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Abstract

Shapiro’s lethargy theorem [45] states that if {A,} is any non-trivial linear approximation
scheme on a Banach space X, then the sequences of errors of best approximation E(z,A,) =
infoca, ||z — anl|x decay almost arbitrarily slowly. Recently, Almira and Oikhberg [11], [12]
investigated this kind of result for general approximation schemes in the quasi-Banach setting.
In this paper, we consider the same question for F-spaces with non decreasing metric d. We also
provide applications to the rate of decay of s-numbers, entropy numbers, and slow convergence of
sequences of operators.
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8§1. Motivation

A famous theorem by Kakutani [29] states that a topological vector space is metrizable if and only if it
contains a countable basis of neighborhoods. Furthermore, if the topological vector space X admits a
compatible metric d then it also admits an equivalent metric d* which is translation invariant. Thus,
we assume in all what follows that our metrics are translation invariant. Recall that a metric vector
space (X,d) is named an F-space if and only if it is complete. There are two large categories in
these spaces: the locally bounded and the locally convex ones. An important result by Aoki [13] and
Rolewicz [43] guarantees that every locally bounded metric vector space admits a compatible p-norm,
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so that the class of locally bounded F-spaces coincides with the class of quasi-Banach spaces. On the
other hand, it is also well known that normable metric spaces are precisely the metric vector spaces
which are locally bounded and locally convex (this result was proved by Kolmogorov in 1935 [32]). In
particular, an F-space is Banach if and only if it is locally bounded and locally convex.

Given (X,d) an F-space, and Ay C A; C ... C A, C ... C X an infinite chain of subsets of X,
where all inclusions are strict, we say that (X, {A,}) is an approzimation scheme (or that (A,) is an
approximation scheme in X) if:

(A1) There exists a map K : N — N such that K(n) > n and A, + A,, € Ag(y, for all n € N,
(A2) XA, C A, for all n € N and all scalars A,
(A3) U,en An is a dense subset of X.

Approximation schemes were introduced in Banach space theory by Butzer and Scherer in 1968
[17] and, independently, by Y. Brudnyi and N. Kruglyak under the name of “approximation families”
in 1978 [16]. They were popularized by Pietsch in his seminal paper of 1981 [35], which studied the
approximation spaces Aj(X, A,) = {z € X : [|z|a; = [{E(z, An)}720lle,,. < oo} Here,

1
oS} P
bor = {{an} € loo : [{an}lpr = [Z nHap)P | < oo}
n=1
denotes the so called Lorentz sequence space, (X, | - ||x) is a quasi-Banach space and E(z, 4,) =

infaeA" H.’E — allx.

A fundamental part of the theory developed by the authors of the above mentioned papers consists
of the study of the embeddings between the involved spaces. In particular, Pietsch proved that the
embedding A} (X, A,) — Aj(X, A,) holds true whenever r > s > 0 or r = s and p < ¢. This, in
conjunction with the central theorems in approximation theory, which state a strong relation between
smoothness of functions f (compactness of operators T, respectively) and fast decay of approximation
errors E(f, A,,) (approximation numbers a,, (T), respectively), has been used to speak about the scale
of smoothness (compactness, respectively) defined by an approximation scheme (X, {A,}). Concretely,
it is assumed (see, for example, [8], [25], [26], [36]) that membership to the approximation space
Ap(X,{An}) is a concept of smoothness (compactness if X = B(Y1,Ys) and A, = {T' € B(Y1,Y2) :
rank(T) < n}). Approximation schemes are, thus, a natural subject of study in Approximation
Theory. Indeed, the approximation scheme concept is the abstract tool that models all approximation
processes, and can be considered as a central concept for the theory.
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Another main motivation for Pietsch’s contribution [35] was the existence of a strong parallelism
between the theories of approximation spaces and interpolation spaces. In particular, he proved
embedding, reiteration and representation results for his approximation spaces. Simultaneously and
also independently, Tita [52] studied, from 1971 on, for the case of approximation of linear operators
by finite rank operators, a similar concept, based on the use of symmetric norming functions ®
and the sequence spaces defined by them, S¢ = {{a,} : Ilim, o P(a}, a3, - ,a’,0,0,---)}. The
concept of approximation scheme given in the present paper generalizes to the F-spaces setting a
definition which was introduced by Almira and Luther [9], [10] some time ago. They also created
a theory for generalized approximation spaces via the use of general sequence spaces S (that they
named “admissible sequence spaces”) and the definition of the approximation spaces A(X, S, {A4,}) =
{r € X i [|zflax,s) = [{E(z,An)}|s < co}. Other papers with a similar spirit of generality have
been written by Aksoy [1, 2, 3, 6], Tita [48] and Pustylnik [40], [41]. Finally, a few other important
references for people interested on approximation spaces are [18], [19], [20], [21], [34], [49], [51, 52] and
[50]. Tt is important to remark that, due to the centrality of the concept of approximation scheme in
approximation theory, the idea of defining approximation spaces is a quite natural one. Unfortunately,
this has had the negative effect that many unrelated people has thought on the same things at different

places and different times, and some papers in this subject partially overlap.

In this paper, we study the behavior of best approximation errors of an element x € X relative to
an approximation scheme when (X, d) is an F-space.

To proceed further, we establish our notation. We write {e;} \, 0 to indicate the sequence
€1 > g2 > ... > 0 satisfies lim; e; = 0. For an F-space (X,d), we denote by Bg(z,r) and Sq(z,r) the
closed ball and the sphere of center 2 € X and radius r > 0, respectively. That is, Sg(z,r) = {y € X :
d(xz,y) =r}, and By(z,r) ={y € X : d(x,y) < r}. We use the notation B(x,r) and S(z,r) if there is
no possibility of confusion with respect to the metric d we are dealing with. If z € X, and A C X, we
define the best approximation error of x with respect to A by E(x, A)x = inf,ca d(x,a). When there
is no confusion as to the ambient space X, we simply use the notation E(z, A). If B and A are two
subsets of X and A is an scalar, weset A+ B={x+y:x€ Aandy € B}, \A={ \zx:x € A}, and
E(B,A) = supycp E(b, A). Note that E(B, A) may be different from E(A, B). Finally, we recall that
A C X is bounded if for every r > 0 there exists A > 0 such that A C AB(0,r). This is quite different
of being d-bounded, which means that A C B(0,r) for a certain r > 0.

The results described below have their origins in the classical Lethargy Theorem by S.N. Bernstein
[14], stating that, for any linear approximation scheme {A,} in a Banach space X, if dim A, < oo
for all n and {e,} N\, 0, there exists € X such that E(z,A4,) = &, for all n € N. Bernstein’s
proof is based on a compactness argument, where he imposed dim A4,, < oo for all n. In 1964 H.S.
Shapiro [45] used Baire’s category theorem and Riesz’s lemma (on the existence of almost orthogonal
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elements to any closed linear subspace Y of a Banach space X) to prove that, for any sequence
A € Ay © ... € X of closed but not necessarily finite dimensional subspaces of a Banach space
X, and any sequence {e,} N\, 0, there exists an © € X such that E(z, A,) # O(e,). This result
was strengthened by Tjuriemskih [53], who, under the very same conditions of Shapiro’s Theorem,

proved the existence of x € X such that E(z, A,) > €,, n =0,1,2,---. Moreover, Borodin [15] gave
a new easy proof of this result and proved that, for arbitrary infinite dimensional Banach spaces X
and for sequences {e,} \, 0 satisfying ¢, > ZZOZR_H er,n=0,1,2,---, there exists z € X such that

Ex,X,)=¢en,n=0,1,2,--.

