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1 Introduction

The past several decades have witnessed a resurgence of interest in the theory of scattering.
This work has galvanized new discoveries relevant to collider physics [1–8], the underlying
structure of gauge theories [9–14], the ultraviolet properties of supergravity [15–27], and
more recently, the black hole binary inspiral problem [28–36]. At the same time, the study
of scattering amplitudes has revealed hidden features endemic to a broad class of quantum
field theories, including color-kinematics duality [37] and the double copy [38, 39] (see [40]
for a detailed review).

Notably, the vast majority of these developments have relied critically on the acute
simplifications which arise from on-shell kinematics in flat space. This is by no means an
accident — off-shell quantities are oftentimes unphysical since they are, by and large, not
invariant under changes of gauge or field basis. As a result, one might expect that the
many remarkable structures observed in flat space scattering have no vestiges in curved
spacetime, where there is no obvious generalization of on-shell kinematics.

Of course, many advances in this direction have been made for maximally symmetric
spaces, namely anti-de Sitter (AdS) space and de Sitter (dS) space. Ongoing explorations
of Mellin space [41–48], transition amplitudes [49–51], harmonic analysis [52–56], and uni-
tarity [57–68] have all identified various notions of simplified and on-shell kinematics for
curved spacetime. Despite substantial progress, however, sophisticated techniques are still
required in all but the simplest settings even to obtain tree-level integrands and study their
properties.

In this paper, we generalize familiar concepts from flat space such as momentum, on-
shell kinematics, and on-shell scattering amplitudes to a broad class of curved geometries.
Our analysis hinges on the fact that for a generic symmetric manifold — which is any
spacetime whose curvature tensor is covariantly constant — one can elegantly reframe
geometry and kinematics in terms of the generators of the underlying isometries of the
spacetime. In this formulation we eschew the usual coordinate basis of the tangent space
of the manifold, ∂µ, instead opting for an alternative frame in which directions are labeled
by an overcomplete basis of Killing vectors, KA = Kµ

A∂µ. We dub all quantities expressed
in terms of these generators as “isometric”.

Armed with an isometric frame for the geometry, we derive a new formulation of
isometric kinematics applicable to curved spacetime. In this picture, flat space momentum
pµ is generalized to an isometric momentum DA that is literally the isometry-generating Lie
derivative corresponding to the Killing vector KA. Isometric momenta are inherently non-
commutative, and so the commutator [DA,DB] = F C

AB DC encodes the Killing algebra.
Meanwhile, any isometry invariant function automatically manifests a generalization of
total momentum conservation. By defining a set of zero eigenfunctions of the Killing
Casimir, D2 = DAD

A, we also obtain a generalization of on-shell wavefunctions for external
massless particles.

Altogether, this approach furnishes a curved spacetime formulation of on-shell kine-
matics which is literally identical to flat space — complete with isometric momentum con-
servation and isometric on-shell conditions — except that it is non-commutative. Armed
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flat space AdS symmetric space
on-shell scattering amplitude boundary correlator on-shell correlator

plane wave bulk-boundary propagator wavefunctions
translations conformal group isometries
momentum conformal generator isometric momentum

Table 1. Dictionary for relevant quantities in flat space, AdS, and general symmetric spaces.

with this insight, we propose a generalized observable that is calculable in curved geome-
tries, dubbed the “on-shell correlator”. At tree-level, the on-shell correlator is simply a
solution to the classical equations of motion that asymptotes to a superposition of on-shell
wavefunctions. Equivalently, the on-shell correlator is a standard position space correlator
with all external propagators amputated and then dressed with on-shell wavefunctions.
Specializing to flat space and AdS, on-shell correlators reduce, by construction, to on-shell
scattering amplitudes and boundary correlators, respectively. While our analysis will fo-
cus on on-shell correlators for symmetric spacetimes, these objects can be defined more
generally.

As we will show, in broad class of theories, every on-shell correlator can be written as
a differential operator acting on an integrated product of wavefunctions that corresponds
to a momentum-conserving delta function in flat space and to a boundary correlator for a
contact interaction in AdS. The differential operator is a function of isometry generators
acting on the kinematic data labeling the external legs of the on-shell correlator. This
differential operator is identical to what would be computed via flat space Feynman dia-
grams, except maintaining the relative ordering of momenta. Propagators are given by the
inverse Killing Casimir, 1/D2, while vertices are functions of the isometric momenta DA.
The specialization of some of the relevant concepts to flat space and AdS is summarized
in table 1. These results are essentially a generalization of [69, 70], albeit lifted from AdS
embedding space to a much larger class of symmetric spacetimes.

Conveniently, the on-shell correlators computed in local theories automatically have
propagator denominators that fully commute with each other as well as with their numera-
tors. Thus, locality enforces a well-defined separation between numerator and denominator
factors. For this reason it is natural to ask whether structures like color-kinematics duality
and the double copy — which hinge critically on this split — can be generalized to curved
spacetime. As we will also prove, this is indeed the case.

In particular, we build on the results of [71], which presented a quantum field theoretic
derivation of the color-kinematics duality that maps biadjoint scalar (BAS) theory to the
nonlinear sigma model (NLSM). In flat space, this duality sends the color algebra to the
diffeomorphism algebra at the level of fields in the equations of motion. In the present
work, we essentially repeat this analysis for BAS and the NLSM in isometric frame. By
inspection, we find that color-kinematics duality corresponds to substituting the algebra
of color for the algebra of gauged isometries of the underlying manifold.

Last but not least, we show how conservation of the kinematic current [71] — which
directly mandates the Jacobi identity — directly implies the fundamental BCJ relation
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for all n-point on-shell correlators of BAS theory and NLSM in curved spacetime. This
furnishes a field theoretic proof of the conjecture of [69] for the special case of AdS. For other
approaches to color-kinematics duality and double copy procedures in curved spacetime
through four points see [72–80], and at five points see [81].

Note added. During the completion of this work we learned of related ongoing work by
Herderschee, Roiban, and Teng in [82], which focuses on the case of AdS but overlaps with
our discussion of the isometric representation (which they dub the differential representa-
tion in the original reference [69]) and Berends-Giele recursion. We are grateful to those
authors for useful discussions and sharing their preprint with us.

2 Geometry

In this section we briefly review the geometric description of isometries in curved spacetime.
We then show that for (irreducible) symmetric spacetimes, all geometric quantities can be
mechanically transformed to an isometric frame in which coordinates are labeled by the
underlying isometry generators of the manifold itself. In this frame, tensors carry isometric
indices that run over isometry generators rather than directions in spacetime. Armed with
this notion, we then describe how to recast a broad class of scalar field theory Lagrangians
into isometric frame.

2.1 Preliminaries

To begin, let us review some basic facts about the geometry of a manifoldM. The isome-
tries ofM are generated by the set of Killing vectors,

KA = Kµ
A∂µ, (2.1)

whose commutator yields the Killing algebra

[KA,KB] = F C
AB KC , (2.2)

where F C
AB is the structure constant. In components, the Killing algebra is

Kµ
A∇µK

ν
B −K

µ
B∇µK

ν
A = F C

AB Kν
C . (2.3)

Note that covariant and partial derivatives are interchangeable in these commutators since
the difference involves terms proportional to the connection that always cancel identically.
Let us also define the Killing metric,

gAB = F D
AC F C

BD , (2.4)

which is the natural bilinear form in this space, and which is used to freely raise and
lower indices. Note that the structure constant with all lowered indices, FABC , is fully
antisymmetric.1

1The structure constant F C
AB is by definition antisymmetric in its first and second index. Meanwhile,

since FABC = F D
AB F F

DE F E
CF = F D

BE F F
AD F E

CF − F D
AE F F

BD F E
CF , we see that FABC = FBCA =

FCAB is also cyclically symmetric, thus implying full antisymmetry.
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For our analyses it will be convenient to also define a shorthand for the isometry-
generating Lie derivative with respect to KA,

DA = LKA
. (2.5)

Recall that the Lie derivative acts on an arbitrary tensor as

DAOρ1ρ2ρ3···ρn
σ1σ2···σm

= Kµ
A∇µO

ρ1ρ2ρ3···ρn
σ1σ2σ3···σm

−∇µKρ1
A O

µρ2ρ3···ρn
σ1σ2σ3···σm

−∇µKρ2
A O

ρ1µρ3···ρn
σ1σ2σ3···σm

− · · ·
+∇σ1K

µ
AO

ρ1ρ2ρ3···ρn
µσ2σ3···σm

+∇σ2K
µ
AO

ρ1ρ2ρ3···ρn
σ1µσ3···σm

+ · · · ,
(2.6)

where covariant and partial derivatives are again interchangeable. By definition, the metric
gµν onM is annihilated by the Lie derivative with respect to a Killing vector KA,

0 = DAgµν = ∇(µK
A
ν), (2.7)

which is the Killing equation. Contracting this with the metric, we obtain

∇µKA
µ = 0, (2.8)

so the Killing vectors have vanishing divergence. Note that the Killing algebra is also
encoded in various commutators of the Lie derivative and the Killing vector, so for example

[DA,DB] = F C
AB DC and [DA,K

µ
B] = DAK

µ
B = F C

AB Kµ
C , (2.9)

which will come in handy in technical calculations later on.
By contracting a pair of Lie derivatives with the Killing metric, we obtain the quadratic

Casimir of the Killing algebra,

D2 = DAD
A = gABDADB, (2.10)

which trivially commutes with all Lie derivatives

[DA,D
2] = 0, (2.11)

and is thus an invariant. Later on, we will see that states are naturally classified by their
eigenvalue under the Killing Casimir.

2.2 Isometric frame

Hereafter, let us assume that the spacetime manifold M is symmetric, which means it is
a coset space G/H where G is a Lie group and H is a compact subgroup of G. Sym-
metric spacetimes have constant curvature and exhibit a set of Killing vectors, KA, with
A = 1, . . . , dim(G), which descend from the right-invariant vector field on the group man-
ifold G. At any given point x ∈ M, precisely dim(H) of these Killing vectors are zero,
while the remaining dim(G/H) span the tangent space of M. Throughout, we will make
the additional assumption that the generators of G/H furnish an irreducible representa-
tion of H.
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In the more familiar language of spontaneous symmetry breaking, the Killing vectors
in H and G/H correspond to unbroken and broken generators, respectively. By definition,
the dim(H) broken generators leave the point x ∈M invariant, and thus the corresponding
Killing vectors vanish at x, while the dim(G/H) broken generators act nontrivially. If we
denote the generators of H by T and the elements spanning G/H by X , the commutator
algebra of the corresponding Killing vectors has the schematic structure

[T , T ] ∼ T , [T ,X ] ∼ X , [X ,X ] ∼ T , (2.12)

which has the defining automorphism of a symmetric space

T → T , X → −X . (2.13)

A crucial byproduct of this fact is that the structure constants of the Killing algebra, FABC ,
only have nonzero components when the indices A,B,C, correspond either to three unbro-
ken generators or to one unbroken and two broken generators. All other combinations of
generators are forbidden by the underlying parity of the symmetric manifold. As a conse-
quence, we learn that the structure constants automatically vanish when fully contracted
into Killing vectors,

FABCKµ
AK

ν
BK

ρ
C = 0. (2.14)

This happens because the parity in eq. (2.13) enforces that at least one of the Killing
vectors in eq. (2.14) is an unbroken generator, which must in turns be zero because it acts
trivially on the point x ∈M. A similar identity holds if we replace a Killing vector with a
Lie derivative acting on a scalar,

FABCKµ
AK

ν
BDC = 0, (2.15)

since in this case DA = Kµ
A∇µ and we can use eq. (2.14).

