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ON SHOCK WAVE THEORY

Tai-Ping Liu∗

Dedicated to Fon-Che Liu on his sixtieth birthday

Abstract. We survey the qualitative shock wave theory. The survey is
meant to explain some of the key issues close to the interest of the author
and raise open questions.

1. Hyperbolic Conservation Laws

The simplest equations to describe the shock waves are the hyperbolic
conservation laws

ut + f(u)x = 0.

The theory started with the investigation of the Euler equations in the gas
dynamics

ρt + (ρv)x = 0, (ρv)t + (ρv2 + p)x = 0, (ρE)t + (ρEv + pv)x = 0.

The book Courant-Friedrichs [11] gives the acount of the efforts on the equa-
tions by many of the leading mathematicians before 1948.

Starting about the ’40s, it was realized that it is possible to describe some
of the key features of the shock behaviour by the scalar equation. The math-
ematical theory of well-posedness for scalar equation, u ∈ R1, even for several
space dimension x ∈ Rn, is now well-understood; cf. Krushkov [21]. The the-
ory for scalar law has been generalized to Hamilton-Jacobi equation. One of
the interesting properties of the solution operator is the compactness property.
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For instance, for convex law, f
′′
(u) 6= 0, there are two time-invariants and that

the oscillation of the initial data is immediately damped; cf. Lax [24]. This
inviscid dissipation is still conjectured for the incompressible flow and easily
understood for scalar conservation law. It sets apart the shock wave theory
from other nonlinear wave theories.

Two important elements of the theory for hyperbolic conservation laws are
the entropy condition for shock waves and the compactness property of the
solution operator due to the nonlinearity of the flux function f(u). The study
of the consequences of these, particularly on the qualitative behaviour of the
solutions, is the goal of the theory for hyperbolic conservation laws. There is
the notion of genuine nonlinearity and the entropy condition of Lax [23] which
are the generalization of the convexity of the scalar flux f ′′(u) 6= 0 and the
compressibility of the shocks.

For systems of conservation laws, u ∈ Rn, n ≥ 2, there are rich wave
interaction phenomena. The classical works of Glimm [17], Glimm-Lax [18]
study the nonlinear wave interactions and qualitative behavior of the solutions.
There are several subsequent works: DiPerna [12, 13], and Liu [28, 29, 31] on
regularity and large-time behavior. There is the wave tracing technique (Liu
[30]), which yields the more definite form of the principle of nonlinear super-
position and is useful for the study of solution behaviour.

For systems which are not necessarily genuinely nonlinear, there is the
entropy condition of Liu [27]. The qualitative behaviour of the solutions is
richer and more complex; see Liu [31], Cheng [9] and Chern [10].

There are recent important developments in the well-posedness theory.
One theory is based on Bressan [1] on the L1-stability for infinitesimal variation
of the initial data; cf. Bressan-Crasta-Picolli [2]. The other is to construct a
time-decreasing nonlinear functional which is equivalent to the L1-distance of
two solutions (Liu-Yang [38, 39]). One can formulate as an easy consequence
of the well-posedness theory the function class for which the uniqueness theory
holds; cf. [3].

The well-posedness theory is based on Glimm’s construction of solutions
and the study of nonlinear wave interactions (Glimm [17]). Through the wave
tracing mechanism (Liu [31]), the construction of the nonlinear functional
(Liu-Yang [39]) is reduced to the study of the effects of wave coupling between
the solutions on their L1-distance. Central to this study is the introduction
of a generalized entropy functional (Liu-Yang [38]). The generalized entropy
functional makes effective usage of the nonlinearity of the flux and is new even
for the basic inviscid Burgers equation. The idea in Liu-Yang [39] comple-
ments and is orthogonal to the classical work of Glimm [17] on nonlinear wave
interactions in a given solution.
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So far there are two theories for hyperbolic conservation laws. There is
the aforementioned qualitative theory originated with Glimm’s seminal works
and followed up with the recent well-posedness theory. The other theory is the
existence theory base on the theory of compensated compactness, starting with
the work of Tartar [49]. There have been intensive activities on the existence
theory for two conservation laws and some works on large-time behaviors;
cf. [7] and references therein. The solutions obtained by this approach of
compensated compactness have not been shown to possess the nonlinear wave
behavior. As a consequence, the aforementioned well-posedness theory is not
applicable to these solutions.