Motivated by these results, in [11] the authors gave several characterizations of the approximation
schemes with the property that for every non-increasing sequence {e,} \, 0 there exists an element
x € X such that E(x,A,) # O(e,). In this case we say that {A,} satisfies Shapiro’s Theorem on
X. In particular, Shapiro’s original theorem claims that all non-trivial linear approximation schemes
(X,{A,}) with X a Banach space, satisfy a result of this kind.

Let us introduce yet another definition: We say that the subset Y of X satisfies Shapiro’s theorem
with respect to the approximation scheme (X, {A,}) if for every sequence {e,} N\, 0 there exists an
element z € Y such that E(z,A,) # O(e,). In order to simplify notation, and when there is no
confusion, we will just say that the approximation scheme {A,,} satisfies Shapiro’s theorem on Y.

Now, while studying these problems for general approximation schemes, the following results were
proved (see [11, Theorem 2.2, Corollary 3.7], [12, Theorems 2.9, 4.2, 4.3 and 7.7]):

Theorem 1.1. Let X be a quasi-Banach space. For any approzimation scheme (X,{A}), the fol-
lowing are equivalent:

(a) The approzimation scheme {A,} satisfies Shapiro’s Theorem on X.

(b) There exists a constant ¢ > 0 and an infinite set No C N such that for all n € Ny, there erists
some x, € X \ Ay, which satisfies E(xn, An) < cE(Tn, Agm))-

(¢) There is no decreasing sequence {€,} \, 0 such that E(z, A,) < ey||z|| for allx € X andn € N.
(d) E(S(0,1),A4,) =1, n=0,1,2,....
(e) There exists ¢ > 0 such that E(S(0,1),A,) > ¢, n=0,1,2,....

Moreover, if X is a Banach space, then all these conditions are equivalent to:

(f) For every non-decreasing sequence {e,}°2, N\, O there exists an element x € X such that
E(z,A,) > e, for alln € N.
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Theorem 1.2. Let X be a quasi-Banach space and assume that (X, {A,}) is an approzimation scheme
which satisfies Shapiro’s theorem on X. If Y C X is a finite codimensional subspace of X, then {A,,}
satisfies Shapiro’s theorem on Y. If, furthermore, X is Banach and Y is closed in the topology of X,
then for every sequence {e,} \, 0 there exists y € Y such that E(y, An)x > & for alln € N.

Theorem 1.3. Let X be a quasi-Banach space and assume that (X, {A,}) is an approzimation scheme
such that A, is boundedly compact on X for allm € N. If Y C X is an infinite dimensional closed
subspace of X, then {A,} satisfies Shapiro’s theorem on'Y .

Theorem 1.4. Let X be a Banach space and assume that (X,{A,}) is linear approximation scheme
on X such that dim A,, < oo for alln € N. If Y C X is an infinite dimensional closed subspace of X,
then for every sequence {€,} “\( 0 there exists y € Y such that ||y|| = €0 and E(y, An)x > €, for all
n>1.

Theorem 1.5. Suppose Y C X is an infinite dimensional closed subspace of a Banach space X, and
E={ei}2, is an unconditional basis of X. Set

Ya(E) = U span{e; : 1 € I}, (n e€N).
ICN#(I)=n

Then, Y satisfies Shapiro’s theorem with respect to the approzimation scheme {¥,(E)}.

The main goal of this paper is to initiate a study about approximation schemes that satisfy
Shapiro’s theorem in the F-spaces setting. This question was studied, for the case of linear approxi-
mation schemes, by G. Albinus [7]. In section 2 we characterize, for a large class of F-spaces (X, d),
the approximation schemes {A,} which satisfy Shapiro’s theorem on X and, as a consequence, we
give a new proof of Albinus’s theorem and we show a few more examples of approximation schemes
satisfying Shapiro’s theorem on F-spaces. In section 3 we use the ideas of Section 2 to prove a general
lethargy result for arbitrary scales of numbers and, as a consequence, we prove that, for a large class
of quasi Banach spaces X, all s-number sequences s, (T) satisfy Shapiro’s theorem in £(X). Finally,
in section 4, we add some new applications of the lethargy results to the study of slow convergence of
sequences of (possibly nonlinear) operators, a subject which has been recently investigated by Deutsch
and Hundal for the case of continuous linear operators in the Banach setting [22, 23, 24].

§2. Shapiro’s Theorem for F-spaces

Let us start with some general considerations about approximation schemes and the Shapiro’s theorem.
The first observation is that approximation schemes are only interesting in the infinite dimensional
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context:

Proposition 2.1. Let (X,d) be a metric vector space. If dim(X) < oo and {A,} satisfies the
conditions (A1), (A2) and (A3) above, then there exists N € N such that Ay = X.

Proof. Let us set X, = span(A,), n = 0,1,---. Obviously, X,, is a closed subspace of X (since
s = dim(X) < oo, which implies that all its subspaces are closed). Moreover, J,, X, is a dense
subspace of X. Then Baire category theorem claims that there exists m € N such that X, has
non-empty interior. Assume that B(z,r) C X,,. Then B(—=z,r) C X,, and

B(0,r) C %(B(x,r) + B(—=z,r)) C X,

since d is translation invariant, which implies that, if d(z,0) < r then d(z+2z,2) < r,d(—x+z,—z) < r
and z = 3((z + 2) + (—z + 2)). It follows that X,, = X since the balls B(0,r) are absorbing subsets
of X. Now, A,, spans X,,, so that we can take an algebraic basis of X,, = X formed by elements
of A,,. In particular, every x € X is a finite sum 22:1 Arag of elements of A, (since AA,, C A,,
for all scalar A). On the other hand, A,, + Ay + -+ Ay, (s times) is a subset of Ap(m), where
h(m)=K(K(---K(m)---)) = N € N is a fixed finite number. This ends the proof. |

In the normed and quasi-normed setting, two (quasi-)norms || - ||; and | - ||2, defined over the same
vector space X, are equivalent (i.e., define the same topology on X) if and only if there exists two
constants C1,Ce > 0 such that Cy||z||2 < ||z]1 < Cq|lz||2 for all x € X. This has a nice consequence
that an approximation scheme {A,,} in X satisfies Shapiro’s theorem with respect to the (quasi-) norm
I - |l1 if and only if it satisfies Shapiro’s theorem with respect to any equivalent (quasi-)norm |- ||2. In
the case of F-spaces the question is much more delicate, since the equivalence of two distances dy, do
is a much more subtle concept. Recall that metrics dy and ds over the vector space X are equivalent
if they generate the same topology on X.