Given our stated assumptions, it is possible to express the metric directly in terms of
the Killing vectors via [83, 84]

gµν = gABK
A
µK

B
ν , (2.16)

which automatically satisfies the Killing equation in eq. (2.7). It is obvious that eq. (2.16)
is only possible if the number of Killing vectors is equal or greater than the dimensionality
of the manifold, which is indeed the case whenM is symmetric since

dim(G) > dim(M) = dim(G/H). (2.17)

Notably, eq. (2.16) is closely related to the definition of a local frame, i.e., a tetrad, but
with the critical difference that the tetrad basis has been replaced with an overcomplete set
of Killing vectors. In spite of this, it is should be clear that eq. (2.16) can be mechanically
inserted into expressions in order to transform canonical metric indices labeled by µ, ν, ρ,
etc., into isometric indices labeled by A,B,C, etc. We refer to this procedure as a transfor-
mation to isometric frame, precisely in analogy with the more conventional transformation
to tetrad frame. In isometric frame, the indices of all tensors are of isometric type and run
over the basis of isometries exhibited by the spacetime.
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We emphasize that our setup is different from the usual construction of a local frame
in a symmetric space [84], which is given by regarding G as an H-bundle over G/H and
pulling back the right-invariant Killing vectors on G using an arbitrary section. In the
usual construction, the section picks out the dim(G/H) non-vanishing Killing vectors at
each point in M, whereas our construction employs a global overcomplete basis. Said
another way, eq. (2.16) does not depict a bona fide change of frame, since the inverse
relation of eq. (2.16),

gAB 6= gµνK
µ
AK

ν
B, (2.18)

fails on account of eq. (2.17), which stipulates that the rank of gAB exceeds the dimension-
ality of the basis of Killing vectors KA.

It is illuminating to consider the mapping to isometric frame in a simple case, for
example when M is the n-sphere. Given any point x ∈ M, the group G is the group of
(n + 1)-dimensional rotations while H is generated the group of n-dimensional rotations
that leave x invariant. At the point x ∈ M, the unbroken generators of H are identically
zero while the remaining broken generators of G/H are non-trivial. The corresponding
Killing Casimir is simply the rotation Casimir. A second example is whenM is flat space.
For any point x ∈ M, the group G is the Poincare group, while the subgroup H is the
Lorentz group defined about the origin x, which leaves this point invariant. Hence, the
broken generators of G/H are translations, as expected. In this case the Killing Casimir is
that of the Poincare group, which is the d’Alembertian. Another broad class of examples
is the set of maximally symmetric spaces, which can be elegantly recast in terms of the
embedding space formalism. See appendix A for details.

Last but not least, let us demonstrate mechanically how to transform a field theory
on a symmetric spacetime manifold to isometric frame. As we will show, this procedure is
always possible in an arbitrary theory of scalars with at most one derivative per field. For
the present work, we will focus entirely on this broad class of theories. The Lagrangian for
this theory is

L(φ,∇µφ) = 1
2∇µφ∇

µφ+ · · · . (2.19)

The corresponding Euler-Lagrange equations of motion are second order in derivatives,

0 = ∇µ

(
δL
δ∇µφ

)
− δL
δφ

= ∇2φ+ · · · , (2.20)

so the initial value problem is well-posed and ghost modes are absent. Using eq. (2.16), it
is straightforward to recast all covariant derivatives in terms of Lie derivatives,

L(φ,DAφ) = 1
2DAφD

Aφ+ · · · . (2.21)

Since the Lie derivative satisfies the product rule just like the covariant derivative, the
derivation of the Euler-Lagrange equations of motion for eq. (2.21) is unchanged2 and we
obtain

0 = DA

(
δL

δDAφ

)
− δL
δφ

= D2φ+ · · · . (2.22)

2Here we have used that a total Lie derivative of a scalar can be rewritten as a total partial derivative.
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Comparing the equations of motion in eq. (2.20) and eq. (2.22) we see that the Laplacian is
equivalent to the Lie derivative squared, i.e. the Killing Casimir, when acting on a scalar.
This equivalence can also be derived more directly,

∇2φ = ∇µ(gµν∇νφ) = gAB∇µ(Kµ
AK

ν
B∇νφ) = gABKµ

A∇µ(Kν
B∇νφ) = D2φ, (2.23)

where we have used the relationship between the metric and the Killing vectors in eq. (2.16).
The equivalence of the Laplacian and the Killing Casimir implies a simple but deep

fact about perturbation theory on symmetric manifolds: the usual propagator in curved
spacetime, 1/∇2, is formally equivalent to the inverse Killing Casimir 1/D2. Though still
a differential operator, the latter is maximally commutative. As a result, this observation
will enable a substantial simplification of perturbative calculations.

The above analysis relied on the fact that we assumed a scalar theory with at most
one derivative per field. When there is more than one derivative per field it is not obvious
whether the corresponding Lagrangian can be transformed to isometric frame, i.e. whether
all covariant derivatives can be recast purely in terms of isometry-generating Lie derivatives.
We leave this question to future work.

3 Kinematics

In this section we generalize on-shell kinematics from flat space to curved symmetric man-
ifolds. By transforming to isometric frame, we will discover that powerful notions from flat
space such as momentum conservation and on-shell conditions all have isometric cousins.

3.1 Wavefunctions

To begin, let us define on-shell wavefunctions to be sourceless solutions to the linearized
scalar equation of motion. In the present work we focus only on massless particles, but our
results trivially generalize in the obvious way to the massive case. For a massless scalar
particle labeled by i, the corresponding wavefunction ψ(pi, x) satisfies

∇2ψ(pi, x) = D2ψ(pi, x) = 0, (3.1)

where pi is a kinematic label for this particular solution. We will interpret pi as parame-
terizing the kinematic quantum numbers of the external state.

Note that massless solutions need not exist in general, for instance if the geometry
mandates a gap. However, it is natural to expect massless solutions in the case that the
spacetime manifold has non-compact directions. In addition, even though eq. (3.1) is the
defining equation for a massless scalar, the generalization to higher spin is more subtle,
as described in the special case of AdS in [69]. We leave an analysis of this higher spin
question to future work.

As summarized in table 1, in flat space the Lie derivative D ∼ ∂ is a generator of
spacetime translations and D2 = � is the translation Casimir, i.e. the d’Alembertian.
The wavefunction is a massless plane wave, ψ(pi, x) ∼ eipix where p2

i = 0 is an on-shell
momentum vector. In AdS, the Lie derivative D is a conformal generator and D2 is the
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conformal Casimir. The wavefunction is the bulk-boundary propagator for a massless
scalar, ψ(pi, x) ∼ K(pi, x), where pi labels the point on the boundary.

The spacetime manifold is assumed to be symmetric, so it exhibits a set of isometries.
As a consequence, any solution to the equations of motion will map to other solutions
under these isometries. Mathematically, this implies that the Lie derivative D acting on the
coordinate x in the wavefunction can always be compensated by a coincident infinitesimal
isometry transformation Di acting on pi, so

(D + Di)ψ(pi, x) = 0. (3.2)

We will refer to Di as the isometric momentum of leg i, and it should be manipulated like
a differential operator. Note that we can be agnostic about the precise representation of
pi under the isometry group. All that matters is that commutators of isometric momenta
exhibit the Killing algebra, so

[DiA,DiB] = F C
AB DiC . (3.3)

Eq. (3.1) and eq. (3.2) together imply that

D2
iψ(pi, x) = 0, (3.4)

which is the analog of the on-shell condition in flat space and the vanishing of the conformal
Casimir in AdS.

3.2 On-shell constraints

We are now equipped to study the kinematics of multiple particles in the language of
isometries. First, note that the product rule trivially implies an analog of momentum
conservation. To illustrate this, let us define a product wavefunction

ψ(p1, · · · , pn, x) =
n∏
i=1

ψ(pi, x), (3.5)

which is annihilated by the sum of derivatives,(
D +

n∑
i=1

Di

)
ψ(p1, · · · , pn, x) = 0. (3.6)

When a function such as the product wavefunction is annihilated as in eq. (3.6), we will
describe it as isometric invariant. Furthermore, we refer to eq. (3.6) and similar conditions
as isometric momentum conservation, for obvious reasons. The physical interpretation of
eq. (3.6) is that the momentum associated with the isometry flows through the coordinate
x and out through pi. This fact motivates us to consider the spacetime integral of the
product wavefunction,

∆n = ∆(p1, · · · , pn) =
∫
x
ψ(p1, · · · , pn, x), (3.7)

– 9 –
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which is a generalization of the n-point momentum-conserving delta function in flat space.
We dub this quantity the n-point contact correlator, since it coincides with the Witten
diagram for a contact interaction in AdS.

As expected, the contact correlator is annihilated by(
n∑
i=1

Di

)
∆n = 0, (3.8)

so it is also isometric invariant and satisfies isometric momentum conservation. Note also
that eq. (3.4) implies that

D2
i∆n = 0, (3.9)

which we dub the isometric on-shell condition. Obviously, eq. (3.8) and eq. (3.9) are the
generalizations of total momentum conservation and on-shell conditions. Consequently,
when acting on the contact correlator, the Lie derivatives are effectively curved space mo-
mentum variables which behave almost exactly the same as on-shell momenta in flat space.

