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This paper proposes a novel approach to similarity-based approximate reasoning in an interval-valued 

fuzzy environment. In a rule-based system, an ‘if ... then ...’ rule can be translated into an interval-

valued fuzzy relation by suitable implication operations. The similarity grade between a case and the 

antecedent of a rule is computed and used to modify the relation. A consequent is derived from the well-

known projection operation over the modified relation. The inference mechanism is appropriate because 

the techniques of the conventional Compositional Rule of Inference are incorporated into the existing 

similarity-based inference. Two examples of shipbuilding processing are utilized to illustrate and 

validate the effectiveness of the proposed schema. 

Povzetek: Članek obravnava metode razmišljanje v mehki logiki, temelječe na podobnosti. 

 

1 Introduction 
As the theoretical foundation of fuzzy control, fuzzy 

inference has achieved successful applications in various 

fields. The basic Fuzzy Modus Ponens (FMP) often 

investigated by many researchers can be represented as: 

Rule: If  X is A then      Y is B 

Case: X is A′    

Conclusion:          Y is B′  

Here X and Y are two linguistic variables, which can be 

also regarded as two different universes; ,A A′  
and ,B B′ are fuzzy subsets of universes X and Y , 

respectively. Zadeh introduced the concept of 

Compositional Rule of Inference (CRI) [8]. By 

constructing a fuzzy relation R between A and B , we can 

derive the conclusion B′ from the compositional 

operation of A′ and R . Many fuzzy systems are based on 

Zadeh’s compositional rule of inference [9]. In spite of 

their successes in various systems, researchers have 

pointed out certain drawbacks [4,5] in the mechanism, 

which motivates the introduction of Similarity-based 

Approximate Reasoning (SAR) mechanism as proposed 

in [4-7]. Compared with Zadeh’s CRI, it does not require 

the construction of a fuzzy relation between input and 

output fuzzy data, and it is conceptually clearer than CRI.  

According to the mechanism of SAR methodology, 

in rule-based system reasoning is based on the 

computation of similarity grade between the fact and the 

antecedent of a rule, and the inference result is obtained 

by directly modifying to the consequent part with the 

similarity measure. Thus, the inherent relation between 

the antecedent and the consequent is largely ignored. For 

the FMP problem, suppose that A is the antecedent part of 

‘If X is A then Y is B ’, and A′ is an input fact. In light of 

SAR, we first compute the similarity measure 

( ),S A A′ of A′ and A , then the result B′ is deduced by a 

modification function f such that ( ) ( ) ( )( ), ,B y f S A A B y′ ′= . 

Evidently, a same result B′ will be concluded by SAR 

method when A and A′ are interchanged. Thus, this result 

seems somewhat unconvincing because the inference is 

not always influenced by every change in the input case 

and the antecedent part.  

Combining the conventional CRI and the existing 

SAR methods, in this paper we extend the works of [4,5] 

to develop a novel approach to approximate reasoning. 

First, since interval-valued fuzzy set is considered more 

flexible than general fuzzy set from the viewpoint of 

handling imprecise and fuzzy data, we deal with 

approximation inference within the framework of 

interval-valued fuzzy sets. Next, to interpret a conditional 

statement (rule) residing in a rule-base system, an 

interval-valued fuzzy relation between antecedent and 

consequent can be constructed by suitable implicators. 

Furthermore, based on a measure of similarity, the 

constructed relation is modified to yield a new relation 

called the induced relation, and the conclusion can be 

obtained by the well-known projection operation over the 

induced relation. In the end, we illustrate the 

effectiveness of the proposed scheme by an example of 

processing systems of shipbuilding.  
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The remainder of this article is organized as follows. 

Section 2 includes a brief introduction of some basic 

notions and state of the art on approximate reasoning 

techniques. Section 3 discusses the problems regarding 

similarity index and an approach to approximate 

reasoning. Two examples are provided in Section 4 to 

illustrate the effectiveness of the proposed methods. The 

final section contains the concluding remarks. 

2 Preliminaries and State of the Art 
Let X be a universe of discourse. In Fuzzy Sets (FSs) 

theory, each object x X∈ is assigned a single real value, 

called the grade of membership, between zero and one. 

In [1-3], Gorzalczany and Turksen proposed the notion 

of Interval-valued Fuzzy Sets (IVFSs), which allow 

using interval-based membership instead of using point-

based membership as in FSs. 

An interval-valued fuzzy set A on X is characterized 

by a pair of mappings [ ]: 0,1A X → and [ ]: 0,1A X →  such 

that ( ) ( )0 1A x A x≤ ≤ ≤ , where ( )A x and ( )A x denote a 

lower and an upper bounds of membership function of A , 

respectively. An interval-valued fuzzy set A of X can be 

denoted as ( ) ( )( ){ }, , :A x A x A x x X = ∈  . 

In other words, the membership degree of x with 

respect to A is bounded to a subinterval ( ), ( )A x A x    of 

unit interval, which indicates the possible existence of a 

data value. All the interval-valued fuzzy sets of X is 

written as ( )IVFSs X , and A is said to be normal if and 

only if there exists
0x X∈ such that ( ) ( )0 0 1A x A x= = . For 

every ( )A IVFSs X∈ , the lower bound, the upper bound 

and the kernel function of A can be represented by 

( ){ }
( ){ }

( ) ( ) ( ){ }

:

:

:

A A x x X

A A x x X

A A x A x x Xκ

= ∈

= ∈

= + ∈

 

respectively. Let ( ),A B IVFSs X∈ , the union, intersection 

and complement operations of interval-valued fuzzy sets 

are defined as follows: 

( ) ( ){ } ( ) ( ){ }( ){ }
( ) ( ){ } ( ) ( ){ }( ){ }

( ) ( )( ){ }

, min , ,min , :

, max , ,max , :

, 1 ,1 :

B

B

c

A B x A x A x A x B x x X

A B x A x A x A x B x x X

A x A x A x x X

 = ∈ 

 = ∈ 

 = − − ∈ 



  

To improve the flexibility of fuzzy set in handling 

fuzzy information, Atanassov (1986) proposed the 

Intuitionistic Fuzzy Sets (IFSs) [14], and Gau et al. 

