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ABSTRACT
In this paper, we consider the problem of side-informed cod-
ing in applications where the data available at the encoder
consists of indirect noisy observations of the signal desired
at the decoder. In these scenarios, under Gaussian statis-
tics we show that for a mean-squared distortion metric, the
side-informed encoding problem can be decomposed into a
“side-informed” minimum mean-squared error (MMSE) es-
timation followed by side-informed coding of the MMSE
estimate, without incurring any rate-distortion penalty. By
recursively exploiting this decomposition, we develop a se-
quential framework for side-informed coding in multi-sensor
networks, where each sensor observes linear noise-corrupted
measurements. We construct a practical realization of this
encoder using a Karhunen-Loéve transform with 1-D scalar
coset codes. Simulations demonstrate that simple code con-
structions based on the estimate-then-code partitioned struc-
ture provide improvements over their counterparts that per-
form the encoding directly without a pre-processing estima-
tion step.

1. INTRODUCTION

In this paper, we consider the problem of side-informed cod-
ing where the data available at transmitters consists of indi-
rect noise-corrupted observations of the desired signal at the
decoder. Under Gaussian statistics and a mean-squared-error
distortion criterion, we demonstrate that without incurring a
rate-distortion penalty the encoder may be decomposed into
two stages comprising of a “side-informed” minimum mean-
squared error (MMSE) estimation followed by side-informed
coding of the MMSE estimates. This generalizes the anal-
ogous result of Sakrison [1] for the non-side-informed sce-
nario. The decomposition paves the way for the development
of side-informed coding methods for our scenario, where the
encoder is structured in the aforementioned two stage fash-
ion, consisting of a first side-informed estimation stage that is
followed by Wyner-Ziv encoder constructions developed for
scenarios where the observations are noise-free. By recur-
sively exploiting the decomposition, we extend our method-
ology to the multi-sensor scenario leading to a sequential es-
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timation and coding scheme. A realization of the sequential
encoding system is developed by using the side-informed es-
timation (based on the decomposition) in conjunction with a
simple side-informed coder consisting of a Karhunen-Loève
transformation (KLT) and 1-D scalar quantization with mem-
oryless cosets [2].

2. A DECOMPOSITION FOR SIDE-INFORMED
CODING OF NOISY OBSERVATIONS

We begin with the model shown in Fig.1. Two observations
y0 and y1 pertaining to a vector x are recorded, the first lo-
cally at a central processor (CP) and the second at a remote
node (RN). The RN is connected to the CP by a channel over
which R bits can be communicated noiselessly. The RN en-
codes its measurement y1 as a message m that is communi-
cated to the CP over the channel, where without loss of gen-
erality we assume that m ∈ {1, 2, . . .2R} so as to satisfy the
channel rate constraint. The receiver utilizes the local sen-
sor measurement y0 and the message m from the RN in a
“Decoder” to obtain an estimate X̃ = x̃m(y0) of the vector
x. The resulting mean-squared distortion for the decoder is
D = E[||X− X̃||2], where the upper-case symbols represent
the random variables for which the corresponding lower-case
symbols are sample realizations, both being bold when these
correspond to vectors1. For this scenario, the rate distortion
function R(D) represents the infimum of the channel rates for
which a mean-squared distortion less than or equal to D can
be achieved in the system of Fig.1, where it is assumed that
the encoding may be performed over arbitrarily long blocks
of iid observations and the rate is assumed to be amortized
over the number of blocks in this process. The rate-distortion
function thus establishes an upper-bound on the performance
of side-informed coding methods.

In order to accomplish our desired decomposition, we
consider an encoding/decoding scheme in the framework of
Fig.1, defined by an encoder mapping y1 → m

def
= m(y1)

and a decoder mapping function x̃m(y0). The mean-squared
distortion for encoder-decoder chain is given by

D = E
[
||X− X̃||2

]
= E

[
‖X− x̃M (Y0)‖

2
]

(1)

1We adopt this convention throughout this paper.
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Fig. 2. Sensor observation coding in the presence of decoder side-information: Encoder and Decoder are decomposed into side-informed Estimation and
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Fig. 1. Sensor observation coding in the presence of decoder side-
information: Single stage Encoder and Decoder.