The only substantive difference which arises in curved spacetime is that the isometric
momenta are non-commutative, exhibiting the Killing algebra

[DiA,DjB] = δijF
C

AB DiC . (3.10)

Consequently, isometric invariants will in general be non-commutative as well.
We also define the sum of isometric momenta of a set of particles labeled by i ∈ I,

DI =
∑
i∈I

Di, (3.11)

whose square D2
I is the Casimir for that set of particles. From the commutation relation

in eq. (3.10), we trivially see that the Casimirs of a set I and J commute if those sets are
disjoint or if one is contained in the other, so

[D2
I ,D

2
J ] = 0 if I ⊇ J or I ⊆ J or I ∩ J = ∅. (3.12)

Furthermore, we can compute the commutator of the total isometric momenta of a set I
with the Casimir on a set J ,

[DI ,D
2
J ] = 0 if I ⊇ J or I ∩ J = ∅. (3.13)

Another useful commutator is

[DI , FABCD
A
i1D

B
i2D

C
i3 ] = 0 for i1, i2, i3 ∈ I, (3.14)

by virtue of the Jacobi identity. More generally, DI actually commutes with any isometric
invariant differential operator f constructed solely from isometric momenta of particles
i ∈ I, so

[DI , (Di1 , · · · ,Din)] = 0 for i1, · · · , in ∈ I. (3.15)

We emphasize that f is isometric invariant whenever all of its isometric indices are con-
tracted. This is the generalization of what happens for Lorentz invariants in flat space and
conformal invariants in AdS.
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In summary we have seen that the kinematics of particles in curved symmetric space-
times can be recast in isometric frame in which the corresponding isometric momenta are
literally isometry generators acting on the external kinematic data. The isometric mo-
menta behave precisely like flat space momenta except that they have non-commutative
properties.

3.3 Isometric representation

We are now equipped to explore more complicated structures built up from contact corre-
lators. In particular, let us define a function f that is equal to the action of a differential
operator f on the product wavefunction ψ, so

f(p1, · · · , pn, x) = f(D1, · · · ,Dn)ψ(p1, · · · , pn, x). (3.16)

Here we assume that f is isometric invariant because its isometric indices are all contracted.
For obvious reasons, we refer to the differential operator f as the isometric representation
of f . It is straightforward to show that f is isometric invariant since it conserves isometric
momentum, (

D +
n∑
i=1

Di

)
f(p1, · · · , pn, x) = 0. (3.17)

Here the differential operator in parentheses annihilates ψ due to eq. (3.6) and commutes
with f due to eq. (3.15). Trivially rearranging terms in eq. (3.17), we find that

Df(p1, · · · , pn, x) =
[
−
(

n∑
i=1

Di

)
f(D1, · · · ,Dn)

]
ψ(p1, · · · , pn, x), (3.18)

which says that Df also has an isometric representation defined by the differential operator
in square brackets. More generally, eq. (3.17) implies that any number of Lie derivatives
of f yields a function that also has an isometric representation. Note however, that since
Df has an uncontracted isometric index, it is isometric covariant rather than invariant.

Furthermore, the product of functions that each have isometric representations always
yields a function that also has an isometric representation. In particular, given a function
g for which

g(pn+1, · · · , pm, x) = g(Dn+1, · · · ,Dm)ψ(pn+1, · · · , pm, x), (3.19)
then it is trivial to see that the product of f and g is

f(p1, · · · , pn, x)g(pn+1, · · · , pm, x) =
[
f(D1, · · · ,Dn)g(Dn+1, · · · ,Dm)

]
ψ(p1, · · · , pm, x),

(3.20)
which is a new function which also has an isometric representation defined by the differential
operator in square brackets. Note that this assertion requires that f and g depend on
disjoint sets of external kinematic labels, namely p1, · · · , pn and pn+1, · · · , pm, respectively.
In all the expressions we will encounter in our analysis, this disjoint condition will be
satisfied, and will in fact be mandated by locality.

In summary, eq. (3.18) and eq. (3.20) imply the following claim. Starting from a
collection of functions that each have an isometric representation and all depend on disjoint
sets of external kinematic labels, any arbitrary combination of these functions and their
Lie derivatives will also have an isometric representation.
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4 Correlators

In this section we define a new class of observables — on-shell correlators — which can be
computed on an arbitrary curved manifold. For symmetric manifolds, these calculations
are drastically streamlined by the existence of isometric kinematics. As we will see, on-
shell correlators with isometric representations are literally identical in form to their flat
space cousins, albeit with momenta replaced with isometric momenta that are intrinsically
non-commutative.

4.1 Definition

The n-point on-shell correlator for scalars in curved spacetime is given by the formula,

An = A(p1, · · · , pn) =
(

n∏
i=1

∫
xi

ψ(pi, xi)∇2
xi

)
〈φ(x1) · · ·φ(xn)〉 where ∇2

xi
ψ(pi, xi) = 0,

(4.1)
which is the generalization of LSZ reduction on the n-point position-space correlator. In
particular, the factors in parentheses amputate the external legs and dress them with
external wavefunctions that satisfy the linearized equations of motion.

The on-shell correlator in eq. (4.1) is a priori defined in any curved spacetime of ar-
bitrary signature. Furthermore, it is the natural generalization of a number of commonly
studied observables. In particular, in flat space it coincides with the on-shell scattering
amplitude, while in AdS it corresponds to boundary correlators. Our definition also in-
cludes transition amplitudes in Lorentzian AdS/CFT [49–51] and the Lorentzian on-shell
correlator that was defined for general spacetimes in [61, 79].

Henceforth we will consider these on-shell correlators at leading order in perturbation
theory, i.e. tree level, and for the case of symmetric spacetimes described in section 2.
Of course, it is certainly formally possible to compute the tree-level n-point correlator An
using Feynman rules derived directly from the Lagrangian expressed in the usual coordinate
basis. In this case, An is equal to a sum of Feynman diagrams given by convolutions of
products of the propagator, which is the inverse Laplacian 1/∇2, and the vertices, which
are in general constructed from ∇.

Nevertheless, as we will see shortly, it is substantially simpler to compute An after
a transformation to isometric frame. Crucially, this is only possible if the underlying
spacetime manifold is symmetric, which we henceforth assume. In this case, the propagator
is the inverse Casimir 1/D2 and the vertices are built from D. In this formalism, An can
be recast in an isometric representation defined by a differential operator comprised of
isometric momenta acting on the contact correlator, so

A(p1, · · · , pn) = A(D1, · · · ,Dn)∆(p1, · · · , pn). (4.2)

While this procedure is mechanically straightforward, it involves propagators and vertices
that are intrinsically non-commutative. Naively, it is not clear precisely how to order these
Feynman diagrammatic elements, which do not have an obvious ordering. As we will see
shortly, however, it is actually more illuminating to compute An from the classical solutions
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to the equations of motion. This is possible due to the well-known fact that classical
solutions are generating functionals of tree-level Feynman diagrams [85, 86]. By employing
this procedure, we will discover that the propagators and vertices are naturally ordered
and there is in fact a natural separation between numerators and denominators in An.

4.2 Example: φ3 theory

To best illustrate the mechanics of our formalism it will be useful to consider the simple
case of massless scalar φ3 theory in a curved symmetric spacetime. The Lagrangian and
equations of motion for this theory are

L = 1
2∇µφ∇

µφ+ κ

6φ
3 and ∇2φ = κ

2φ
2. (4.3)

Transforming to the isometric representation, these expressions become

L = 1
2DAφD

Aφ+ κ

6φ
3 and D2φ = κ

2φ
2. (4.4)

It is now straightforward to perturbatively construct a solution to the equations of motion.
First, we initialize with a zeroth order solution φ(p1, x) that depends on an arbitrary
external kinematic label p1. Second, we plug this zeroth order solution back into the
equation of motion to then solve for the first order solution φ(p1, p2, x), which depends on
p1 and p2. The procedure is then iterated. At each order, more and more wavefunctions are
glued together via the equations of motion. In the context of amplitudes, this algorithm is
equivalent to computing the Feynman diagrams via Berends-Giele recursion.

Concretely, the general perturbative solutions for φ3 theory satisfy Berends-Giele re-
cursion relations which can be graphically represented as

φ(pk1 , pk2 , · · · , x) =
∑

(I,J)=part(K)

φ(pi1 , pi2 , · · · , x)

φ(pj1 , pj2 , · · · , x)

(4.5)

where the sum runs over partitions of the set K = {k1, k2, · · · } into non-empty subsets,
I={i1, i2, · · · } and J={j1, j2, · · · }. Concretely, the perturbative solutions at low orders are

φ(p1, p2, x) = κ

D2
[
φ(p1, x)φ(p2, x)

]
φ(p1, p2, p3, x) = κ

D2
[
φ(p1, x)φ(p2, p3, x) + φ(p2, x)φ(p1, p3, x) + φ(p3, x)φ(p1, p2, x)

]
φ(p1, p2, p3, p4, x) = κ

D2
[
φ(p1, x)φ(p2, p3, p4, x) + · · ·+ φ(p1, p2, x)φ(p3, p4, x) + · · ·

]
,

(4.6)
and similarly at higher points. Note that the numerical factor of 1/2 in eq. (4.4) has been
cancelled in eq. (4.6) because the partitions (I, J) and (J, I) are treated as distinct and
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thus both contribute. To solve for the on-shell correlators, we take the zeroth order seed
for the solution to be a single external wavefunction,

φ(p1, x) = ψ(p1, x). (4.7)

Plugging eq. (4.7) into eq. (4.6), we obtain the perturbative solutions

φ(p1, p2, x) = κ

D2
12
ψ(p1, p2, x)

φ(p1, p2, p3, x) = κ

D2
123

[
κ

D2
23

+ κ

D2
13

+ κ

D2
12

]
ψ(p1, p2, p3, x)

φ(p1, p2, p3, p4, x) = κ

D2
1234

[
κ

D2
234

[
κ

D2
34

+ κ

D2
24

+ κ

D2
23

]
+ · · ·+ κ2

D2
12D

2
34

+ · · ·
]

× ψ(p1, p2, p3, p4, x).

(4.8)

Hence, we see that eq. (4.8) takes precisely the form of an isometric representation,

φ(p1, · · · , pn−1, x) = Φ(D1, · · · ,Dn−1)ψ(p1, · · · , pn−1, x). (4.9)

This is no accident — as described previously, products or Lie derivatives of functions with
isometric representations will yield a new function that also has an isometric representation.
Since the equations of motion only involve products and Lie derivatives, the resulting
perturbative solution inherits an isometric representation from the seed wavefunctions. By
inspection, we read off the corresponding differential operators from eq. (4.8),

Φ(D1,D2) = κ

D2
12

Φ(D1,D2,D3) = κ

D2
123

[
κ

D2
12

+ κ

D2
23

+ κ

D2
31

]
Φ(D1,D2,D3,D4) = κ

D2
1234

[
κ

D2
234

[
κ

D2
23

+ κ

D2
34

+ κ

D2
42

]
+ · · ·+ κ2

D2
12D

2
34

+ · · ·
]
.