(1993) presented the Vague Sets (VSs) [15]. As the 

IVFSs, IFSs and VSs were proved actually isomorphic 

and equivalent [16-18], we will put them into a 

framework of IVFSs in this paper.  

It is well-known that Fuzzy Set theory has been 

extensively applied to the field of approximate reasoning. 

So far there have been several approaches to approximate 

reasoning based on fuzzy set or interval-valued fuzzy set, 

in which the most influential methods are CRI and SAR 

algorithms. In [19], Li et al. addressed an implication 

operator based on IVFSs, which is suitable for CRI 

method. Cornelis et al. investigated a serial of 

implications in IVFSs and presented an extensional 

schema of CRI [20]. In [21], based on the CRI method, 

an extensional model derived from the Mizumoto’s 

model is provided in an interval-valued fuzzy 

environment. Based on expansion principle, Feng et al. 

also presented several operators that are applicable to 

CRI [22].  

Although the CRI algorithm had achieved notable 

success in various fields such as fuzzy control, expert 

system and decision-making support, some defects of 

this method were found in terms of inference mechanism, 

which leads to the yield of another important approach of 

approximate reasoning—Similarity-based Approximate 

Reasoning (SAR). For the FMP problem, based on the 

change of membership grade of the consequent part, 

Turksen et al. proposed two types of modification 

procedures—expansion type inference and reduction type 

inference [4], and B′ may be computed by any one of the 

following form: 

( ) ( ) ( ){ }min 1, ,B y B y S A A′ ′=                  (Expansion form) 

( ) ( ) ( ),B y S A A B y′ ′= ⋅                              (Reduction form) 

where ( )( ),S A A x′ is the fuzzy similarity degree between a 

fact A′ and the antecedent part A .  

In [23], a new similarity measure of IVFSs was 

presented and inference result was obtained by Turksen’s 

reduction form. Trough constructing a modified function 

based on a similarity measure of IVFSs, Tian et al. gave 

an approach to approximate reasoning [24]. Shi et al. 

addressed a bidirectional approximate reasoning scheme 

based on the distances of IVFSs [25], which can be 

actually regarded as an equivalent form of SAR method. 

Applying the SAR method, Guan et al. addressed a 

specific design scheme of fuzzy controller based on 

IVFSs [26].  

In [10], through introducing a definition of fuzzy 

similarity measure, the authors provided an inference 

solution for FMP as follows: 

( ) ( )( ) ( )( ),
x X

B y S A A x B y
∈

′ ′= ∨ ∧  

In [27], the authors proposed the concept of similarity 

direction between two interval-valued fuzzy sets. 

Through calculating the similarity grade as well as the 

similarity direction of interval-valued fuzzy sets, the 

inference result B′ is computed as 

( )
( )
( )
( )

1

  0.5,  0

 0.5,  0 

  0.5

s

s

s

B y s d

B y B y s d

B y s

 ≥ ≥
′ = ≥ <


<

, ( )
( )
( )
( )

1

  0.5,  0

 0.5,  0 

  0.5

s

s

s

B y s d

B y B y s d

B y s

 ≥ ≥
′ = ≥ <


<

 

where d is the evaluation function of similarity direction 

between A′ and A , and s is the similarity grade 

of A′ and A .  

Meng presented a generalized model for fuzzy 

character spread reasoning [11], which was actually an 

approach of similarity-based weighted fuzzy inference 

applicable to multi-dimensional fuzzy reasoning. 

Through calculating the weighted similarity degree 

is between an input case and the ith rule, the result is 

expressed by 

( ) ( )iB y B y′ = S    

Here ( )1 2, , , ns s s=S  denotes a weighted similarity vector 

that holds 
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( )
1

,
m

i ij j ijj
s w S A A

=
′= ⋅∑  

for 1,2, ,i n=  . The operator ‘  ’ denotes a generalized 

compositional operation. For example, using ( ),Σ ⋅  

operation we then obtain 

( ) ( )( )
1

n

i ii
B y s B y

=
′ = ⋅∑  

In [28], a similarity-based approximate reasoning 

method was given based on IVFSs and fitness 

techniques. Using data fitness method, the similarity 

degree k  between the interval-valued fuzzy sets is 

obtained by 

( ) ( )
( )( )1 2

ln ln

ln

A x A x
k

A x

′⋅
= , 

( ) ( )
( )( )2 2

ln ln

ln

A x A x
k

A x

′⋅
= , 1 2

2

k k
k

+
= .  

And then the result is computed by  

( ) ( )k
B y B y′ = , ( ) ( )k

B y B y′ = . 

3 Similarity-based Approximate 

Reasoning 

3.1 Similarity measures of IVFSs 

In [13], Zwick et al. surveyed several similarity measures 

of fuzzy sets and compared their performance in an 

experiment. In [12], Ke et al. presented a similarity 

function S to measure the degree of similarity based on 

fuzzy vectors. Let ( ),E F FSs X∈ , then the similarity 

grade ( ),S E F  between E and F can be represented by 

Definition1. [12] 

( ) ( ) ( )
( ) ( ){ }2 2

,
max ,

x X

x X x X

E x F x
S E F

E x F x

∈

∈ ∈

⋅
= ∑

∑ ∑
 

Here, the Sum-product operations represent the product 

of fuzzy vectors E and F, from which we may also derive 

another definition of similarity index, as follows. 

Definition2.  

( ) ( ) ( ){ }
( ) ( ){ }

sup min ,
,

max sup ,sup

x X

x X x X

E x F x
S E F

E x F x

∈

∈ ∈

′ =                                      

Here, the operations Sum-product in Definition 1 are 

modified to Sup-min in Definition 2, respectively.  

