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Department of Mathematics, University of Turku, 20014 Turku, Finland.
e-mail: ksmato@utu.fi

(Received 3 May 2010; revised 10 March 2011)

Abstract

We consider two problems concerning signs of Fourier coefficients of classical modular
forms, or equivalently Hecke eigenvalues: first, we give an upper bound for the size of the
first sign-change of Hecke eigenvalues in terms of conductor and weight; second, we invest-
igate to what extent the signs of Fourier coefficients determine an unique modular form. In
both cases we improve recent results of Kowalski, Lau, Soundararajan and Wu. A part of
the paper is also devoted to generalized rearrangement inequalities which are utilized in an
alternative treatment of the second question.

1. Introduction

In this paper we study classical modular forms with real coefficients and are mostly in-
terested only in the signs of the Fourier coefficients. We will look for bounds for the size of
the first sign change as well as investigate to what extent the signs of the Fourier coefficients
determine an unique modular form. In both cases we improve recent results of Kowalski,
Lau, Soundararajan and Wu [14]. More background and motivation for the study can be
found from the introduction of their paper. In particular, analogues with Dirichlet characters
are discussed there.

We start by recalling some basic notation and facts about modular forms. For more in-
formation and proofs or proof references, see for example [8, section 5·11 and chapter 14].

For a positive integer N and an even positive integer k, we write H �
k (N ) for the finite

set of all primitive cusp forms of weight k for the Hecke congruence group �0(N ). Each
f ∈ H �

k (N ) has a Fourier expansion

f (z) =
∞∑

n=1

λ f (n)n(k−1)/2e(nz)

in the upper half plane. We only consider forms with trivial nebentypus which ensures that all
Fourier coefficients are real. The Fourier coefficients also satisfy the Ramanujan-Petersson
conjecture |λ f (n)| � τ(n) by the work of Deligne.
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Since we consider only primitive forms, the Fourier coefficients λ f (n) are the normalized
eigenvalues of the Hecke operators Tn . In particular they satisfy the Hecke relation

λ f (m)λ f (n) =
∑

d|(m,n)
(d,N )=1

λ f

(mn

d2

)
(1·1)

for all m, n � 1.
Next we state our result concerning sign changes of eigenvalues. To that end, let n f denote

the smallest integer such that λ f (n f ) < 0 and (n f , N ) = 1. We shall bound the size of n f

in terms of the analytic conductor Q = k2 N by proving the following theorem.

THEOREM 1. Let k � 2 be an even integer and let N be a positive integer. Then, for all
f ∈ H �

k (N ), one has

n f � Q3/8,

where the implied constant is absolute.

The problem of bounding n f has received some recent attention: first Kohnen and Sengupta
[12] showed, in 2006, that

n f � k N (log k)A exp

(
c2

√
log(N + 1)

log log(N + 2)

)

and then they joined forces with Iwaniec in [7] to show that n f � Q29/60. Most recently
Kowalski, Lau, Soundararajan and Wu [14] have shown that n f � Q9/20. In the paper,
they point out that 9/20 should not be the limit of their method; here we will push the
method further to get the significantly better exponent 3/8. Notice that 29/60 ≈ 0.483 and
9/20 = 0.45 while 3/8 = 0.375.

In the proof of Theorem 1 we will show that if n f was at least Q3/8, we would get incom-
patible lower and upper bound estimates for a sum involving Hecke eigenvalues λ f (n). The
same strategy has been used in the previous works on the subject. Of particular importance
is that the authors of [14] showed that the Hecke relation (1·1) allows one to replace λ f (n)

by a step function when considering the lower bound.
In Section 4 we will prove a multiplicity one type theorem. Before stating it we need a

couple of definitions. We say that a subset E of primes has analytic density κ > 0 if and
only if ∑

p∈E

1

pσ
= (1 + o(1))κ

∑
p∈P

1

pσ
= −(1 + o(1))κ log(σ − 1) for σ → 1+.

Notice that this condition is weaker than an assumption that the set E has natural density κ .
Further we say that f ∈ H �

k (N ) is a twist of g ∈ H �
k (N ′) if f = g ⊗ χ for some

(necessarily quadratic) Dirichlet character χ . Here g⊗χ is defined by the Fourier expansion

g ⊗ χ(z) =
∞∑

n=1

χ(n)λg(n)n(k−1)/2e(nz).

If f is a twist of itself, then it is said to have complex multiplication (CM). The behaviour of
Fourier coefficients of forms with CM is different from that of forms without CM.

Now we are ready to state the second theorem.
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THEOREM 2. Let k1, k2 � 2 be even integers and let N1, N2 � 1 be integers. Let f1 ∈
H �

k1
(N1) and f2 ∈ H �

k2
(N2) be forms without complex multiplication. If λ f1(p) and λ f2(p)

have same sign for every prime p except those in a set E with analytic density κ � 6/25,
then f1 = f2.

The argument also readily shows that a proportion 6/25 of signs of Fourier coefficients
of two modular forms must be equal. The proof uses the Sato–Tate conjecture which has
been recently proved by Barnet–Lamb, Geraghty, Harris and Taylor [1]. Without using it the
method here still gives a proportion 3/20.

