . ∈ A

µ

(
⋃

n∈N

Ωn

)
=

∞∑

n=0

µ(Ωn).
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Note that the properties (ii),(iii) of Definition A.2 are automatically satisfied for a measure.
A triplet (X,A, µ) is called measure space if X is a set A a σ-algebra over X and µ : A → R

a measure.

Definition A.4. Let A ⊂ 2R
d
the Borel σ-algebra on Rd. We call µ

(i) inner regular if for all A ∈ A:

µ(A) = sup{µ(K) | compact K ⊆ A}.

(ii) locally finite if for every point p ∈ X, there is an open neighbourhood Np of p such
that the µ(Np) <∞.

(iii) A Radon measure if it is inner regular and locally finite.

Definition A.5.

In the following let (X,A, µ) be a measure space.

Lemma A.6 (Fatou). Let (fn)n∈N : X → R be a squence of non-negative µ-measurable
functions. Define pointwise for all x ∈ Rd the function f(x) := lim infn→∞ fn(x). Then

∫

X
f(x) dx ≤ lim inf

n→∞

∫

X
fn(x) dx.

If the sequence (fn)n∈N converges pointwise almost everywhere in Rd to a µ-measurable
function f , then the previous inequality is still valid.

Theorem A.7 (Lebesgue dominated convergence). Assume that (fn)n∈N is a sequence of
functions in L1(X,µ) and f ∈ L1(X,µ) such that

fn(x) → f(x) for a.e. x ∈ X and |fn(x)| ≤ g(x) for a.e. x ∈ X,

for some function g ∈ L1(X,µ). Then:

lim
n→∞

∫

X
fn dµ =

∫

X
f dµ.

B Bochner integral

Let (X,A, µ) be a σ-finite, complete measure space and (E, ‖ · ‖) a Banach space.

Definition B.1. A simple function function f : Ω → E is a function of the form

f(x) =

n∑

k=0

αi χUi ,

where n ∈ N, αi ∈ E and Ui ∈ A. The set of simple functions is denoted by EF(X,µ,E).
The integral

∫
: E → R of a simple function is defined by

∫

E
f(x) dx :=

n∑

i=0

αiµ(Ui).

For any A ∈ A, we set ∫

A
f(x) dx :=

∫

E
χAf dx.

We denote the induced norm on EF(X,µ,E) by ‖f‖1 :=
∫
X |f | dµ and call a Cauchy se-

quence in this space also L1 Cauchy sequence.
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Definition B.2. A function f : Ω → E is called µ-measurable or strongly measurable
if there exists a sequence of simple functions (χn)n∈N, χn ∈ EF(X,µ,E) such that we
have limn→∞ χn(x) = f(x) for µ-almost every x ∈ X. A function f ∈ EX is called
µ-integrable if there exists a L1 Cauchy sequence in (χn)n∈N ∈ EF(X,µ,E) converging
µ-almost everywhere to f . The space of µ-integrable function is denoted by L1(X,µ,E).
When µ is the Lebesgue measure, then we write L1(X,E).

Theorem B.3. A f : X → E is µ-measurable if and only if

(i) For any continuous functional φ ∈ E′ the function φ ◦ f : X → R is µ-measurable.

(ii) There exists a set of µ-measure zero N ⊂ A such that f(X/N) ⊂ E is separabel with
respect to the norm topology.

One can show that for a L1 Cauchy sequence in (χn)n∈N ∈ EF(X,µ,E) converging
µ-almost everywhere to f the sequence

(∫
X χnµ

)
n∈N

is also a Cauchy sequence.

Definition B.4. The integral of f over X is defined by
∫

X
f dµ := lim

n→∞

(∫

X
χn dµ

)

n∈N

.

Lemma B.5. A strongly measurable function f : X → E is integrable if and only if
∫

X
‖f‖E dµ <∞.

C Sobolev spaces

In this Section we recall the some important theorems from analysis which are used through-
out this thesis.

In order to define Sobolev spaces we recall the notion of weak derivative:

Definition C.1. We say that g ∈ Lp(Ω) is the γ-th weak derivative of f ∈ Lp(Ω), where
γ = (γ1, . . . , γn) ∈ Nn with |γ| =

∑n
i=1 γi, if there is a function such that

∫

Ω
gϕ dx = (−1)|γ|

∫

Ω
fDγϕdx ∀ϕ ∈ C∞

c (Ω).

W k
p (Ω) := {f ∈ Lp(Ω) : Dγf ∈ Lp(Ω) ∀γ ∈ Nn with |γ| ≤ k} (1 ≤ k ≤ ∞, 1 ≤ p ≤ ∞)

W s
p (Ω) := {f ∈W ⌊s⌋

p (Ω)| sup
|γ|=⌊s⌋

|∂γf |W p
η (Ω) <∞} (η := s− ⌊s⌋ ∈ (0, 1), s > 0)

Let us continue with the important Sobolev embedding theorems for Sobolev spaces.

Theorem C.2 (Sobolev embedding theorem). Let Ω ⊂ Rd be open and bounded with Lip-
schitz boundary. Moreover, let two integers m1 ≥ 0,m2 ≥ 0 as well as 1 ≤ p1 < ∞ and
1 ≤ p2 <∞ be given. Then it holds

(i) If m1 − d/p1 ≥ m2 − d/p2 and m1 ≥ m2, then there exists a continous embedding

id : Wm1
p1 (Ω) →Wm2

p2 (Ω).

More precisely for each u ∈Wm1
p1 (Ω) there is a constant C > 0 depending on

n,Ω,m1,m2, p1, p2 such that

‖u‖Wm2
p2

(Ω ≤ C‖u‖Wm1
p1

(Ω).
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(ii) If m1 − d/p1 > m2 − d/p2 and m1 > m2, then there exists a continous and compact
embedding

id : Wm1
p1 (Ω) →Wm2

p2 (Ω).