The measure proposed in Definition 2 is based on the 

computation of overall supremum and therefore, 

practically difficult to use. 

Example1. Let { }1,2,3,4,5X =  be the universe of 

discourse. Consider the following fuzzy sets on X :  

"small" 1 1 0.8 2 0.5 3 0.2 4

"highly small" 1 1 0.41 3 0.06 3

E

F

= + + +

= + +




 

According to Definition 2, the calculation result implies 

that E is identical to F (i.e., ( ), 1S E F′ = ), even if E is 

highly dissimilar to F by our intuitions. This is why we 

prefer the measure given by Definition 1. 

To provide a definition for similarity measure 

( ),S A B of two interval-valued fuzzy sets A and B , a 

number of factors must be considered. A primary 

consideration is that, whatever way we choose to define 

such an index, it should satisfy the following properties: 

for every ( ), ,A B C IVFSs X∈ , 

P1) ( ) [ ], 0,1S A B ∈ ; 

P2) ( ) ( ), ,S A B S B A=  ; 

P3) ( ), 1S A B =  if and only if A B= ; 

P4) If ( ), 0S A B = , and ,A B  are not simultaneously 

empty, then ( ) ( ){ } ( ) ( ){ }min , min , 0A x B x A x B x= =  for all 

u U∈ ; 

P5) If A B C⊆ ⊆  then ( ) ( ) ( ){ }, min , , ,S A C S A B S B C≤   . 

P4) suggests that A and B are completely dissimilar 

only when A B = ∅ . If A B ≠ ∅ , then they have some 

similarity when A and B have some membership degree 

in common. 

Based on Definition 1, in the following, we develop 

an expression of similarity function S  to measure the 

degree of similarity between interval-valued fuzzy sets. 

Let ,  A A and ( )Aκ be subscript, superscript and kernel 

function of ( )A IVFSs X∈ .  

Definition3. Let ( ),A B IVFSs X∈ . The degree of similarity 

( ),S A B between A and B can be measured as follows: 

( ) ( ) ( ) ( )( )
( ) ( )

, ,  , ,  ,

, 2 4.

S A B S A B S A B

S A B

α β γ κ κ

α β γ

= = =

= + +
 

It is easy to verify that the similarity measures given 

by Definition 3 satisfy axioms P1), P2), P3), P4) and P5). 

Thus, the similarity measures of the lower bound, the 

upper bound and the kernel values of two interval-valued 

fuzzy sets, are incorporated into such an index of IVFSs, 

where the weighted coefficients of which are given 

by
1 0.25ω = ,

2 0.25ω = and
3 0.5ω = , respectively.  

3.2 Proposed schema for approximation 

inference 

The conventional CRI does not consider the concept of 

similarity measure in deriving a consequence. The 

existing SAR methods modify directly the consequence 

part of a rule, based on a measure of similarity and 

therefore, the consequence becomes independent of the 

conditional statement. Here, we intend to integrate the 

above techniques for an adequate theory of similarity-

based approximate reasoning. 

According to CRI, a conditional statement (rule) ‘If A 

then B’ can be translated into an interval-valued fuzzy 

relation, denoted as ( ),R A B . To construct the relation, 

some suitable operation operators are used. For example, 

the relation ( ),R A B  constructed by the extensional KD-

implicator can be represented as 

( )( ) ( ) ( ){ }
( )( ) ( ) ( ){ }

, , min 1 ,

, , min 1 ,

R A B x y A x B y

R A B x y A x B y

= −

= −
 

Given a case input A′ , an interval-valued fuzzy 

relation between A′ and B , denoted as ( ),R A B′ , can be 

obtained by intersection operation of A′ and ( ),R A B . 

Thus, an inference result B′ is computed by the well-

known supremum projection operation on ( ),R A B′ , i.e., 

( ) ( )( ) ( ) ( )( ){ }
( ) ( )( ) ( ) ( )( ){ }

sup , , sup min , , ,

sup , , sup min , , ,

x X x X

x X x X

B y R A B x y A x R A B x y

B y R A B x y A x R A B x y

∈ ∈

∈ ∈

′ ′ ′= =

′ ′ ′= =
  

Since the CRI method fails to incorporate the matching 

computation into the inference procedures, the accuracy 

of reasoning is not always satisfactory in some 

application occasions 



258 Informatica 36 (2012) 255–262 Z.-Q. Feng et al.  

 

The primary mechanism of SAR is to deduce result 

by modifying the consequent part of a rule with 

similarity measure [4,5]. Applying this principle, in a 

rule-based system we may first calculate the similarity 

grade ( ),S A A′ of the fact A′ and the antecedent part A . 

And then, an interval-valued fuzzy relation ( ),R A B′  

between A′ and B , named as the induced relation, is 

obtained by modifying the relation ( ),R A B with similarity 

measure ( ),S A A′ . Finally, the result B′ can be deduced by 

the projection operation over the induced relation 

( ),R A B′ .  

Given a conditional statement, the following cases 

should be taken into account to obtain an induced 

relation using the similarity measure.  

Case1. If A′ equals to A , then ( ),R A B′ equals to ( ),R A B . 

This is to say we should not make any modification 

to ( ),R A B when ( ), 1S A A′ = . 

Case2. If A′ is completely dissimilar to A , then we can 

conclude nothing from the given conditional statement 

‘If A then B’, i.e., B′ is empty. Since  

( ) ( )( )sup , ,x XB y R A B x y∈′ ′= , ( ) ( )( )sup , ,x XB y R A B x y∈′ ′=  

we then have ( )( ) ( )( ), , , , 0R A B x y R A B x y′ ′= = . i.e., ( ),R A B′ is 

empty when ( ), 0S A A′ = .  