Kohnen and Sengupta [13] have considered a similar question from a more algebraic point
of view. They showed that, up to an action of a Galois automorphism, the Fourier coefficients
of two different modular forms must have different (and same) signs for infinitely many
integers. However, they did not conclude anything more about the size of this set.

Kowalski, Lau, Soundararajan and Wu [14] proved very recently that Theorem 2 holds for
any κ � 1/32. Notice that 1/32 = 0.03125 while 6/25 = 0.24. In the case one or both of
the forms have complex multiplication, Kowalski Lau, Soundararajan and Wu showed that
the theorem holds with κ = 0 and their method works also for very small positive values of
κ . It would be straight-forward to employ the methods here to widen this range.

We are able to improve the result in [14] by collecting more information about the beha-
vior of the Fourier coefficients (in Section 3) and by utilizing linear programming to take full
advantage of all the available information (in Section 4). In Section 5 we present an altern-
ative approach leading to proportion 1/10. This latter approach is based on a rearrangement
inequality type result (a generalized rearrangement inequality and its proof are discussed in
Section 6).

The new ideas which are introduced while considering Theorem 2 are likely to be useful
also in other contexts. Indeed they readily imply also the following variant of the strong
multiplicity one theorem.

THEOREM 3. Let k1, k2 � 2 be even integers and let N1, N2 � 1 be integers. Let f1 ∈
H �

k1
(N1) and f2 ∈ H �

k2
(N2) be forms without complex multiplication. If

|λ f1(p) − λ f2(p)| � 1/50 (1·2)

for every prime p except those in a set E with analytic density κ � 16/31, then f1 is a twist
of f2.

If one requires that λ f1(p) = λ f2(p) for p � E , then the conclusion holds for any κ < 1, see
Ramakrishnan’s appendix in [4].

Besides the two questions studied here, Kowalski, Lau, Soundararajan and Wu [14] also
introduced and studied another interesting question concerning signs of Fourier coefficients
of modular forms; They asked how many forms f in a suitable family have given signs for
a set of primes p � z, and provided both lower and upper bounds. It would be interesting to
see further progress also on this question.

All theorems here require some numerical computations at the end. More information
about the calculations can be found at http://users.utu.fi/ksmato/papers/signcusp/ or reques-
ted from the author.
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2. Proof of Theorem 1

In this section we prove Theorem 1. Our basic setting is the same as that of [7] and [14].
Assuming that, for some y, the coefficients λ f (n) are positive for all n � y, we will find
lower and upper bound estimates for the sum

S( f, x) =
∑�

n�x
(n,N )=1

λ f (n).

Here x = y4/3 and � restricts the summation to square-free integers. The point is that these
two estimates are incompatible for y = Q3/8.

Following [14], we use the upper bound

S( f, x) � Q1/4+εx1/2+ε, (2·1)

where the implied constant depends only on ε. This estimate follows from the convexity
bound for Hecke L-functions (see [8, formula (5·22)]).

We will prove the following lower bound estimate.

PROPOSITION 4. There exist positive constants c and x0 such that, for x � x0 and y =
x3/4, the following holds. If λ f (n) � 0 for every n � y, then

S( f, x) � cx .

This is incompatible with the upper bound (2·1) if

x1/2+2ε Q1/4+ε � x ⇐⇒ x � Q1/2+ε ⇐⇒ y � Q3/8+ε.

In fact, as we will see, the lower bound holds for y = x3/4−δ for some very small positive δ,
so we can drop ε. Therefore Theorem 1 follows once we have proved Proposition 4.

Proof of Proposition 4 starts with an application of the following lemma which lets us
replace λ f (p) by a step function.

LEMMA 5. Assume that λ f (n) � 0 for every n � y. Let M � 1 be an integer. Then

S( f, x) �
∑
n�x

(n,N )=1

hy(n),

where hy is a multiplicative function supported on square-free numbers with

hy(p) = α(log p/ log y),

where

α(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−2 if t � 1,

2 cos

(
π

m + 1

)
if 1/(m + 1) � t < 1/m for some integer m < M,

2 cos

(
π

M + 1

)
if t < 1/M.

Proof. The lemma follows from arguments in [14, section 2]. A crucial observation there
is that the Hecke relation together with the assumption λ f (pk) � 0 for pk � y imply that,
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for any m ∈ n and p < y1/m with p � N ,

λ f (p) � 2 cos
π

m + 1
. (2·2)

The authors of [14] themselves used the lemma with M = 2, so that hy(p) ∈ {−2, 0, 1}
according to whether p � y, p ∈ [y1/2, y) or p < y1/2. However, they suggested that
taking better advantage of (2·2) would lead to significant improvements on the theorem. In
particular they mention that understanding behavior of certain function β(u) would directly
give an improved result. Here we take up the task of studying (almost) this function.

In our notation σ(u)/u is a close relative of the mentioned β(u). We consider a general-
ization of the situation: We evaluate average of a multiplicative function h(n) supported on
square-free numbers with

h(p) = χ(log p/ log x)

for a step function χ : [0, ∞) → R with

χ(t) = χk when t ∈ [xk, xk+1) for some k = 0, 1, . . . , K .