This mean-squared distortion may be expressed in an al-
ternate form as

D =

∫
E

[∥∥X− x̃m(y1)(Y0)
∥∥2
| y1

]
fY1

(y1)dy1 (2)

where fY1
() denotes the probability density function of the

random vector Y1. It follows that the optimum encoding for
the observation vector y1 is

m∗(y1) = argmin
k∈{1,2,...2R}

E
[
‖X− x̃k(Y0)‖

2 | y1

]
(3)

We assume (without loss of generality) that this encoder is
utilized at the RN in the system of Fig.1 and show that we can
construct a corresponding partitioned encoder in the structure
of Fig.2, where the latter has an expected distortion value that
is no larger than D. For this purpose, we denote by x̂(y0,y1)
the minimum mean-squared error (MMSE) estimate for X

obtained from the observation y0,y1 (in the absence of any
other information). We note that x̂(y0,y1) = E [X | y0,y1].
Now in terms of this notation, for any k ∈ {1, 2, . . . , 2R}, we
can write

E
[
‖X− x̃k(Y0)‖

2 | y1

]

= E
[
‖X− x̂(Y0,y1)‖

2 | y1

]

+E
[
‖x̂(Y0,y1)− x̃k(Y0)‖

2 | y1

]
(4)

where (as in [1]) we have used the orthogonality property
of the MMSE estimators that ensures the prediction error
(X − x̂(Y0,y1)) is orthogonal to any function of the pre-
dictor inputs. Using (4) in (3), and observing that the first
term in (4) is a constant independent of k and the optimal

selection rule (3) can be instead be formulated as:

m∗(y1) = argmin
k∈{1,2,...2R}

E
[
‖x̂(Y0,y1)− x̃k(Y0)‖

2 | y1

]

(5)
Under joint Gaussian assumption, we have

x̂(Y0,y1) = x̂(Y0) + x̂(y1 − ŷ1(Y0)) (6)

Furthermore, under the assumption of joint Gaussian statis-
tics, the MMSE estimator is a linear operator. We denote
by Axs the estimator from S

def
= (y1 − ŷ1(Y0)) to x, then

x̂(y1 − ŷ1(Y0)) = Axsy1 −Axsŷ1(Y0). Note that S can
be viewed as the innovation in Y1 given Y0 and Axs can be
viewed as a “side-informed” estimator of x from y1 given y0.
Now (5) can be rewritten as:

E
[
‖x̂(Y0,y1)− x̃k(Y0)‖

2 | y1

]

= E
[
‖V − ṽk(Y0)‖

2 | v
]

(7)

where v
def
= Axsy1 and

ṽk(Y0)
def
= x̃k(Y0)− x̂(Y0) + v̂(y0) (8)

where v̂(y0) = Axsŷ1(Y0) is the MMSE estimate of v from
y0. The decoding rule ṽk(·) can be viewed as a side-informed
decoder for v, using y0 as side information, induced by the
corresponding side-informed decoding rule x̃k(·). Compar-
ing (8) and (3) we see that the optimum encoding rule for v

(with y0 as side information) also defines the optimal encod-
ing rule for y1 (with y0 as side information). Next consid-
ering the the decoder for the former problem, and observing
that w

def
= v̂(y0) is trivially a sufficient statistic of y0 for es-

timating v, we see that the optimal encoding and decoding
rules for encoding of v with w as side information also de-
fine optimal encoding and decoding rules for v with y0 as
side information. For the optimal decoder thus

E
[
‖V − ṽk(Y0)‖

2 | v
]

= E
[
‖V − ṽk(W)‖2 | v

]
(9)

From (7) and (9), these induce the corresponding opti-
mal encoder and decoder for our original problem of Fig.1.
This establishes that the decomposition shown in Fig.2 can
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Fig. 3. Detailed encoding and decoding structure for the scenario described
in Fig.1

be accomplished without any rate distortion penalty. We ob-
serve that the side-informed encoding problem in Fig.2 cor-
responding to the scenario where at the decoder, v is to be
encoded where w = v+nv is available at the decoder, where
nv

def
= w − v = v̂(y0) − v. This is the form of the well

researched side-informed coding problem [3, 2, 4].
The decomposition of Fig.2 relies specifically on the