Definition 2.2 (Rolewicz, [42]). The metric d is non-decreasing if d(az,0) < d(z,0) whenever 0 <
a<l.

Remark 2.3. (i) If the metric d is non decreasing, then d(az,0

) < d(Bx,0) whenever 0 < a < 3
since, if 0 < a < (3, then 0 < % <1 and d(az,0) = d(%ﬂx,O) <

(B,0).
(#i) Assume that d is non decreasing and 0 < A < n with n € N. Then d(\z,0) = d(%mc,O) <

d(nz,0) < nd(z,0) for all x € X. Consequently, if A C X satisfies «A C A for all scalar a, then
E(azx,A) < ([a] + 1)E(z, A) for all z € X and o > 0.

<
d

(Here [«] denotes the integral part of «).
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(éii) If (X, d) is a metric vector space, then d*(z,y) = supy<,<; d(tz,ty) defines a non-decreasing
equivalent metric on X ( see [42, Theorem 1.2.2.]).

Example 2.4. If (X, d) is a locally convex metrizable topological vector space with metric d(z,y) =

pr(z—y)

1+pk(17y)}, where {pi} is a separating family of semi norms of X, then ||z||x = d(z,0)

maxen{2 "
satisfies
min{e, 1}|z||x < ||loz||x < max{a,1}||z|x for all z € X and a > 0.

In particular, d is non-decreasing. Furthermore, if A C X satisfies AA C A for all scalar A, then
min{a, 1} E(z, A) < E(az, A) < max{a, 1} E(x, A) for all z € X and a > 0.

Proof. To prove this result it is enough to demonstrate that, if ¢, > 0, then

t at t

i 1} — < < 1} ——. 2.1
min{«, }1+t_1+at_max{a, }1+t (2.1)
These inequalities follow directly from the fact that ¢(t) = l%rt is an increasing function on (0, +00)
since, if a > 1, then
t at

< <« ,
14t~ 14+at = 14t

and, if @ < 1, then
t at t

o < < ,
14+t 7 14+at = 141
which is what we wanted to prove. |

Example 2.5 (Musielak and Orlicz). Let X be a vector space with a metrizing modular p(z), then
X, ={z € X : p(xz) < oo} is a vector space and

dy(z,y) =inf{e >0:p (T) <ce}

defines a metric on X, which is non decreasing and invariant by translations . Moreover, if ||z||, =
dy(x, z), then {||z,||,} — 0 if and only if p(z,) — 0 (See [42, page 6, Proposition 1.2.1. and Theorem
1.2.4.] for the definition of modulars and a proof of this result).

Definition 2.6. Let {A,} be an approximation scheme on the F-space (X,d), and let B C X. We
say that:
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(a) {A,} fails Shapiro’s theorem on B if there exists {e,} \, 0 such that, if x € B then E(z, A,) <
C(z)e, for all n € N and a certain constant C'(x) > 0.

(b) {A,} fails Shapiro’s theorem uniformly on B if there exists {e,} N\, 0 such that, E(x, A,) <e,
foralln € Nand all x € B.

(¢) {A,} satisfies Shapiro’s theorem on B if for every {e,} \, 0 there exists z € B such that
E(z,A,) # O(ey).

Theorem 2.7. Let (X,d) be an F-space and assume that d is non-decreasing. Let {A,} be an
approximation scheme in X. Then the following are equivalent claims:

(1) {An} fails Shapiro’s theorem in X.
(i1) There exists ro > 0 such that {A,} fails Shapiro’s theorem uniformly on the ball B(0,r0).
Consequently, the approzimation scheme {Ay,} satisfies Shapiro’s theorem on X if and only if

inf E(B(0,r),A,) >0 for all r > 0.
neN

For the proof of this result we need to use the following general property about sequences of
positive real numbers:

Lemma 2.8. Given {e,} ¢ 0 and {h(n)} an increasing sequence of natural numbers satisfying
n < h(n) for all n, there exists a sequence {§,} \ 0 such that e, < &, and &, < 28,y for all n.

Proof. See [11, Lemma 2.3]. |

Proof of Theorem 2.7. (i) = (ii). Assume that {A,} fails Shapiro’s theorem in X. Then there exists
{en} N\ 0 such that, for every x € X there is a constant C(x) > 0 such that E(z, A,) < C(z)e, for
n=0,1,.... It follows from Lemma 2.8 that we may assume, without loss of generality,

€n < 26K (ny1)—1 for alln € N.

Obviously X = J,,I'n, where I', = {z € X : E(z,A,) < ag, for all n € N}. The sets I',, are
closed subsets of X, so that Baire’s category theorem implies that I',,, contains an open ball B(zq, ro)
for a certain my € N. Furthermore, it is easy to check that the sets Iy, satisfy the symmetry condition
'y = —T'4, so that B(—xzg,79) C I'}y,. Let z,y € I'y,,. Then

Tty

x .

B2 Akm) < B(G,An) + B(5,An) (since Ay + Ay © Ax(n)
< FE(z,A,)+ E(y, A,) (since d is non-decreasing)
< 2mpe, (n=0,1,...)
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Let us now take j € N be an (arbitrary) natural number. Then there exists a unique n € N such that
K(n)<j<K(n+1)—1. Hence

Tty
2

T+y
2

E( ,Aj) < E( yArmy) < 2moen < 2Cmeeg(ng1)—1 < 4moej,

so that % € Iy, . It follows that

1
B(0,79) C 5(3(330,7“0) + B(—x0,70)) C Lamy-

Hence {4, } fails Shapiro’s theorem uniformly on B(0,ro).

(1) = (7). If {A,} fails Shapiro’s theorem uniformly on B(0, 1), then there exists {e,} 0 such
that, E(x, Ay) < &, for all n € N and all € B(0,79). On the other hand, the balls are absorbing
subsets of X, so that, for any 2 € X there exists A > 0 such that z € AB(0,79). Then z = Ay for
some y € B(0,79) and

E(z,A,) = E(wy, A4,) < ([N +1)E(y, 4,) < ([\] + 1)ep, for all n € N.
]

Remark 2.9. It easily follows from the proof of () = (44) in Theorem 2.7 that this implication holds

true as soon as the metric d satisfies d(5,0) < d(x,0) for all z € X. Analogously, the implication

(ii) = (i) holds true as long as d satisfies f(\) = sup,_.g dd(()‘x%[;) < oo for all A € R.

Remark 2.10. Theorem 2.7 generalizes Theorem 1.1 to F-spaces since, in the case of (quasi-)
Banach spaces we have that E(rxz, A,) = |r[PE(z, A,) (with p = 1 for the Banach setting), so
that F(S(X),A,) = E(B(0,1),A4,) and E(B(0,r),A,) = r?E(B(0,1),A,) for all n € N and all
r > 0. In particular, this implies that inf,cy E(B(0,7),4,) > 0 for all » > 0 if and only if
inf,eny E(S(X), Ay) > 0.