Here K � 0, 0 = x0 < x1 < · · · < xK+1 = ∞ and χk ∈ R for k = 0, 1, . . . , K .
The following lemma lets us evaluate the sum over h(n) with (n, q) = 1 in terms of σ(u),

the Euler Gamma function � and an Euler product

q,κ =
(

φ(q)

q

)κ ∏
p�q

(
1 − 1

p

)κ (
1 + κ

p

)
� (log log q)−κ .

Notice that the content of the lemma as well as the first part of Lemma 8 can in all essentials
be found (without proofs) already from [14, end of section 2].

LEMMA 6. Let U � 1 and let h(n) and χ(t) be as above with χ0 > 0. Let further q � xU

be a positive integer. Then∑
n�xu

(n,q)=1

h(n) = (σ (u) + oχ,U (1))
q,χ0

�(χ0)
(log x)χ0−1xu

uniformly for u ∈ [1/U, U ]. Here

σ(u) = uχ0−1 +
∞∑
j=1

(−1) j

j ! I j (u) (2·3)

with

I j (u) =
∫

� j

(u − t1 − · · · − t j )
χ0−1

j∏
i=1

(χ0 − χ(ti ))
dt1 · · · dt j

t1 · · · t j

and

� j = {(t1, . . . , t j ) ∈ [0, ∞) j | t1 + · · · + t j � u}.

Proof. We have an inclusion-exclusion type identity

∑
n�xu

(n,q)=1

h(n) =
∑
n�xu

(n,q)=1

χ
ω(n)

0 +
∞∑
j=1

(−1) j

j !
∑

p1···p j �xu

(p1···p j ,q)=1

j∏
i=1

(χ0 − h(pi ))
∑

n�xu/(p1···p j )

(n,q)=1

χ
ω(n)

0 .
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Now the situation is very similar to that in the proof of [15, lemma 4·2] (see also Re-
mark 9 below). Removing the conditions (p1 · · · p j , q) = 1 leads to an admissible error
O(xu−x1+ε). Writing lq = exp(C(log log q)2) (where C is a large positive constant), the
products p1 · · · p j ∈ [xu/ lq, xu] contribute � xu(log x)χ0−1((log log q)eχ0+2/ log x)χ0 .

We can apply [15, lemma 4·1] to all remaining sums over n getting that∑
n�xu

(n,q)=1

h(n)

= q,χ0

�(χ0)
xu

⎛
⎝(log xu)χ0−1 +

∞∑
j=1

(−1) j

j !
∑

p1···p j �xu/ lq

j∏
i=1

(χ0 − h(pi ))
(log xu

p1···p j
)χ0−1

p1 · · · p j

+oU,χ ((log xu)χ0−1)

⎞
⎠ .

The claim follows using the prime number theorem to change the sums to integrals and
substituting p j = xα j .

Remark 7. Like [15, lemma 4·2], the previous lemma holds if the assumption q � xU

is replaced by the weaker assumption x � exp(C(log(ω(q) + 3))eχ0+4) for a suitable large
constant C = C(U, χ).

The following lemma gives σ(u) in a form from which its values can be computed effect-
ively.

LEMMA 8. The function σ(u) defined by (2·3) is also the unique solution of the integral
equation

uσ(u) =
∫ u

0
σ(t)χ(u − t)dt (2·4)

with the initial condition σ(u) = uχ0−1 for u ∈ (0, x1].
It is also the unique continuous solution of the differential-difference equation (with the

same initial condition)

(u1−χ0σ(u))′ = − 1

uχ0

K ′∑
k=1

σ(u − xk)(χk−1 − χk) when u � {x2, x3 . . . , xK }. (2·5)

Here K ′ � K is such that xK ′ < u but xK ′+1 > u.

Proof. The proof of the first part is in all essentials similar to the proof of [6, theorem 3.3]
(see [6] also for a detailed study of averages of multiplicative functions and their relation to
such integral equations). For the second part, write, by (2·4),

uσ(u) =
K ′−1∑
k=0

χk

∫ u−xk

u−xk+1

σ(t)dt + χK ′

∫ u−xK ′

0
σ(t)dt.
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Differentiating both sides with respect to u we get

σ(u) + uσ ′(u) =
K ′−1∑
k=0

χk(σ (u − xk) − σ(u − xk+1)) + χK ′σ(u − xK ′)

= −
K ′∑

k=1

σ(u − xk)(χk−1 − χk) + χ0σ(u).

When χ0 ∈ (0, 1) one has to be a bit careful around 0 while differentiating the last term,
but the initial condition ensures that the above holds. The claim follows now since (1 −
χ0)σ (u) + uσ ′(u) = uχ0(u1−χ0σ(u))′.

The second formulation lets us calculate values of σ(u) recursively since it leads to

u1−χ0σ(u) = (u − δ)1−χ0σ(u − δ) −
K ′∑

k=1

(χk−1 − χk)

∫ u

max{u−δ,xk }
t−χ0σ(t − xk)dt (2·6)

for any u > x1 + δ, δ > 0. Taking small δ and estimating the integral using the rectangular
rule, one can estimate σ(x1 + kδ) for k = 1, 2, . . . .