A fundamental open problem is to study the qualitative behavior of a
general weak solution, not necessarily the one constructed by a particular
method. So far, it is not known, for instance, if a weak solution satisfies such
a basic property of hyperbolic equations as the finite speed of propagation. In
fact, the verification of this would lead to the understanding of the nonlinear
wave interaction property. Ultimately, one hopes to study the wave behaviors,
such as local regularity (cf. [13, 31]), and large-time behavior ([28, 29]) of the
solutions. Sufficient regularity of the solutions would allow the application of
the aforementioned well-posedness theory.

The compactness theory of Glimm-Lax [18] applies to 2 × 2 systems. It
says that solutions with small sup norm but infinite variation norm initial data
become of local bounded variation for any positive time. This is easily seen
for scalar equations; cf. Lax [24]. For 2 × 2 systems, wave interactions are
of third order due to the existence of the coordinates of Riemann invariants.
This makes it possible to generalize the scalar compactness result to 2 × 2
systems. It is not known whether such a strong compactness result holds for
more general systems, such as the full 3× 3 gas dynamics equations.

2. Viscous Conservation Laws

That the role of viscosity is important has been recognized since the time
of Stokes. It is essential in the discussion of the entropy condition for shock
waves. Consider the viscous conservation laws

ut + f(u)x = (B(u, ε)ux)x,

where B(u, ε) is the viscosity matrix. An important example is the Navier-
Stokes equations in gas dynamics

ρt+(ρv)x = 0, (ρv)t = (ρv2+p)x = (µvx)x, (ρE)t+(ρEv+pv)x = (µvvx+κTx)x.

The dissipation parameters ε here are the viscosity µ and the heat conductivity
κ. When the dissipation parameters ε are turned off, the inviscid system
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becomes the hyperbolic conservation laws

B(u, 0) = 0.

When the hyperbolic conservation law is strictly hyperbolic, such as the Euler
equations, a shock (u−, u+) satisfies the entropy condition if and only if it is
the limit of viscous traveling waves

u(x, t) = ϕ(x− st), ϕ(±∞) = u±.

For non-strictly hyperbolic conservation laws, the situation is more com-
plicated and interesting, as we will see later. We mention here that vacuum
in the gas flow gives rise to singularities different from the shocks. In fact,
shocks vanish upon hitting the vacuum [36]. For the interesting and impor-
tant studies of the question of vacuum, see the article of Tong Yang in this
issue.

There has been a substantial progress on the stability of viscous waves for
systems with artificial viscosity

ut + f(u)x = εuxx;

cf. Liu [35], Yu [52], Zumbrun-Howard [55] and the references therein. The
main technique is the pointwise estimate, which yields the solution behav-
ior on and off characteristic directions. It originates from the study of the
perturbation of a constant state; see Liu [33]. The study of viscous contact
continuities remains largely open, though there is the preliminary work of Liu-
Xin [37]. In a forthcoming paper, Yu and the author have succeeded in solving
the Riemann problem (Liu-Yu [42]).

For hyperbolic conservation laws, the Riemann problem

u(x, 0) =

{
u` , x < 0
ur , x > 0

has the simple scaling and the solution is a function of x/t, u(x, t) = ϕ(x/t).
The viscous conservation laws do not have such simple scaling. For small
time, the scaling is that of linear parabolic equations. The intermediate time
is characterized by the hyperbolic scaling. The large-time contains a subtle
logarithmic scaling as the result of interaction of rarefaction and compres-
sion waves. This simple problem thus yields rich wave phenomena. By simple
scaling, the large-time behaviour of the Riemann solution is also the zero dissi-
pation limit. The zero dissipation limit is an important problem and has been
studied only for local time when the shocks are isolated (Goodman-Xin [19],
Yu [52]). It is important to consider the solution of the viscous conservation
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laws when the dissipation ε is nonzero but small. The compensated compact-
ness approach yields zero dissipation limit for particular 2×2 systems, though
without qualitative understanding of the solutions.

For physical systems, the viscosity matrix B(u, ε) is in general degenerate
and the viscous conservation laws are not uniformly parabolic, but hyperbolic-
parabolic. There is the basic energy method for the dissipation about a con-
stant state (Kawashima [20]). One interesting consequence of the hyperbolic-
parabolic nature of the system is that the Green function for the linearized
system contains δ-functions. This and the pointwise study of the diffusion
waves can be found in Liu-Zeng [43]. Much remains to be done for the study
of nonlinear waves for the physical viscous conservation laws.