(4.10)

Now plugging the perturbative solutions in eq. (4.8) into the definition of the on-shell
correlator,

A(p1, · · · , pn) =
∫
x
ψ(pn, x)D2φ(p1, · · · , pn−1, x)

=
[
D2

1···nΦ(D1, · · · ,Dn−1)
]
∆(p1, · · · , pn, x),

(4.11)

we obtain the isometric representation of the on-shell correlator as defined in eq. (4.2).
This object is simply related to that of the classical solution via

A(D1, · · · ,Dn) = D2
1···nΦ(D1, · · · ,Dn−1), (4.12)

which corresponds to amputating the last leg. Plugging eq. (4.10) into the above equation,
we arrive at our final result,

A(D1,D2,D3) = κ

A(D1,D2,D3,D4) = κ2

D2
23

+ κ2

D2
13

+ κ2

D2
12

A(D1,D2,D3,D4,D5) = κ

D2
234

[
κ

D2
34

+ κ

D2
24

+ κ

D2
23

]
+ · · ·+ κ2

D2
12D

2
34

+ · · · ,

(4.13)

which defines the isometric representations for the on-shell correlators in φ3 theory.
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4.3 Example: ∇φ4 theory

The above analysis generalizes trivially to include higher-order potential terms and higher-
derivative interactions. To illustrate the latter, consider a simple ∇φ4 theory, whose La-
grangian and equations of motion are

L = 1
2∇µφ∇

µφ+ λ

8 (∇µφ∇µφ)2 and ∇2φ = λ

2∇µ (∇µφ∇νφ∇νφ) . (4.14)

Again transforming to isometric frame, we obtain

L = 1
2DAφD

Aφ+ λ

8 (DAφD
Aφ)2 and D2φ = λ

2DA

(
DAφDBφD

Bφ
)
. (4.15)

The equations of motion again imply Berends-Giele recursion relations whose perturbative
solutions are given by

φ(p1, p2, p3, x) = λ

D2DA

[
DAφ(p1, x)DBφ(p2, x)DBφ(p3, x) + · · ·

]
φ(p1, p2, p3, p4, p5, x) = λ

D2DA

[
DAφ(p1, x)DBφ(p2, x)DBφ(p3, p4, p5, x) + · · ·

+ DAφ(p1, p2, p3, x)DBφ(p4, x)DBφ(p5, x) + · · ·
]
,

(4.16)

and similarly for higher points. Seeding the recursion with an external wavefunction as in
eq. (4.7), we obtain expressions for the perturbative solutions that have isometric repre-
sentations as shown in eq. (4.9), with the corresponding differential operators,

Φ(D1,D2,D3, x)= λ

D2
123

[(D123 ·D1)(D2 ·D3) + · · · ] (4.17)

Φ(D1, · · ·D5, x)= λ

D2
12345

[
(D12345 ·D1)(D2 ·D345) λ

D2
345

[(D345 ·D3)(D4 ·D5)+ · · · ]+ · · ·

+(D12345 ·D123) λ

D2
123

[(D123 ·D1)(D2 ·D3) + · · · ] (D4 ·D5) + · · ·
]
.

Again amputating these expressions via eq. (4.12), we obtain our final expressions,

A(D1,D2,D3,D4)= λ(D123 ·D1)(D2 ·D3) + · · · (4.18)

A(D1,D2,D3,D4,D5,D6)= λ(D12345 ·D1)(D2 ·D345)

× λ

D2
345

[(D345 ·D3)(D4 ·D5) + · · · ] + · · ·

+λ(D12345 ·D123) λ

D2
123

[(D123 ·D1)(D2 ·D3) + · · · ] (D4 ·D5)

+ · · · , (4.19)

which are the isometric representations of the on-shell correlators in ∇φ4 theory.
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4.4 General prescription

Our analysis of φ3 theory and ∇φ4 theory illustrate the mechanical steps by which one
perturbatively solves the equations of motion to obtain an isometric representation for the
on-shell correlators. As is evident from the final expressions in eq. (4.13) and eq. (4.18),
however, one can compute these isometric representations more directly.

In particular, the approach of equations of motion and Berends-Giele recursion serves
simply to define an ordering prescription for the isometric momenta, which are intrinsically
non-commutative. There is, however, an alternative but equivalent diagrammatic proce-
dure which accomplishes the same goal. To begin, recast the Lagrangian for the theory in
question into isometric frame. This is always possible in a broad class of theories, e.g. for
scalar theories with at most one derivative per field as described in eq. (2.22). Next, we
apply the following algorithm:

i) Enumerate all tree-level Feynman diagrams contributing to the n-point on-shell cor-
relator. External legs are amputated while internal vertices and propagators are given
by the Feynman rules in terms of isometric momenta.

ii) Mark leg n as the “root” and all remaining legs as “leaves”. The direction pointing
towards the root will be denoted “downwards”, while towards the leaves will be
denoted “upwards”.

iii) Evaluate each Feynman diagram, starting from the leaf legs and sequentially mul-
tiplying vertices, propagators, or external wavefunctions that appear on the way
downwards to the root leg. The ordering of the isometric momenta is dictated by
this order of appearance.

iv) Make sure to write every vertex and propagator in terms of the isometric momentum
variables that appear upwards from that graphical element. This is equivalent to
eliminating the isometric momentum of the root leg via total isometric momentum
conservation.

The above procedure is equivalent to an exceedingly simple procedure for lifting on-
shell scattering amplitudes in flat space to on-shell correlators in curved spacetime. First,
compute the relevant flat space Feynman diagrams, taking special care to eliminate the
momentum of the root leg. By locality, every Feynman diagram is a function of Lorentz
invariants pI ·pJ in which the contracted momenta pI and pJ are either disjoint, I ∩J = ∅,
or contained in one another, so I ⊇ J or vice versa. To lift to curved spacetime, simply
promote all flat space momenta pI to isometric momenta DI . A priori, the relative ordering
of any isometric momenta is ambiguous, but the prescription described above is equivalent
to choosing DI to always be to the left of DJ when I ⊇ J , and vice versa. The application
of this procedure for φ3 theory and ∇φ4 theory will reproduce eq. (4.13) and eq. (4.18)
directly.

Step iv) appears rather innocuous but it actually has a very interesting implication
for the structure of the on-shell correlator. In particular, all propagators which appear
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in a given Feynman diagram actually commute with each other. To see why, consider φ3

theory, where eq. (4.13) exhibits strings of propagators such as

1
D2

234D
2
34

and 1
D2

12D
2
34
. (4.20)

Locality enforces that any pair of propagators that appear in a given Feynman diagram
will either be nested or disjoint. Thus, eq. (3.12), implies that all propagators that appear
within a given Feynman diagram actually commute with each other.

Furthermore, the propagators not only commute with each other, but also with every-
thing in the numerator that is downwards. In other words, in a symmetric curved space,
locality is encoded not only in the propagator structure, but also in the structure of the
numerators of Feynman diagrams. For example in ∇φ4 theory, eq. (4.18) exhibits propa-
gators such as 1/D2

345 and 1/D2
123 which commute with everything downwards, i.e. to the

left of them. This is possible because all isometric momenta which appear to the left of
1/D2

345 either contain or are disjoint from that set of momenta, and similarly for 1/D2
123.

Consequently, by eq. (3.13) we can factor 1/D2
345 and 1/D2

123 out to the left.
This feature is quite general, and follows from the way in which on-shell correlators are

computed from the equations of motion. For example, in eq. (4.8) and eq. (4.17) it is clear
that the propagators act from the left in each perturbative solution. Since the propagator
commutes with the total isometric momentum flowing through it, it will commute with
any vertex into which that perturbative solution is fed.

Putting everything together, this implies that every on-shell correlator has a further
decomposition into propagator denominators and numerators,

An = A(D1, · · · ,Dn) =
∑
α

1
dα(D1, · · · ,Dn) × nα(D1, · · · ,Dn), (4.21)

where α runs over cubic topologies. Crucially, all of the propagators in the denominator dα
are mutually commuting. In contrast, the numerator nα is a complicated non-commutative
product of isometric momenta. Eq. (4.21) implies that there is a well-defined notion of
numerator and denominator in curved spacetime even though the isometric momenta are
intrinsically non-commutative.

Notably, the decomposition of amplitudes into numerators and denominators is central
to color-kinematics duality and the application of the double copy. This suggests the
possibility that these structures may have curved spacetime generalizations, offering a new
and in principle highly efficient approach to computing on-shell correlators. As we will see,
this is indeed the case for certain theories.

4.5 Field basis invariance

As is well-known, on-shell scattering amplitudes in flat space are invariant under redefi-
nitions of the field basis. Remarkably, the same is true of on-shell correlators in curved
spacetime. For concreteness, let us return to the example of φ3 theory discussed earlier.
We apply the following field redefinition to the scalar,

φ(x) → φ′(x) = φ(x) + τφ(x)2 + · · · , (4.22)
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where the ellipses denote higher order nonlinearities in the transformation. After this field
redefinition, the off-shell Feynman rules will change. Meanwhile, the on-shell correlators
map to

A(p1, · · · , pn) → A′(p1, · · · , pn), (4.23)

where the transformed on-shell correlator is

A′(p1, · · · , pn)=
∫
x
ψ(pn, x)D2[φ(p1, · · · , pn−1, x) + τ (φ(p1, x)φ(p2, · · · , pn−1, x) + · · · )

]
,

(4.24)
which is obtained by applying the field redefinition to the Berends-Giele recursion relations.
The parameter τ flags all the new contributions arising from the field redefinition, which
involve all partitions of legs 1, · · · , n−1 into the pair of scalar fields in the transformation.
After plugging in the perturbative solutions for the scalar fields, we obtain

A′(p1, · · · , pn) =
∫
x
ψ(pn, x)D2

1···n−1

[
1

D2
1···n−1

(· · ·) + τ

D2
2···n−1

(· · ·) + · · ·
]
ψ(p1, · · · , pn−1, x),

(4.25)
where the propagators shown explicitly all arise from the root legs of the scalar classical
field solutions.