We take χ = α as in Lemma 5, so that K = M, χ0 = 2 cos(π/(K + 1)),

xk = 1/(K − k + 1) and χk = 2 cos(π/(K − k + 1)) for k = 1, 2, . . . , K .

We write γ (u) = u1−χ0σ(u) and let u0 be its first zero. Then, for u � u0 +1/K , the function
γ (u) is decreasing by (2·5), so that by (2·6) on this range

γ (u − δ) −
K ′∑

k=1

δk(χk−1 − χk)(u − δk)
−χ0(u − xk)

χ0−1γ (u − δk − xk)

� γ (u) � γ (u − δ) −
K ′∑

k=1

δk(χk−1 − χk)u
−χ0(u − δk − xk)

χ0−1γ (u − xk),

where δk = min{δ, u − xk}. Taking K = M = 100 and using this to calculate upper
and lower bounds for σ(u), we see that σ(4/3) > 0.008. Hence by Lemmas 5 and 6 we
get

S( f, x) �
∑
n�x

(n,N )=1

hy(n) � cx

for large enough x and a positive constant c, so that Proposition 4 holds. As noticed after
stating the proposition, this also finishes the proof of Theorem 1.

We are able to determine the limit of the current method very accurately: Again with
M = 100, we have σ(1.3434) > 0, so that our method indeed gives that n f � Q1/(2·1.3434) �
Q0.3722. On the other hand defining α�(t) as α(t) but letting it optimistically be 2 for t <

1/100, we get a function σ � which has its first zero by 1.344. This shows that the current
method is incapable to show that n f � Q0.372. Using a subconvexity bound would slightly
push the limit: Michel and Venkatesh [17] have recently proved that one can replace 1/4+ ε

in (2·1) by η for some η which is slightly smaller than 1/4.

Remark 9. In earlier versions of this paper we proved a slightly weaker result n f � Q2/5

using a different decomposition. We used Lemma 5 with M = 4 and wrote
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n�x

(n,N )=1

hy(n) �
∑
m�x

p|m =⇒ p�y1/4

(m,N )=1

hy(m) +
∑

y1/4<p1�y1/2

hy(p1)
∑

m�x/p1

p|m =⇒ p�y1/4

(m,N )=1

hy(m)

+
∑

y1/4<p1<p2�y1/2

hy(p1 p2)
∑

m�x/(p1 p2)

p|m =⇒ p�y1/4

(m,N )=1

hy(m)

− 2
∑

y<p1�x

∑
m�x/p1
(m,N )=1

hy(m) + O(N ε y).

Here one encounters sums of |µ(m)|χω(m)

0 with m ranging over friable integers co-prime to
a large integer N . Evaluating them and using standard arguments one ends up with multiple
integrals involving a generalized Dickman function.

The extra difficulty arising from the co-primality condition in these sums over m was over-
looked in the first version of this paper, but Lau, Liu and Wu [15] proved the needed asymp-
totics when they adapted this kind of decomposition to show that nSym2 f � (k2 N 2)40/113,
where 40/113 ≈ 0.354. This result could be improved to nSym2 f � (k2 N 2)0.31 by incorpor-
ating arguments from this section to [15]. The exponent 0.31 is also essentially the limit of
the method.

3. Collecting information about λ fi (p)

In this section we will briefly look at implications of Rankin–Selberg theory and functori-
ality results getting information about the Fourier coefficients λ fi (p). This information will
be used in next section to prove Theorems 2 and 3.

Consider two non-CM cusp forms f1 ∈ H �
k1
(N1) and f2 ∈ H �

k2
(N2). By Ramakrishnan’s

theorem [19, theorem M], there is a cuspidal automorphic representation π on GL(4)/Q

such that the Rankin–Selberg L-function L( f1⊗ f2, s) = L(π, s). Furthermore, for h = 2, 3
or 4, there is a cuspidal automorphic representation πi (h) on GL(h + 1)/Q such that the
symmetric power L-function L(Symh fi) = L(πi(h), s). The case h = 2 goes back to
Gelbart and Jacquet [5] and the cases h = 3 and h = 4 are work of Kim and Shahidi
[9, 10, 11].

Let now

g1, g2 ∈ { f1, f2, f1 ⊗ f2} � {Symh fi | 2 � h � 4, 1 � i � 2}.
Then, by Mœglin and Walspurger [18], cuspidality and automorphy of gi implies that L(g1⊗
g2, s) is entire unless g1 = g2 (by which we mean that the corresponding representations are
on the same GL(n)/Q and are equivalent) in which case it has simple poles at s = 0 and
s = 1. Furthermore L(g1 ⊗ g2, 1)� 0 (see [8, exercise 4 in section 5·4]).

The coefficients of the hth symmetric power L-function at primes are λ f (ph) =
Uh(λ f (p)), where Uh is the hth Chebyshev polynomial, so that

U0 = 1, U1 = x, U2 = x2 − 1, U3 = x3 − 2x, U4 = x4 − 3x2 + 1,

U5 = x5 − 4x3 + 3x, U6 = x6 − 5x4 + 6x2 − 1, and U8 = x8 − 7x6 + 15x4 − 10x2 + 1.