The situation becomes more complicated when the inviscid system is not
strictly hyperbolic. An important case concerns the intermediate shocks for
magneto-hydrodynamics; cf. Freistuhler-Liu [15]. There is also the example
of combustions. Waves which are more compressive than the classical gas dy-
namics shocks are physical only as viscous waves and not as inviscid waves.
Thus the intermediate shocks are stable only if the perturbation is small com-
pared to the strength of the dissipations. Waves less compressive depend, in
both thier existence and structure, sensitively on the form of dissipations. For
instance, the weak detonations and deflagrations in the combustions cannot
be described by the inviscid theory of Chapman-Jouget; cf. [11]. For these
nonclassical shocks, see Liu [34] and the references therein. So far these waves
are studied only for simplified systems and their study for the whole physical
systems remains to be done.

3. Shock and Reaction-Diffusion Waves

Shock waves are one kind of nonlinear waves. Two other important classes
of nonlinear waves are dispersion waves and reaction-diffusion waves. It is, of
course, important to relate these distinct classes because a general physical
situation often exhibits waves of mixed types. For the study of the limit of
the dispersve equations to hyperbolic conservation laws, see Lax-Levermore-
Venakidis [22]. We now illustrate with an important physical situation of
combustions, which relate the shock waves with reaction-diffusion waves.

There are two classes of combustion waves in gas: the high-speed detona-
tion waves and low-speed deflagration waves. The strong detonation wave is
led by a gas dynamics shock, which raises the temperature beyond the ignition
point, and is then followed by a reaction zone. Thus the strong detonation
wave is dominated by the shock wave. The weak detonation wave is supersonic
and precedes gas dynamics waves. Thus it is a reaction-diffusion wave. The
slow-speed weak deflagration wave is usually studied by the reaction-diffusion
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equations. This is done by assuming that the underlying gas flow is given and
not affected by the reaction.

To study the combustion waves in gas, there is the classical Chapman-
Jouget inviscid theory (Courant-Friedrichs [11]). The theory is adequate for
the strong detonations. To study the weak detonations and weak deflagra-
tions, the role of diffusions becomes important. In fact, the existence of these
waves depends sensitively on the dissipation parameters, a common feature
of undercompression waves [34]. There is analysis of weak detonations for a
simple model of Rosales-Majda [46] in Liu-Yu [41]. As indicated above, the
analysis necessarily contains thinking of reaction-diffusion waves. The chemi-
cal nonlinearity is more important than the gas dynamics nonlinearity for the
stability analysis.

The simplest realistic physical model for the gas combustions is the reactive
Navier-Stokes equations. It would be interesting to study the stability of weak
detonations and weak deflagrations for the reactive Navier-Stokes equations.
Besides the reaction- diffusion nature of these waves, one needs also to consider
the interactions with the gas dynamics waves as mentioned in the last section.
The combustion waves for the reactive Navier-Stokes equations have been
constructed in Gasser-Szmolyan [16].

4. Conservation Laws and Dynamics Systems

The rich theory for ODE, e.g., KAM theory and chaos, has begun to have
impact on nonlinear PDEs. There are, for instance, works on semilinear wave
equations. For conservation laws, there are interesting works for scalar conser-
vation laws using the ideas from dynamics systems, e.g., [14, 47]. One property
of the scalar equation, which is essential for these analyses, is the maximum
principle. For systems, the maximum principle cannot hold due to nonlinear
wave interactions. Clearly, rich phenomena await to be discovered for the sys-
tem of conservation laws with sources. Possible topics include the study of
time-periodic solutions, the KAM-type behavior and so forth. We mention
here a recent work where the small divisor problem arises in the study of dis-
crete traveling waves (Liu-Yu [40]). Consider the conservative finite difference
scheme for the hyperbolic conservation laws

un+1 − un(x)
∆t

=
F [un] (x + 1

2∆x)− F [un](x− 1
2∆x)

∆x
,

where un(x) approximates u(n∆t, x) and the functional F [u] satisfies F [ū] =
f(ū) for any constant function ū. We have in mind the basic schemes such
as the Lax-Friedrichs and Godunov schemes. It is well-known that discrete
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systems are harder than the corresponding continnum systems. To gain basic
understanding, [40] considers the traveling waves for the difference schemes.
For the continuous PDEs, the speed s of a wave can always be made zero
through a change of independent variables x and t. For the discrete systems,
however the C-F-L speed s∆t/∆x is an important variable. If it is rational,
then the wave repeats itself after finite steps. For scalar equations, it has
been shown that the traveling waves exist and behave similar to the viscous
shocks. For systems, there is the striking dependence of the wave shape on
the Diophantine property of the C-F-L speed. This is due to the interaction of
waves of different characteristic families, which yields the small divisor prob-
lem. In [40] it is shown that waves whose speeds are Diophantine exist and are
nonlinear stable, but with tail behaviour different from viscous shocks. This
singular behaviour is only begun to be understood and consistent with careful
numerics. We don’t know what happens when the Diophantine property of
the wave speed becomes weaker. Deeper understanding requires ideas from
discrete dynamics systems.