Next, we show how the isometric on-shell condition for the n-th leg actually truncates
all nonlinear contributions from the field redefinition. An important subtlety arises from
total isometric momentum conservation, which implies that the isometric momenta are
only defined up to the overall constraint, D1 + · · · + Dn = 0. In order to impose the on-
shell condition on the n-th leg, we have to transform to a basis of independent isometric
momenta. This is achieved by eliminating the momentum of the (n − 1)-th leg from the
correlator,

A′(p1, · · · , pn) =
∫
x
D2
n

[ 1
D2
n

(· · ·) + τ

D2
1n

(· · ·) + · · ·
]
ψ(p1, · · · , pn, x)

=
[
(· · ·) + τD2

n

D2
1n

(· · ·) + · · ·
]

∆(p1, · · · , pn) = A(p1, · · · , pn).
(4.26)

In the final equality we have used that D2
n vanishes, thus eliminating all terms proportional

to τ , which were new contributions induced by the field redefinition.
In summary, we have proven that the isometric on-shell condition for the n-th leg

enforces that the on-shell correlator is invariant under changes of field basis, just as for
on-shell scattering amplitudes in flat space. As should be apparent, the argument we have
outlined closely mirrors the usual flat space proof.

5 Color-kinematics duality

In this section we derive the duality between color and kinematics for BAS theory and
NLSM in curved spacetime while in isometric frame. By generalizing the approach of [71]
to curved backgrounds, we show that BAS is dual to NLSM under the mapping of the
algebra of color to the algebra of gauged isometries.
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5.1 Biadjoint scalar theory

As is well-known, the template for all theories with color-kinematics duality is BAS theory.
We now we review this theory briefly, taking note of its symmetries and conserved charges.
We then rewrite these structures in isometric frame.

5.1.1 Equations of motion

The scalar field φaa of BAS theory is an adjoint of a color and dual color symmetry, which
are labeled by unbarred and barred indices a, b, c, etc., and a, b, c, etc., respectively. To
eliminate notational clutter, we repackage the BAS field as a color matrix,

φa = φaata, (5.1)

while the dual color index is left free and uncontracted. In this notation, the equation of
motion of BAS theory in curved spacetime is

∇2φc + 1
2f

c
ab

[φa, φb] = 0. (5.2)

Under the dual color symmetry, the fields transform as

φc → φc + f c
ab
θaφb, (5.3)

and there is an associated dual color current,

Kcµ = f c
ab

tr(φa
↔
∇µφb), (5.4)

where the trace runs over the suppressed color indices. On the support of the equations of
motion, this current is conserved,

∇µKcµ = f c
ab

tr(φa
↔
∇2φb) = f c

ab
f a
de

tr(φb[φd, φe]) = 0, (5.5)

where we have used the Jacobi identity for dual color in the final step.

5.1.2 Isometric representation

It is trivial to the lift the BAS equations of motion into isometric frame. Using eq. (2.23),
we obtain the equations of motion

D2φc + 1
2f

c
ab

[φa, φb] = 0. (5.6)

Meanwhile, in isometric frame the dual color current is

Kcµ = f c
ab

tr(φa
↔
Dµφ

b), (5.7)

which, just as before, is conserved on the equations of motion,

∇µKcµ = f c
ab

tr(φa
↔
D2φb) = f c

ab
f a
de

tr(φb[φd, φe]) = 0, (5.8)

where we have again used the dual color Jacobi identity.
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5.1.3 Correlators

The on-shell correlators for BAS theory are identical to those of φ3 theory, except with each
diagram dressed with color and dual color factors. Applying the same procedure outlined
earlier, we find that the isometric representations for these on-shell correlators are

A(D1,D2,D3) = fa1a2a3fa1a2a3

A(D1,D2,D3,D4) = f b
a1a2 fba3a4f

b
a1a2

fba3a4

1
D2

12
+ 2 terms

A(D1,D2,D3,D4,D5) = f b1
a1a2 f b2

b1a3
f a5
b2a4

f b1
a1a2

f b2
b1a3

f a5
b2a4

1
D2

123D
2
12

+ 11 terms

+ f b1
a1a2 f a5

b2b1
f b2
a3a4 f b1

a1a2
f a5
b2b1

f b2
a3a4

1
D2

12D
2
34

+ 2 terms,

(5.9)
and so on and so forth. Since the propagator denominators are all mutually commut-
ing, these isometric representations are literally identical to the expressions for on-shell
scattering amplitudes in flat space computed via Feynman diagrams.

5.2 Nonlinear sigma model

Next, we formulate the NLSM in curved spacetime. To do so we simply take the first-order
formulation of the NLSM which manifests color-kinematics duality in flat space [71] and
lift it to curved spacetime.

5.2.1 Equations of motion

The NLSM can be described by a first-order formulation in which the dynamical degree of
freedom is the chiral current,

jµ = jaµta, (5.10)

which is an adjoint of color. We impose that the chiral current is pure gauge and has
vanishing divergence, so

∇[µjν] + [jµ, jν ] = 0 and ∇µjµ = 0. (5.11)

As described at length in [71] the above equations are equivalent to the more standard
formulation of the NLSM. Summing various derivatives of the expressions in eq. (5.11), we
obtain a second-order equation of motion

∇2jµ +∇[µ∇ν]jν + [jν ,∇νjµ] = 0, (5.12)

which governs the evolution of the chiral current.

5.2.2 Isometric representation

Next, we transform the equations of motion in eq. (5.12) to isometric frame. To begin, let
us define the chiral current in isometric frame,

jA = jµKA
µ . (5.13)
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In terms of this expression, the linearized field strength for the chiral current is

KA
µK

B
ν ∇[µjν] = KB

ν (DAjν +∇µKAνjµ)−KA
µ (DBjµ +∇νKBµjν) = D[AjB] − FABCjC ,

(5.14)

where we have used the Killing equation in eq. (2.7) and the commutator relation in
eq. (2.9). Meanwhile, the divergence of the chiral current is

∇µjµ = gAB∇ν(KA
µK

B
ν j

µ) = gABK
B
ν ∇ν(KA

µ j
µ) = DAj

A. (5.15)

Plugging the above expressions back into the NLSM equations of motion in eq. (5.11), we
obtain

D[AjB] − FABCjC + [jA, jB] = 0 and DAj
A = 0. (5.16)

Combining various Lie derivatives of these equations, we obtain the equation of motion for
the NLSM in the isometric representation,

D2jC + [jA,DAj
C ] = 0, (5.17)

which is exactly the same as in flat space but with partial derivatives replaced with Lie
derivatives.

5.2.3 Correlators

Following the procedure described for φ3 theory and ∇φ4 described in section 4.2 and sec-
tion 4.3, we can now compute the on-shell correlators of the NLSM. A priori, this calculation
can be performed starting from any particular formulation of the NLSM. However, with
color-kinematics duality in mind, we will opt for the NLSM equations of motion defined in
eq. (5.17),

D2jcC + f c
ab j

aADAj
bC = 0, (5.18)

shown here with all color indices written out explicitly. Similar to before, these equations of
motion imply Berends-Giele recursion relations for the chiral current, whose perturbative
solutions are

jcC(p1, p2, x) = −f
c

ab

D2
[
jaA(p1, x)DAj

bC(p2, x) + jaA(p2, x)DAj
bC(p1, x)

]
jcC(p1, p2, p3, x) = −f

c
ab

D2
[
jaA(p1, x)DAj

bC(p2, p3, x) + jaA(p2, x)DAj
bC(p1, p3, x) + · · ·

+ jaA(p1, p2, x)DAj
bC(p3, x) + jaA(p1, p3, x)DAj

bC(p2, x) + · · ·
]
.

(5.19)
It is straightforward to perturbatively solve these equations provided we clarify two im-
portant subtleties. First of all, what is the seed for the recursion? Second, how do we
extract the on-shell correlator for the scalar field πa of the NLSM from that of the chiral
current jaA, which is of course not precisely the same? Both of these questions are an-
swered by constructing the explicit map between πa and jaA, as described in detail for flat
space in [71].
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In particular, we recall that the pure gauge condition in eq. (5.11) is imposed precisely
so that the chiral current takes the form

jA = ig−1DAg, (5.20)

for a color adjoint field g. The NLSM scalar is embedded within g via

g = 1− iπ + · · · , (5.21)

where π = πata and the ellipses denote nonlinear terms in the NLSM field that depend on
the precise field basis. In terms of the NLSM scalar, the chiral current is then

jaA = DAπa + · · · , (5.22)

where the ellipses are again nonlinear in fields. Consequently, we can extract πa from jaA,
up to nonlinear terms, by dotting the latter into a peculiar polarization vector

πa = ε̃Aj
aA + · · · where ε̃A = qA

q ·D
, (5.23)

where qA is an arbitrary reference vector.
From eq. (5.22) we can deduce the seed for the Berends-Giele recursion. By definition,

the seed is a solution to the linearized equations of motion, so the terms in ellipses can all
be dropped. Let us denote the color-dressed on-shell wavefunction of the NLSM scalar by

πa(p1, x) = ψa(p1, x), (5.24)

as well as the color-dressed product wavefunction and contact correlator,

ψa1···an−1(p1, · · · , pn−1, x) =
n−1∏
i=1

ψai(pi, x)

∆a1···an−1(p1, · · · , pn−1) =
∫
x
ψa1···an−1(p1, · · · , pn−1, x).

(5.25)

Here the free color indices correspond to the external color polarizations of the wavefunc-
tions. Consequently, eq. (5.22) implies that

jaA(p1, x) = DAπa(p1, x) = DAψa(p1, x), (5.26)

so the on-shell wavefunction for the chiral current is equal to an isometry-generating Lie
derivative acting on the on-shell wavefunction for the NLSM scalar.3

Moreover, eq. (5.23) implies that the n-point classical solution for the NLSM scalar is

πa(p1, · · · , pn−1, x) = ε̃Aj
aA(p1, · · · , pn−1, x) + · · · , (5.27)

3In the context of AdS, this implies that the bulk-boundary propagators for the chiral current and
NLSM scalar are related by a conformal transformation, DA. Since DA is a scalar, dimensionless operator
that commutes with the conformal Casimir, D2, these bulk-boundary propagators correspond to boundary
operators with the same spin and conformal dimension.
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where the ellipses are nonlinear terms that depend on the field basis. However, as described
in section 4.5, these nonlinear terms will vanish identically when the root leg is taken to
be on-shell.

We also define the isometric representation for the NLSM scalar,

πa(p1, · · · , pn−1, x) = Πa1···an−1a(D1, · · · ,Dn−1)ψa1···an−1(p1, · · · , pn−1, x), (5.28)

which is related to the on-shell correlator for NLSM scalars via

A(p1, · · · , pn) =
∫
x
ψan(pn, x)D2πan(p1, · · · , pn−1, x)

=
[
D2

1···nΠa1···an(D1, · · · ,Dn−1)
]
∆a1···an(p1, · · · , pn).

(5.29)

The corresponding isometric representation is then

Aa1···an(D1, · · · ,Dn) = D2
1···nΠa1···an(D1, · · · ,Dn−1), (5.30)

which is just the amputation of the isometric representation of the NLSM scalar solution
of the Berends-Giele recursion relations.