We use Theorem 2.7 to prove the following important result:

Proposition 2.11. Let dy,ds be two equivalent metrics over the same metric vector space X and let
us assume that {A,} is an approximation scheme on X. Then the following are equivalent claims:

(i) There exists r1 > 0 such that {A,} fails Shapiro’s theorem uniformly on the ball By, (0,71).

(13) There exists ro > 0 such that {A,} fails Shapiro’s theorem uniformly on the ball Bg,(0,732).
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Consequently, if di,ds are both non decreasing equivalent metrics defining an F-space X, then {A,}
satisfies Shapiro’s theorem with respect to dy if and only if {A,} satisfies Shapiro’s theorem with
respect to ds.

Remark 2.12. An important result by Klee [31] (see also [42, Theorem 1.4.4.]) guarantees that, if
(X,d) is an F-space and d’ is a metric which is equivalent to d and translation invariant, then (X, d’)
is also an F-space (i.e., X is complete with respect to d’). This may be not the case if the metric
d' is not translation invariant! Fortunately all metrics in this paper are assumed to be translation
invariant.

Proof of Proposition 2.11. By definition, di,ds are equivalent metrics in X if there exists functions
0, ¢ : (0,00) — (0,00) such that

for all r > 0. Take 79 = ¢(1) and 0 < r < 79. Then
Bg,(0,7) C Bg,(0,79) € By, (0,1)

and there exists
@ (r) :=inf{s > 0: By, (0,7) C By, (0,5)}.

In particular, By, (0,7) C By, (0,¢*(r)). Analogously, for r < 71 = ¢(1) the function
©*(r) :=1inf{s > 0: By, (0,7) C Bg,(0,s)}

is well defined and satisfies By, (0,7) C By, (0, ¢*(r)).
Let us prove that lim,_,g ¢*(r) = 0. Obviously, ©* is an increasing function, since d; < dy implies
By, (0,61) C By, (0,82), so that lim, g ¢*(r) = inf,~¢ ¢*(r) = p > 0. Assume that p > 0. Then

B, (0,6(5)) € B, (0.5).

and

[N

p< @ (0(5) = inf{s : Ba, (0,0(2)) € Bay(0,5)} <
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which is impossible. It follows that lim,_,o ¢*(r) = 0. Assume (). Let {¢,} \, 0 and r; be such that
E4 (z,Ay) <ep for all x € By, (0,71) and all n € N.
Let ro = ¢(r1) > 0 and let « € Bg,(0,72) C By, (0,71). For each n € N there exists a,, € A, such that
di(z,an) = di(x — an,0) < 2E4, (z, Ap) < 2¢e,.

In other words, we have that  — a,, € By, (0,2¢,,) C By, (0, 0*(2e,)), so that Eg4,(z, An) < ¢*(2e,).

Now, the sequence {¢*(2¢,)} is decreasing, converges to zero and does not depend on z € By, (0,73).

This ends the proof of (i) = (#¢). The implication (i7) = (¢) follows with the very same arguments.
The last part of this proposition follows as an easy corollary of the first part and Theorem 2.7. H

Theorem 2.7 characterizes approximation schemes satisfying Shapiro’s theorem on (a large class
of) F-spaces. Now, a natural question is if this characterization is useful for studying some concrete
examples (otherwise, it would be a nice but inapplicable result). Fortunately, the theorem can be used
for some classical cases. In particular, if we perform extra computations, which lead to a generalization
of Riesz’s lemma for the F-spaces setting that was proved by Albinus [7], and we can characterize
non-trivial linear approximation schemes satisfying Shapiro’s theorem:

Theorem 2.13 (Albinus). Let (X,d) be an F-space with non decreasing metric d and let {A,} be a

non trivial linear approzimation scheme on X. Then {A,} satisfies Shapiro’s theorem on X if and
only if inf, ey E(X, Ay) > 0.

Lemma 2.14 (Albinus-Riesz Lemma). Let (X,d) be a metric vector space, M a vector subspace of
X, andr > 0. Then
E(B(0,r), M) = min{r, E(X, M)}.

Proof. The inequality E(B(0,r), M) < E(X, M) is obvious since B(0,r) C X. Moreover, E(B(0,r), M)
< 7 because 0 € M implies that E(x, M) < d(z,0) for all z. This proves

E(B(0,r), M) < min{r, E(X, M)}.

To prove the other inequality we only need to check, if E(B(0,7), M) < r, then E(B(0,r), M) =
E(X,M) .

Let us assume that E(B(0,r),M) < s < r. If B(0,s) + M # X there exists + € X such that
E(x, M) > s. Define the function ¢(t) = E(txz,M). It is easy to prove that ¢ is continuous and
©(0) = 0, ¢(1) > s, so that there exists 7 € (0,1) such that ¢(r) = s. What is more we can
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take a sequence {7,} C [0,1] such that {¢(7,)} is increasing and converges to s (this is so because
#(0) =0 < s). Let n € N and set z, = 7,z. Then E(z,, M) < s, which implies that there exists
my, € M such that z, = m,, + a, with d(a,,0) < s. It follows that E(a,, M) = E(z,, M) < s (since
M is a vector space) and a,, € B(0, s). Hence E(z,, M) < E(B(0,s), M) < E(B(0,r), M) < s < r for
all n. On the other hand,

E(B(0,r),M) < s= lim E(z,, M) < E(B(0,7), M),
n—oo
which is impossible. This proves that B(0, s)+M = X, so that E(X, M) < s. Hence, if E(B(0,7), M) <
r, then E(B(0,7), M) = E(X, M), which is what we wanted to prove. [ |

Proof of Albinus’s theorem. Theorem 2.7 guarantees that {A,} fails Shapiro’s theorem if and only if
there exists rg > 0 such that {E(B(0,7r9),A,)} ¢ 0. On the other hand, Albinus-Riesz’s lemma
claims that E(B(0,rp), A,) = min{rg, F(X, A,)} for all n. Hence {A,} fails Shapiro’s theorem if
and only if lim, . E(X,A,) = 0. In other words, {A,} satisfies Shapiro’s theorem if and only if
infreny E(X, 4,) > 0. [ |

Definition 2.15. Let (X,d) be a linear metric space and let ||z|| = d(x,0). Let V C X be a linear
subspace of X. We define the radius of V' as

Ryy(V)= inf t
(V) = inf o supitv]

(nothing that, this radius can be infinity). We say that (X, d) contains short lines if Rj.;(X) = 0.

Proposition 2.16. Let us assume that X is an F-space with non-decreasing metric and {X,} is a
nontrivial linear approximation scheme on X such that dim X,, < oo for all n. If

Ry (Jxn) >0,

then inf,, E(X, X,,) > 0 and {X,} satisfies Shapiro’s theorem.