Case3. As ( ),S A A′ changes from 0 to 1, ( ),R A B′ changes 

from ∅ to ( ),R A B . That means ( ),R A B′ is transformed 

from the most unknown state into a specific state.  

From the cases mentioned-above, a quantitative 

relationship between the induced relation and similarity 

measure may be given as following:  

Q1. If ( ), 1S A A′ = , then ( )( ) ( )( ), , , ,R A B x y R A B x y′ = , and 

( )( ) ( )( ), , , ,R A B x y R A B x y′ = ; 

Q2. If ( ), 0S A A′ = , then ( )( ) ( )( ), , , , 0R A B x y R A B x y′ ′= = ;  

Q3. As ( ),S A A′  increase from 0 to 1, ( )( ), ,R A B x y′  

and ( )( ), ,R A B x y′ increase from 0 to ( )( ), ,R A B x y  and 

( )( ), ,R A B x y , respectively.  

Let ( ) ( )( ) ( )( ) ( )( ), , , , , , , , , , ,S A A s R A B x y r R A B x y r R A B x y r′ ′ ′= = = =
( )( ), ,R A B x y r′ ′= . By Q1 and Q2,  

0,     0

,    1

s
r

r s

=′ =  =
, 

0,     0

,    1

s
r

r s

=′ =  =
 

and by Q3, we get 

( ) ( ),r r s T s r′ ′= = , ( ) ( ),r r s T s r′ ′= =  

where T is a continuous t-norm. Thus, a modification 

schema for producing the induced relation ( ),R A B′ , 

named as Q schema, may be represented by 

( )( ) ( )( )( )
( )( ) ( )( )( )

, , , , ,

, , , , ,

R A B x y T s R A B x y

R A B x y T s R A B x y

′ =

′ =
                       

Once the induced relation is derived from Q schema, 

the inference result B′ is then obtained by the supremum 

projection, i.e. 

( ) ( )( ) ( )( )( )
( ) ( )( ) ( )( )( )

sup , , sup , , ,

sup , , sup , , ,

x X x X

x X x X

B y R A B x y T s R A B x y

B y R A B x y T s R A B x y

∈ ∈

∈ ∈

′ ′= =

′ ′= =
      (1)                            

Apparently, in terms of inference mechanism, there 

exists a distinction between the conventional CRI and the 

proposed method. A logical interpretation for the CRI 

method is: from ‘ X is A′ and ( ),X Y is ( ),R A B ’ infer 

‘ Y is B′ ’. For the proposed method, the inference 

mechanism can be interpreted as: from ‘ A′ is similar 

to A and ( ),X Y is ( ),R A B ’ infer ‘ Y is B′ ’, where the 

connective ‘and’ is associated with t-norm operation.  

The proposed algorithm on performing similarity-

based approximate reasoning is summarized as follows.  

Step1. Translate a rule and compute ( ),R A B using some 

suitable operators (Translation); 

Step2. Compute ( ),S A A′  using some suitable definition, 

possibly, Definition 3 (Matching); 

Step3. Modify ( ),R A B with ( ),S A A′  to obtain the induce 

conditional relation ( ),R A B′  using a scheme Q 

(Modification);  

Step4. Use supremum projection operation on ( ),R A B′ to 

obtain B′ (Projection).  

In Step1, to translate a rule ‘If A and B’ we should 

calculate an interval-valued fuzzy relation ( ),R A B  

between A and B. According to the Zadeh’s CRI method, 

there are about eighteen operators applicable to 

construct ( ),R A B , which can often be classified two main 

classes. The first class is called the extensional ‘and’ 

operators, such as the Mamdani operator, the Larson 

operators and the bounded product, etc. The second is 

called the extensional ‘implication’ operators, including 

the well-known S-implicator and the R-implicator. The 

following proposition will provide a clue on how to 

select the suitable operators for the construction 

of ( ),R A B .  

Proposition1. Suppose A is normal and does not 

completely cover the domain. Let 1s = .  

1) Ifϕ  is both increasing, then B B′ = ; 

2) Ifϕ  is left decreasing and right increasing, then B Y′ = . 

Proof.  

1) Sinceϕ  is both increasing, then 

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

, , ,

, , ,

R A B x y A x B y

R A B x y A x B y

ϕ

ϕ

=

=
 

By Formula (1), we get 

( ) ( )( )( ) ( ) ( )( )( )
( ) ( )( )( ) ( ) ( )( )( )

sup , , , sup , ,

,sup , , sup ,

x X x X

x X x X

B y T s R A B x y T s A x B y

T s A x B y T s A x B y

ϕ

ϕ ϕ
∈ ∈

∈ ∈

′ = =

= =
 

As A is normal, then 

( ) ( )( )( ) ( )( ), 1, ,B y T s B y T s B yϕ′ = = .  

Similarly, ( ) ( )( ),B y T s B y′ = , we then obtain B B′ =  by 1s = .  

2) Asϕ  is left decreasing and right increasing, then 

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

, , ,

, , ,

R A B x y A x B y

R A B x y A x B y

ϕ

ϕ

=

=
 

By Formula (1), we get 

( ) ( )( )( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )( )( )

sup , , , sup , ,

,sup , , inf ,

x X x X

x Xx X

B y T s R A B x y T s A x B y

T s A x B y T s A x B y

ϕ

ϕ ϕ

∈ ∈

∈∈

′ = =

 = = 
 

  

Since A does not completely cover the domain, i.e.  

( ) ( )inf inf 0
x X x X

A x A x
∈ ∈

= = , then 

( ) ( )( )( ) ( ), 0, ,1B y T s B y T s sϕ′ = = =  
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Similarly, ( )B y s′ = . By 1s = , we then obtain ( ) 1B y′ =  

for every y Y∈ . Hence, B Y′ = .                                         

Remark1. We can conclude from Proposition1 as 

following: 

1) If an implication selected for constructing interval-

valued fuzzy relation is both increasing, then the 

inference result satisfies reductive property when 

antecedent part is normal. Furthermore, since 

( ) ( )( ),B y T s B y′ = and ( ) ( )( ),B y T s B y′ = , we then obtain 

( ) ( ) ( ) ( ),  B y s B y B y s B y′ ′= ⋅ = ⋅  

when t-norm takes the algebraic product. This is exactly 

identical to the Turksen’s reduction form as mentioned in 

Section 2.  