Putting it all together, the isometric representation for the on-shell correlator for NLSM
scalars is computed as follows. First, we compute the classical solution for jaA by solving
the Berends-Giele recursion relations in eq. (5.19) with the seed wavefunction in eq. (5.26).
Next, we contract the root leg with polarization ε̃A as in eq. (5.27) to map the chiral
current to the NLSM scalar. Finally, we extract the isometric representation of the NLSM
scalar solution as defined in eq. (5.28) and compute the on-shell correlator by amputating
the root leg as in eq. (5.30).

As discussed in section 4.4, however, solving the Berends-Giele recursion relations
is identical to computing the standard Feynman diagrams in the theory while carefully
keeping track of the ordering of isometric momenta. Consequently, the procedure we have
outlined above is identical to implementing the following Feynman rules,

I J = δaIaJ gAIAJ

D2
I

K

I

J

= f aK
aIaJ

[
(DI)AJ

δAK
AI
− (DJ)AI

δAK
AJ

]

I = (DI)AI

I = qAI

q ·DI
.

(5.31)

Here the interaction vertex in the second line above is defined from the equations of motion
in eq. (5.18), while the leaf and root leg polarizations in the third and fourth lines are defined
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by eq. (5.26) and eq. (5.27). As described earlier, the ordering of isometric momenta is
dictated by the relative location of graphical elements, i.e. whether they are further upwards
or downwards.

For example, the isometric representation of the three-point on-shell correlator is

Aa1a2a3(D1,D2,D3) = 3

1

2

= fa1a2a3
qA

q ·D3

[
DB

2 D1BD
A
1 −DB

1 D2BD
A
2

]

= fa1a2a3
qA

q ·D3
(D1 ·D2)(DA

1 −DA
2 ) = 0,

(5.32)

where we have used that D1 ·D2 ∼ D2
3 = 0 for three-point on-shell kinematics. Meanwhile,

for the four-point on-shell correlator we obtain

Aa1a2a3a4(D1,D2,D3,D4) = 4

1

2

3

+ 4

1

2

3

+ 4

1

3

2

= f b
a1a2 fba3a4

qA
q ·D4

[
DB

3 D12B

( 1
D2

12
(D1 ·D2)(DA

1 −DA
2 )
)

−
( 1
D2

12
(D1 ·D2)(DB

1 −DB
2 )
)
D3BD

A
3

]
+ 2 terms

= 1
2f

b
a1a2 fba3a4

1
q ·D4

[(D3 ·D12)(q ·D1−q ·D2)− (D1 ·D3−D2 ·D3)(q ·D3)]+2 terms

= 1
2
[
f b
a1a2 fba3a4D1 ·D3 + f b

a1a3 fba2a4D1 ·D2
]
,

(5.33)
where in the second equality we have grouped terms in parentheses so their origin from
the equations of motion is clear. Furthermore, in the last line we have transformed to a
minimal DDM basis for color and also used that the 1/D4 factor from the root polarization
commutes with all isometric invariants, as per eq. (3.15). This fact is generally true for any
n-point on-shell correlator. As expected, the dependence on the reference q has dropped
out of eq. (5.33), and the resulting color-stripped four-point on-shell correlator, ∼ D1 ·D3,
is correct.

We have also computed the six- and eight-point on-shell correlators for the NLSM
using the above color-kinematic dual procedure. The former precisely agrees with the
result of [69], which is a nontrivial check that our formulation of the NLSM is equivalent
to the standard one. Meanwhile, the latter expression is a genuinely new result.

Perhaps surprisingly, the curved spacetime NLSM on-shell correlators computed via
this method — namely, using the color-kinematic dual equations of motion in eq. (5.18)
— are literally identical to the corresponding on-shell scattering amplitudes in flat space.
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In particular, the expressions are the same up to a trivial replacement of momenta with
isometric momenta, as is evident from the very last line of eq. (5.33). This occurs because
the resulting on-shell correlators are a function of Killing Casimirs that mutually commute.
In particular, every term is given by a numerator and denominator composed of invariants
D2
I and D2

J where the sets are either disjoint, I ∩ J = ∅, or contained in one another,
so I ⊇ J or vice versa. The reason this happens is that in a two-derivative theory all
interaction vertices are of the form DI ·DJ = 1

2(D2
IJ−D2

I−D2
J), which is a set of commuting

Killing Casimirs.4

5.3 Kinematic algebra

The equations of motion for BAS theory and NLSM in eq. (5.6) and eq. (5.17) are related
to each other by color-kinematics duality at the level of fields, just as in flat space [71].
By directly comparing these equations, it is straightforward to derive the precise mapping
between them. Furthermore, we will find that the on-shell correlators computed in our for-
mulation of the NLSM have kinematic numerators that automatically satisfy the kinematic
Jacobi identities.

5.3.1 Field theoretic formulation

Remarkably, BAS theory maps to the NLSM under a literal replacement of dual color
generators with isometry-generating Lie derivatives,

ta → DA. (5.34)

This substitution sends any dual colored field to a vector field, so for example

Va → VA, (5.35)

where all color indices are left untouched. Similarly, the dual color structure constants of
BAS theory map to

f c
ab
VaWb → VADAWC −WADAVC , (5.36)

which define the kinematic structure constants of the NLSM.
By applying the replacement rules in eq. (5.35) and eq. (5.36), we directly map the

equation of motion for BAS theory in eq. (5.6) to that of the NLSM in eq. (5.17). As it
turns out, this substitution has an elegant physical interpretation. First, recall that the
dual color algebra is obtained by the commutator,

[Vata,Wbtb] = VaWbf c
ab
tc. (5.37)

Hence, the dual color structure constants are obtained by commuting a pair of spacetime-
dependent color generators parameterized by Va andWb. Second, consider the commutator

[VADA,WBDB] =
(
VADAWC −WADAVC + VAWBF C

AB

)
DC , (5.38)

4We thank the authors of [82] for pointing out this simple argument to us.
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where the last term encodes the usual Killing algebra and the first and second terms arise
from the fact that VA and WB are not constant. As long as we work purely in isometric
frame, all tensors will have isometric indices rather than metric indices. Consequently,
every Lie derivative acts on a scalar and so the very last term on the right-hand side of
eq. (5.38) will always ultimately vanish by eq. (2.15). Thus, we discover that the commuta-
tor in eq. (5.38) precisely reproduces the kinematic structure constant in the replacement
rule in eq. (5.36). In other words, the kinematic structure constants are obtained by com-
muting a pair of spacetime-dependent, isometry-generating Lie derivatives parameterized
by VA and WB.

In conclusion, we have learned that on a symmetric spacetime manifold, BAS theory
maps to the NLSM under a duality between color and kinematics that sends

algebra of
dual color

→ algebra of
gauged isometries.

(5.39)

Here we have introduced the notion of a gauged isometry because the field-dependent Lie
derivatives in eq. (5.38) describe precisely such a transformation. This result is the curved
space generalization of the flat space result of [71], where the kinematic algebra of the NLSM
found to literally be the algebra of diffeomorphisms, also known as gauged translations.
A similar duality and double copy was also observed in certain fluid dynamical theories
in [87].

Note also that the algebra of gauged isometries is actually distinct from the algebra
of global isometries, i.e. the Killing algebra, which corresponds to just the last term of
eq. (5.38). For the special case of flat space, this corresponds to the fact that the algebra
of diffeomorphisms is distinct from the algebra of translations, which is trivial.

Armed with an understanding of color-kinematics duality at the level of fields, we can
now apply the replacement rules in eq. (5.35) and eq. (5.36) to map any quantity in BAS
theory to an equivalent one in the NLSM. Under this mapping, the dual color current for
BAS theory in eq. (5.7) becomes the kinematic current of the NLSM,

KCA = tr(jB
↔
DADBj

C), (5.40)

whose divergence can be computed explicitly to be

DAKCA = tr(jB
↔
D2DBj

C) = −tr(jBDB[jA,DAj
C ]−DBjC [jA,DAj

B])

= −tr([jA, jB]DADBj
C) = −1

2F
D

AB tr([jA, jB]DDj
C) = 0,

(5.41)

where the last equality holds by the identity in eq. (2.15). Hence, the kinematic current
is conserved on the support of the equations of motion. As we will see shortly, it is
conservation of the kinematic current that actually enforces the kinematic Jacobi identities
in the NLSM.

Finally, let us remark on the fact that color-kinematics duality of the NLSM in curved
spacetime hinges so critically on the assumption that the spacetime manifold is symmetric.
This is particularly amusing because color-kinematics duality of the NLSM also requires
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that the internal field space manifold is symmetric. Furthermore, this same condition is
needed for the Adler zero [88, 89]. We leave for future work whether there is any deep
significance carried by these mirrored requirements on the spacetime manifold and the
internal manifold.

5.3.2 Kinematic Jacobi identities

For the reasons we have just described, color-kinematics duality is automatically exhibited
by the numerators in the four-point on-shell correlator of the NLSM in eq. (5.33). As
discussed more generally in eq. (4.21), it is always possible to commute all propagators to
the left in a local theory. Implementing this in eq. (5.33), we obtain a well-defined split
between numerators and denominators despite the fact that the isometric momenta are
non-commutative. The resulting form of the four-point on-shell correlator turns out to be
color-kinematic dual,

A4 = cs
D2

12
ns + ct

D2
23
nt + cu

D2
31
nu, (5.42)

where the color structures are

cs = fa1a2bf
b
a3a4 , ct = fa2a3bf

b
a1a4 , cu = fa3a1bf

b
a2a4 , (5.43)

and the kinematic numerators are

ns = 1
q ·D4

[(D3 ·D12)(D1 ·D2)(q ·D1 − q ·D2)− (D1 ·D2)(D1 ·D3 −D2 ·D3)(q ·D3)]

nt = 1
q ·D4

[(D1 ·D23)(D2 ·D3)(q ·D2 − q ·D3)− (D2 ·D3)(D2 ·D1 −D3 ·D1)(q ·D1)]

nu = 1
q ·D4

[(D2 ·D31)(D3 ·D1)(q ·D3 − q ·D1)− (D3 ·D1)(D3 ·D2 −D1 ·D2)(q ·D2)] .
(5.44)

As advertised, these numerators satisfy the Jacobi relation

ns + nt + nu = 1
q ·D4

FABC
[
DA

3 D
B
2 D

C
1 (q ·D1) + DA

1 D
B
3 D

C
2 (q ·D2) + DA

2 D
B
1 D

C
3 (q ·D3)

]
= 0. (5.45)

In the special case of AdS in [69], it was shown explicitly that all terms involving a single
factor of FABC identically vanish, thus yielding zero. This is actually true for symmetric
spacetimes as well. To understand why the right-hand side of the above equation is zero,
let us consider the more general case of off-shell color-kinematics duality in the NLSM.