Proof. We prove that, if inf, E(X, X,) = 0, then Ry (U, Xn) = 0. Let us assume that ¢, =
E(X, X,,) satisfies lim,, .o, €, = 0. Given € > 0, we take n such that e, < e. Let a € Uzozo X be
such that a ¢ X,,, and let us consider the vector space Y = X,, +span{a} C |J;—, X. By hypothesis,
X, + B(e) = X, since X, + B(e,,) = X and g, < e. It follows that Y = X, + (B(e) NY), since X,,
is a vector subspace of Y, so that, f y =z +h €Y withz € X,, and h € B(g), then h=y—z €Y.
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Take m € N and consider the vector ma € Y. Then ma = x,,, + hy, with z,,, € X, and h,,, € B(e).
We can consider, over Y, a norm || - || defining the same topology as || - ||, since dimY < oo (see
[44, Page 16]). Furthermore, the sequence {h,, }7_ cannot be bounded with respect to || - |4, since
all norms over Y are equivalent norms and m — oo (to prove this assert just take into account that,
if || - ||, is any norm over X,,, then ||z, + Aa||* = ||zn||n + |\| defines a norm on Y and {h,,}>_, is
unbounded with respect to this norm). We may, then, assume that ||h,,||x > 1 for all m > mg and
consider the new sequence {||hm||;1hm}g$=m(), which is bounded with respect to the norm || - ||x. This
implies that there exists a converging subsequence. Thus, we may assume with no loss of generality
that {||hm||?;E1hm}31°:m0 converges. Let w = lim,, ||hm||;1hm. Then w # 0 since it belongs to the
unit sphere of ¥ with respect to the norm || - |4, and w € B(¢) NY, since || - || is non-decreasing and
Hhm”;l < 1 for all m > mgy. Furthermore, [[tw|| < ¢ for all ¢ € R since, given ¢ # 0, there exists

mo(t) € N such that [¢[[|h, 5" < 1 for all m > mg(t), so that
lteoll = m (|5 ol = i (el 5 A < <
This proves that R (lJ, X»n) =0, since ¢ was arbitrary. |

The following result shows a simple sufficient condition for an approximation scheme {A,} to
satisfy Shapiro’s theorem on F-spaces.

Proposition 2.17. Let (X,d) be an F-space with non decreasing metric d and let {A,} be an ap-
proximation scheme on X. If there exist Ng C N an infinite sequence of natural numbers, {x,}nen, @
bounded subset of X and ¢ > 0 such that, for all n € Ny we have that

¢ < E(xn, Ay),
then {A,} satisfies Shapiro’s theorem on X.

Proof. We proceed by contradiction. If we assume that {A,} fails Shapiro’s theorem on X, Theorem
2.7 guarantees that {A,} fails Shapiro’s theorem uniformly on a ball B(0,r) for a certain r > 0,
since the metric d is non decreasing. This means that there exist » > 0 and {e,} \, 0 such that
E(z,A,) <e, for all n € N and all z € B(0,7). Let us now assume that {z,, }ren is & bounded
subset of X, ¢ > 0 and we have that ¢ < E(x,,,Ay,) for all £ € N, and limg_,o np = +00. Take
A > 0 such that {z,, }32, € AB(0,r) and write x,, = Az, with z; € B(0,r). Then E(z, A,) < €,
for al n. It follows that

c< E(xnkvAnk) = E(/\ZkvAnk) < (P‘] + 1)E(zk7Ank) < ([/\] + l)Emc (k =0,1,-- ')7
which is impossible, since {e,,} N\, 0. |
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Corollary 2.18. Let (X, d) be a locally convex metrizable topological vector space with metric d(x,y) =

maxkeN{2_k%}, where {pr} is a separating family of semi norms of X. Assume that (M) C

[0,00), No is an infinite subset of N and there exist {xy}nen, € X, mo € N and § > 0 such that:
(@) pr(xn) < My for all k € N and n € Ny.
(0) Epmy(xn, Ay) :=1infaca, Dmo(n, —a) > § for all n € Ny.

Then {A,} satisfies Shapiro’s theorem on X.

Proof. Condition (a) guarantees that {2, }nen, is a bounded subset of X. On the other hand, £(¢) =
t/(1 4 t) is an increasing function on (0, c0), which implies that, for n € N,

_ 4] — Em (mn An)
0<c = 27M0—— <27 e
¢ 1+6 14 Emy(Tn, An)
F, A
< max{2™™ m(Zn, An)

meN 1+ Em(xn,An)}

= max{ inf 27m—pm(:cnfa)

meN ‘a€A, 14+ pm(xn —a)
< inf {max 2_m—pm (n — a)
ac€A, meN 14 pm(x, —a)
= E(zn,Ap)
and we can use Proposition 2.17. |

We end this section with the observation that there are infinite dimensional F-spaces with non-
decreasing metrics which do not contain approximation schemes satisfying Shapiro’s theorem.

Example 2.19. Let s denote the F-space of all sequences of real numbers {a,}5°; with the metric

d({an}, {bn}) = >pey 2%%. Then d is a non-decreasing metric and every approximation

scheme {A4,} in (s,d) fails Shapiro’s theorem uniformly on s.

Proof. Given N € N we denote by sy the space of all sequences {a,} such that ayix = 0 for all
k> 1. Let {A,} be an approximation scheme in (s, d). It is easy to check that the sets B,, = ¢n(A,),
n=0,1,--- (where ¢n({ar}?> ;) = {ani}72,, any = ai if K < N and ang = 0 if & > N) define an
approximation scheme on sy. Hence Proposition 2.1 implies that sy = By, (n)4x for all k£ > 0 and a
certain m(N) < oo.
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Let « € s and let a € A,,(x) be such that ¢n(z) = ¢n(a). Then d(z,a) < Y77, 55 = 3w
Hence E(s, Ay, (nv)) < 27N, Tt follows that {E(s, 4,)} \, 0 and E(z, A,) < E(s, A,) for all z € X
and all n € N. This ends the proof.

|

83. Shapiro’s theorem for s-numbers and other scales of num-
bers

A careful inspection of Theorem 2.7 shows that its proof rests on the construction of the sets I';,, which
should be closed and have certain symmetry properties, and the fact that E(z+y, Ax(n)) < E(x, An)+

E(y, A,). This suggest that a lethargy result can also be proved in other contexts. Concretely, we
introduce the following concept, which admits as particular cases some well known scales of numbers:

Definition 3.1. Let (X,d) be a metric vector space and set ||z| = d(x,0). We say that the map
E: X =50, E(x) = {en(x)}32, defines an scale on X if

(1) Ci|lz]| = en(x) > epy1(zx) for all x € X, all n € N, and a certain constant C; > 0. Furthermore,
the function e, : X — [0, 00) is continuous for all n € N.

(#4) There exist a strictly increasing function K : N — N (which we call the “jump function”) and a
constant Cy > 0 such that ex ) (z +y) < Ca(en(x) +e,(y)) for all z,y € X and n € N.

(791) There exists a control function ¢ : [0, 00) — [0, 00) such that e, (Azx) < ¢(|A])en(x) for all scalar
A and all x € X. Furthermore, e,(z) = e, (—2) for all z € X.

Example 3.2. Let £ denote the class of linear continuous operators defined between two quasi-Banach
spaces. Following Pietsch [35, 36], a rule s : £ — RY defines an s-number sequence if it satisfies the
following properties:

(i) Monotonicity: ||T|| = s1(T) > s2(T) > -+ > $p(T) > spy1(T) > --- > 0.