5. Multi-Dimensional Gas Flows

Much of the deep works that have been done for systems of hyperbolic
conservation laws are for one space dimension. There are studies of partic-
ular solutions for the compressible Euler equations in more than one space
dimensions

ρt +
m∑

j=1

(ρvj)xj (ρvi) +
m∑

j=1

(ρvivj)xj + pxi

= 0, i = 1, 2, . . . , m, (ρE)t +
m∑

j=1

(ρEvj + pvj)xj = 0.

The classical book of Courant-Friedrichs [11] is still the good source for these.
Self- similar solutions have been constructed; see also Zhang-Zheng [54]. One
characteristic of such a solution is that the gas flows around a solid bound-
ary. The solid boundary, the obstacle, has simple geometrical property and
defines the flow. The obstacle also helps to stablize the flow and allows for
interesting global wave patterns. Examples include spherical waves pushed
by an expanding piston and three-dimensional flow around a cone. It would
be interesting to study the nonlinear stability of these self-similar flows. For
two-dimensional sursonic stationary flows one may view one space dimension
as time. The situation is then like one space dimension and methods such as
the random choice method can be used for stablity study.
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There are two works on three-dimensional flow around a cone. For straight
cone, the flow is self-similar [11]. There is the linearized approach for the study
of the flow when the tip of the cone is perturbed (Chen [8]). The Euler equation
is singular near the tip and there is delicate analysis of closure in the iterations.
The global stability when the cone, away from the tip, is perurbed is done in
Lien-Liu [26] using the locally self- similar flows as building blocks in the
approximation. The approach is nonlinear and global because one chooses as
building blocks the self-similar flows, which represents the far field behaviour
of the flow.

There is the local existence of shock propagation based on the linear theory;
cf. Majda [44].

To mimic the one-dimensional theory and try to study the general flow
without the boundary may not be realistic. In particular, the multi-dimensional
Riemann problem is hard, even though the solution is self-similar u(x, t) =
φ(x/t), which reduces the dimension of independent variables by one (Li-
Zhang-Yang [25]). The resulting Euler equations are then of mixed types.
Nonlinear equations of mixed types are involved when one tries to resolve the
so-called von Neumann paradox on the transition from regular reflection to
Mach reflection in the gas flow around the ramp [11]. So far the only analysis
is about the algebraic studies of local wave patterns. Fully nonlinear PDE
approach is needed for the resolution of the difficult transition problem.

6. Microscopic Models

Shock waves are singular, stable occurring in compressible media. It is
irreversible. These characteristics make it an interesting and necessary task
for study, particularly when the model contains dissipation more general than
the viscosity. This is so for the Boltzmann equation and various kinetic models.
There are also the particle interacting models, where the dissipation usually
comes from the randomness.

One such model is the relaxation model. For a basic study of the simple
model of a conservation law and a rate equation

vt + f(v, w)x = 0, wt + g(v, w)x = (W (v)− w)/ε,

see Liu [32]; see also Chen-Levermore-Liu [6] for more general systems. Many
kinetic models are of relaxation type [5, 51]. Basic understandings are gained
by comparing the relaxation model with the viscous conservation laws obtained
through the Chapman- Enskog expansion ([32, 6], Zeng [53]). This approach
has the shortcoming that the partial dispersive nature of the models is not
considered. It would be nice to study the difference between the relaxation
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model and the associated viscous conservation laws, such as the existence of
subshocks in a smooth traveling wave [32, 51].

The Boltzmann equation is dissipative as seen from the Chapman-Enskog
expansion relating it to the Navier-Stokes equations [5]. However this is so
only for large time when waves are sufficiently spreading out. There are works
on the Boltzmann shocks, the traveling waves, based on the perturbation from
the Navier-Stokes shocks. Such a perturbation method has been successful in
dealing with dissipation waves in the time-asymptotic region (Nishida-Imai
[45]). For strongly nonlinear soluitons such as the shocks, the method fails
to obtain the physical shocks [4]. One needs to come up with a fully nonlin-
ear method for the Boltzmann equation, different from those effective for the
viscous conservation laws.

There are progresses in recent years on the macroscopic limits for the
interacting particle systems with randomness; cf. Varadhan-Yau [50]. The
idea is the sophisticated central limit theorem that works for the situation
when the macroscopic solutions, those of the compressible Euler equations,
are smooth. It would be interesting to consider the situation when the Euler
solutions contain shocks. Again, more nonlinear thinking is needed.
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