2) If an implication selected for constructing interval-

valued fuzzy relation is hybrid monotonic, then the 

inference result equals to the whole set when antecedent 

part does not completely cover the domain. In this case, 

the result becomes the most unspecific case 

because B Y′ = means ‘ B′ is anything’ from the viewpoint 

of semantics.  

Proposition2. Suppose A is normal, and ϕ is both 

increasing, then B B′ ⊆ .  

Proof. Since 

( ) ( )( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )

sup , , , sup , ,

,sup , , sup ,

sup , 1,

x X x X

x X x X

x X

B y T s R A B x y T s A x B y

T s A x B y T s A x B y

A x B y B y B y

ϕ

ϕ ϕ

ϕ ϕ

∈ ∈

∈ ∈

∈

′ = =

    = =        
 ≤ = = 
 

 

( ) ( )( )( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )

sup , , , sup , ,

,sup , , sup ,

sup , 1,

x X x X

x X x X

x X

B y T s R A B x y T s A x B y

T s A x B y T s A x B y

A x B y B y B y

ϕ

ϕ ϕ

ϕ ϕ

∈ ∈

∈ ∈

∈

′ = =

    = =        
 ≤ = = 
 

  

for every y Y∈ . Hence, we get B B′ ⊆ .                              

Example2. Suppose there is a conditional statement ‘If A 

then B’ such that  

[ ]( ) [ ]( ) [ ]( ) ( ){ }1 2 3 4, 0.7,0.8 , , 0.4,0.5 , , 0.2,0.3 , ,0A x x x x=
( ) [ ]( ) ( ){ }1 2 3,1 , , 0.5,0.6 , ,0B y y y=  

Given a case input ( ) [ ]( ) [ ]( ) ( ){ }1 2 3 4,1 , , 0.7,0.8 , , 0.3,0.3 , ,0A x x x x′ = , 

compute the inference result B′ using the Turksen’s 

reduction form and the proposed method, respectively.  

From Definition 3, the similarity grade between the 

fact A′ and the antecedent part A can be calculated 

as ( ), 0.70S A A′ = . Appling the Turksen’s SAR method, 

we have 

( ) ( ) [ ]( ) ( ){ }I 1 2 3, ,0.7 , , 0.35,042 , ,0B S A A B y y y′ ′= ⋅ = . 

According to the proposed algorithm in this paper, 

we first compute an interval-valued fuzzy relation 

of A and B using the Mamdani operator, i.e. 

( )

[ ] [ ]
[ ] [ ]
[ ] [ ]

0.7,0.8 0.5,0.6 0

0.4,0.5 0.4,0.5 0
,

0.2,0.3 0.2,0.3 0

0 0 0

R A B

 
 
 =
 
 
  

 

and then we have an induced relation ( ),R A B′ by the 

schema Q, i.e. 

( ) ( ) ( )

[ ] [ ]
[ ] [ ]
[ ] [ ]

0.49,0.56 0.35,0.42 0

0.28,0.35 0.28,0.35 0
, , ,

0.14,0.21 0.14,0.21 0

0 0 0

R A B S A A R A B

 
 
 ′ ′= ⋅ =
 
 
  

  

where the t-norm is the algebraic product. Finally, we 

have the result
IIB′ by supremum projection, i.e.  

( )( )
[ ]( ) [ ]( ) ( ){ }

II

1 2 3

sup , ,

0.49,0.56 , , 0.35,0.42 , , 0,

x XB R A B x y

y y y

∈′ ′=

=
 

Suppose that the fact A′ and the antecedent part A are 

interchanged. An identical result
IB′ can be deduced from 

the Turksen’s SAR method, whereas a different result 

IIB′  can be derived from the proposed method, i.e. 

( ) [ ]( ) ( ){ }II 1 2 30.7, , 0.35,042 , , 0,B y y y′ = .  

Remark2. It can be seen from Example 2 that every 

change in the concept, as it appears in the conditional 

premise and in the fact, is incorporated into the induced 

interval-valued fuzzy relation. Hence, through the 

projection operation on the induced relation, the 

inference result is influenced by the changes in the fact 

and the antecedent of a rule. 

4 Case Study 
In shipbuilding technologies, some operational systems 

are so complex that it is very difficult for us to describe 

them with precise mathematical models. For these 

systems, the operational determinations can be acquired 

by means of the experiences of operators accumulated in 

practices.  As the experiential knowledge is often fuzzy, 

which is suitable to describe by IVFSs, in the sequel we 

provide two technological cases modelled by IVFSs to 

illustrate applications of similarity-based method 

proposed in this article.  

4.1 Layout of heating lines on plate 

The processing practices indicate that length and density 

of heating lines exert a great impact on the forming of 

sheet metals. Let X, Y and Z be the linguistic variables 

representing curvature of a bending plate, the length of 

heating lines, and the space of heating lines, respectively. 

And the linguistic values are composed of several 

interval-valued fuzzy sets ( )iA IVFSs X∈ , ( )jB IVFSs Y∈  

and ( )kC IVFSs Z∈ , as shown in Table 1, where 

{ }1,2,3,4,5X Y Z= = = . And the operational rules derived 

from experiences of operators are summarized in Table 2 

IVFSs \ Universe 1 2 …… 5 

A1 (Large) 0 [0.1,0.2] …… 1 

A2 (Medium) [0.2,0.3] [0.7,0.8] …… [0.1,0.2] 

A3 (Small) 1 [0.4,0.4] …… 0 

B1 (Long) 0 [0,0.1] …… 1 

B2 (Medium) [0.2,0.4] [0.5,0.5] …… [0.2,0.3] 

B3 (Short) 1 [0.6,0.8] …… 0 

C1 (Large) 0 [0.1,0.1] …… 1 

C2 (Medium) [0.1,0.3] [0.4,0.5] ….. [0.3,0.4] 

C3 (Small) 1 [0.7,0.8] …… 0 
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Table 1: Description for linguistic values based on IVFSs. 