Gaussian statistics and mean-squared distortion metric and
therefore does come at the loss of some generality with re-
spect to the Wyner-Ziv setting which applies to a broader class
of distortion measures. Also note that since the decomposi-
tion of Fig.2 is in fact a specific instance of the general side-
informed coder in Fig.1, the former cannot offer an improve-
ment in rate-distortion performance over the latter. The de-
composition of Fig.2 is useful nonetheless because it provides
a structure in which practical codecs may be constructed for
scenarios involving indirect and noise-corrupted sensor obser-
vations using side-informed encoder designed for the noise-
less case.

For jointly Gaussian signals we have x̂(y0) =
RXY0

R−1
Y0

y0, ŷ1(y0) = RY1Y0
R−1

Y0
y0 and Axs =

RxsR
−1
s , where Rab = E

[
abT

]
denotes cross-covariance

of random vectors a and b and Ra = E
[
aaT

]
denotes auto-

covariance of a. The partitioned decoder of Fig.2 takes the
specific form shown in Fig.3.

The decomposition above had an interesting interpretation
by virtue of its analogy with the Kalman filter [5], which we
will demonstrate by considering the situation as if the RN also
shared the side information y0 that is available only at the
CP and regarding the observations y0 and y1 as sequential
observations.

3. MULTI-SENSOR SCENARIO: A SEQUENTIAL
APPROACH

The Kalman filter analogy of the preceding section suggests
a sequential extension of the estimate-then-encode framework
developed in the preceding section for multi-sensor scenarios.
We consider a multi-sensor network as illustrated in Fig.4. A
set of N RNs are deployed to estimate a desired signal x, the
sensor at the ith RN records the measurement yi, which it

(local noisy observation)(noisy sensor observation)

Central Processor(CP)Remote Nodes(RN)

Encoder

Encoder

Encoder

Decoder x̂

y1

y2

yN

y0 = H0x + n0yi = Hix + ni

Rate ≤ R

Channel

Fig. 4. Generalization of the single-sensor scenario described in Fig.1,
observations from N sensors are to be encoded

pre-processes and transmits over the channel to the decoder.
The decoder utilizes the messages it receives from the RNs
along with its own local measurement y0 to estimate x. If
we assume that the encoded sensor observations arrive in se-
quence (for instance, if the sensors are ordered in increas-
ing hop distance from the decoder), the received information
from the lower ordered sensors may be considered as part of
the side information for subsequent (higher-ordered) sensors.
The estimation and coding at these sensors can therefore be
performed sequentially through a recursive exploit of the de-
composition of Section 2.2

For our specific development we assume all observations
are modeled as linear measurements corrupted by additive
noise yi = Hix + ni, where Hi is a linear observation ma-
trix and ni is additive noise which is assumed to be indepen-
dent of x. x,ni are assumed to be jointly Gaussian. The
linear observation model in absence of noise has been pre-
viously considered in [3, 6]. We assume y0 is available at
the decoder initially and an MMSE estimate of x from y0 is
obtained as x̂0 with prediction error t0

def
= x − x̂0. When

y1 is observed, the pre-processed observation v1 = A1y1

is decoded as ṽ1 provided the side information v̂1 = A1ŷ1,
where A1 = Rxs1R

−1
s1

, s1 = y1 − ŷ1 represents the in-
novation, ŷ1 = H1x̂0 denotes the MMSE estimate of y1

from y0. In the last stage the estimate of x is generated by
x̃1 = x̂0 + ṽ1 − v̂1 and the estimation error is t1 = x− x̃1.
The encoding and decoding for y0 reflects the process illus-
trated in Fig.3.