Specifically, we consider an internal off-shell four-point subdiagram computed using
our NLSM formulation. This subdiagram is essentially identical to the four-point on-shell
correlator computed previously except that the external legs 1,2,3,4 are replaced with
arbitrary sets of isometric momenta, I, J,K,L, and the external chiral currents are left
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uncontracted. This subdiagram receives contributions in three channels,

L

I

J

K

+
L

I

J

K

+
L

I

K

J

= cs
D2
IJ

nAIAJAKAL
s + ct

D2
JK

nAJAKAIAL
t + cu

D2
KI

nAKAIAJAL
u ,

(5.46)

where the tensor kinematic numerators are
nAIAJAKAL
s = D

AK
IJ D

AJ
I gAIAL + D

AI
J D

AJ
K gAKAL − {I ↔ J}

nAIAJAKAL
t = D

AI
JKD

AK
J gAJAL + D

AJ
K D

AK
I gAIAL − {J ↔ K}

nAIAJAKAL
u = D

AJ
KID

AI
K gAKAL + D

AK
I D

AI
J gAJAL − {K ↔ I},

(5.47)

which satisfy the kinematic Jacobi identities off-shell,

nAIAJAKAL
s + nAIAJAKAL

t + nAIAJAKAL
u

= D
[AJ

I D
AK ]
I gAIAL + D

[AK

J D
AI ]
J gAJAL + D

[AI

K D
AJ ]
K gAKAL

= FAJAK
BD

B
I g

AIAL + FAJAK
BD

B
I g

AIAL + FAJAK
BD

B
I g

AIAL = 0.

(5.48)

It is clear that the numerators of the four-point on-shell correlator in eq. (5.44) are obtained
by contracting the above expression with the appropriate external polarizations.

In eq. (5.48), the sum of terms linear in the structure constants actually vanishes. The
reason for this is that these terms are exactly equal to the Feynman rule corresponding to
the right-hand side of the kinematic current conservation equation in eq. (5.41). Hence,
once the free indices in eq. (5.48) are contracted against other tensors to yield an isometric
invariant, the resulting expression will be zero. As described in flat space [71], this occurs
because kinematic current conservation exactly mandates the kinematic Jacobi identity.

5.4 Special galileon

The above analysis suggests a clear-cut strategy for constructing the double copy of the
NLSM in curved spacetime. Based on what is known in flat space [71, 87], the resulting
theory should be the special Galileon (SG) [90, 91], appropriately generalized to curved
spacetime [92, 93]. To this end, we define a generalization of the chiral tensor of the SG [71]
on a symmetric manifold,

jAA = jµµKA
µK

A
µ . (5.49)

Applying the replacement in eq. (5.36) to the color structure constants in the equation of
motion for the NLSM in eq. (5.17), we obtain a conjectural equation of motion for the SG,

D2jCC + jAADADAj
CC −DAj

CADAj
AC = 0. (5.50)

Naively, ordering of the Lie derivatives with barred and unbarred isometric indices is am-
biguous in eq. (5.50). However, this ambiguity actually disappears because

jAAD[ADA]j
CC = jAAF B

AA
DBj

CC = 0, (5.51)

which vanishes due to the identity in eq. (2.15) for symmetric spacetimes.
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The natural next step is to then compute the on-shell correlators derived from eq. (5.50).
Since eq. (5.50) was obtained through a direct replacement of color with kinematics in the
NLSM, the corresponding SG propagator, interaction vertex, and external polarizations
are literally the square of those of the NLSM in eq. (5.31). In particular, this implies that
the leaf leg polarizations should be (DI)AI (DI)AI , while the root leg polarizations should
be qAI

qAI
/(q ·D)2.

Unfortunately, in implementing these Feynman rules we immediately encounter a con-
fusion. In particular, recall that in the color-kinematic dual formulation of the NLSM de-
scribed in eq. (5.16), conservation of the chiral current, DAj

aA = 0, is critical. Implicitly,
this constraint ensured that the reference vector q, appearing in the root leg polarization
in eq. (5.31) and in the map from the chiral current to the NLSM scalar in eq. (5.23),
is arbitrary and does not affect the final answer. By taking the divergence of the NLSM
equation of motion in eq. (5.17), one can verify explicitly that DAj

aA = 0.
Analogously, it is similarly necessary that all q dependence also drops out from the

final answer in the SG. Thus one expects that the chiral tensor should be conserved on
both indices DAj

AA = DAj
AA = 0. Taking the divergence of the conjectured SG equation

of motion in eq. (5.50), we obtain

DC

(
D2jCC + jAADADAj

CC −DAj
CADAj

AC
)

= FCDEF
E
BB

DB
(
jCCjDB

)
− 1

2D
B
(
jBCjBB

)
.

(5.52)

The above expression is not automatically zero, and so without imposing this additional
constraint by fiat, eq. (5.50) appears inconsistent with conservation of the chiral tensor.
We leave exploration of this apparent incompatibility and our conjectural SG formulation
to further work.

5.5 Fundamental BCJ relation

We are now equipped to derive the fundamental BCJ relation for BAS theory and the
NLSM in curved spacetime. As we will see, the fundamental BCJ relation [37] is physically
equivalent to conservation of the kinematic current. Our approach follows closely the
argument outlined in [71] for flat space on-shell scattering amplitudes.

5.5.1 Null color replacement

To begin, recall from our discussion of BAS theory that the dual color current is con-
served on account of the corresponding Jacobi identities. In components, this conservation
equation is

0 = DµKcµ = f c
ab

tr(φa
↔
D2φb) = f c

ab
δabφ

aa
↔
D2φbb, (5.53)

which is exceedingly similar in structure to the interaction term in the BAS theory equation
of motion in eq. (5.6),

f c
ab

[φa, φb] = f c
ab
f c
ab φ

aaφbb. (5.54)

In fact, these expressions are literally identical up to a replacement,

f c
ab → δf c

ab = δab
↔
D2, (5.55)
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where we dub δf c
ab the null color structure constant for reasons that will become apparent

shortly. Here the left and right arrows on the Killing Casimir indicate whether it acts
on the field with the color index a or b, respectively.5 We will refer to eq. (5.55) and
similar manipulations as a null color replacement. Notice that the null color structure
constant, δf c

ab , is antisymmetric on its first and second indices, as would be expected
for the structure constant of an actual underlying algebra. The null color replacement in
eq. (5.55) is the curved spacetime generalization of the color factor transformation [37, 94]
discovered in flat space amplitudes, and later used in the context of equations of motion
to prove the fundamental BCJ relations [71].

The above observation gives a simple perturbative method for explicitly computing
the divergence of the dual color current — which should be zero. In particular, we evaluate
DµKcµ by computing the right-hand side of eq. (5.53) using Berends-Giele recursion. How-
ever, as we have just shown, the right-hand side of eq. (5.53) is literally the same as the
usual interaction vertex of BAS theory up to the null color replacement in eq. (5.55). This
means that DµKcµ can be obtained by computing an on-shell correlator of BAS theory and
then applying eq. (5.55) to the color structure constant connected to the root leg. Here the
root leg makes an appearance because it labels the location of the insertion of the operator
being evaluated, namely DµKcµ. After applying the null color replacement, the resulting
expression will thus vanish.

To implement the procedure described above, we take the following mechanical steps.
First, compute the n-point on-shell correlator An of BAS theory. Second, apply the null
color replacement to the n-th, i.e. the root leg,

f an
aIaJ

→ δf an
aIaJ

= δaIaJ (D2
J −D2

I). (5.56)

Here an is the color index of the root leg while aI and aJ are the color indices of the pair
of fields that interact directly with the root leg at a cubic vertex. The kinematic factors
D2
I and D2

J denote the squares of the total isometric momenta flowing into each of those
fields. Our claim is then that the resulting expression vanishes

An → δAn = 0, (5.57)

and similarly for the corresponding isometric representations,

An → δAn = 0. (5.58)

These expressions are all proportional to the divergence of the dual color current, DµKcµ,
and thus vanish on the support of the equations of motion.

5The null color structure constant defined in eq. (5.55) has no dependence on the color index c. While
this is peculiar, it will not matter because we will never actually contract c with other indices. In any
case, one can alternatively define the null color structure constant to be δf c

ab = qcδab

↔
D

2, where qc is an
arbitrary color reference. With this definition, all of our subsequent analyses will still apply.
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Rather incredibly, the null color structure constants still satisfy the Jacobi identity
when contracted with regular color structure constants. In particular,

f b
aIaJ

δf an
baK

+ f b
aJaK

δf an
baI

+ f b
aKaI

δf an
baJ

= faIaJaK

(
D2
IJ −D2

K + D2
JK −D2

I + D2
KI −D2

J

)
= faIaJaKD

2
IJK = faIaJaKD

2
n = 0,

(5.59)

where all we have used is total isometric momentum conservation and the isometric on-shell
condition for the n-th leg. This implies that the substitution in eq. (5.55) commutes the
Jacobi identities. In other words, we can reshuffle color structures in the on-shell correlators
of BAS theory with impunity, and then afterwards apply eq. (5.55) and the resulting
expression will still vanish. As we will see shortly, this directly implies the fundamental
BCJ relation.

Conveniently, the above logic trivially generalizes from BAS theory to the NLSM. This
is clear because the kinematic current of the NLSM is also conserved,

0 = DAKCA = δabj
aB
↔
D2DBj

bC , (5.60)

where the right-hand side can also be obtained by applying the null color replacement in
eq. (5.55) to the interaction term of the NLSM equation of motion,

[jA,DAj
C ] = f c

ab j
aBDBj

bC . (5.61)

There is no ambiguity in the ordering of Lie derivatives in eq. (5.60), since the Killing
Casimir D2 commutes with everything. As a result, the claim made above — that the null
color replacement of any n-point on-shell correlator equals zero — applies equally well for
the NLSM as well as BAS theory.

In what follows, we study some simple explicit examples from BAS theory at four- and
five-point and then present a general derivation of the fundamental BCJ relation at n-point.
Our proof is sufficiently general that it applies to both BAS theory as well as the NLSM.