Under certain conditions the Sobolev spaces embed into Hölder spaces as is stated in
the following

Theorem C.3. Let Ω ⊂ Rd be open and bounded with Lipschitz boundary. Moreover, let
an integer m ≥ 1 as well as 1 ≤ p <∞, an integer k ≥ 0 and 0 ≤ α ≤ 1 be given. Then it
holds

(i) If m− d/p = k + α and 0 < α < 1, then there exists a continous embedding

id : Wm
p (Ω) → Ck,α(Ω).

More precisely for each u ∈ Wm
p (Ω) there is a constant C > 0 depending on the

constants n,Ω,m, p, α, k such that

‖u‖Wm
p (Ω) ≤ C‖u‖Ck,α(Ω)

(ii) If m1 − d/p1 > m2 − d/p2 and m1 > m2, then there exists a continous and compact
embedding

id : Wm1
p1 (Ω) →Wm2

p2 (Ω).

Since functions f ∈ W k
p (Ω), where 1 < p < ∞, k ≥ 1, are only defined up to a set of

measure zero it is delicate to define a trace, that is, f|∂Ω.

Theorem C.4. Assume that Ω has Lipschitz boundary, then there exists a linear operator

γ : W k
p (Ω) →W

k−1/p
p (Ω) such that

(i) γ(f) = f |∂Ω for f ∈ C(Ω) ∩W k
p (Ω)

(ii) ‖γ(f)‖Wk
p (Ω) ≤ C‖f‖

W
k−1/p
p (Ω)

.

Instead of γ(f) we simply write f |∂Ω.

With this definition it is possible to introduce for k ≥ 1 the following subspace

W̊ k
p (Ω) := {f ∈W k

p (Ω) : f |∂Ω = 0}.

For space dimension d ≥ 1 it is convenient to introduce for a number p ∈ R+ its conjugate
p∗ by

p∗
def
=

{
dp
d−p , if p < 1

∞, if p = d
,

We will frequently make use of (one of) the Poincaré inequality.

Theorem C.5. Let 1 ≤ p ≤ ∞. There exists a constant CΩ,p dependent on Ω and p such
that

‖f − (f)‖W 1
p (Ω) ≤ CΩ,p‖f‖Lp(Ω) for all f ∈ W̆ 1

p (Ω),

with (f) := 1
|Ω|

∫
Ω fdx.
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Vector valued function spaces will be denoted by W s
p (Ω;Rd), Ck(Ω,Rd), Ckc (Ω,Rd)

and so forth. The norms of those spaces are given in the natural way. For instance if
u = (u1, . . . , un) we set ‖u‖W s

p (Ω;Rd) :=
∑n

i=1 ‖ui‖W s
p (Ω). Let Γ ⊂ ∂Ω be a subset with

positive Hausdorff measure. We introduce the vector valued space

W 1
Γ,p(Ω;Rd) := {u ∈W 1

p (Ω;Rd)| u = 0 on Γ}.
Similar to the Poincaré inequality in the scalar case is the Korn equality vector valued case.

Theorem C.6. There exists a constant KΩ depending on the domain Ω, such that

‖ϕ‖2W 2
1 (Ω;Rd) ≤ KΩ

∫

Ω
ε(ϕ) : ε(ϕ)dx ∀ϕ ∈W 1

Γ,2(Ω;Rd).

Theorem C.7 (Carathéodory). Let τ > 0 and f : [0, τ ] × Rd → Rd satisfy the following
conditions

f(·, ζ) is measurable for all ζ ∈ Rd

f(t, ·) is continuous for almost all t ∈ [0, τ ]

and there exists γ ∈ L1((0, τ)) and C > 0 such that

∀z ∈ Rd, ∀t ∈ [0, τ ] : |f(t, z)| ≤ γ(t) + C|z|.
Then

(i) The initial-value problem

ż(t) = f(t, z(t)) for almost all t ∈ [0, τ ], z(0) = z0 ∈ Rd

has a unique solution z ∈W 1
1 ([0, τ ],Rd).

(ii) If f is Lipschitz continuous with repect to ζ, then the solution is unique.

D Groups and metrics

We collect some basic definitions from group theory and differential geometry.

Definition D.1. A group is a set G with an operation ◦ : G×G→ G such that

Neutral element: There exists e ∈ G such that for all a ∈ G : e ◦ a = a ◦ e = a.

Inverse element: For every a ∈ G there exists a−1 ∈ G such that a ◦ a−1 = a−1 ◦ a = e

Associative law: For all a, b, c ∈ G : (a ◦ b) ◦ c = a ◦ (c ◦ b).
If G is also a topological space such that the inversion a 7→ a−1 and group composition
(a, b) 7→ a ◦ b are continuous continuous, then G is called topological group.

Definition D.2. A metric space is a pair (M,d) consisting of a set M and a distance
d : M ×M → R, i.e., for all x, y, z ∈M

1. d(x, y) = 0 ⇔ x = y

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z)

If M is also a group, we call M a metric group. The metric is called right-invariant if for
all x, y, z ∈M

d(x ◦ z, y ◦ z) = d(x, y).
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Definition D.3 (Lie derivative). Let M be a finite dimensional manifold and X : M →
TM a smooth vector field with (global) flow Φ : [0, τ ] ×M → M. One way to define the
Lie derivative of a smooth function f ∈ C∞(M) is by Lθ(f) := limtց0(f(Φt(x))− f(x))/t.
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Proc. Phys.-Math. Soc. Japan (3), 24:551–559, 1942.
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