These facts imply the following lemma which tells us what partial information we have
towards the pair Sato–Tate conjecture.
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LEMMA 10. Let h1, h2 ∈ {1, 2, 3, 4} or {h1, h2} = {1, 5}. Then, if f1 is not a twist of f2,
one has∑

p∈P

Uh1(λ f1(p))Uh2(λ f2(p))

pσ
=

∑
p∈P

λ f1(ph1)λ f2(ph2)

pσ
= O(1) for σ → 1+. (3·1)

Proof. Consider first the case h1, h2 ∈ {1, 2, 3, 4}. The claim follows from the above
unless Symh1 f1 = Symh2 f2. This equality cannot hold for h1 � h2. Furthermore, for h1 =
h2 it does not hold either by [3, proposition 5·1].

Consider then the case (h1, h2) = (5, 1) (the case (h1, h2) = (1, 5) of course follows
from this). By the Hecke relation (1·1) we have

∑
p∈P

λ f1(p5)λ f2(p)

pσ
=

∑
p∈P

(λ f1(p4)λ f1(p) − λ f1(p3))λ f2(p)

pσ

=
∑
p∈P

λ f1(p4)λ f1⊗ f2(p)

pσ
− λ f1(p3)λ f2(p)

pσ
,

and the claim again follows from the discussion before the lemma.

The automorphy and cuspidality of the first four symmetric power L-function implies that
the first eight symmetric power L-functions are holomorphic and non-vanishing at s = 1
(see [10]). Therefore we also have the following:

LEMMA 11. Let h ∈ {2, 4, 6, 8} and i ∈ {1, 2}. Then

∑
p∈P

Uh(λ fi (p))

pσ
=

∑
p∈P

λ fi (ph)

pσ
= O(1) for σ → 1+.

The Sato–Tate conjecture which was recently proved by Barnet–Lamb, Geraghty, Harris
and Taylor [1] gives us more precise information about Fourier coefficient of an individual
cusp form: |λ fi (p)| are equidistributed with respect to a Sato–Tate related measure µ for
which

µ([0, α]) = µST ([arccos(α/2), π − arccos(α/2)])
= 2

π
arcsin(α/2) + 1

π
sin(2 arcsin(α/2))

for any α ∈ [0, 2]. In particular we have the following:

LEMMA 12. For each α ∈ [0, 2],∑
p∈P

0�|λ fi (p)|�α

1

pσ
= (µ([0, α]) + o(1))

∑
p∈P

1

pσ
for σ → 1+.

Remark 13. Like [14], earlier versions of this paper contained and used only special cases
( j1, j2) ∈ {(1, 1), (2, 2)} of Lemma 10. However, after the author gave a talk on Theorem
2 in the Stanford Number Theory Seminar, Professor Soundararajan helpfully suggested
that Rankin–Selberg theory should give more information, which observation is reflected by
Lemma 10 here.
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4. Proofs of Theorems 2 and 3

In this section we prove Theorem 2 and point out the minor change needed for the proof
of Theorem 3. The main assumption of Theorem 2 can be written as λ f1(p)λ f2(p) � 0 for
all primes p � E , where E is a set which has small analytic density κ . We will show that the
information given by Lemmas 10 and 12 is inconsistent if κ � 6/25 and f1 � f2.

Notice first that if f1 was a non-trivial twist of f2, then the Fourier coefficients would have
different signs at least half of the time. Hence we can assume that f1 is not a twist of f2.

Lemma 10 implies in particular that

∑
p∈P

λ f1(p)λ f2(p)

pσ
= O(1) for σ → 1+, (4·1)

so that some cancellation must occur due to sign changes unless |λ f1(p)λ f2(p)| is usually
very small. On the other hand, Lemma 10 together with the Hecke relation (1·1) and Lemma
11 show that ∑

p∈P

(λ f1(p)λ f2(p))2 − 1

pσ
= O(1) for σ → 1+, (4·2)

so that |λ f1(p)λ f2(p)| is not small on average and there must indeed be sign changes.
Kowalski, Lau, Soundararajan and Wu [14] showed that a quick and elegant combination
of these two with Deligne’s bound |λ fi (p)| � 2 leads to the result for κ < 1/32. Here we
take full advantage of all the information gathered in Section 3 to obtain κ � 6/25.

For every l ∈ N, we define a measure µl on P so that

µl(A) =
∑

p∈A p−1−1/ l∑
p∈P

p−1−1/ l
for every A ⊆ P. (4·3)

Let K � 1 be chosen later and, for i, j = 0, 1, . . . , 2K − 1, define

c+
l (i, j) = µl

({
p ∈ P

∣∣∣∣ i

K
� |λ f1(p)| <

i + 1

K
,

j

K
� |λ f2(p)| <

j + 1

K
,

λ f1(p)λ f2(p) � 0

})

and

c−
l (i, j) = µl

({
p ∈ P

∣∣∣∣ i

K
� |λ f1(p)| <

i + 1

K
,

j

K
� |λ f2(p)| <

j + 1

K
,

λ f1(p)λ f2(p) < 0

})
.