5.5.2 Explicit examples
Starting from the four-point on-shell correlator of BAS theory in eq. (5.9), we apply the
null color replacement in eq. (5.55) to the root leg to obtain

δA4 = fa1a2a3f
b

a1a2
f a4
ba3

1
D2

12
(D2

12 −D2
3) + 2 terms

= fa1a2a3(f b
a1a2

f a4
ba3

+ f b
a2a3

f a4
ba1

+ f b
a3a1

f a4
ba2

) = 0.
(5.62)

Rearranging terms on the right-hand side, we can recast the vanishing of δA as a relation
among the color-stripped correlators

δA4 = fa1a2a3(D2
12 −D2

3)
[
f b
a1a2

f a4
ba3

1
D2

12
− f b

a3a1
f a4
ba2

1
D2

31

]
+ fa3a1a2(D2

23 −D2
1)
[
f b
a2a3

f a4
ba1

1
D2

23
− f b

a3a1
f a4
ba2

1
D2

31

]
= fa1a2a3

[
D2

23A(1423)−D2
12A(1243)

]
,

(5.63)

which is the fundamental BCJ relation for the four-point on-shell correlator.
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Applying the same logic to the five-point on-shell correlator for BAS theory in eq. (5.9),
we apply the null color replacement in eq. (5.55) to obtain

δA5 = f b
a1a2 fba3a4f

b1
a1a2

f b2
b1a3

f a5
b2a4

(D2
123 −D2

4) 1
D2

123D
2
12

+ 11 terms

+ f b
a1a2 fa3a4bf

b1
a1a2

f a5
b2b1

f b2
a3a4

(D2
34 −D2

12) 1
D2

12D
2
34

+ 2 terms

= f b
a1a2 fa3a4b

[
D2

234A(15234) + (D2
34 −D2

12)A(12534)−D2
123A(12354)

]
+ · · · ,

(5.64)
where in the last line we have reduced to the four-point DDM basis [95] for color and
the ellipses denote other independent color structures. If we demand that the right-hand
side is zero, then the coefficient of each independent color structure factor must vanish.
The resulting identity is precisely the fundamental BCJ relation for the five-point on-shell
correlator.

5.5.3 Proof of the fundamental BCJ relation
We are now ready to prove the fundamental BCJ relation in general. To begin, let us
decompose the color structures of the n-point on-shell correlator in BAS theory or the
NLSM into the DDM basis, yielding

An =
∑

σ∈Sn−2

f(1, σ, n− 1)A(1, σ, n− 1). (5.65)

Here the color-stripped correlators on the right-hand side encode all implicit dependence
on kinematics or dual color structures. Meanwhile, the half-ladder color structures are

f(1, 2, · · · , i, n, i+ 1, · · · , n− 1) = 1

2 i n i+ 1 n− 2

n− 1
· · · · · ·

= f b1
a1a2 f b2

b1a3
· · · f bi−1

bi−2ai
f

an

bibi−1
f

bi

ai+1bi+1
· · · f bn−4

an−3bn−3
f bn−3
an−2an−1 .

(5.66)

We have purposely chosen a DDM decomposition in which legs 1 and n − 1 are at the
endcaps, so the root leg n always appears somewhere in the bulk of each half-ladder.

Under the null color replacement in eq. (5.55) to the root leg, the half-ladder maps to

δf(1, 2, 3, · · · , i, n, i+ 1, · · · , n−1) = f(1, 2, 3, · · · , i, i+ 1, · · · , n−1) (D2
1···i −D2

i+1···n−1).
(5.67)

Note that we started with (n− 2)! independent half-ladders in the original n-point corre-
lator, but the resulting expression involves half-ladders associated with the (n − 1)-point
correlator, of which (n−3)! are independent. Crucially, legs 1 and n−1 are at the endcaps
of every half-ladder, so the right-hand side of eq. (5.67) is already written in a basis of
independent color structures.

As argued previously, applying the null color shift to the n-point on-shell correlator
should yield zero due to conservation of the dual color current, so

δAn = f(1, 2, 3, · · · , n−1)
n−2∑
i=1

(D2
i+1···n−1 −D2

1···i)A(1, · · · , i, n, i+ 1, · · · , n−1) + · · · = 0.

(5.68)
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The terms in ellipses are other independent half-ladder color structures. The coefficient of
each color structure must vanish, yielding

n−2∑
i=1

(D2
i+1···n−1 −D2

1···i)A(1, · · · , i, n, i+ 1, · · · , n− 1) = 0, (5.69)

which is exactly the fundamental BCJ relation in curved spacetime. This result applies for
both BAS theory and the NLSM on any symmetric manifold. The above argument mirrors
exactly the proof of the fundamental BCJ relation in flat space from [71], and proves the
conjecture in AdS proposed in [69].

6 Conclusions

In this work we have generalized flat space on-shell kinematics and on-shell scattering
amplitudes to curved symmetric spacetimes. Remarkably, the resulting kinematics are
essentially identical to flat space except that the corresponding momenta — which are
isometry-generating Lie derivatives — are non-commutative. In the process we have also
shown that on-shell correlators are essentially identical to their flat space cousins, albeit
with a canonical ordering of momenta fixed by locality. Furthermore, we have shown that
on-shell correlators are invariant under changes of field basis. Finally, we have explicitly
computed on-shell correlators in BAS theory and the NLSM, constructed the corresponding
color-kinematics duality at the level of fields, and proven the fundamental BCJ relation.

Our results leave open a number of avenues for future inquiry. First and foremost is
the question of generalization to include spin. It seems quite likely that it is possible to
transform theories with spin into isometric frame and construct a corresponding formulation
of on-shell kinematics which includes external polarizations.

It is also natural to ask whether the isometric representation for on-shell correlators
is easily extended to include loops. Obviously, much of our discussion has leaned heavily
on equations of motion for computing the classical sector of the dynamics. It would be
interesting to see if this can be extended, perhaps in line with recent work in AdS [96]
and dS [97]. A closely related question is whether the machinery we have presented can
be used to compute off-shell correlators, corresponding to processes with local insertions
of a source.

Given that isometric kinematics are an efficient formalism for computing, it would be
interesting to apply these tools to obtain higher-point data for boundary correlators in
AdS. While we have implicitly focused on Euclidean signature, our results may extend to
Lorentzian AdS via analytic continuation. Results of this kind might in turn be useful
for studying momentum space, Mellin space, and harmonic analysis methods at higher
points [42, 59, 98–102]. It would also be interesting to use isometric kinematics to compute
diagrams via bootstrap methods rather than by direct computation. Comparison to exist-
ing methods of obtaining correlators from weight shifting operators may be illuminating
as well [103, 104].

Since our results apply to large classes of symmetric spacetimes, it is natural to consider
their implications for dS space. For this case we expect that our on-shell correlators
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correspond to coefficients of the late-time wavefunction of the universe. For recent work on
analytic continuations from AdS to dS, see [46–48, 56, 62]. Our results may be useful for
bootstrapping dS quantities in concert with the methods in [55, 64, 105–107]. Isometric
kinematics may simplify aspects of momentum-space computations in dS. It would be
interesting to explore how our results connect to recent work on weight-shifting operators
and differential representations [106, 108].

It is also interesting to ask whether our results can be understood using the WZW-
like ambitwistor strings of ref. [109] or the scattering equation approach of ref. [70], or
extensions thereof beyond AdS to more general symmetric spaces.

A final direction for future exploration is to extend our understanding of color-kinema-
tics duality in curved spacetime to a broader class of theories. We have derived the mapping
between BAS theory and the NLSM, but there is still the question of how to construct the
SG. Perhaps even more pressing is the question of color-kinematics duality in gauge theory
and gravity.
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A Embedding space

Let us implement the mapping to isometric frame using embedding space methods.6 Con-
sider a flat (d + 2)-dimensional embedding space with arbitrary signature, labelled by a
coordinate XM . We define a (d + 1)-dimensional surface in this embedding space via the
constraint

XMX
M = X2 = constant. (A.1)

For the case of a hyperboloid, the resulting manifold is (d+ 1)-dimensional AdS, which is
dual to a d-dimensional CFT.

It will be useful to define a projector that zeros out components perpendicular to the
surface,

ΠMN = ηMN −
XMXN

X2 . (A.2)

The metric on the surface is given by the flat embedding space metric followed by a pro-
jection of all free indices onto the embedding surface,

gMN = Π ◦ ηMN and gMN = Π ◦ ηMN . (A.3)
6For a review of embedding space, see e.g. [110].
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Similarly, covariant derivatives on the surface are given by partial derivatives in the em-
bedding space followed by a projection,

∇M = Π ◦ ∂M . (A.4)

So for example, the constraint that defines the surface is itself covariantly constant, so

∇M (X2) = Π ◦ ∂M (X2) = Π ◦ (2XM ) = 0. (A.5)

Meanwhile, we know that the isometries of the surface are rotations and boosts,

KMN = KR
MN∂R = X[M∂N ]. (A.6)

From this we can reverse engineer the components of the Killing vectors,

KR
MN = X[Mδ

R
N ]. (A.7)

Note that we have chosen to label the Killing vectors with a pair of antisymmetric embed-
ding space indices. Hence, the Killing vector KMN plays the role of KA described in the
body of the paper. As before in eq. (2.5), we define the Lie derivative with respect to the
Killing vector,

DMN = LKMN
. (A.8)

Computing the commutator of Lie derivatives, we obtain the embedding space version of
eq. (2.9),

[DMN ,DRS ] = F TU
MNRS DTU , (A.9)

where the structure constant is given by

F TU
MNRS = −4η J

MNI η K
RSJ ηTU I

K , (A.10)

in terms of the unit-normalized projection operator

ηMNRS = 1
2(ηMRηNS − ηMSηNR). (A.11)

The structure constant F TU
MNRS plays the role of F C

AB referenced earlier in this paper.
In embedding space, the definition of the Killing metric in eq. (2.4) becomes

gMNRS = − 1
8dX2F

KL
MNIJ F IJ

RSKL = 1
2X2 ηMNRS , (A.12)

where in the second equality we have introduced a convenient normalization to simplify
later expressions. This is permitted since the overall normalization of the Killing metric is
arbitrary. Here the Killing metric gMNRS plays the role of gAB described before.

We are now equipped to verify various identities using these embedding space ex-
pressions. To begin, we can check the Killing equation in eq. (2.7), which in embedding
space is

∇(MK
RS

N) = Π ◦
(
δ

[R
(Mδ

S]
N)

)
= 0. (A.13)
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As in eq. (2.16), the spacetime metric can be expressed as an outer product of Killing
vectors contracted with the Killing metric, which in embedding space is

gRSTUK
RS

M K TU
N = ηMN −

XMXN

X2 = gMN . (A.14)

Last but not least, plugging eq. (A.7) and eq. (A.10) into,

FMNRSTUKI
MNK

J
RSK

K
TU = 0, (A.15)

we verify that eq. (2.14) is indeed satisfied.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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