To generalize the analysis to subsequent sensors, we de-
note the estimate by the first k observations as x̃k, when
yk+1 is observed, the innovation can be represented as:
sk+1 = yk+1 − Hk+1x̃k, and the pre-processed observa-
tion vk+1 = Ak+1yk+1, where Ak+1 = Rxsk+1

R−1
sk+1

yk+1.
vk+1 is received as ṽk+1 provided the side information
v̂k+1 = Ak+1ŷk+1. The estimate of x is updated by
x̃k+1 = x̃k + ṽk+1 − v̂k+1, resulting an estimation error
tk+1 = x − x̃k+1. We use {Ki}N

i=0 to denote the auto-

2In actuality the CP receives only a quantized version of the information
recorded at previous sensors. In our development, however, we ignore the
impact of quantization error.
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covariance of {ti}N
i=0, and it can be shown that

Ak+1 = KkH
T
k+1(Hk+1KkH

T
k+1 + Rnk+1

)−1

Kk+1 = Kk −Rxsk+1
R−1

sk+1
Rsk+1x

= Kk −KkH
T
k+1(Hk+1KkH

T
k+1 + Rnk+1

)−1Hk+1Kk

Ak+1,Kk+1 will be used for the processing of next avail-
able sensor.

The pre-processed signal vk is transmitted by a side-
informed Wyner-Ziv codec using v̂k = Akŷk, equivalently
represented by wk = vk + nk, as the side information. Note
that the noise contained in the side information nk = Aksk,
whose auto-covariance matrix can be represented as Rnk

=
Rxsk

R−1
sk

Rskx. For the purpose of noise-whitening, we use
a KLT based transform code [7]. The transform matrix, UT

k ,
is generated by the KLT of Rnk

:

UkΛkU
T
k = Rnk

Uk is correspondingly applied to vk and wk. The noise-
whitened observations are encoded by 1-D scalar quantization
with memoryless cosets [2] in our simulations. The readers
are referred to [3, 2, 4] for a detailed description of various
implementations of Wyner-Ziv codec.

4. IMPLEMENTATION AND SIMULATION
RESULTS

In our simulations, we set the maximum number of RNs as
N = 3. We consider a 4 × 1 signal vector x with Toeplitz
auto-covariance matrix Rx with

[
1, ρ, ρ2, ρ3

]
as the first row,

where ρ = 0.8. The measurement matrices Hi are generated
with i.i.d random coefficients each distributed as N (0, 1).
Observation noises ni are i.i.d N (0, σ2) random variables.
Different values of σ are considered in order to evaluate the
proposed coding scheme under high noise and low noise
regimes. We use 1-D scalar quantization and memoryless
coset code [2] in our implementation of the side-informed en-
coder and decoder. We assume a uniform allocation of the
total available rate between the RNs. The available rate at
an individual RN is distributed over the channels in its KLT
based coder using a simple greedy heuristic briefly summa-
rized in Table. 1, which assumes a 6 dB reduction in distortion
for the channel, per allocated bit.

Inputs:
Total available bit rate R

Transform channel variances: {σ2
k, k = 1, 2, . . . , M}

Initialization:
Bit rates {rk = 0, k = 1, 2, . . . , M}
idx = 0

Iterations:
while ( idx< R )

i = arg max σk, k = 1, 2, . . . , M
σi = σi/2

idx = idx + 1
endwhile

Table 1. Simple rate-allocation heuristic based on a 6 dB reduction in
distortion per allocated bit

Figure 5 presents simulation results comparing the rate
distortion performance of different encoder constructions.
These comparisons illustrate the practical utility of the pro-
posed estimate-then-encode framework. In each of the sub-
figures in Fig.5, the abscissa is the average bit rate per RN
and the ordinate is the decoder MSE distortion, expressed in
dB as 10log10

E‖x−x̃‖2

E‖x‖2 . All results presented represent aver-
ages over 200 Monte Carlo simulations. Since the full rate-
distortion behavior of the problem (which is commonly re-
ferred to as the CEO problem [8]) is an open problem thus
far [9], we use a looser, though more readily computable,
lower bound on the distortion as our benchmark, i.e. the
MSE of E(x | {yi}N

i=0) which is the MMSE estimate when
the observations are all available locally at the central pro-
cessor. These lower bounds are represented in Fig.5 by the
three horizontal dashed lines (respectively in the order going
from upper to lower). We define the measurement SNR in
dB for the ith sensor as 10log10