In these definitions ‘< (i + 1)/K ’ is to be replaced by ‘� (i + 1)/K ’ when i = 2K − 1 and
similarly ‘< ( j + 1)/K ’ is to be replaced by ‘� ( j + 1)/K ’ when j = 2K − 1. We have

2K−1∑
i=0

2K−1∑
j=0

(c+
l (i, j) + c−

l (i, j)) = µl(P) = 1 (4·4)

for every l ∈ N.
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Further the Sato–Tate conjecture (Lemma 12) gives that for any k = 0, 1, . . . , 2K − 1,

2K−1∑
i=0

(c+
l (i, k)+c−

l (i, k)) = µ([k/K , (k+1)/K ])+o(1) =
2K−1∑

j=0

(c+
l (k, j)+c−

l (k, j)). (4·5)

Recall that Uh(x) denotes the hth Chebyshev polynomial. Let

Mh( j) = max
x∈[ j/K ,( j+1)/K ]

Uh(x) and mh( j) = min
x∈[ j/K ,( j+1)/K ]

Uh(x)

for j = 0, 1, . . . , 2K − 1 and h = 1, 2, . . . , 8. Notice that these are easy to estimate since
Uh(x) are polynomials. Let further, for i, j = 0, 1, . . . , 2K − 1 and h1, h2 = 1, 2, . . . , 5,

Mh1,h2(i, j) = max{Mh1(i)Mh2( j), Mh1(i)mh2( j), mh1(i)Mh2( j), mh1(i)mh2( j)}
and

mh1,h2(i, j) = min{Mh1(i)Mh2( j), Mh1(i)mh2( j), mh1(i)Mh2( j), mh1(i)mh2( j)},
so that, for (x, y) ∈ [i/K , (i + 1)/K ] × [ j/K , ( j + 1)/K ],

mh1,h2(i, j) � Uh1(x)Uh2(y) � Mh1,h2(i, j).

Now Lemma 10 implies the following conditions when l → ∞:

2K−1∑
i=0

2K−1∑
j=0

(c+
l (i, j) + c−

l (i, j))Mh1,h2(i, j) � o(1) for h1, h2 ∈ {2, 4};

2K−1∑
i=0

2K−1∑
j=0

(c+
l (i, j) + c−

l (i, j))mh1,h2(i, j) � o(1) for h1, h2 ∈ {2, 4};

2K−1∑
i=0

2K−1∑
j=0

c+
l (i, j)Mh1,h2(i, j) − c−

l (i, j)mh1,h2(i, j) � o(1) for
h1, h2 ∈ {1, 3}
or {h1, h2} = {1, 5};

2K−1∑
i=0

2K−1∑
j=0

c+
l (i, j)mh1,h2(i, j) − c−

l (i, j)Mh1,h2(i, j) � o(1) for
h1, h2 ∈ {1, 3}
or {h1, h2} = {1, 5}.

All these twenty conditions as well as (4·4) and 4K conditions (4·5) are linear with respect
to c±

l (i, j). Taking l large enough, we can replace o(1) by 10−10 in upper bounds and by
−10−10 in lower bounds. What we want to know is the minimal

2K−1∑
i=0

2K−1∑
j=0

c−
l (i, j)

for which all the conditions are satisfied. Theorem 2 then holds for any κ which is smaller
than this minimum.

Here we have reached a linear programming problem for which an optimal solution can
be found for instance with the simplex algorithm. Taking K = 50, Mathematica tells that
κ � 6/25 is indeed admissible. This value could be slightly improved by choosing larger K .

If one does not want to use the Sato-Tate conjecture, then (4·5) is not available. However,
Lemma 11 leads to sixteen further linear conditions for c±

l , and one still obtains that κ �
3/20 is admissible.



218 KAISA MATOMÄKI

The proof of Theorem 3 is exactly the same except this time we minimize

2K−1∑
i=0

2K−1∑
j=0

|i− j |>1

c+
l (i, j) +

2K−1∑
i=0

2K−1∑
j=0

(i, j)�(0,0)

c−
l (i, j)

with K = 50. Now one gets that Theorem 3 holds for any κ � 0.518. Notice also that f1

can be a non-trivial twist of f2 only when κ � 1/2 − µ([0, 1/100]) � 0.493. The Sato-Tate
conjecture is not very useful for Theorem 3: without it one still gets the theorem for any
κ � 0.474.

Remark 14. One might ask why we did not utilize all the information provided by
Lemma 10 such as the case ( j1, j2) = (1, 2). However, when j1 + j2 is odd, the cancel-
lation in (3·1) might occur because in each c±

l (i, j), the coefficients λ f1(p) are negative half
of the time and positive half of the time. So indeed we have used all the information that
benefits us.

5. An alternative approach to Theorem 2

The rest of the paper is devoted to an alternative approach to Theorem 2. Even though we
obtain the conclusion of Theorem 2 only for κ � 1/10, the techniques here are likely to be
interesting and applicable in other contexts. Furthermore this approach avoids the somewhat
unsatisfactory reliance on linear programming but still leads to reasonably good results.