Rule No. Antecedent part Consequent part 

1 X is A1 Y is B1 Z is C3 

2 X is A1 Y is B2 Z is C3 

3 X is A2 Y is B2 Z is C2 

4 X is A3 Y is B3 Z is C1 

5 X is A3 Y is B3 Z is C2 

Table 2: Operational rules on the layout of heating lines. 

Now let us conduct approximate reasoning using the 

scheme proposed in Section 3, and the inference 

procedures can be summarized as follows. 

Step1. Translate the lth rule
lr and compute 

( ) ( ) ( )( ),
l l l

R A B C×  using the extensional Mamdani 

operator, for 1,2, ,5l =  ; 

Step2. Compute the similarity grade
ls between input 

case A′ and the antecedent ( )l
A by Definition 3;  

Step3. Combine
l

s with ( ) ( ) ( )( ),
l l l

R A B C× to induce an 

interval-valued fuzzy relation ( ) ( )( ),
l l

R A B C′ ×  using the 

modification schema Q;  

Step4. Deduce a conclusion output ( ) ( )l l
B C′ ′× by the 

supremum projection over ( ) ( )( ),
l l

R A B C′ × ; 

Step5. Derive the general output B C′ ′× from union 

operation over ( ) ( )l l
B C′ ′× ; 

Step6. Decouple the synthetic output ( )B Cκ ′ ′× to 

obtain ( )Bκ ′ and ( )Cκ ′ via the projection operations on the 

universes Z and Y , respectively.  

Step7. Obtain the determination values by defuzzification 

operations, using the maximum membership method.  

In Step1, since ( ) ( )l l
B C×  is a synthetic consequent 

part, which can be interpreted as a binary interval-valued 

fuzzy relation ( ) ( )( ),
l l

R B C  such that 
( ) ( )( )( ) ( ) ( ) ( ) ( )( )
( ) ( )( )( ) ( ) ( ) ( ) ( )( )

, , min ,

, , min ,

l l l l

l l l l

R B C y z B y C z

R B C y z B y C z

=

=
 

Thus, a ternary interval-valued fuzzy relation 
( ) ( ) ( )( ),
l l l

R A B C× is constructed by 

( ) ( ) ( )( )( ) ( ) ( ) ( ) ( )( )( )( )
( ) ( ) ( )( )( ) ( ) ( ) ( ) ( )( )( )( )

, , , min , , ,

, , , min , , ,

l l l l l l

l l l l l l

R A B C x y z A x R B C y z

R A B C x y z A x R B C y z

× =

× =
 

In Step3, according to the modification schema Q, we 

then obtain 

( ) ( )( )( ) ( ) ( ) ( )( )( )
( ) ( )( )( ) ( ) ( ) ( )( )( )

, , , , , ,

, , , , , ,

l l l l l

l

l l l l l

l

R A B C x y z s R A B C x y z

R A B C x y z s R A B C x y z

′ × = ⋅ ×

′ × = ⋅ ×
 

where t-norm is the algebraic product. From Step4, we 

have 

( ) ( )( )( ) ( ) ( ) ( ) ( )( )( )( )
( ) ( )( )( ) ( ) ( ) ( ) ( )( )( )( )

, min sup , , ,

, min sup , , ,

l l l l l

l x X

l l l l l

l x X

B C y z s A x R B C y z

B C y z s A x R B C y z

∈

∈

′ ′× = ⋅

′ ′× = ⋅
    (2)                      

If ( )l
A is normal, then Formula (2) can be simplified as 

( ) ( )( )( ) ( ) ( )( )( )
( ) ( )( )( ) ( ) ( )( )( )

, , ,

, , ,

l l l l

l

l l l l

l

B C y z s R B C y z

B C y z s R B C y z

′ ′× = ⋅

′ ′× = ⋅
                            (3)                         

Now let a case input 

[ ] [ ] [ ]
''more or less large''
0 1 0.32,0.45 2 0.55,0.63 3 0.90,0.95 4 1 5

A′
= + + + +


 

For the 1
st
 rule, according to Definition 3, the degree of 

similarity between A′ and ( )1
A is calculated by 

( )( ) ( )( ) ( ) ( )( )( )( )1 1 1

1 , , 2 , 4 0.87s S A A S A A S A Aκ κ′ ′ ′= + + =  

Since ( )1
A is normal, we then obtain ( ) ( )1 1

B C′ ′× by Formula 

(3), i.e.  

( ) ( )1 1

0 0 0 0 0

[0,0.09] [0,0.08] [0,0.09] [0,0.09] 0

[0.35,0.35] [0.35,0.35] [0.26,0.35] [0.09,0.17] 0

[0.61,0.78] [0.61,0.70] [0.26,0.35] [0.09,0.17] 0

[0.87,0.87] [0.61,0.70] [0.26,0.35] [0.09,0.17] 0

B C

 
 
 
 ′ ′× =
 
 
  

 

Similarly, we can derive the outputs from other rules in 

Table 2, and the general output is calculated by 

( ) ( )( )
5

1

[0.17,0.35] [0.17,0.35] [0.17,0.35] [0.11,0.21] [0.13,0.21]

[0.44,0.44] [0.44,0.44] [0.26,0.35] [0.26,0.26] [0.15,0.21]

[0.87,0.87] [0.61,0.70] [0.51,0.51] [0.26,0.32] [0.15,0.21]