(#9) Additivity: spim—1(T +5) < s (T) + s,(5) for all T, S € L(X,Y).
(#3t) Ideal property : s,(STR) < ||S||sn(T)||R| for all S € L(Z,W),T € L(Y,Z), and R € L(X,Y).
(iv) Rank property: If rank(7T") < n, then s, (T) = 0.
)

(v) Norming property: s, (1) = 1 for all n € N, where 1,2 denotes the identity operator defined
on the n-dimensional Hilbert space /2.
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Obviously, if s is an s-number sequence, then s defines an scale on £(X,Y) for all pair of quasi-Banach
spaces X,Y.

Example 3.3. Given X a quasi-Banach space and @ = {Q,}52, C P(X) an infinite family of subsets
of P(X), we say that (X,Q) is a generalized approzimation scheme (or that (Q,) is a generalized
approximation scheme in X) if:

(GA1) There exists a map K : N — N such that K(n) >n and A, € Q, implies A,, + A,, C Bk, for
certain By (n) € Qi (n), for all n € N.

(GA2) M\A,, C A, for all A, € Q,, all n € N and all scalars .
(GA3) UnenUa, cq, An is a dense subset of X.

Given a generalized approximation scheme (X, Q) and T' € £(X), we define the approximation num-
bers associated with @ by

an(T,Q) =inf{||T — S| : S € L(X),S(X) € Qn}.
and the Kolmogorov diameters of T associated with @ by
0n(T,Q) = inf{r >0:34, € Q,,T(B(0,1)) CrB(0,1) + A, }

It is easy to check that the maps ag,dg : £L(X) — £, given by ag(T) = {a.(T,Q)} and do(T) =
{6,(T, @)}, define scales on L(X).

Example 3.4. Let (X,d) be a compact metric space and let C'(X) denote the space of continuous
functions f : X — R dotted with the norm || f|jc = sup,cx |f(z)|. Given f € C(X), the modulus

of continuity of f is the function w(f,d) = supy, 4)<s [f(¥) — f(y)[. Then Q(f) = {w(f, 1J%n)}j’f’zo
defines an scale on C(X).

Proposition 3.5. Let (X, d) be an F-space with non-decreasing metric d and let £(x) = {en(2)}5%,
be a scale on X. Then Xg¢ :={x € X : E(x) € o} is a closed vector subspace of X .

Proof. Let x,y € X¢ and let «, 8 be two scalars. Then
ex(n)(ax + By) < Ca(en(az) + en(By)) < max{o(|al), ¢(|8])}Ca(en(z) + €nly)) = 0 (n — o).

This proves that X¢ is a vector subspace of X. Let x € X be such that x = lim, . z, with
{zn}n2y € Xe. Take € > 0 and . such that C1Chl|z — 21| < e. Then egn)(z) < Calen(z — ) +
en(z)) < Co(Chllz — x| + en(zr)) < e+ Caen(xr) < 2¢ for n big enough. This proves that x € X¢.

|
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Definition 3.6. Let (X, d) be an F-space and assume that £(x) = {e,(z)}22, is an scale on X. We
say that £ satisfies Shapiro’s theorem if for all decreasing sequence {e,}5%, € co there exists z € X¢
such that e, (z) # O(ey).

Theorem 3.7. Let (X, d) be an F-space with non-decreasing metric d and let E(x) = {en,(x)}2, be
a scale on X. The following are equivalent claims:

(¢) There exists {en} \y 0 such that e,(x) = O(ey,) for allx € X.

(13) There exists {e,} \(0, C >0, and ro > 0 such that e, (z) < Ce,, for all xz € B(0,r¢).
Consequently, the scale € satisfies Shapiro’s theorem on X if and only if

1 lf p NX e ()
n Nsu 163(07) £ 71/(‘7") >
f07 dll r > 0

Proof. (i) = (i1). Let {e,} \¢ 0 be such that, for every x € X there is a constant C'(z) > 0 satisfying
en(z) < C(x)e, for n = 0,1,---. It follows from Lemma 2.8 that we may assume, without loss of
generality, that &, < 26k (,41)—1 for all n € N. Tt follows that X = (J, T'n, where I'y = {z € X :
en(z) < ag, for all n € N}. Now, the sets I',, are closed subsets of X, since the functions e, are
continuous. Hence Baire’s category theorem implies that I',, contains an open ball B(zg, 7o) for a
certain mo € N. Finally, the sets I, satisfy the symmetry condition ', = —T',, since e, (—z) = e, ().
This implies that B(—xzg, o) C Ty Let 2,y € Ty, Then

ek (oY) < Oalen() +enlD))
< 9(3)00(en®) + enly)
< 20(1)Camozy (1 =0,1,-)

Let us now take j € N. Then there exists a unique n € N such that K(n) < j < K(n+1) — 1. Hence

T+ T+ 1 1 1
ej(— Yy < ex(n) (5 Yy < 20(5)Camoen < 40(5)Comoek (n41)-1 < 46(;5)Camoe;,

so that % € F4¢>(%)02m0- It follows that

1
B(O,To) Q §(B($0,’)"0) + B(—{Eo,ro)) C F4¢(%)02m0'
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This ends the proof.
(13) = (7). Assume that {e,} \, 0 satisfies e, (x) < ¢, for all n € N and all = € B(0,7¢) and let
2 € X. Then there exists A > 0 such that € AB(0, 1), so that = Ay for some y € B(0,ry). This
implies that
en() = en(Ay) < d(Nen(y) < d(N)ep, for all n € N.

Let us now prove the last claim of the theorem. In the case X = Xg, the result follows easily from
(i) < (it). On the other hand, if X¢ is a proper subspace of X, then Proposition 3.5 guarantees that
X¢ is an F-space when dotted with the metric of X. The result follows if we apply the equivalence
(i) < (i) to this new space, just taking into account that Bx, (0,7) = B(0,7) N X¢. |

Corollary 3.8. Let (X,d) be a compact metric space which contains infinitely many points and
consider the scale on C(X) given by Q(f) = {w(f, p%n)}j’fzo, Then Q satisfies Shapiro’s theorem on
C(X).

Proof. Tt follows from the infinitude of X that for each § > 0 there exists z,y € X, & £y, d(x,y) <4,
since X being compact, it must contain an infinite convergent sequence. The result follows from

Theorem 3.7 just taking into account that if x,,y, € X satisfy 0 < d(xn,yn) < n%rl, then g,(x) =
2 arctan(%) belongs to the unit ball of C'(X) and ¢, (yn) = 0, gn(xs) = 1/2, so that w(g,, n%_l) >
1 -
Given a quasi-Banach space X and E C X a closed subspace, we define A(E, X) = inf{||P] :
P is a projection of X onto E} and

pr(X) =inf{\NE,X): ECX, dimFE =n}.

Corollary 3.9. Assume that X is a quasi-Banach space such that supp,(X) = M < oo, and s is an
s-number sequence. Then s : L(X) — € satisfies Shapiro’s theorem.