We will show that, for κ � 1/10, Lemma 12 and the case ( j1, j2) = (1, 1) of Lemma 10
imply an unbounded lower bound for the sum in (4·1). To this end we write

O(1) =
∑
p∈P

λ f1(p)λ f2(p)

pσ
=

∑
p�E

|λ f1(p)λ f2(p)|
pσ

−
∑
p∈E

|λ f1(p)λ f2(p)|
pσ

. (5·1)

We find a lower bound for (5·1) using the following lemma with

EN = P, µN as in (4·3), fN (p) = |λ f1(p)|, gN (p) = |λ f2(p)| and ν f = νg = µ.

LEMMA 15. Let E1, E2, . . . be spaces with measures µ1, µ2, . . . such that µ1(E1) =
µ2(E2) = · · · < ∞. Assume that, for some X � 0, functions fN , gN : EN → [0, X ] are
such that

µN ({x ∈ EN | α � fN (x) � β}) −−−→
N→∞

ν f ([α, β])
and

µN ({x ∈ EN | α � gN (x) � β}) −−−→
N→∞

νg([α, β])
for all α, β ∈ [0, X ] and some continuous measures ν f and νg of [0, X ].

Then, for N → ∞,

(1 + o(1))

∫ X

0
xyl(x)dν f ([0, x]) �

∫
EN

fN (x)gN (x)dµ(x)

� (1 + o(1))

∫ X

0
xyu(x)dν f ([0, x]),

where yl(x) is the solution to ν f ([0, x]) = νg([y, X ]) and yu(x) is the solution to
ν f ([0, x]) = νg([0, y]).
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The condition that ν f and νg are continuous (meaning they are absolutely continuous with
respect to the Lebesgue measure) could be relaxed, but the statement of the lemma would be
somewhat more complicated since we would need to consider endpoints of intervals more
carefully.

Proof of Lemma 15. This rearrangement inequality type result follows from Lemmas 16
and 19 in Section 6 below.

Let α′ be such that µ([0, α′]) = 9/10. Then α′ ≈ 1.61. The sum (5·1) is smallest if
|λ f1(p)| and |λ f2(p)| are large when p ∈ E . By Lemma 15

∑
p∈P

p�E

|λ f1(p)λ f2(p)|
pσ

� (1 + o(1))
∑
p∈P

1

pσ

∫ α′

0
xyl(x)dµ(x)

and

−
∑
p∈P

p∈E

|λ f1(p)λ f2(p)|
pσ

� −(1 + o(1))
∑
p∈P

1

pσ

∫ 2

α′
x2dµ(x),

where yl(x) is the unique solution to the equation µ((yl, α
′)) = µ((0, x)).

Integrals can be calculated numerically using the fact dµ(x) = (
√

4 − x2/π)dx . We get∑
p∈P

λ f1(p)λ f2(p)

pσ
� (0.317 − 0.315 + o(1))

∑
p∈P

1

pσ
= −(0.002 + o(1)) log(σ − 1)

for σ → 1+, which is unbounded. This is a contradiction with (4·1) and thus finishes the
proof of Theorem 2.

6. Generalized rearrangement inequality

In previous section we postponed proof of Lemma 15. Now we present the promised
lemmas from which it follows. As in the statement of Lemma 15, we will do everything in
a very general setting, so that the machinery is ready for any further applications. A special
case of Lemma 15 has already been utilized in a similar situation by the author in [16].

In this section we present discrete variants of the generalized rearrangement inequality.
The continuous variant (Lemma 15) follows from these by letting K → ∞. For a treat-
ment of generalized rearrangement inequalities from analytic point of view, see [2] and in
particular theorem 12·2 there.

LEMMA 16. Let E be a space equipped with a finite measure µ. Let f, g : E → R�0 be
measurable functions.

For K � 1, let AK � AK−1 � · · · � A2 � A1 = 0. Assume that, for k = 1, . . . , K ,

µ({x ∈ E | f (x) � Ak}) � Ck (6·1)

for some CK � CK−1 � · · · � C1 = µ(E). Choose B1 � B2 � · · · � BK = 0 so that

µ({x ∈ E | g(x) < Bk}) � Ck+1, (6·2)

where CK+1 = 0.
Then ∫

E
f (x)g(x)dµ(x) �

K∑
k=1

Ak Bk(Ck − Ck+1). (6·3)
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Remark 17.
(i) Taking E = {1, . . . , N } and µ the counting measure, we get a lower bound for the

sum
∑N

n=1 f (n)g(n). On the other hand, taking E = P and µ = µl as in (4·3), we
get a lower bound for the sum

∑
p f (p)g(p)p−1−1/ l .