[0.61,0.78] [0.61

l l

l

B C B C
=

′ ′ ′ ′× = ×

=



,0.70] [0.32,0.36] [0.26,0.32] [0.15,0.21]

[0.87,0.87] [0.61,0.70] [0.26,0.35] [0.11,0.17] [0.15,0.21]

 
 
 
 
 
 
  

  

From Step6, we have 

( )( ) ( )( )( ) { }
( )( ) ( )( )( ) { }

sup , 0.52,0.88,1.74,1.39,1.74

sup , 1.74,1.31,0.61,0.28,0.36

z Z

y Y

B y B C y z

C z B C y z

κ κ
κ κ

∈

∈

′ ′ ′= × =

′ ′ ′= × =
 

According to Step7, since  

( )( ) ( )( ) ( )( )
( )( ) ( )( )

sup 3 5

sup 1

y Y

z Z

B y B B

C z C

κ κ κ

κ κ
∈

∈

′ ′ ′= =

′ ′=
 

Hence, ( ) ( ), 3,1y z′ ′ = or ( ) ( ), 5,1y z′ ′ = are selected as 

determination values, which can be interpreted as the 

conclusion is ‘Y is long or medium’ and ‘Z is small’ when 

the case input is ‘more or less large’.  

4.2 Welding deformation prediction on 

high-tensile steel structure 

Welding experiment shows that, welding deformation of 

high-tensile steel structure not only relates to the leg size 

of weld seam, but also relates to the thickness of steel 

structure and welding current. Through a large amount of 

welding experiments, a rule-set including nine rules is 

summarized by the experienced welding operators, as 

shown in Table 3, where the linguistic values are the 

interval-valued fuzzy sets. For example, let Y be the 

thickness universe. The membership function of A21, A22 

and A23 is given as Table4, where linguistic values 

‘Thick’, ‘Medium’ and ‘Thin’ are represented by A21, A22 

and A23, respectively.  
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Rule No. Antecedent part Consequent part 

1 X is A11 Y is A21 Z is A31 W is D3 

2 X is A12 Y is A21 Z is A31 W is D3 

…… …

… 

…

… 

…

… 

…… 

9 X is A13 Y is A23 Z is A33 W is D2 

Table 3: Decision rule-set of welding deformation. 

Linguistic value \ Y 1 2 3 4 5 

Thick [0,0] [0,0] [0.2,0.2] [0.6,0.7] [1,1] 

Medium [0,0] [0.1,0.3] [0.9,0.9] [0.3,0.3] [0,0] 

Thin [1,1] [0.8,0.8] [0.2,0.3] [0,0] [0,0] 

Table 4: Membership function of linguistic value of 

thickness universe. 

Once the knowledge model based on decision rules of 

welding deformation is obtained, we can set up a model 

of approximate reasoning, using the proposed method in 

this article. Through fuzzification of input data, 

similarity-based reasoning as well as defuzzification of 

fuzzy data, we then obtain the inference result of welding 

deformation. The running interface on welding 

deformation prediction system is shown as Figure 1. To 

examine the effectiveness of inference model, we arrange 

a welding experiment including ten test samples, as 

shown in Table 5.  

Figure 1: Running interface on welding deformation 

prediction system. 

Test sample Leg size 

/mm 

Thickness 

/mm 

Current 

/A 

Deformation value  

/mm 

p1 5.5 6 130 0.53 

p2 4.5 8 95 0.26 

…… …… …… …… …… 

p10 4.5 5 115 0.46 

Table 5: Test data on welding experiment.  

 

 

Figure 2: Comparison of prediction values and real 

values 

From error curve of prediction values and real values 

shown in Figure 2, we can calculate the maximum 

error
max 0.050E = , the mean error 0.029mE = and the 

standard error
std 0.0317E = , respectively. In terms of 

prediction accuracy of welding deformation, the result 

justifies the effectiveness of the proposed method.  

5 Conclusion 
In this paper, we investigate the similarity measures of 

interval-valued fuzzy sets. Based on the Turksen’s 

reasoning model, we develop an approach to inference by 

combining the conventional CRI with similarity-based 

approximate reasoning. It is shown that a general 

representation for inference conclusion can be yielded by 

the procedures including translation, matching, 

modification, and projection. Besides, as the 

approximation inference is performed under the 

framework of IVFSs, the proposed method seems more 

flexible than is done with the general FSs. In the end, we 

utilize two examples concerning shipbuilding techniques 

to illustrate and validate the proposed schema.  

For the nonlinear and coupling shipbuilding 

technology, the conventional modelling schema mainly 

contains physical simulation and Finite Element Analysis 

(FEA). As to the former, it not only costs a large amount 

of lab funds but also limits to experimental conditions. 

As for FEA, although the precise of this method is 

relatively high, the program is so time-consuming that it 

can hardly be applied to manufacture practices. 

Compared with the traditional methods, modelling based 

on fuzzy data can fully take advantage of the experiences 

of experts in their field, and accuracy of inference result 

is also adequate to meet the needs of technological 

practices. Therefore, we have lots of research 

opportunities for future applications of similarity-based 

inference to complex shipbuilding systems, such as 

layout of heating lines, welding parameters design and 

welding deformation prediction, etc.  

Acknowledgement 

This research was partially supported by the national key 

research project ‘Knowledge Based Ship Design and 

Hyper Integrated Platform’. 

References 
[1]  M.B. Gorzalczany, ‘A method of inference in 

approximate reasoning based on interval-valued 



262 Informatica 36 (2012) 255–262 Z.-Q. Feng et al.  

 

fuzzy sets’, Fuzzy Sets and Systems, vol. 21, pp. 1-

17, 1987.   

[2]  M.B. Gorzalczany, An interval-valued fuzzy 

inference method－ some basic properties, Fuzzy 

Sets and Systems, vol. 31, pp. 243-251, 1989. 