Proof. Given n € N, there exist F,, subspace of X with dim F,, = n and P, : X — X, projection
onto E,, such that ||P,|| < 2p,(X) < 2M. Take Q,, : X — E, defined by Q,(z) = P,(z) and let
in : B, — X denote the inclusion map. Then 1g, = @y Pyin, so that

1=s5,(1g,) < [Qnllsn(P)llinll < Csp(Pp).

This implies that P, satisfies | P,|| < M and s, (P,) > 1/C > 0. The result follows since s,,+x(P,) =0
for k=1,2,---, since rank(P,) = n, so that P, € L(X)s. [ |
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Remark 3.10. It would be nice to prove a result similar to Corollary 3.9 for operators T : X — Y act-
ing between different Banach spaces, but the result should be complicated since there are examples of s-
numbers sequences s, nice Banach spaces X, Y and decreasing sequences {e,} \, 0 such that all opera-
tor T € L(X,Y) satisfies s,,(T") = O(e,,). Concretely, Oikhberg [33, Proposition 1.2] has demonstrated
that all operator T' € L(co, ') satisfies limy,_so0 VEzg(T) = limp_y00 VEYL(T) = limy,_, o0 khy(T) = 0,
where 2 (T), yx(T) and hy(T) denote the Weyl numbers, Chang numbers and Hilbert numbers of the
operator T, respectively.

On the other hand, Oikhberg [33, Theorem 1.1] has also proved that, for arbitrary infinite di-
mensional Banach spaces X, Y, the sequences of approximation numbers a,,(T) and symmetrized (or
absolute) numbers t,,(T") satisfy Shapiro’s theorem on £(X,Y") (for approximation numbers this result
was also proved by Almira and Oikhberg in [11]).

In [5] Aksoy and Lewicki introduced the concept of Bernstein pair with respect to an s-number
sequence s, as a pair of Banach spaces (X,Y’) such that, for all {e,} ~\, 0 there exists an operator
T € L(X,Y) and a constant d > 0 such that d~'e,, < s,(T) < dg, for all n € N, and provided
some examples of pairs of classical Banach spaces which form a Bernstein pair with respect to the
approximation numbers a, (T') and other s-number scales. In particular, they proved that if (X,Y) is
a Bernstein pair with respect to (s,) and Suppose there exists a Banach space W which contains an
isometric and complementary copy of X and a Banach space V' which contains an isomorphic copy
of Y, then (W, V) is a Bernstein pair with respect to (s;) too [5, Proposition 3.4]. As a corollary of
this result, they proved that (L,(0,1), L,(0,1)) forms a Bernstein pair with respect to any s-number
sequence as soon as 1 < p < oo and 1 < ¢ < oo. This result follows from the fact that (¢2,43) is a
Bernstein pair with respect to any sequence of s-numbers and, for 1 < p < oo, L,(0,1) contains a
subspace isomorphic to ¢2 and complemented in L,(0,1) for p > 1.

Finally, condition supp,(X) = M < oo seems to be not superfluous in the case of Bernstein
numbers b, (T') since Plichko has proved its necessity for this case when T : X — H, H being a
Hilbert space [38, Proposition 1]. What is more, in [38, Theorem 1] the author proves that if X
is a Banach space which contains uniformly complemented ¢2’s, then for every Banach space Y the
pair (X,Y) is Bernstein with respect to the Bernstein numbers and, in particular, Bernstein numbers
satisfy Shapiro’s theorem in £(X,Y).

It is important to note that there are examples of Banach spaces satisfying lim,, o pn(X) = 0.
These examples were constructed by Pisier in 1983 (see [39]). Furthermore, if H is a Hilbert space,
then p,(H) =1 for all n, which gives the opposite behaviour to Pisier’s example.
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84. Slow convergence of sequences of operators

Definition 4.1. Let (X, p) and (Y,d) be two F- spaces. Let T : X — Y be a (possibly nonlinear)
operator and T, : X — Y be a sequence of (possibly nonlinear) operators. We say that T}, converges
almost arbitrarily slowly to T' if

(C1) im0 d(Tpx,Tx) =0 for all z € X.

(C2) For every {e,} N\, 0 there exists € X such that d(T,,z,Tz) > &, for infinitely many n € N.
We say that T,, converges arbitrarily slowly to T' if it satisfies (i) above and

(C3) For every {e,,} \, 0 there exists € X such that d(T,,z,Tz) > ¢, for all n € N.

If Z C X, we say that T, converges almost arbitrarily slowly to 7" relative to Z if it satisfies (i) above
and

(C4) For every {e,} \, 0 there exists z € Z such that d(T,,xz, Tx) > ¢, for infinitely many n € N.
We say that T;, converges arbitrarily slowly to T relative to Z if it satisfies (i) above and

(C5) For every {e,,} \, 0 there exists z € Z such that d(T,,x,Tx) > €, for all n € N.

Remark 4.2. Tt is important to note that condition (C2) above is equivalent to

(C2) For every {e,} \, 0 there exists € X such that d(T,,xz,Tx) # O(e,).

Indeed, assume that {e,} N\, 0 and = € X satisfies d(T},x,Tx) # O(e,,). Then there exists an strictly
increasing sequence of natural numbers {n;}3, such that d(T,,, z,Tx) > ke,, > e, k=1,2,---.
This proves (C2)" = (C2). The other implication follows as a consequence of the fact that, for every
sequence {e,} \, 0 there exists another sequence {¢,} ~\, 0 such that such that lim, f:—:: = 400 .
Hence, if we assume (C2) and take x € X such that d(T,x,Tx) > €, for infinitely many n € N, then
d(Thx,Tz) # O(ey).

Analogous arguments can be used with condition (C4), which is equivalent to

(C4)" For every {e,} (0 there exists € Z such that d(T,,z,Tz) # O(c,).

The study of slow convergence of sequences of operators has been recently studied by Deutsch
and Hundal [22, 23, 24]. In particular, in [22] they introduced the concepts of arbitrarily slowly
(respectively, almost arbitrarily slowly) convergence of a sequence of linear operators 7, to an operator
T, and characterized almost arbitrarily slowly convergent sequences as those which are pointwise
convergent but not norm convergent. This result can be generalized to the F-spaces setting as follows:
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Theorem 4.3. Let (X,p) be an F-space and (Y,d) be a metric vector space with non-decreasing
metricd. LetT : X —'Y be a continuous linear operator and T,, : X — 'Y be a sequence of continuous
linear operators. The following are equivalent claims:

(i) The sequence {T,,} converges pointwise to T but it does not converge almost arbitrarily slowly
toT.

(13) There exists a sequence {e,} \, 0 and a positive real number ro > 0 such that

(T, — T)(By(0,79)) € B4(0,ey,), n=0,1,2,---.

In particular, if (i) holds true, {T,,} converges to T in the topology of bounded convergence. Finally,
if X is locally bounded, (i) and (it) are equivalent to

(#it) {Tn} converges to T in the topology of bounded convergence.