(ii) The inequality (6·3) can be used to replace the weaker bound∫
E

f (x)g(x)dµ(x) � AB(µ(E) − µ({x | f (x) < A}) − µ({x | g(x) < B})) (6·4)

which holds for any A, B � 0. This bound was used by Kowalski, Lau, Sound-
ararajan and Wu [14] in an alternative approach to a Theorem 2 type result. In this
approach a clever utilization of Lemma 11 leads to the bound∑

|λ f (p)|>0.231

1

pσ
�

(
1

2
+ 1

24

) ∑
p∈P

1

pσ
+ O(1) for σ → 1+. (6·5)

An application of (6·4) then gives κ � 1/1000 without utilizing the Sato–Tate con-
jecture. Looking for further relations like (6·5) and applying the previous lemma
instead of (6·4) one would get the conclusion for κ � 1/50.

(iii) In a typical application of Lemma 16, one has means to find Ck such that (6·1) holds
for given Ak . On the other hand there might not be a direct way to find Bk such that
(6·2) holds for given Ck+1. However, tabling lower bounds for the left hand side of
(6·2), one can, for each k, pick a good value Bk .

Proof of Lemma 16. We only consider the case when equality holds in (6·1) and (6·2) for
every k = 1, . . . , K . This is the most difficult case since there are now minimal amount of
large f (x) and g(x).

Write AK+1 = B0 = ∞. Notice that (6·1) and (6·2) hold also for these. Let δi, j be defined
by the equation

δi, j = µ({x ∈ E | Ai � f (x) < Ai+1, Bj � g(x) < Bj−1})
for i, j = 1, . . . , K . Then∫

E
f (x)g(x)dµ(x) �

K∑
i=1

K∑
j=1

Ai Bjδi, j

= (
A1 A2 · · · AK

)
⎛
⎜⎜⎜⎝

δ1,1 δ1,2 · · · δ1,K

δ2,1 δ2,2 · · · δ2,K
...

...
. . .

...

δK ,1 δK ,2 · · · δK ,K

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

B1

B2
...

BK

⎞
⎟⎟⎟⎠ .

Furthermore
K∑

i=1

δi,k = µ({x ∈ E | Ak � f (x) < Ak+1}) = Ck − Ck+1 =
K∑

j=1

δk, j

for every k = 1, . . . , K .
The claim follows from the following lemma which is a matrix variant of the rearrange-

ment inequality. The lemma says that the matrix product above is at least the product in
which the matrix (δi, j ) is replaced by the diagonal matrix with entries Ck − Ck+1 on the
diagonal.
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LEMMA 18. Write BN for the set of N × N matrices B = (bi, j )N×N which, for some
dn � 0, have non-negative entries satisfying

N∑
i=1

bi,n = dn =
N∑

j=1

bn, j (6·6)

for every n = 1, . . . , N.
Let u = (u1, . . . , uN ) be a row vector with increasing entries and v = (v1, . . . , vN )T be

a column vector with decreasing entries. Then

min
B∈BN

uBv = uDv, (6·7)

where D is the N × N diagonal matrix with diagonal entries dn.

Proof. If the minimum is attained for a diagonal matrix, then the conditions (6·6) ensure
that this matrix is D. Let us assume that the minimum is not attained for a diagonal matrix.
Assume that among those matrices for which the minimum is attained, a matrix B has the
largest trace.

Now there must be a non-zero element bk,l below the diagonal (so that k > l). Take k
largest possible. By (6·6) we must have bk,k < dk and further bm,k > 0 for some m � k.
Since k was chosen maximal, we must have m < k.

Next we move some of the contribution from bk,l and bm,k to the diagonal. Let e =
min{bk,l, bm,k} and E = (ei j ) be an N × N matrix with zero entries except ek,k = em,l = e
and ek,l = em,k = −e. Clearly B + E ∈ BN and

u(B + E)v = uBv + e(ukvk + umvl − ukvl − umvk)

= uBv + e(uk − um)(vk − vl) � uBv.

This is a contradiction because the trace of B + E is greater than that of B. Hence the
minimum is attained for D as claimed.

As noted above, this also finishes the proof of Lemma 16.

There are similarities between the situation here and the linear programming task in Sec-
tion 4. Indeed we essentially had a linear programming task also here. However, thanks
to simpler conditions, we were able to find the optimal solution without an optimization
algorithm.

Following lemma is an upper bound variant of Lemma 16 and it can be proved in a similar
manner.

LEMMA 19. Let E be a space equipped with a finite measure µ. Let f, g : E → R�0 be
measurable functions.

Let AK � AK−1 � · · · � A1 = 0. Assume that, for k = 1, . . . , K ,

µ({x ∈ E | f (x) > Ak}) � Ck

for some C1 � C2 � · · · � CK = 0. Choose BK � BK−1 � · · · � B1 = 0 so that

µ({x ∈ E | g(x) > Bk}) � Ck .

Then ∫
E

f (x)g(x)dµ(x) �
K∑

k=2

Ak Bk(Ck−1 − Ck).
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[16] K. MATOMÄKI. A note on signs of Kloosterman sums. Bull. Soc. Math. France, to appear.
[17] P. MICHEL and A. VENKATESH. The subconvexity problem for GL2. Publ. Math. Inst. Hautes Études

Sci. 111 (2010), 171–271.
[18] C. MŒGLIN and J.-L. WALDSPURGER. Le spectre résiduel de GL(n). Ann. Sci. École Norm. Sup.
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