[3]  I.B. Turksen, ‘Interval valued fuzzy sets based on 

normal forms’, Fuzzy Sets and Systems, vol. 20, pp. 

191-210, 1986. 

[4]  I.B. Tursken, Z. Zhao, ‘An approximate analogical 

reasoning based on similarity measures’, IEEE 

Transactions on Systems Man, and Cybernetics, 

vol.18, pp. 1049-1056, 1988.  

[5]  I.B. Tursken, Z. Zhao, ‘An approximate analogical 

reasoning scheme based on similarity measures and 

interval valued fuzzy sets’, Fuzzy Sets and Systems, 

vol. 34, pp. 323-346, 1990. 

[6]  S.M. Chen, ‘A new approach to handling fuzzy 

decision making problems’, IEEE Transaction 

SMC, vol. 18, pp. 1012-1016, 1988. 

[7]  D.S. Yeung, E.C.C. Tsang, ‘A comparative study 

on similarity based fuzzy reasoning methods’, IEEE 

Transaction SMC Part B: Cybernetic, vol. 27, pp. 

216-227, 1997. 

[8]  L.A. Zadeh, ‘Fuzzy logic and approximate 

reasoning’, Syntheses, vol. 30, pp. 407-428, 1975. 

[9]  L.A. Zadeh, ‘A theory of approximate reasoning’, 

Machine Intelligence, vol. 9, pp. 149-194, 1979. 

[10]  D.G. Wang et al., ‘A fuzzy similarity inference 

method for fuzzy reasoning’, Computers and 

Mathematics with Applications, vol. 56, pp. 2445-

2454, 2008.  

[11]  Y.P. Meng, ‘Similarity-based information weighted 

fuzzy reasoning’, Journal of Beijing Normal 

University, vol. 44, pp. 21-24, 2008.  

[12]  J.S. Ke, G.T. Her, ‘A fuzzy information retrieval 

system model’, in: Proc. 1983 National Computer 

Symposium, Taiwan, Republic of China, pp. 147-

155, 1983. 

[13]  R. Zwick, E. Carlstein, and D.R. Budescu, 

‘Measures of similarity among fuzzy concepts: a 

comparative analysis’, International Journal of 

Approximate Reasoning, vol. 1, pp. 221-242, 1987. 

[14]  K.T. Atanassov, ‘Intuitionistic fuzzy sets’, Fuzzy 

Sets and Systems, vol. 20, pp. 87-96, 1986. 

[15]  W.L. Gau, D.J. Buehrer, ‘Vague sets’, IEEE 

Transactions on Systems, Man and Cybernetics, 

vol. 23, pp. 610-614, 1993.  

[16]  Atnassov K, Gargov G., ‘Interval valued 

intuitionistic fuzzy sets’, Fuzzy Sets and Systems, 

vol.31, pp.343-349, 1989. 

[17]  Bustince H, Burillo P, ‘Vague sets are intuitionistic 

fuzzy sets’, Fuzzy Sets and Systems, vol. 79, pp. 

403-405, 1996. 

[18]  Deschrijver G, Kerre E E., ‘On the relationship 

between some extensions of fuzzy set theory’, 

Fuzzy Sets and Systems, vol. 133, pp. 227-235, 

2003.  

[19]  F. Li et al., ‘Implication operator based on vague 

sets’, J. Huazhong Univ. Sci. & Tech. (Nature 

Science Edition), vol. 29, pp. 53-55, 2001.  

[20]  C. Cornelis, G. Deschrijver et al., ‘Implication in 

intuitionistic fuzzy and interval-valued fuzzy set 

theory: construction, classification, application’, 

International Journal of Approximate Reasoning, 

vol.35, pp. 55-95, 2004. 

[21]  X.L. X, Y.J. Lei, ‘Approximate reasoning method 

based on some intuitionistic fuzzy relations’, 

Computer Engineering, vol. 34, pp. 4-6, 2008. 

[22]  Z.Q Feng et al., ‘Vague propositional logic and 

approximation inference based on linear 

transformation’, Journal of Harbin Engineering 

Universe, vol. 9, pp. 1222-1227, 2010.  

[23]  F. Li et al., ‘An approximate reasoning approach 

based on the measures of similarity between vague 

sets’, J. Huazhong Univ. Sci. & Tech. (Nature 

Science Edition), vol. 32, pp. 44-46, 2004. 

[24]  Y. Tian et al., ‘An approximate reasoning approach 

based on the measures of similarity between 

intuitionistic fuzzy sets’, Journal of Air Force 

Engineering University (Nature Science Edition), 

vol. 8, pp. 81-83, 2007. 

[25]  Y.Q. Shi et al., ‘Bidirectional approximate 

reasoning based on distances of vague set’, Journal 

of Chinese Computer System, vol. 28, pp. 661-665, 

2007.  

[26]  X.Z. Guan et al., ‘Controller design based on the 

measures of similarity reasoning using vague sets’, 

Control Engineering of China, vol. 13, pp. 15-24, 

2006. 

[27]  T.J. Wang et al., ‘Bidirectional approximate 

reasoning based on weighted similarity measures of 

vague set’,  Mini-Micro Systems, vol. 25, pp. 211-

215, 2004.  

[28]  X.M. Li et al., ‘Approximate reasoning method 

based on intuitionistic fuzzy’, Journal of Air Force 

Engineering University (Nature Science Edition), 

vol. 9, pp. 82-85, 2008. 

 

http://www.sciencedirect.com/science/journal/01650114

	1 Introduction
	2 Preliminaries and State of the Art
	3 Similarity-based Approximate Reasoning
	3.1 Similarity measures of IVFSs
	3.2 Proposed schema for approximation inference

	4 Case Study
	4.1 Layout of heating lines on plate
	4.2 Welding deformation prediction on high-tensile steel structure

	5 Conclusion
	Acknowledgement

	References