Proof. (i) = (it). Assume (4). It follows from Remark 4.2 that there exists {,} N\, 0 such that, for
each z € X exists C(x) > 0 satisfying d(Tz, Tx) < C(z)e, for all n € N, since T}, does not converge

almost arbitrarily slowly to 7. In particular, X = J,,cny Am, where

Ay ={z e X :d(Thz,Tz) < me, for all n € N}.

Obviously, A,, is a closed subset of X since T,T,, are continuous. Furthermore, A,, = —A,, and, if
z,y € A, then

Tty
2

r+y

d(T( 5

) T(

)

A(5(T — T)(x +),0) < d(T, —T)(x +1),0)
d((Tn - T)(l‘), O) + d((Tn - T)(y>70) S 2m5n7 (n € N)7

IN

since d is non-decreasing. This implies that

1
§(Am + Am) g A2m~ (41)
Baire’s category theorem implies that B,(x,r9) C A,,, for certain mg € N, 2y € X and r9 > 0.
Furthermore, B,(—x0,70) C Am,, since A,y = —A,,, and the inclusion (4.1) shows that

1
BP(O,T()) g i(Bp(:L‘(),?“o) + Bp(—w()ﬂ’o)) g A2m0~



22 A. G. Aksoy and J. M. Almira

This proves (i) = (i7).
(12) = (¢). Assume (4¢) and let © € X. There exists A > 0 such that z = Ay with y € B,(0.r¢),
since these balls are absorbing sets. Hence

d(Thpz,Tx) = d({(T,—T)x,0)=d\T, —T)y,0)
(A +1Dd((T = T)y,0) < (Al + Den (n €N),

IN

which proves (i7) = (¢). The last part of this theorem follows easily from the equivalence (i) < (i)
above, in conjunction with the definition of the topology of bounded convergence on the space of
linear continuous operators B(X,Y) and the fact that balls are bounded sets in locally bounded
metric spaces. |

Theorem 4.3 has the following nice consequence:

Corollary 4.4. Let (X, p) be a locally bounded F-space and (Y, d) be a metric vector space with non
decreasing metric d. Let T : X — 'Y be a continuous linear operator and T,, : X — Y be a sequence
of continuous linear operators. The following are equivalent claims:

(i) The sequence {T,} converges almost arbitrarily slowly to T

(#3) {Tn} converges pointwise to T but it does not converge to T in the topology of bounded conver-
gence.

In [22] the authors proved that some classical families of operators are almost arbitrarily slowly
convergent to the identity and they stated (without proof) that Bernstein’s operators are in fact
arbitrarily slowly convergent to the identity. They conjectured that this property should also hold
true for other classical operators such as Féjer’s or Landau’s. They solved their conjecture in the
positive in [24] by using an appropriate modification of Tjuriemskih’s lethargy theorem [53]. These
results have been our main motivation in demonstrating Theorem 4.5 below, which transports the
ideas of [24] to a much more general context.

Theorem 4.5. Let (X, p) and (Y, d) be two F- spaces. Let {A,} be an approzimation scheme on'Y
and let us assume that {A,} satisfies Shapiro’s theorem on'Y. Let T : X — Y be an operator and
and T, : X =Y be a sequence of operators such that

(1) limp oo d(Thx, Tx) =0 for allz € X.
(i) T,(X) C A, for alln € N.
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Then:

(a) If T(X) =Y then T,, = T almost arbitrarily slowly. Furthermore, if T(X) =Y and Y is a
Banach space, then T,, — T arbitrarily slowly.

(b) If Z is a subspace of Y such that {A,} satisfies Shapiro’s theorem on Z and Z C T(X), then
T, — T almost arbitrarily slowly. Moreover, if we add the hypothesis that X =Y and T =1,
then T,, — I almost arbitrarily slowly relative to Z.

(¢) Assume that X, Y are quasi-Banach, A, is a vector space and dim A,, < oo for alln € N, and
there exists Z, a closed subspace of Y, such that Z C T(X) and dimZ = co. Then T,, — T
arbitrarily slowly. Moreover, if we add the hypothesis that X =Y and T =1, then T,, — I
arbitrarily slowly relative to Z.

Proof. (a). Let {e,} be a non-increasing sequence converging to 0. We know that E(y, A,) # O(e,)
for a certain y € Y, since {4,,} satisfies Shapiro’s theorem on Y. Now, T'(X) =Y implies that y = Tx
for a certain € X. This leads to

d(Tpx,Tx) # Ofe,)

(which is what we wanted to prove), since T(X) C A, implies that d(T,z,Tz) > E(Tx,A,) =
E(y, A,). The second part of (a) follows directly from part (f) in Theorem 1.1 (i.e., Corollary 3.7 in
1))

(b) The arguments are the same as in (a), but now we use that {4, } satisfies Shapiro’s theorem
on Z and Z C T(X). Thus, the element y can be chosen from Z and it is still of the form y = Tz for
a certain x € X. This leads to almost arbitrarily slowly convergence of T;, to the operator T.

(¢) Use Theorem 1.4 (i.e., Theorem 4.3 from [12]). [ |

Theorem 4.5 includes some interesting cases not considered in [24]. We include a few of them here
for the sake of completeness:

e Greedy approximation with respect to a complete minimal system in the Banach setting produces
sequences of nonlinear operators 7,, which are arbitrarily slowly convergent to the identity
operator (see [11, Theorem 6.2]).

e Greedy approximation with respect to an unconditional basis (¢,)22, of a separable Banach
space X produces sequences of nonlinear operators 7, which are almost arbitrarily slowly con-
vergent to the identity operator relative to any infinite dimensional closed subspace Z of X (use
Theorem 1.5 (i.e., [12, Theorem 7.7])).
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e If T, : X — Y is a sequence of linear operators, T,, — T pointwise, T(X) contains a finite
codimensional subspace of Y, and T,,(X) # Y for all n, then T;,, — T almost arbitrarily slowly
(use Theorem 1.2 (i.e, Theorem 2.9 from [12]) and part (b) of Theorem 4.5).

e Consider the examples given in [24] (Bernstein’s, Fejer’s, etc.). In all these cases we can prove
that the sequence of operators is arbitrarily slowly convergent to the identity operator relative
to any infinite dimensional closed subspace Z of Cla,b]. (To prove this, just take into account
part (c¢) of Theorem 4.5).

The operators T to which Theorem 4.5 is applicable have large range. In fact, they satisfy T(X) =
Y (the whole image space) or T'(X) contains a finite-codimensional subspace of Y, or it contains
an infinite dimensional closed subspace of Y. (This holds true if dim7T(X) = oo and T has closed
range. These operators are well known in functional analysis). This is obviously a serious restriction
on our theory. For example, if the inclusion of the infinite-dimensional closed subspace Z C T'(X) is
continuous, then T will be not compact. An interesting open question is to search for some kind of
description of the class of compact operators T' such that 7, converges almost arbitrarily slowly to T'
if and only if it converges arbitrarily slowly to 7. What is more, perhaps this question makes sense
for strictly singular, finitely strictly singular, or other important classes of operators.
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