E‖Hix‖
2

E‖ni‖2 = 1
σ2

i
and utilize a

value of σ2
i = 0.05 ≡ 13dB for the high SNR regime and

σ2 = 1 ≡ 0dB for the low SNR regime.
Figure 5(a) compares the performance of the proposed

estimate-then-encoder (E-E) as described in Section 3 with
and without a side-informed coder for the high SNR regime.
We show the benefit of side-informed coding by comparing
it with conventional coding where signals are quantized by a
probability density function (pdf) optimized Lloyd-Max [10]
quantizer. We observe side-informed coding always offers
better performance. In particular, when R = 3, the improve-
ment is about 2dB when 3 sensor observations are available.
In high rate regimes (R ≥ 5 ), both coding scheme approach
the lower bound defined earlier.

To illustrate the benefit that the proposed “side-informed”
estimate can offer as a pre-processing technique for practi-
cal side-informed coding methods, we use our simple side-
informed coder (1-D scalar quantization with memoryless
cosets) and compare the scenarios where the encoder ei-
ther: a) uses the E-E scheme, or b) directly encode (D-
ENC) the sensor observations. In the latter scheme, only the
pre-processing is omitted, however, the side-informed cod-
ing, noise-whitening, and rate allocation all remain the same.
Fig.5(b) shows the simulation results for the high SNR sce-
nario. We observe the proposed E-E scheme outperforms all
the time. With a bit rate R = 3, the improvement is about
0.5dB invariant of number of sensors. As expected, both
schemes converge to the lower bounds in the high rate regime.

Figure 5(c) represents the low SNR regime counterpart
for Fig.5(a) wherein the encoding of pre-processed observa-
tion according to Section 3 is compared for encoders with
and without side information. In this case the results indi-
cate that our simple side-informed encoder constructions are
far from optimal and the non-side informed, pdf optimized
encoder performs better. The high level of noise renders the
side information irrelevant and the pdf optimization therefore
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Fig. 5. Rate-distortion performance for different encoder constructions.
Results are shown for various number of sensors: “×”: 1 sensor; “o”: 2
sensors;“Δ”: 3 sensors. a). HSNR, E-E with (Solid) vs. without (Dashed)
SI. b). HSNR, E-E (Solid) vs. D-ENC (Dashed). Both utilize SI. c). LSNR,
E-E with (Solid) vs. without (Dashed) SI. d). LSNR, E-E (Solid) vs. D-ENC
(Dashed). Both do not utilize SI.

offers better performance than our elementary side-informed
coder. A better design of the Wyner-Ziv codec in this case
would performance comparable to (possibly slightly better)
than the non-side informed approach.

Figure 5(d) examines performance of the E-E scheme in
the low SNR regime. In this case, the encoder for both meth-
ods is the non side-informed encoder since this offered bet-
ter performance in 5(a). The plots clearly show that the E-E
scheme, despite the irrelevance of the SI, offers better perfor-
mance.

5. CONCLUSION

We consider the problem of side-informed coding of sources
whose observations are indirect noise-corrupted observations
of the desired signal at the decoder. We show that under Gaus-
sian statistics, for a mean-squared distortion metric, the side-
informed encoding problem can be decomposed into a “side-
informed” minimum mean-squared error (MMSE) estimation
followed by side-informed coding of the MMSE estimate,
without a degradation in rate-distortion performance. The
decomposition motivates the development of practical side-
informed coding methods for these scenarios. We develop a
sequential scheme for communication of noise-corrupted lin-
ear measurements from multiple sensors to a central proces-
sor by recursively using the decomposition. Simulations per-

formed with a practical encoder implementation combining
this framework with a simple side-informed encoder demon-
strate promising performance: simple constructions based
on the partitioned structure provide improvements over their
counterparts that perform the encoding directly without a pre-
processing estimation step.
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